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CHAPTER I
INTRODUCTION

The dynamic response of a foundation is affected
significantly by the supporting soil. The dynamic beha-
vior of a soil deposit may be described by the multi-
dimensional equations of motion for a continuum and the
equations identifying the stress~strain properties of
the soil.

Foundations may be subjected to loads ranging in
intensity from machine vibrations to nuclear.explosions.
Under this range of loadings the shearing stress-strain
properties of a soil may vary from linear elastic to
highly nonlinear inelastic. Thus to predict accurately
the dynamic response of foundations this variation in
properties must be taken into account.

The first objective of this thesis was to deve-
lop a practical method of solving the equations
describing the dynamic behavior of either a linear
elastic or nonlinear inelastic multi-dimensional
continuum. This method was to be applied to the

equations representing the axisymmetric, torsional



behavior of a medium. Axisymmetric torsion is the
simplest behavior of a three-dimensional medium; thus
torsion provides an effective means of evaluating this
proposed method. In addition, only shearing stresses
develop during torsional motions therefore the effects
of shearing stress-strain properties are studied easily.
Using this method, developed in Chapters III and
V, the equations describing the torsional behavior of a
medium are transformed to a different set of equations
which may be solved numerically. The transformation,
which is very simple, introduces no approximations. The
numerical procedure gives stresses and particle veloci-
ties at selected points (nodes) within the medium.
Because, at least in the linear case, very few approxi-
mations are introduced by solving the transformed
eéquations numerically, this procedure is very accurate.
First, the numerical procedure is formulated for
linear behavior. A number of numerical solutions are
obtained and each is compared to a theoretical solution.
Then, the numerical procedure is formulated for non-
linear inelastic behavior. Numerical solutions are
obtained using Ramberg-Osgood equations to model non-
linear inelasticity. These nonlinear solutions are con-

firmed using an energy balance.



The second objective of this thesis was to
demonstrate the ability of the nonlinear numerical model
to predict the response of a model foundation-soil
system. For this purpose laboratory experiments were
conducted in which a rigid circular footing resting on a
granular test bed was excited torsionally. The applied
loading, the motion of the footing, and the motions of
the test bed at selected locations were measured.

The properties needed to define the nonlinear
shearing stress-strain behavior of the test bed were also
obtained experimentally. Then, the experiment was
modeled numerically using these soil properties and the
measured loads and numerical responses were compared with

measured responses.



CHAPTER 1II
REVIEW OF LITERATURE

Streeter, Wylie and Richart (1974) have adapted
the one-dimensional method of characteristics to predict
the response of soil deposits. Because of its success
in solving the equations governing the motions of one-
dimensional linear elastic and nonlinear inelastic
media, this adaptation was used as the basis for the new
multi-dimensional a?proach. This new approach cannot,
however, be classified as the multi-dimensional method
of characteristics which has been applied to hydrodyna-
mic problems by Butler (1960), Richardson (1964), Fox
(1962), Shin and Valentin (1978), and Lai (1977). 1In
the multi-dimensional method of characteristics integra-
tions are carried out along bicharacteristics to obtain
a solution at a point. These bicharacteristics define
paths along which waves may travel. Through each point
within the medium there are an infinite number of bi-
characteristics. Since each bicharacteristic defines
one equation, a£ any point within a medium there are an

infinite number of equations available from which to



obtain a solution for a finite number of unknowns. When
results are compared with accepted theory, even for one
dimensional conditions, agreement is not obtained (Shin
and Valentin, 1978). Ziv (1969) has applied the two-
dimensional method of characteristics to solid media.

As pointed out by Richart, Hall and Woods
(1970), Hardin and Drnevich (1972), and Richart (1975),
soils behave as nonlinear inelastic materials. Richart
(1975), Richart and Wylie (1975) and Richart (1977) have
demonstrated that, by selecting certain values for
various parameters, the Ramberg-Osgood equations may be
used to model the nonlinear inelastic shearing-stress
strain properties of a soil.

A number of studies involving the motions of
soil masses have been conducted using this model.
Streeter, Wylie and Richart (1974), Richart and Wylie
(1975), and Wylie and Henke (1979) considered the one-
dimensional response of soil deposits subjected to
earthquake excitations. Papadakis, Streeter and Wylie
(1974) used surface seismograms to compute bedrock
motions for one-dimensional deposits. Papadakis and
Wylie (1975) have obtained one-dimensional solutions
giving the response of an earth dam subjected to seismic
excitation. Wylie et al (1974) obtained two-dimensional

solutions giving the motions of various nonlinear



inelastic soil masses by treating these masses as lat-
tice works of one-~-dimensional line elements which
interacted at nodes. With this approach they identified
zones within a two-dimensional dam which developed per-

manent deformations during earthquake excitation.



CHAPTER III

FORMULATION OF LINEAR ELASTIC NUMERICAL
PROCEDURE

A. Introduction

In this chapter the equations governing axisym-
metric torsional wave propagation within an elastic con-
tinuum are presented. These equations are transformed
to a new set of equations from which a practical numeri-
cal procedure is developed. This procedure may be used
to obtain solutions of the original equations in terms
of particle velocities and stresses. A discussion of

the treatment of boundary conditions is also given.

B. Definitions

Terms and parameters frequently encountered in
this study are defined in this section. All work is
carried out with respect to a cylindrical coordinate
system having coordinates r, ©, and z as shown in Fig.
3.1. Axisymmetry refers to a condition for which there
is no variation with the e-coordinate, and an axisym-
metric torsional wavefield consists of axisymmetric

displacements and stresses. As shown in Fig. 3.1, the



only displacements, u, which occur are horizontal and
perpendicular to horizontal radii extending from

the z-axis. From the resulting deformations, two types
of shearing stresses arise. The first of these, denoted
7Tie:+ acts on vertical cylindrical surfaces centered
along the z-axis and on vertical radial planes, while
the second, Tz , acts on horizontal and vertical radial
planes. In axisymmetric torsion, compressional and
shearing disturbances generated by centrifugal effects

are neglected.

C. Derivation and Discussion of Governing Equations

One form of the equations governing axisymmetric
torsional wave propagation in an isotropic, homogeneous,
elastic medium consists of an equation of motion
relating element stresses to element acceleration and
two stress-strain relations relating stresses and
strains in each coordinate direction. 1In order to deve-
lop these relationships, only stresses and displacements
pertinent to axisymmetric torsion are considered.

An element showing the shearing stresses and the
variations in shearing stresses is given in Fig. 3.2.
The net force on the element caused by various force

imbalances in the direction of the displacement is



equated to the mass times the acceleration of the ele-

ment in this direction:

(7e* 2o dr)(r+dr) dedz -7 rdedz + (7o +

(3.1)

37ér de) de

drdz sin €2 +-“ﬂerdrd;_sm *(Tée+

‘%dz)rc\edr - Tzordedr = /wc\ecirdz %t»:'

in which/o is the mass density of the material and V is
the particle velocity in the u-direction. Following
expansion, cancellation, neglect of higher order terms,
~substitutions based upon small angle approximations
(SN de/zwde/a), and considerétions of symmetry

(0 /96:=0), Eg. (3.1) reduces to

aa/r’:e rdedrdz + T,odedrdz + T deodrdz

(3.2)
+ 220 dodrdz = ordedrd
raodraz = /DF‘{S raz 91:
Physically each of the terms on the left of Eq. (3.2)
represents some force écting on the element. The first
term is that force component arising from the difference
in stress,97;@/3P<jP, occurring between the inner and
outer vertical cylindrical surfaces and distributed over

an area,rdedz, equal to that of the inner surface.

Clearly, even under conditions of constant 'I\".e-stress,
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there will be a net force acting on the element due to
7';-.9 because of the change in ai‘ea,drc;\eéz,, of the
vertical cylindrical surface occurring over element
length, dr. The second term represents this force. The
third term is the net force acting on the element caused
by the components of the forces in the u-difection,
'Térdf‘ai , due to stresses acting on each of the vertical
radial planes of area drdZ.The approximation of ZSI‘ndE/?.,
de/e. , transforms the force,'fepdr'dz , into the u-direction
component. The net force due to the stress difference,
57’&/6%&& , occurring over the depth of the element and
acting on horizontal planes of area,i*draes is given by
the fourth term, and the term on the right hand side is
equal to the mass times the acceleration of the element
in the u-direction,é%ﬁk. Simplifying Eq. (3.2), and
noting that from rotational considerations,'T}e“ﬁ;r '

Eq. (3.2) becomes

2Trg Tre Q__zﬁ.
TS + 2 " + /Oat (3.3)

Stresses create variations in the displacement
field as shown in Fig. 3.3, and the spatial rates of
change of this displacement field may be used to define

the two strains, fre,and Kier as follows:
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- -~ M 0w _ U (3.4)
X%G df‘ r r r
and
- — o == 3.5)
Zo i= 3z (

In Eq. (3.4),u/r~ represents a rigid body rotational com-
ponent contained in the quantity,aujai", which must be
subtracted from this quantity to obtain strain, which is
a measure of deformation only. In Figs. 3.4 and 3.5 are
shown deformation modes corresponding to each of the
strains.

Stresses and strains are linearly related
through the shear modulus, G. Assuming homogeneity and
isotropy, the stress-strain relations for axisymmetric

torsion are

: u
Tre= Gle = G(%%: - ‘;) (3.6)
and
- - ou (3.7)
7%69"C;Zé6 =G 3

A simplified notation, 7;'27;‘6 ' ’E’Ee ' fr" D,re, and

&‘5‘ iie , will be used hereafter.
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Equations (3.3), (3.6) and (3.7), presented
together below, are the equations governing torsional
axisymmetric wave propagation in a linearly elastic,

homogeneous, isotropic medium.

T ._!: & | _3v (3.3)
SrH et S TPt

U, U
T = G(g-f:—'",:) (3.6)
T aa (3.7)

To demonstrate the validity of these equations, making
use of the fact that V“=3LQ§ﬁ, these equations are com-

bined as follows:

_g__{ au u.>}+26 __) azG )/oat (3.8)

After differentiating and collecting terms, this gives

G{ny_ L 3u azuuS_ oW

+ s - s .
32 ¢ Ir rﬂ- 97> = o= (39

Equation (3.9) is identical to the undamped, axisym-
metric torsional wave equation as presented by Reissner

(1937) and Kolsky (1963) in terms of displacements.

D. Transformation

In this section the equation of motion, Eq.

(3.3), and the two stress-strain relations, Eqs. (3.6)
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and (3.7), are transformed to an equation set from which
a numerical solution procedure may be developed.
Theoretical background is discussed prior to this trans-
formation with an emphasis on physical interpretations.
Fundamental to the transformation is the rela-
tionship between partial derivatives and total
differentials. Consider the coordinate system shown in
Fig. 3.6 with mutually perpendicular r-, z- and t-axes.
With respect to this figure it is assumed that a physi-
cal parameter, W, which might represent velocity,
stress, pressure, etc., is known for all (r,z,t) and
attention is directed at point A. It is desired to

determined the difference in W,ASM& between locations

xd- %
A and B based upon information available at A. For this
purpose a path is constructed between A and B which con-
sists of 3 segments, AC, CD and DB, each of which
parallels one of the coordinate axes. As illustrated in
Fig. 3.6, each segment represents one of the coordinate
axis components of As, the direct path distance between
A and B. The change, éW%ae, may be expressed as the sum

of the changes in W along each of the component

segments, i.e.

AWA'QB = AWA-#C.'* AWC..)D + AWD"’B (3.10)
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where AW;_..;S is the change in W along a linear path
between points i and j. Each of these component changes
may be approximated by the product of the rate of change
of the physical quantity, W, with respect to the coor-
dinate direction of interest at point A, i.e. 3W/O r]A,
and the component of the path As in that direction,

i.e. Ay ,g. Thus Eq. (3.10) may be written as

oW oW W

AWhsp 2 31 AAPA_,B + -é'%“AA'iA_’,B-F-a—{\AA‘tA_)B (3.11)

where AYA»p, AZp,p » and at A»g are the components in the
coordinate directions of the linear path, As, between
points A and B, and aw/ar],\ , BW/SZ’A , and QW/a":‘A are
the rates of change of W at point A with respect to
changes in each coordinate direction whiie holding the
other coordinates constant (partial derivative of W with
respect to each of the coordinate directions at A). The
approximation of Eq. (3.11), which improves as Ar, Az,
and At approach zero, is strictly valid only if QW/SY‘,
aw/az , and aW/a't are continuous. Clearly, it is
incorrect to estimate the change in a quantity between
two points based upon the rate of change at one point,
if the rate of change of the quantity between the two

points is discontinuous.
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Defining AWA-)BaS dw, ArA-»B as dr, AZA—»B as dz

and AtAaa as dt, Eq. (3.11) may be expressed in dif-

ferential form as

c\z » W \t (3.12)
ot

giving the approximate total change in W along path AB

W ow
dWA»& or \EH‘ 0Z

as a sum of the changes in W along each of the com-
ponents of this path.
An objective in the following development is to

replace the sum,

S3W T AW, Jaw
Qap +b Iz +d§—€ (3.13)

——

by the total change, dW, where coefficients a,b, and d
in expression (3.13) are numbers. Expression (3.13) is

equal to the change in the function, dW, but only for

—

the path having components dr = a, dz = B, and dt = d.
Should the path, (dr, dz, dt) take on values other than
these, then expression (3.13) would not predict dW along
this different path.

The preceding discussion may also be extended to
the time rates of change of W, C‘W/cl‘t. Dividing Eq.

(3.12) by dt and dropping subscripts:

dw _ whr) dr | (éW/aZ)dz (ow/ye)dt
dt =~ dt dt at

(3.14)
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Equation (3.14) states that the total time rate of
change of physical quantity, W, due to a change in coor-
dinates (dr, dz, dt) occurring in time, dt, is equal to
the sum of the coordinate axis components of the time
rate of change of W. Rewriting Eg. (3.14) gives
dw - oW dp + W da + W (3.15)
dt a9r dt o=z dt = 3t

A more rigorous development of Eq. (3.15) is given by

Streeter and Wylie (1975, Appendix B).

From the previous discussion and Egq. (3.15),
€(aw/ar)+? (3W}BZ:) + oW/t correctly gives dW/dt only for
the path having component time rates of change,
dridt=¢€ ,dz/dt= f , ana dt/dt= 1.

The equations to be transformed are, in

simplified notation,

oTr T, T _ 3V

or re r + oz -/031-:-
o

'T?=G('a%."'%“ (3.16Db)
oW

Tz = G S (3.16c)

The dependent variables for this equation set include
~Y
7J "Z , U, and V, and the objective of the transfor-

mation is to simplify this equation set by replacing
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combinations of partial derivatives of the dependent
variables with total derivatives.

The following partial derivatives are present in
Eqs. (3.16): 37;-/9!‘, 37;1/92, and SV/at. To form the
combinations of partial derviatives necessary to substi-
tute total derivatives,9Tp /32‘., arr/at , 37}; /91:, 37; /a r,
6\//9 r, and QV/QE are required. These are generated
by partial differentiation of Egs. (3.16b) and (3.1l6c).
Differentiating the first of these with respect to time
gives a relationship between the time rate of change of
7} -stress and the time rate of change of U}-strain at a

fixed point in space.

37?._ 1w
G(§ gtar' F o) (3.17)

Since V = dW /9T, and imposing continuity of the second
derivatives of displacement so that the order of dif-

2 Y
ferentiation is immaterial, i.e. au./atar= Bu/arét Eq.

(3.17) may be interpreted as
alp V
- mm— — '18
( =) (3.18)

Eq. (3.18) may be rewritten as

a"‘ - G (} (3.19)

To obtain 37*;_ /ae, Eq. (3.16 b) is differentiated with

respect to z, giving a relationship between the rate of
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change of 7;-stress with respect to depth and the rate
of change of U}—strain with respect to depth at a given

time and radius.

I own
G(dzar = 3% (3.20)

Again, imposing continuity of second derivatives of

displacement, so that 61\1«./5 roz :a"u/;z_ar, yields
2Tr . - Llpau
- L (6%)- fo2

Substituting Eq. (3.16c¢c) into Eq. (3.21) and rearranging

terms,

I _ 3T , - (3.22)
92  or +°'FT:’3'O

is obtained. In order to obtain a positive partial
derivative,AT;/aYZ the following relation is used:

o _ dTz _
ar &rno

The partial derivative, 8';/&1: is obtained by differen-

(3.23)

tiating Eq. (3.16c) with respect to time, giving a
relationship between the time rate of change of 7;—
stress and the.time rate of change of’&é-strain at a
point in space:

9Tz o U
ot =G
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Since \/‘-'au/at and since the second partial derivatives
of displacement have been assumed to be continuous, the

equation above may be rewritten as

3Tz SV
ot G oZ O
Finally, the equation of motion is rearranged to give
9T Tr 9Tz oV
or ve r t oz P 3t ( )

Since the five equations developed above, Egs.
(3.19), (3.22), (3.23), (3.24) and (3.25), are all equal
to zero, each may be multiplied by an unknown constant
and combined linearly to give a single equation also

equal to zero. Thus

where A, E, C, and D are unknown multipliers. Perform-
ing manipulations necessary to collect groups of partial

derivatives, Eq. (3.26) may be rewritten as
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d 2 ot
TcY . B = = 9%
Fotr Enogi 58 -0

Based in general upon the discussion of the
relationship between partial and total derivatives, and
in particular upon Eq. (3.15), in order to interpret the
groups of partial derivatives in Egq. (3.27) as total
time derivatives, the time rates of change of coordi-
nates,d(‘/dt ’ dﬁ/dt, and le/dt, must be given the
values of the appropriate coefficients of the partial

derivatives in Eq. (3.27). Thus, for this

interpretation,
&‘_E:.‘_:B:z\»@- (3.28a)
it K TP
dz _ B . L .CG (3.28Db)
it "R T P
dt .
dt (3.28¢)

Under the conditions of Egs. (3.28), Eq. (3.27) may be

written as
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Each of the groups of partial derivative terms of Eqg.
(3.29) is in the form of Eg. (3.15), and this permits
the replacement of these groups by total time
derivatives. The paths in space and time along which
the groups may be so interpreted are those having com-
ponent time rates of change dr‘/d‘t, dZ/dt and Ci‘t/dt as
defined by Egs. (3.28). For a given time increment, dt,
these paths therefore have component lengths (dr, dz,

d d
( a‘{__dt , ﬁdt g—%dt ).

of the repetitive equalities in Egs. (3.28a) and

Note that by virtue

(3.28b), each of the groups become total time derivati-
ves along the same path.
The conditions of Egqs. (3.28) permit Eq. (3.27)

to be written as

dat *
-

Wl
TH D"C*'

cdn_dv, 2T, A
d—p 22r + AG

'f|<

- B+ =0
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or

C 1 2 T:
d’?“,.+ -% d/i- ;QAcl\/-l— T—Ir c‘t+
(3.30)

B = \ (B+D) 3T: _
Frdtropdt- B2 S0 dt =0

Solving for the coefficients A, B, C and D by use of

Eqs. (3.28a) and (3.28b) gives

2:3 i:T%gr = tr %a

B =%\

(3.31)

D=t

where vg is defined as G;'/D, the velocity of a shear
wave in an elastic medium. From Eqs. (3.31), (3.28a)
and (3.28b) there arise four possible paths along which
the conversion from partial differentiation to total
differentiation may take place. The time rates of
change of the components of these paths in the coor-

dinate directions are given by the four possible com-

binations of the following set:
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(3.32a)

3.‘;:. = * Vg
%th = i\/,s | (3.32b)
'3% = ) | (3.32¢)
The four paths defined by Eqs. (3.32) are
[ (vedt, wdt  dt)
(vgdt | -vgdt dt) (3.33)

(dr,dz dt) = - (-vedt | vgdt, dt)

L(-Vsdt)~V5dt)dt)

Introducing separately each combination of Egs. (3.32)
into Eq. (3.30) and also applying Egs. (3.31) gives four
equations, each valid along a different one of the four
paths described by Egs. (3533).. These equations along
with path identifiers (C', ct, C.“',. and C7), path

rates, and paths are presented below:



24

ctt. p , dr_ dz _ dt
ath I"Cﬁ'"ﬁ.. de \/S) &“ v’$) dt‘ |

Path: (dr,dz,de) = (Vedt vedt dt)

Equah'cﬂ:
—~ — 372 T
dTr +d T -pvsd\/-ngdr +2-’:'-‘dr( |
3.34a
Tz N
+ " dr-%-/«"\/s - df‘ ()

dr_ d?; C\t
e Vs gr ey

Path: (dr,dz,dt) = (vsdt, -VsdE, dt)

*-: Path rafe - -

Equation:

T -d7z -/ovsd\/a—ae-—-*dr v Z——fdr

Ts \
--—'fdr‘-\»/ovs-—/?dr: O
r (3.34b)

v 2oy dEs

-+ . dr_

Path: (dr, dz,dt) = (-vsde vedt dt)
Equah‘cn ‘
d”/?-d’/\;+/0v5d!/+2%’-=*clr+2?r{-dr
"‘:Edr—PVS—\-/—-C}T‘ = O

C™~: Po-H\ rote :—V5)

dr
T dt
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Path s (dryde,dt) = (-vsdt -vedt, di)

Equation:
/\l
! .
d’r}fc\?*z-r—/ovsdv- Z%—:dr+ (3.344)
T ). Tz vV oy
2 rclr-i- - dr -/ovj—r-:dr = O

E. Numerical Procedure

To develop a numerical procedure capable of
solving Egqs. (3.16), each of the four major differential
equations of Egs. (3.34) is integrated over a finite
change in space and time along an appropriate path also
defined in Egs. (3.34). With reference to Fig. 3.7, an
example integration is carried out over a finite
distance from point A to P along the C:++path for which
(ar, a2, at) = (vgat, vVoat, at).

(3.35)

jg'?? +§ Tz - P\/sjdv 25 a'z"clr+
p

Zj "”dr+f ’T/*‘c]r- + /J\/;jp-!— dr= 0O

Integrating Eq. (3.35) in accordance with the trape-
zoidal rule, which introduces a numerical approximation,

gives,

(’/\?p‘r’\‘r‘h) + (Tzp =Tz a) ;ﬁ\é(vp “Va) =
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oTz| , T T
(5?"—!p+ S_r_:‘—l ) (rp-1a) + (—F'CPE + "'r'—:,ﬂ (ro-13)
+(7;;P+ o) (08 4 236 (Y2, 24) (1, (%9
=0

The appended subscripts, A and P, indicate the location
along the path at which a quantity is defined. The
other three equations of Eqs. (3.34) may be integrated
similarly along Ct= ¢t ana C™” paths.

To obtain a solution at a point in space and
time, as shown in Fig. 3.8, the origins of the four
paths are selected such that, for a given change in

time, the terminal points of each path occupy the same

Va4
Ir‘:

point in space and time. If all the variables, "
Tz . and 573_/3 r, are known at the origin of each path
and unknown at the terminal point, then, by integrating
Egqs. (3.34) along these four paths, four algebraic
equations may be obtained in the four unknowns:'7%p,

Ve .Trp, and c)'T}_./JPIp. This equation set may be solved
simultaneously and the solution may be interpreted as an

~~ Pt
estimate of the values of /z, Tr, V and a/zjgr‘at a

point in space and time based upon known values of these
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variables at a finite number of distinct locations
at an earlier time.

The implementation of the numerical procedure in-
volves defining a grid in the (r,z,t) coordinate system.
In this grid, any r-z plane represents space at a par-
ticular time, and each r-z plane of this grid consists
of a regular array of nodes at which variables are known
or are to be computed. Each r-z plane is separated by a
preselected time increment, &t, which also fixes the
distance interval between nodes,AFand AZ.

Two types of grids, square and staggered, have
been used to obtain linearly elastic solutions and are
shown in Fig. 3.9. For each grid, values are computed
at the starred nodes.

At any time, t+A%t , computations are carried out
for all nodes in the r-z plane corresponding to this
time. These computations are based upon the values of
the variables, Tga, T;«, V, and 97;/&?‘, obtained at nodes
within the r-z plane corresponding to time t, either
from previous computations or initial conditions. Fig.
3.10 focuses on the details of an isolated cell used for
computations at a point, P, having coordinates (!p, Zp,
t+At ). The four integration paths, C++, C+— , C-+,
and C"“-, are shown originating from points A, B, C, and

D each in the same time plane and terminating at point
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P. The distance intervals of the grid, O&F and A%, are
chosen such that, for the time increment selected, each
of the paths extends from an appropriate originating
node to the terminating node, P. Since, for a given
time increment, A%, each path has component magnitudes
(lar], |az) at) = (Vg at, Vsat, at), the required
distance interval is AT=A%Z= V41, all variables are
known at nodes A, B, C and D permitting a solution to be
obtained for 7er: Tz?, Vp, and &E/ar‘Pby solving the
following equation set representing the systematic form
of the integrated path equations:

Tre + bﬂfz_P*'CIVP*C\%‘,;)P: €,

l“?

03 pf‘ bsTEP““ C\;\/p 1t C\ QFXP: e.s ( |
3.37

“2

Q57}P+ b IEP+C5VP+' dS —-F‘ = eS
Tz

0\7/rp+b /ZP+C7 P‘\‘d; QY‘\

The quantities aj; through e; may be computed and are
functions of the nodal coordinates, nodal variables and
material properties. Equations for these coefficients
are given in Appendix I. Equations (3.37) are solved
at each nodal point in the r-z plane corresponding to
time 1 + At, time is then incremented and the entire

process is repeated. In this manner, values are
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N
obtained for the variables 7:, /z-, Y, and 37;/3"', for

each node in the space-time region of interest.

F. Development of Boundary Conditions

Boundary conditions may be given either directly
or indirectly. A direct boundary condition is one for
which one of the unknowns, Y, Ir, ?E, or *‘)73/97', is
given known values at a point or node. In an indirect
boundary condition, quantities other than one of the
four main variables are specified and these quantities
are introduced into accepted differential equations
which relate the main variables to these specified
quantities. This gives a relationship between the main
variables. As an example of a useful indirect boundary
condition, QT;/BZ may be given at a point yielding a
relationship between the two main variables 372/br'and

Ta . through the equation

37?' 372. 7?5
52 " r T =0 2038

which is the differentiated form of Eq. (3.16b). It is
of interest to note that partial derivatives, which may
be specified as boundary conditions, are fully defined
at a point rather than being determined as a finite
change of a dependent variable with respect to a finite

change in one independent variable.
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Fig. 3.1: Axisymmetric Torsional Displacement and
Stress Fields Given in Cylindrical Coordinate
System.
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31,—9

(r+dr)de

Fig. 3.2: Element with Stresses.
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Fig. 3.3: Deformation of Region in r-z Plane.
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RIGID BODY ROTATION
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Fig. 3.4: Region in r-z Plane Having Yre—Strain in
Absence of Yze-Strain.
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Fig. 3.5: Region in r-z Plane Having yzg-Strain in
Absence of ypg-Strain. ;i
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Z
Fig. 3.6: 1Illustration of Finite Change in Physical
Parameter, W, over Path, A-+B, in Space and

Time Having Components, Arp.,p, Azp.g, and
AtA_).B .

Fig. 3.7: Integration Path (C+*+) Having Finite Length.

Z
Fig. 3.8: Integration Paths (Cc*+, ct-, Cc-+, C--)
Intersecting at Common Point P.
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(a) Square Grid

NODE

(b) Staggered Grid

Fig. 3.9: Segments of Grids Used to Obtain Numerical
Solutions in r-z Planes at Instants in Time.

: AT
1 :

NODE

Fig. 3.10: Isolated Computational Cell for Computations
at Point P.



CHAPTER IV
EXAMPLES OF LINEAR ELASTIC BEHAVIOR

A. Introduction

In this chapter, numerical solutions obtained
using the numerical procedure developed in Chapter III
are presented for a number of examples involving tor-
sional wave propagation in a homogeneous, isotropic,
elastic continuum. These examples range in difficulty
from simple one-dimensional, to complex two-dimensional
problems. Each example is discussed from theoretical,
physical and numerical standpoints and numerical result

are compared with analytical solutions.

B. One-Dimensional Examples

Under certain conditions, one-dimensional shear
wave propagation may be approximated by axisymmetric,
torsional wave propagation. In the following two sec-
tions, these conditions are imposed and one-dimensional
shear wave propagation is simulated numerically in the

radial and z-directions.

35
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1. Radial Direction

a. Theory -- The propagation of torsional
shear waves through the thickness of a thin walled,
infinitely long cylinder having a large radius (see Fig.
4.1) approximates one-dimensional shear wave
propagation. The thin wall and the large radius reduce
the geometric decay of waves due tb propagation into a
larger area. These torsional waves are generated by
applying, uniformly, either'T} or V disturbances along
the inner or outer wall of the cylinder. Only 7; and V
develop within the cylinder and the direction of wave
propagation and the mode of deformation are shown in
Fig. 4.1.

The known relationship between particle
velocity, V, and shearing stress,'T? for plane shear
wave propagation, in the absence of reflections, is

given as

(4.1)

b. Description of Example -- An example was
solved numerically in which a time dependent stress was
applied uniformly along the inner surface of the
cylinder. To demonstrate the treatment of boundaries,

the outer wall was fixed uniformly. Using the square
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grid shown in Fig. 4.2, a solution was obtained by
applying boundary and initial conditions at the nodes of
the grid.

Initially, the entire region defined by the grid
was undisturbed. At each boundary node two algebraic
equations are available from the interior of the medium.
Therefore, to obtain a solution at these nodes two inde-
pendent boundary conditions are needed. The inner
boundary was excited by applying a sinusoidally varying
shearing stress uniformly along the inner wall of the

cylinder. Mathematically, this condition is given by

’7‘}-:7-:‘;',,\ sin 2w f+ (4.2)
..I.L‘ = 0 (4.3)
oZ

where=F;m and f are the amplitude and the frequency of
the excitation, respectively. The first condition, Eq.
(4.2), is a direct boundary condition. The second
condition, Eq. (4.3), insures uniformity of the applied
stress with respect to depth and is an indirect boundary
condition. From this equation a relationship may be
obtained between useful unknowns. Rewriting one of the

basic equations, Eq. (3.22),
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QI r /2 [
= Sr -+ - 2 0

and substituting Egq. (4.3) into Eg. (3.22) gives

. Iz = Ta (4.4)
I r r

Equation (4.4) was applied at each node along the inner
wall. Note that specifying'T} to be identical at each
of these nodes does not imply that57}/az = 0, thus
Egs. (4.2) and (4.3) are independent conditions.

The boundary conditions describing the uniformly

fixed outer wall are given by Egq. (4.3) and
V=20 (4.5)

The first condition is an indirect boundary condition
leading to the application of Egq. (4.4) at each node
along this boundary, and Eq. (4.5) is a direct boundary
condition.

Under one-dimensional conditions in the radial
direction, behavior does not vary with depth. 1In order
to model this condition, as well as the infinite exten-
sions of the cylinder in depth, values computed along
the horizontal center plane of the grid were applied to

the upper and lower boundaries.
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Considering plane wave propagation in the posi-
tive direction of an arbitrary radius, the theoretical
one-dimensional response of the medium to the excitation

given by Eq. (4.2) is

= ‘ -
Tr(ryt) = Tem SIN 2Wf(t - (——-—-——-—-rvs‘ ) (4.6)
V. (r-mn)

Ving) = =7 Tom sin W (1 - 75 (49)

where ri is the radius of the inner boundary. These
equations are valid in the absence of reflections and
apply behind the plane wavefront, which travels at the
shear wave velocity. With the convention used, positive
r causes negative V for waves traveling in the positive
radial direction.

At a fixed boundary, the stress of an incident
wave and its reflection are equal in magnitude and sign.
Superimposing these waves gives the theoretical stress

at the outer boundary as

(Q-ﬂ)>

Tr(5,t) =2 sin 2 f (t - = (4.8)

where ro is the radius of the outer boundary. Equation
(4.8) is valid prior to the arrival of reflected

reflections.
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c. Solution of Example -- A numerical solu-
tion was obtained using a grid, shown in Fig. 4.2,
having 5 rows and 11 columns of nodes. The following
values were used for parametersz/O = 3.11 slugs/ft3, G =
1,200,000 psf, r;y = 10,000 ft, ro = 10,006.21 ft,i;;m =
500 psf, £ = 300 cps and vg = 621.17 fps. The wall of
the cylinder was thin enough and the radius large enough
so that the geometric decay of the dependent variables
with increasing radius was negligible.

Numerically and analytically obtained values of
T’y and V are presented in Figs. 4.3 through 4.5. Values
of T, andd7,/dr were found to be insignificant, as
would be expected, and are not plotted.

Plots of V and 7} vs. time are given in Fig. 4.3
for a radius of 10,001.242 ft. The finite time prior to
the arrival of the disturbance is equal to the time it
takes for a disturbance, traveling at the shear wave
velocity, to travel from the inner boundary to this
radius.

Figure 4.4 gives plots of 7/, and V vs. radius
at a given time of 0.0089975 sec. The distance traveled
by the wavefront in this time, 5.59 ft., is equal to the

distance traveled by a shear wave in this time.
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Figure 4.5 gives'T} vs. time at the rigid
boundary. The disturbance also arrives at this boundary

at the correct time.

2. %Z-Direction

a. Theory--One dimensional shear wave
propagation‘may also be approximated by a shearing
disturbance traveling longitudinally along a cylinder
having a large radius and a thin wall. With a large
radius, the relative changes in the dependent variables
for a given change in radius are small and with a thin
wall, the differences between the dependent variables at
the outer and inner walls are small. Shown in Fig. 4.6
is a segment of such a cylinder which extends infinitely
in the positive z-direction from the z = 0 plane.
Approximate one-dimensional waves may be generated by
applying radially proportional values of 7; or V to the
upper horizontal surface of the cylinder. Only'7; and V
develop within the cylinder and the direction of wave
propagation and the mode of deformation is shown in Fig.

4.6.

b. Description of Example--An example was
worked using the square grid shown in Fig. 4.7.
Initially, the entire region defined by the grid was

taken to be free of disturbance. Direct boundary
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conditions were applied to each node along the upper
surface of the cylinder. The first of these conditions
imposed a distribution of particle velocities which
varied sinusoidally with time. In this distribution,
the particle velocity was proportional to radius, a con-
‘dition which corresponds to the rotation of the upper
plane as a rigid plane about the axis of symmetry.

This boundary condition may be expressed as
Virt) = wrSin2nft = Vp(rYsin2mft (4.9)

where W is the angular velocity of the rigid rotation
and Vp(r) is the amplitude of the particle velocity as a
function of radius. There can be no shearing defor-
mation in a rigidly behaving plane, thus, Xr = 0 along
the upper surface of the cylinder giving the second

boundary condition along this surface as
T =0 (4.10)

The inner and outer boundaries were treated as
being uniformly free of 7;—stress. This condition may
be expressed by Eq. (4.3), which leads to Eq. (4.4), and
by Eg. (4.10).

For each of the nodes at the intersections.bet—
ween the upper surfaces and the walls, three boundary

conditions are needed because only one algebraic
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equation is available from within the medium. Equations
(4.3), (4.9) and (4.10), which are a combination of
boundary conditions from the upper surface and the
walls, were applied at these nodes.

The lower boundary models the infinite extension
of the cylinder. For one-dimensional propagation in the
direction of infinite extension, events taking place in
any plane perpendicular to the z-axis, at any given
time, take place in any other parallel plane further
along the direction of propagation at a later time.

This later time is equal to the given time plus the tra-
vel time of the wave between these planes. Accordingly,
at time t + At the dependent variables along the lower
boundary_were assigned the values of the dependent
variables computed at time t along the horizontal plane
one distance interval above this boundary.

The theoretical, one-dimensional response to the

excitation, given by Eq. (4.9), is given as

V(iz,t) = Vm Sin 2nf <t”35) (4.11)
a .
a0 7;_(;_,t)=-§7\5/ﬂ> Sin2mflt- <) (a.2)

These equations are valid, in the absence of
reflections, behind the wavefront which propagates in

the positive z-direction at the shear wave velocity.
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With the convention used, positive particle velocities
result in negative shearing stresses for waves traveling

in the positive z-direction.

c. Solution of Example--An example was
solved numerically using a square grid having 11 nodal
rows with 6 nodes in each row and shown in Fig. 4.7.

For this example G = 1,200,000 psf,p= 3.11 slugs/ft3,
W = 0.00005 rad/sec, rj = 10,000 ft, ro = 10,001.035
ft, £ = 300 cps, and vg = 621.17 fps.

Results from the numerical solution as well as
from the corresponding analytical solution are given in
Fig. 4.8 and 4.9. Only curves involving 7; and V are
presented since 7} and a7}/3r were found to be negli-
gibly small, as expected. Values of 7; and V obtained
numerically were taken from the inner surface of the
cylinder. Because of the large radius and the thin wall
of the cylinder, differences between the values of these
variables along the inner and outer walls were negli-
gibly small.

In Fig. 4.8, plots of 7; and V vs. time are
given for a depth of 0.207 £t and Fig. 4.9 gives V and
’T} vs. depth at the time 0.00333 sec. As in the pre-
ceding example, the wavefront was found to travel at the

velocity of a shear wave.
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C. Longitudinal Wave Propagation in a Solid Cylinder

In this section, the problem of the propagation
of torsional waves along the longitudinal axis of a
solid cylinder is studied. 1In this problem, waves pro-
pagate as planes; however, the problem is more compli-
cated than that of one-dimensional wave propagation
because the dependent variables vary along the propa-
gating planes. A second feature of this problem is that
a solution is obtained in the vicinity of the axis of

symmetry.

1. Theory

The application of an axisymmetric distribution
of shearing stresses or particle velocities along a
plane surface perpendicdlar to the longitudinal axis of
a solid cylinder gives rise to torsional waves which
propagate along this axis. The mode of deformation and
the direction of wave propagation is shown in Fig. 4.10
which shows a wedge of a solid cylinder excited along
its upper suface by a distribution of particle velocity
which is proportional to radius.

Kolsky (1963) presents a steady state solution
for the propagation of torsional waves along an elastic
solid cylinder of infinite length. This solution,

obtained by solving the axisymmetric torsional wave
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equation, Eq. (3.9), using the separation of variables

technique is given as

Utr,z,t)= U ¢ (72 +E0t) (4.13)
where U(r) is the displacement shape in planes perpen-
dicular to the z-axis, f is the wave number, A is the
wavelength along the longitudinal axis of the cylinder
and (U is the circular frequency of the excitation.
Equation (4.13) gives the solution for a wave traveling
in the negative z-direction. Numerical solutions were
obtained for waves traveling in the positive z-direction
and the corresponding theoretical solution, based upon

Eq. (4.13), is given as

u(rg.,‘t):U(r)eL(“—’t_aa (4.14)

Expressing Eq. (4.14) in sinusoidal form by use of

Euler's identity gives
Uiz t)= U cos(@b-%2) + L Umysin (Bt -72)(4.15)

Solutions corresponding to the real portion of the

response,
W(ryz,t)= U cos(@t-T2)  (4.16)

were considered and attention was directed towards the

first mode of vibration. In this mode the displacements
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within all planes perpendicular to the z-axis are pro-
portional to the radius, thus these planes rotate about
this axis as rigid disks. In this mode, the displace-

ment shape may be expressed as
Utr)=Ar (4.17)

where A is an arbitrary constant.
Several manipulations are carried out to present

the solution in a more convenient form. Since ¥ = ZTT[A

and A=V@fﬁ

Y = Fied (4.18)

Vs
Combining Egs. (4.16), (4.17), and (4.18) and substi-

tuting 27f for (O gives
u(rz,t)=Arcos Amf(t - -2\‘—/;‘) (4.19)

The variables V,'T}, 7; and 37;/6r, for which values are
obtained in the numerical procedure, may be obtained by
differentiating Eq. (4.19) in accordance with basic

definitions. For example,
G2 Ly
ar r

*=
Ti=G[Acos2me(e - By - Arces 2'“:“" vQ]

Cancelling terms givesrT} = 0, which is expected in this

mode in which deformations are not permitted in planes
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perpendicular to the z-axis. The remaining variables

are given as

Ol _ 2nf GAr

2= G655= % Sin2mf(t- ) (4.20)
V = 99_% = -2nfAr sin21f (¢ - Z) (4.21)
and
972 _ 2wFGA . -3
== = v Sin2mf(t Vs) (4.22)

2. Description of Example

A numerical example was worked using the square
grid shown in Fig. 4.11. To avoid divisions by zero in
the numerical process, the cylinder was given an inner
radius having a very small value. Thus the solid
cylinder was approximated by a very thick-walled hollow
cylinder. All boundaries as well as the interior region
were treated as described in the preceding example. The
particle velocities applied to the upper surface of the
cylinder correspond to the particle velocities given by
Eq. (4.21) along this plane. The initially undisturbed
state of the solid cylinder in the numerical solution
contrasts the initial state of the cylinder in the
steady state analytical solution. The initial state
used in the numerical solution was chosen in order to

demonstrate the propagation of the wavefront.
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3. Solution of Example

A numerical solution was obtained using the
following values for parameters: G = 1,200,000 psf, =
3.11 slugs/ft3, rj = 0.01 ft, ro = 1.045 ft, W=
0.04784 rad/s, and £ = 300 cps. Numerically and analy-
tically obtained values for the variables V,7uz and

oTz/Jr are plotted in Figs. 4.12 to 4.14. The

Variable"T)r, was not plotted since it was found to be
insignificant, as expected from theory. The numerical
solution gives the theoretical solution for all
variables along the plane of excitation for all time,
indicating that the upper boundary used in the numerical
solution models effectively the influence of the upper
semi-infinite portion of the cylinder, z < 0, which is
present in the analytical model.

In Figs. 4.12 and 4.14(a) are shown plots of V,
T and&yT;/ar as functions of time at a depth of 0.207
ft and a radius of 0.838 ft. The steady state theoreti-
cal solution was compared to the numerical solution for
times greater than the arrival time of the disturbance
at this depth, and the agreement indicates that steady
state conditions were developed immediately in the
numerical solution. The repetition of the response
in Figs. 4.12 and 4.14(a), after one cycle, indicates

that the response is identical whether the wave
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propagates into a disturbance-free field or into a field
corresponding to steady state conditions.

The plots of Figs. 4.13 and 4.14(b) give numeri-
cal and analytical solutions for the variables v,ﬁVz and
87;/3r as functions of depth for a time of 0.00333 sec and
a radius of 0.631 ft. All comparisons were made behind
the wavefront of the numerical solution and this
wavefront was found to travel at the velocity of shear

waves.

D. Two-Dimensional Examples

The most complex solutions of the axisymmetric
torsional wave equation are two-dimensional solutions in
which all dependent variables are nonuniform functions
of all possible independent variables, and in which wave
propagation is nonplanar. Two examples of this type of
solution are presented in the following sections. Each
of these examples involves the steady state response of
a homogeneous, isotropic, linearly elastic half space.
In the first example, a sinusoidal point torque is
applied to the surface of a half space and in the
second, a sinusoidal angular displacement is applied to
a rigid massless disk attached to the surface of the
half space. Numerical and analytical solutions are pre-

sented for each example.
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1. Torsional Point Source

a. Theory--A portion of a half space is
shown in Fig. 4.15 to show the manner in which waves
propagate from a torsional point source acting on the
surface of the half space. In response to steady state,
sinusoidal excitation, alternating crests and troughs in
the dependent variables propagate at the shear wave
velocity within the half space. In accordance with
Huygens' principle and as shown in region ABCD, some
distance from the point source in Fig. 4.15, these
crests and troughs propagate as circles perpendicular to
rays extending from the point source. The dependent
variables are not uniform in value along these crests
and troughs.

Reissner (1937) presents the steady state
displacements within a linearly elastic, isotropic,
homogeneous half space loaded by a sinusoidal point
torque, MpcosGSt, applied to the surface of the half
space. This solution represents an approximation which

improves with distance from the source and is given as

M r * -
ulr,z, t) = ‘M‘% rer z2 i Ko sinlot (4.23)
/2
-k (r+ z2%) J+ mz COS[(B't

- ko(rz-f' }-1) }hjg
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where Mp is the magnitude of the applied torque and kg =
&SfFVET The variables V, Ty, 7% and 97,/9r, which are

obtained in the numerical solution, may be obtained from
the analytical solution by differentiating Eq. (4.23) in

accordance with basic definitions. These variables are

given as
T GBY- ) - - e s [t
= G(5¢ r‘)" [ frirgee 1SN LGS
2 Z) + r k
- ko (r2+22)'"%] - [ (Bzri/f; +;/z ]COS[
Gt-ko(riez)"] (4230)

_rau _ Mp (1 ko
-G32 - 2 {[ s sl -k

24/ r Li Srz —
+ Z27) 2]+ [-— (r‘i ;‘):3/2 - (rt +2:.\s‘l7_] COSE.» t

- Ko(r*+ ?_’-_z),lz]% (4,24 1)

o7z M k. z ke
ST #{[‘ﬁ?ﬁ? } F%“"TJS‘“L‘“

2 ? k
- 2 l/Z. - ,2:-5,(°+3r 2.. [ -
koCrr+z2)’%] 1—L i) SIe

3. 2
;’:_-l ;13)27;2_] cos[Gt -ko(r“i")”?'] (4.24¢)
+
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LY ko i
V= H f%?*S [;:Lf_;}t]CXDstgst.
Kolriyz?)''2] — [<rz+z=35/a]5m[wt~

ke(r2s+22)"2] 4.24d)

b. Description of Example--A numerical
solution was obtained within region ABCD, shown in Fig.
4.15, using the staggered grid. A segment of this grid
is shown in Fig. 3.9(b). In the staggered grid
suggested by Wylie (1979), much fewer computations are
needed than in an equivalent square grid which actually
consists of two independent staggered grids offset from
one another by one distance interval.

For the initial conditions, the theoretical
solution, Egs. (4.24), was applied over the entire
region and boundaries of square ABCD. After the initial
time, the theoretical solution was applied only along
boundaries AB, BC, and CD of this square. The boundary
AD, along the free surface, was described by the

following direct boundary conditions:
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Tz = O (4.25)
7% _ (4.26)
or O

A numerical solution was obtained for a time
span of sufficient length to demonstrate cyclic
behavior. A satisfactory numerical solution was one
which agreed with theory for the duration of a cycle and

returned to the initial state after one cycle.

c. Solution of Example--An example was
solved using the following parameters: Mp = 1000 £ft-1b,
G = 700253 psf,/0= 3.17 slugs/ft3 and £ = 300 cps. The
period of the excitation was 0.00333 sec and a solution
was obtained for a time span of 0.0035 sec.

One wavelength,/x, is 1.56 ft in length and
corner A of region ABCD, shown in Fig. 4.15, is three
wavelengths, 4.68 ft, from the z-axis. Each edge of
this square region is three wavelengths in length and,
as shown in Fig. 4.16, a grid having 31 rows, each con=
sisting of 31 nodes, was used to obtain a solution. A
square subregion having edges one wavelength in length
and located centrally within region ABCD is unaffected,
for the duration of the first cycle, by the excitation

applied to the boundaries of region ABCD. This is
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because it takes a minimum time of one period of the
excitation for a disturbance originating along the boun-
daries of region ABCD to reach this subregion.

Values of the variables,’rz, 7/r, v, and aﬁ/c)r,
at the initial state, as obtained from the analytical
solution and the values of these variables at a time
equal to one period of the excitation, as obtained
numerically and analytically, are plotted in Figs. 4.17
and 4.18. All values presented in these figures were
obtained either along lines 1-1 or 2-2 contained in
region ABCD shown in Fig. 4.15.

Figures 4.17(a) and (b) show'7;, 7}, V and
afrz/ér as functions of radius at a constant depth of
2.34 ft, along line 1-1 shown in Fig. 4.15. Along this
line the numerical solution returns to the initial state
at the end of one cycle and similar agreement between
analytical and numerical results is observed at inter-
mediate times.

As shown in Figs. 4.17(a) and (b), the apparent
wavelength of the disturbance along line 1-1 is rela-
tively short. This is because, as shown in Fig. 4.15,
line 1-1 cuts primarily across the crests and troughs of
the waves. Since line 1-1 is located near the surface of
the half space along whichrT; = 0, the quantityFTE is

found to be much smaller in magnitude along line 1-1
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than Te. Also apparent in Figs. 4.17(a) and (b) is the
significant geometric decay of each of the dependent
variables with increasing radius.

Figures 4.18(a) and (b) show(T;, 7+, V and a?}/&r
as functions of depth at a constant radius of 7.02 ft,
along line 2-2 shown in Fig. 4.15. The agreement be-
tween numerical and analytical results is similar to
that found along line 1-1.

As shown in Figs. 4.18(a) and (b), the values of
the variables along line 2-2 have a longer apparent
wavelength than those along line 1-1 since line 2-2 cuts
primarily along the crests and troughs of the waves.
Near the surface, /, is small because the surface is
stress-freé, and'7; is large. At the surface the velo-
city does not change with depth. This is because at the
surface Xz = 0 and therefore the rate of change of
displacement with depth, au/dz, and also the rate of

change of velocity with depth are equal to zero.

2. Massless Disk on Half Space

a. Theory--As shown in Fig. 4.19, if a
rigid, massless disk, attached to the surface of an
elastic half space, rotates about the axis of symmetry,
an axisymmetric distribution of'7;—shearing stresses

develops within the half space along the disk-half space
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interface. The resultant moment of these stresses about
the axis of symmetry gives the torsional reaction or
resistance of the half space to rotation of the disk.
Motion of the disk also causes an axisymmetric torsional
wavefield to propagate within the half space and since
the disk has a finite area, this wavefield propagates
from the disk in ellipse-like fronts in accordance with
Huygens' principle.

Sagoci (1944) presents a steady state solution
giving the response of an isotropic, homogeneous,
elastic half space to the forced rotations of a rigid
massless disk attached to the surface of the half space.
This solution was derived from a general solution giving
the displacement field of a half space obtained by
solving the axisymmetric torsional wave equation, Eq.
(3.9), using the separation of variables technique and
oblate spheroidal coordinates. This displacement field
is a complicated function of position, time, elastic
properties of the half space, exciting frequency and the

radius of the disk, and is given as

ot <= : o
u=¢€ %AQS\Q("-CM) Rn("'c‘)L i) (4.27)

where

C = Fowl% (4.28)
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Ty is the radius of the disk, AQ is an arbitrary ampli-
tude constant, r and § are oblate spheroidal coordi-
nates which are related to the r- and z-coordinates,
SlQ(-ic,y}) is an angular wave function, and
Ryp (-ic, i?) is a radial wave function. The angular
and the radial wave functions are infinite series in
which the terms are multiples of tabulated numerical
coefficients for oblate spheroidal wave functions and
associated Legendre polynomials and Bessel functions,
respectively.

The forcing function imposed on the disk is

given as

by = @ (Ot

(4.29)

where ) is the circular frequency of the excitation,
¢(t) is the angular displacement of the disk, and:i is
the amplitude of this angular displacement. By intro-
ducing Eq. (4.29) into Eq. (4.27) an expression was
obtained giving the displacement field of the half space
in response to the forcing function given by Eq. (4.29).
Sagoci obtained the T, -stress distribution along the
interface by differentiating this expression for the
displacement field with respect to z, evaluating the
resulting expression along the interface, and substi-

tuting this result into the basic relationship, Eq.



59

(3.7). The expression for the 7;-stress along the

interface is given as

R I

where F; and Fp are infinite series involving angular
and radial wave functions. Physically, -F5 and Fi,
which are functions of the properties of the half space,
the excitation frequency, and indirectly functions of
radius, are measures of the components in- and 90°
out-of-phase, respectively, with the excitation, Eq.

L] N N L]
(4.29). The magnitude of lz,)lzl, may be obtained from

Eq. (4.30) and is given as

‘7::_._"" ‘%@G]FIZ'FFZ;Z

(4.31)

Sagoci also obtained the resultant moment of the
7vz—stress distribution, My, by integrating the incre-
mental moment, caused by’7; acting over an infinitesi-
mally thin ring centered on the z-axis, over the

radius of the disk. This integration may be expressed

as

P
- 2
Mg * S Tz (2mr®)dr (4.32)
o

From this integration, Sagoci obtained the following
relationship between the amplitude of this resultant

moment, IMR‘, and the angular displacement of the disk:
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(4.33)

where ﬁgand K'are infinite series involving the radial
wave functions and the numerical coefficients for the
oblate spheroidal wave functions, and A is the phase
shift between $ and MR. In order to compare numerical
and analytical solutions, an equation relating the
amplitudes of the resultant moment and the angular

displacement was obtained from Eqg. (4.33) and is given

et GR3EIR2+ 12
q

as

Mgl = (4.34)

Only a few terms were evaluated in each of the

series, Fy;, Fy, ¥ and @, thus the values of |73 | ana \MR‘

obtained from Eqs. (4.31) and (4.34) are approximate.
Sagoci gives a discussion of the accuracy of his solu-
tions, and some of this discussion is paraphrased
herein. The accuracy of each series depends upon the
value of the quantity c as determined by Eq. (4.28). As
¢ decreases, the accuracy of the values of F] and Fj
increase but the convergence of Fy is much less rapid
than that of Fj. In the numerical example which was
studied, the parameters were chosen such that the value

of F5 was much larger than that of Fj:; thus, the
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accuracy of the theoretical solution to which the
numerical solution was compared was controlled by Fj.
Sagoci stated that 1.0 is the largest value of c¢ for
which the value of Fjp, a function of radius, is known to
within 4 or 5 percent. The parameters in the numerical
example were chosen to give a value of 1.0 for c; thus,
the corresponding theoretical value of YT;I, obtained
from Eq. (4.31) and also a function of radius, is also
known to within approximately 4 or 5 percent.

The ¥ and ﬁ series each have two terms and the
values of these series are known fairly accurately.
For ¢ = 2.0, the values of the second terms of the J'End
5 series are 8.8 x 10~3 percent and 3.2 percent of the
values of the total two-term Jlandlﬁ series, respec-
tively, whereas for ¢ = 0.2 the values of the second
terms of each of these series are negligible fractions
of the values of the total series. Therefore, for c =
1.0, the value of ,MRI, obtained from Eq. (4.34), is

quite accurate.

b. Description of Examples--Examples were
solved numerically using the staggered grid shown in
Fig. 4.20. The region in which a solution was obtained
is also shown schematically in Fig. 4.21. The motion of

the rigid, massless disk was modeled by imposing rigid
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rotations on the surface of the half space along the
interface, AB in Fig. 4.20. To obtain the particle
velocities along the interface corresponding to the
rotation of the rigid disk given by Eg. (4.29), this
equation was differentiated with respect to time and
then multiplied by radius. The real portion of these

particle velocities is givén as
V=r‘-3%-‘- -rd @ sin mt (4.35)

Since deformations are not permitted along the
interface, the second boundary condition along the

interface is given as
T =0 (4.10)

The boundary conditions along the free surface, BC in

Fig. 4.20, are

Tz = 0O (4.25)
7z _
3 - ®) (4.26)

For an axisymmetric displacement field to be
continuous along the axis of symmetry, displacements
and, therefore, au/éz and du/at must approach zero as
the radius approaches zero. Since these derivatives

define Xz and V, respectively, the inner boundary
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conditions, applied along line AE in Fig. 4.20, may be

expressed as

Tz = O (4.25)
V = O (4.5)

To avoid division by zero in the numerical procedure, an
insignificantly small radius must be assigned to the
inner boundary.

To reduce computational storage space and time,
a floating boundary, CDE in Figs. 4.20 and 4.21, was
used. With this scheme, computations are carried out
only over region ACDE, which is initially given as line
AB. The grid functions in two modes. 1In the expanding
mode, numerical front CD advances horizontally while
numerical front ED advances vertically, each at the
shear wave velocity. A contracting mode is initiated by
simultaneously reversing the direction of motion of the
two floating boundaries at a time such that at the
instant the grid returns to its original state, all
required information has been obtained at the disk. 1In
either mode, computations are always based upon a
correct set of nodal values.

The relationship between the numerical fronts of

an expanding grid and the curved physical wavefront, as
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derived from Huygens' principle, is shown in Fig. 4.21
for some instant of time. Along rays 1, 5 and 6, also
shown in this figure, the numerical front and the physi-
cal wavefront travel together. Along rays 2, 3, and 4,
however, the numerical front extends beyond the physical
front, and therefore, in the region of these rays, com-
putations are carried out ahead of the wavefront. To
examine why computations must be carried out ahead of
the physical wavefront in some directions, an isolated
c*t+ path, along which Eq. (3.34a) is integrated, is
shown in Fig. 4.22 projected onto the r-z plane. From
Egs. (3.33) each of the spatial coordinate components of
this path for a given time increment, At, are given as
vgﬁt. Based upon these cémponents, the spatial length

of the Cc*t path, as shown in Fig. 4.22, is given as

As =12 vsat (4.36)

Dividing Eq. (4.36) by At gives the rate at which the

integration takes place in space along the C*t path:

AS |
=3 - T2 Vs (4.37)

Similar results may be obtained for each of the
remaining integration paths. Thus within a single

computation cell and also within an entire grid
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information is transmitted at the shear wave velocity in
the coordinate directions, at |2 vg in a direction + 45°
to the coordinate directions and at an intermediate rate
in all other directions. In the example involving a
torsional point source, disturbances within the half
space propagate in directions other than those of the
coordinate axes. The agreement between theory and
numerical results in that example confirms, for steady
state conditions, the concept of integrating at a rate

greater than the wave velocity.

c. Solutions of Examples--Numerical solu-
tions were obtained using the following values for
parameters: G = 700253 psf,/O== 3.17 slugs/ft3 Ty =
0.3334 ft, rj; = 0.0001 ft, o= 0.77557 rad/sec and f =
224.43 cps. With these values, the value of c, from Eq.
(4.28), is 1.0. Using the grid scheme shown in Fig.
4,20, solutions were obtained using grids having 5, 15,
25, 35, and 45 distance intervals or 3, 8, 13, 18, and 23
nodes along the interface. The items which are exa-
mined include the distribution of7f;—shearing stresses
along the interface, the resultant moment of these
stresses and the propagation of the disturbance within

the half space.
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The application of the particle velocity
distribution, given by Eq. (4.35), to the interface
gives a constant and a steady state oscillating com-
ponent in the angular displacement of the interface.
Transient as well as constant and steady state
oscillating components appear in the stress distribution
along the interface and in the resultant moment of this
stress distribution. The theoretical solutions, Egs.
(4.31) and (4.34) relate only the amplitudes of steady
state oscillating quantities. To compare numerical
results to theory, it was necessary to subtract the
constant components from the numerical steady state
solutions in order to obtain the required numerical
steady state oscillating components.

In the examples, the amplitude of the
oscillating component of the angular displacement of the
disk was 0.00055 rad. The shearing stress at the inter-
face at the radius of 0.26674 ft. is plotted in Fig.
4.23 as a function of time for each analysis. The rough
behavior in the solution obtained using the coarsest grid
is characteristic of an inadequate grid. 1In each
analysis, computations were carried out only for a time
span of sufficient length to determine the amplitude of
the steady state oscillating component. Results using

the two coarsest grids were obtained for a period of
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0.0095 sec. Using the horizontal dashed lines in Fig.
4.23 for assistance in relating peaks to peaks and
troughs to troughs, this figure shows that steady state
conditions were developed either at or prior to the time
of the first peak. 1In order to insure that the value of
the first trough had stabilized, the analysis using 25
distance intervals along the interface was conducted for
a time span sufficient to include this trough, 0.005
sec. Since this trough was found to stabilize, it was
only necessary to obtain the first peak in the remaining
solutions to obtain the desired steady state oscillating
components.

The results given in Fig. 4.23 indicate a con-
vergence to a limiting stress vs. time curve with
increasing fineness of the grid. Convergence is further
demonstrated in Fig. 4.24, which gives the amplitude of
the steady state oscillating component of the shearing
stress at the interface at a radius of 0.26674 ft as a
function of the number of distance intervals along the
interface. The theoretical value of this amplitude is
also shown in this figure and using the finest grid, the
value of the numerically obtained amplitude is within
3.5 percent of this theoretical value. 1In his
discussion on accuracy, Sagoci states that as the number

of terms in the Fj series, the dominant series in this
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example, is increased, the magnitude of Fy as a function
of radius is expected to increase. From Eg. (4.31) it
follows that the theoretical amplitude of the stress
given in Fig. 4.24 is underestimated and thus the esti-
mate of the error in the numerical solution is
conservative.

The amplitude of the steady state oscillating
component of the shearing stress is plotted in Fig. 4.25
as a function of the dimensionless radius, r/Ro, along
the interface for the theoretical solution and two
numerical solutions; one using a relatively coarse grid
and the other using the finest grid. The quantity Ry is
the radius of the disk and for radii less than Ry, as
the fineness of the grid is increased the numerical
solution approaches the theoretical solution. 1In Fig.
4.26, the percentage difference between the theoretical
stress amplitudes and the numerically obtained stress
amplitudes, using the finest grid, is given as a func-
tion of the dimensionless radius along the interface.

As shown in this figure, the accuracy of the numerical
solution is greatest for radii some distance from the
center and the edge of the disk. At the edge of the
disk, because displacements are assumed to be continuous

within the half space, the theoretical amplitude of the
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stress is infinite and the numerical procedure cannot
give this result.

In order to determine the resultant moment of
the shearing stress distribution along the interface,
Eq. (4.32) was evaluated numerically using the following

relation:

N
Mgt +at) =_Z(Z’ﬂ r; Ar) TzL(UAO L (4.38)
L=

where 1 refers to the ith node along the interface, ?i
is the radius of this‘node,’T;i(t + At) is the stress at
this node, Ar is the finite width of a ring the thick-
ness of which is centered on the ith node and the center
of which is centered on the axis of symmetry and n is
the number of nodes along the interface. The value
of AAr is equal to the length of two distance intervals.
The resultant moment of the stress distribution
along the interface as obtained numerically is shown in
Fig. 4.27 as a function of time for each analysis.
These curves are similar to those given in Fig. 4.23 for
shearing stresses because the shearing stresses along
the interface and the resultant moment of these shearing
stresses are directly related. As shown in Fig. 4.27,
the resultant moment vs. time curve approaches a

limiting value with increasing grid fineness.
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The amplitude of the resultant moment vs. the
number of distance intervals along the interface is
given in Fig. 4.28 along with the theoretical value of
this amplitude. The value of this amplitude as obtained
numerically using the finest grid is within 3.5 percent
of the theoretical value which is known fairly
accurately.

Sagoci did not obtain information concerning the
propagation of waves within the half space from his
solution; thus, such information obtained from the
numerical solution is not compared with a theoretical
solution. One objective in studying the propagation of
waves within the half space is to determine whether the
numerically obtained wavefront travels .at the correct
speed even though the rate at which information is
transmitted within a grid is generally greater than the
wave speed. In Figs. 4.29 and 4.30 are shown the par-
ticle velocities, obtained using the grid having 15
distance intervals along the interface, as functions of
distance along various rays within the half space at an
inétant of time, 0.00268 sec. These rays, originating
from point B in Fig. 4.21 and designated 2, 3 and 4, are
rays along which computations are carried out ahead of
the physical wavefront as located by Huygens' principle.

As shown in Figs. 4.29 and 4.30 the agreement between
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the location of this physical wavefront and the location
at which particle velocities become significant is quite
good along each ray.

Wavefronts may be viewed as locations along
which discontinuities may occur in the first derivatives
of the dependent variables. In the development of the
equations upon which the nﬁmerical procedure is based
it was assumed that the first derivatives of the depen-
dent variables were continuous. Thus, in obtaining a
numerical solution, the entire solution region, which
generally includes wavefronts, is treated as having con-
tinuous first derivatives. If, theoretically, discon-
tinuities in derivatives exist, the numerical procedure
is an approximation with respect to this factor. A
second objective, then, in studying the propagation of
waves within the half space would be to evaluate the
adequacy of this approximation. However, since a
theoretical solution giving the propagation of transient
disturbances within a half space was not found this

second objective was not carried out.
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Waves.
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Fig. 4.6: Propagation of Waves in z-Direction: Segment
of Thin-Walled Cylinder Having Large Radius.
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z-Direction.
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Fig. 4.10: Longitudinal Wave Propagation: Slice of
Solid Cylinder.

UPPER BOUNDARY

o 2% 3% 2% 2% Q_R
x X x x b3
x x x X x
INNER OUTER
BOUNDARRY BOUNDARY

x x x x X

x x x x

x
x
x
x
x
L e e e DR PR EEE EEE LR SR |

[HAR IR VR VI S R ¢ P

LOWER BOUNDARY

Z
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Fig. 4.14: Longitudinal Wave Propagation: Dependent
Variables as Functions of Indicated
Independent Variables for Indicated Values of
Independent Variables.
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Fig. 4.19: Disk on Half Space.
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Fig. 4.20: Staggered Grid Used for Examples Involving
Rigid Massless Disk on Elastic Half Space.
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CHAPTER V

FORMULATION OF NONLINEAR INELASTIC
NUMERICAL PROCEDURE

A. Introduction

In Chapter IV the problem of a massless, rigid
disk oscillating on an elastic half space was discussed.
The rotation of the disk causes infinite shearing
stresses to develop at the periphery. A great deal of
attention was directed towards the resultant moment of
the distribution of shearing stresses along the inter-
face between the disk and the half space. Because large
stresses act at the outer edge of the disk, a major por-
tion of the resultant moment is developed by these
stresses.

Soils cannot withstand infinite stresses and
the resultant moment is extremely important in pre-
dicting the response of a disk having mass. Therefore,
the elastic theory cannot provide a realistic solution
for torsional motions of real foundations resting on

soils.

92
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A more practical analysis is one in which
shearing stresses are limited to finite values.
Stresses may be limited by assigning nonlinear inelastic
properties to a material by using shear moduli which
vary with shearing stress and strain. In this chapter
the basic analytical development given in Chapter III is
reformulated to allow the use of variable shear moduli.
Shearing stresses may also be limited in the problem of
a disk on a half space by permitting slip along the
interface. The adaptation of the numerical analysis to

include slip is presented in Chapter VI.

B. Governing Equations

The equations governing axisymmetric torsional
wave propagation in a medium having variable moduli con-
sist of the equation of motion and two shearing stress-

strain relationships. These are given as

ol 7= 2 oV
—— —F = — e 3.3
T A R 2 (3.3)
and
d7y N
CIX::Gr-L</r>/2-)Xr) K;) (5.1)

db’zz = GZ"L (7;_)’)\7&)*'.) Xl) (5.2)
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where Grt(’l"m"f‘z)xr)a’z) and GZ-};(TM’T){)XH ¥2)are
tangent shear moduli in the subscripted coordinate
directions. Each of Egs. (5.1) and (5.2) defines a
shear modulus in one of the coordinate directions as the
rate of change of shearing stress with shearing strain
and each shear modulus depends upon shearing stresses

and strains.

C. Transformation

In this section, in an initial step towards the
formulation of a numerical procedure capable of solving
Egqs. (3.3), (5.1), and (5.2), these equations are trans-
formed to a different set of equations. From basic

calculus, Eg. (5.1) may be interpreted as

which leads to

Equation (5.3) relates a time rate of change of'7;—stress
to a time rate of change of ﬁﬁ—strain at a fixed point

in space. Recalling Eg. (3.4), Eg. (5.3) is rewritten

as

o7Tr _ J
&/tr ‘Grt—cﬂ'(%%”%)
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Differentiations are carried out giving

2
37 _ du 1 ou
atr‘ - Grt(&-p—t T r 6"'—) (5.4)

Continuity of second derivatives of the displacement
field is imposed. Thus, the order of differentiation is
immaterial, and, noting that \/=au/3t, Eq. (5.4) may be

interpreted as

I - Grt( o -;—;\/)

ot or
or, in an alternate form, as
3T dV V. o_

Equation (5.2) may be interpreted as

% .., = 2B 3t

d ¥z ot 9%,
which may be rewritten as
37 - CRES
?ﬁ% - Gz& ot (5.6)

Equation (5.6) relates the time rate of change of
’ﬁé—stress to the time rate of change of J,-strain at a
point in space. Substituting Eq. (3.5) into Eq. (5.6)

gives

o7z

5t = Gzt 'éa'f(‘a%)
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which, with the assumption of continuous second deriva-

tives of the displacement field, may be interpreted as
E N\
ot 2t 3z

This is rearranged to give

%%—Gzt%%_ = 0 (5.7)

Equation (5.1) may be interpreted alternatively

as
d7: ¢, . 3T 2=
doe ~ 3z o7,

which may be rewritten as

£¥Z& - (3 jiff (5.8)
3z rt 3%

Equation (5.8) gives the rate of change of 7;—stress
with respect to depth in terms of the rate of change of

5 -strain with respect to depth at a given radius and

time. Introducing Eq. (3.4) into Eq. (5.8) gives

977 d oW L
5z =6t 32 (57~ F)

which, when differentiated results in

§Ui - é)ﬁ_ — _L.éﬁﬁ 5.9
Oz G"t (&rbz ra ) (5.9)
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Continuity of second derivatives of the displacement
field and substitution of Eq. (3.5) into Eq. (5.9) per-

mits the following interpretation of Eq. (5.9):

oTr _ e ¥z
2 = Grt(;‘,‘: - _F) (5.10)

For the purpose of expressing Eq. (5.10) in a different

form, Eq. (5.2) is interpreted as

C,T%-_ - 87'2 or
db’?; T or afi.

= Gzt

which may be rewritten as

oz [ oT=
_—t s —— = 5.11
Qr‘ Gzt BI" ( )

Equation (5.11) relates the rate of change of Xi—strain
with respect to radius to the rate of change of

Tz -stress with respect to radius at a given depth and

time. In addition, Xéfstrain is written as a function

of 7£-stress as follows:

T=
GZ:S (7;‘)72) rr) B’z)

¥z = (5.12)

Herein, C525(77;7§)x;)wé), corresponding to stress-

. N~ " .
strain level (/rW 7%) {P) J3) is defined as the slope of
a line intersecting the origin and the coordinate
(7é) ¥3) of the 72—5tress-é;strain curve. Substituting
Egqs. (5.12) and (5.11) into Eq. (5.10) gives

3T RYE Tz

- | }
9z Grt(@;ﬁ‘?“:ﬂ
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which may be rewritten as

_a_TE_ Grt37"z+ L Grt
oOZ Gzt or r G;_s

A fourth relationship needed in the development

7‘%_ =0 (5.13)

is
O _ M . 4
or or (5.14)

and a final equation is the rearranged equation of

motion,
oTr 4 o072 2 oV _ (5.15)
r Tz tE TP =0

Each of Egs. (5.5), (5.7), (5.13), (5.14), and
(5.15) may be multiplied by known or unknown constants

and added together resulting in

where.ﬁ, E,.E, and.B are unknown constants. Rearranging

Eq. (5.16) to group related partial derivatives gives
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To allow total derivative interpretations, the

time rates of change of coordinates, d r/d't, dz/dt

, and
df/dt_, are equated to the appropriate coefficients of
the partial derivatives in Eq. (5.17), giving

dt A C

de _ B _ 1 _

—d“"t" - ‘t‘ - (5.18b)
dt
dt =1 (5.18c)

Imposing Egs. (5.18) permits Eg. (5.17) to be written as

dr 3% dz 3% o7
A(dt sr T gt 3z at)

E
a/é) (clr SV da V. Jy
A dt or dt 0z
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The replacement of the groups of partial derivatives in

Eq. (5.19) with total derivatives gives

which, when multiplied by At/I, results in

o Vs E _ 2/\-— Gf‘t
d/r+—7:—d7é A dV + £ 77 dt + 2t vdt(s.zo)

Equation (5.20) is valid along paths having components
in the (r,z,t) coordinate system which have the time
rates of change given by Eqs. (5.18). Defining the

guantities VS(‘ and VSE as

Vep = Grt (5.21a)
and
_ ]___CZt
Vsz = P (5.21b)

Egqs. (5.18) may be solved to give
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T

(5.22)

wl
[
H
&

Substitution of Egs. (5.21) and (5.22) into Egs. (5.18)
leads to four paths along which the conversion from par-
tial to total differentiation may take place. The com-
ponents of these paths in the (r,z,t) coordinate system

have the following time rates of change:

dr . (5.23a)
—_— = v

d=z

(5.23b)
dt Ve

I+

)

it_ (5.23c)
& -t

and the paths are given as
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(vspdt)vs.édt)dt>

(Verdt,-Vsp dt ,dt)
(de,dz,dt) =
(-Verdt, Vedt dt)  (5.24)

(-Vgrdt, = Ve, dt,dt)

The combinations of Egqs. (5.23) along with Egs. (5.18)

and Eq.

path.

(5.20) results in four equations, one for each

These equations are presented below along with

the paths, the identifiers of the paths and the rates of

the paths:
CHiPa’rh te: dr=v éz:v dt _
raTe. Py sry 3t sz:>2;£-

c

PC{"'h . dr‘: Vs(\dt) da = VS'Z'.dt/ dt:dt (5.25a)

Equation:
~ 4 Vs 2Ty V.
d/,.+ 7 d’ri——/a\/grdv-\-—?—':dr+/%'lydr

» PVszVsr'Te dr - o Ysr 7% dr =0  (5-250)

P r Gz r Vez OF
: Path rate: 3&. = v5">ccjli ~Vsz ii 1

Path : dr“-*\/grdt d;=-\@3dt dt = 4t
dr - Vsr d7;-£ /avgrdV+ 2Tr dp ;‘Q—\éﬁ—-dr




d7; - éd/z_ +/ovs,.c{v + rc]r (5.25¢)
VerV _ PVrVszTe Vsr o
#ﬁc‘dr rGas dr‘a-Z_VSzDrdr‘ o)
dt

"7t Path rate: -d-%'-' “Ver jt VRS de

PCH'h dr = ‘Vsrdt d== ‘Vsidt d‘t-C{t
(5.254d)

2
d7r + G 7y +pverdv + 27t 4y -ﬁ_y.i.;..z dr

Ysr Y V&r 3/2_
- 2 — -
+7Q——S-L\P‘Gas dr dr

The four paths are similar to those of the constant
modulus case which are shown in Fig. 3.8. With variable
moduli, however, VSP and \/52 vary with shearing stress
and strain and therefore so do the directions of the

paths. 1In a medium having a single constant modulus,
Gat® Gy * Ggg =G

resulting in

VSP = VSZ- = VS = '-é%—
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Under these conditions, Egs. (5.25) reduce to Egs.
(3.34), the equations for a medium having a constant

modulus.

D. Numerical Solution of Transformed Equatibns

Similar to solutions in which moduli are
constant, numerical solutions in which moduli vary are
obtained as a function of space for each time of a pre-
selected sequence of times. Because the integration
paths change in direction when moduli change, however,
details between the two solution procedures differ
significantly. 1In the following sections, various
aspects of the numerical procedure which, in concept, is
similar to that used by Streeter, Wylie and Richart
(1974) in a variable moduli, one-dimensional analysis,

are discussed.

1. Characteristics of Grid

Figure 5.1 shows a typical computational cell
used to obtain the dependent variables at node P at time
++4At . Each of the four integration paths originates
from one of four zones, termed subcells, and intersects
node P. The subcells are regions in the r-z plane
corresponding to time t, and are designated along with
corresponding path origins as A, B, C and D. Using the

stability criterion used in the one-dimensional method
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of characteristics as a guide (Wylie and Streeter,
1978), the distance intervals of the grid are selected
such that the origin of each path may reach, but not
extend beyond the boundary of its subcell. As shown in
Fig. 5.1, with this restriction the dimensions of a

subcell, AT¥and AZ, are given as

AT = | Vgpeml At

(5.26)
Az= | VSZM’ At

where lvgrynl and IV%ZYhI are the absolute, maximum
values of \,,. and Vg, as determined by the maximum moduli

in the r and z directions.

2. Algebraic Equations

In addition to the four available path
equations, three algebraic equations describing the
deformation properties of the material are required.
These equations give shear moduli in terms of immediate
and past stresses and strains and depend upon the
modeling of the material. To avoid iterations needed to
solve this combination of seven equations, a simplified
procedure is used to obtain a solution. Prior to

computations for a given node, each related subcell is
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assigned single average values of shear moduli. These
values are based solely on the dependent variables
existing at the initial time of the increment and remain
constant throughout the increment. Under these
conditions, computations for shear moduli are indepen-
dent of each otﬁer and independent of those for the
dependent variables. Thus, at each node, a simultaneous
solution of only four algebraic equations in four
unknowns, Tr, /2, 37“2 [or, and V, is required.

The simplified simultaneous equations are
obtained by integrating each of Egs. (5.25) along
appropriate paths shown in Fig. 5.1. As an example, Eq.
(5.25a) is integrated along the Ctt path from point A to

node P:

Vsza

P
jd7~+\£f__ jd 'z —/OVSrAjcl\/ o Ysra ch/:.
A |

Tr pVsea Vsza PTa
+ ZJ rdr t f f dr +

Gzsa A r (5.27)

Py
+ P vsmAj -+ dr =

Subscripts appended to Vgpr, Vsz, and Gés identify the
subcell in which the path originates. Integrating Eq.

(5.27) using the trapezoidal rule gives
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T ~ VS A

¥ eaa (Tap - T2a) strA(Vr “Va)

_&5(972\ + a/z.h(r? =) +(-££2+

Vsza
Yora V- T3
Tea sra Vsza ( Tzp
)(r;) Q) + 7Q 2Gzsa ( rP (5.28)

V,
) (ry-n) + g (e

Q
V.,
_FA') ( |r‘l?*"r‘m)

Subscripts appended to the dependent variables and radii
identify points along the C*+ path. Similar integra-
tions are performed for the remaining paths and the
resulting equations may be arranged to give the system-
atic equations, Egs. (3.37). The coefficients of these
equations, aj through ey, are defined in Appendix I for
the case of variable moduli. If conditions are imposed
in which moduli are constant, the coefficients reduce to

those for the case of constant moduli.

3. Solution of Algebraic Equations

In order to determine the coefficients in Egs.
(3.37) needed to obtain a solution at a node, the
average values of the moduli, V

Sz
subcells, the origins of the paths and the values of the

and VS'_within'
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dependent variables at these origins are required at the
start of a time increment. To obtain these values
related functions must be defined over the entire area
of each subcell, and shape functions are used for this

purpose.

a. Shape Functions--As discussed by
Zienkiewicz (1971) and Gallagher (1975), a function may
be approximated over a rectangular region of the r-z
plane, using only the values of this function at the

corners of this region, by use of the expression

E(Y‘)E)'; O(,*l-o(z_r 4_0(3% +O‘4f‘i (5.29)

where ?E(ryz) represents the approximating function. Theo
coefficients are constants which depend on the shape and
size of the rectangle and the values of the actual func-
tion at the corners. These coefficients may be deter-
mined by solving simultaneously the four equations
obtained by substituting the coordinates of each corner
and the values of the function at the corners into Eq.
(5.29). With these & coefficients, Eq. (5.29) gives
the exact values of the function at the corners of the
region and approximate values at all other locations.

An approximating function defined over a rec-

tangular subcell is shown in Fig. 5.2 (a) for an
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arbitrary set of function values, <b'through ¢1, at
the corners. This approximating function may be written

as

§(r)z)= N, 5a) ¢+ NaCr@) dy + Na(ryz)ds +Nglryz)dy  (5.30)

where N, (r,2) > Nq(r,2) are shape functions and the
subscripts identify the corners of the subcell.

As shown in Fig. 5.2(b), each shape function
describes a function defined over the region and
generated by a unit value of function at one of the cor-
ners and a zero value at all others. The shape func-

tions are given as

(r-ry) (2 - 22)
4Aaraz

N;(r“)":') =

(r-ry) (2-2)

N;_(Y)Z) = -

4daraz
N3 (ry2) = "’;}”Af';];:‘z" (5.31)
(r-n) (2 -22)

where 2Ar and 24A% are the dimensions of the subcell
and n=> rq and 2 = z4 are the coordinates of the

corners. As shown in Fig. 5.2(c), the ¢'s are the



110

amplitudes of the shape functions. Thus, each term of
Eq. (5.30) represents an approximating function caused
by the value of the original function at one of the cor-
ners and zero at the others.

To apply the concept of the shape function,
values of the dependent variables are needed at each of
the corners of each subcell. As shown in Fig. 5.1, the
numerical procedure gives only two of these values per
subcell, and these are at opposing corners. Values at
the remaining two corners are obtained by averaging
values from the four surrounding nodes. At boundaries

only the two appropriate nodal values are averaged.

b. Average Stresses and Strains--To obtain.
the moduli for a subcell, the average strains within the
subcell are needed. These strains are determined by
differentiating and then averaging the approximate
displacement field within the subcell. The nodal
displacements needed to obtain this displacement field
are obtained by integrating the nodal velocities with

respect to time using the trapezoidal rule;

t

u.t = det + u‘t-At
+t-at (5.32)

)
= 7 (Veoapt Vi) At + Ug -ay



111

The quantity U is the displacement and the subscripts
reference time. The approximate displacement field

within a subcell, based on Eq. (5.30), is given by

uir,2) =Ny(r,2) U, + Nz(r-,z.) Uy +

_ (5:33)
N3(r,z) Us + N4 (nz) Ug

To obtain the U}-strain field within the subcell in
terms of these displacements, Eq. (5.33) is differen-
tiated in accordance with the defining relation, Eq.

(3.4), giving

) U y
Ir(r)%) :3%—? = N’r(r)Z)U|+

- Tr
No"(rz) U, + N3(ryzdus +
(5.

hl:r(r)zf)L44

where

NG Ly T S (z-22)

¥r_ 9Ns 3. r

N3 or r ‘\rArA?_(Z- 20
¥ 3N N4 n

N 4. == o -2,)
Toor r "rrAr’AE(Z %2
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Similarly the {z-strain field is obtained by differen-

tiating Eq. (5.33) in accordance with Eq. (3.5) giving
ou ¥
Yz(ryz) = 32 =N *(ri2) W,

¥z
+ Nz*(rsz) u, + N3s(ryz) us
(5.35)

y
+'N4?mz3U4

where

SN, |
0%  9dazar

NTe - (r-1q)

Ye_ Nz _ _ |\
N 0z  4‘dazar (r-ry)

¥z _ 9Nz _ \
Ne" = 5% = Fazar (F°1

™~
1

h_ oNa
N‘f T ooz T "mzar(r-r‘)

Each of the strain fields given by Egs. (5.34)

and (5.35) are averaged over the subcell by integrating
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each field with respect to area over the entire area of
the subcell and dividing this quantity by this area.
These steps may be expressed as
r‘4 Zz_
_ |
Yave —;****MAZJ f ¥(r,2) dzdr (5.36)
n =,

where ¥(r,z) represents either the ¥.- or {z-strain
field as expressed by Egs. (5.34) or (5.35),
respectively, and XAVE is the corresponding average

strain within the subcell. These integrations give

In (/)
vaf' RAar )_rq(u,+uz) —r,‘(u3+u4)] (5.37)

and

|
{ZAVE: %(UZ¢UI+U3"'U4) (5.38)

Average values of each of the 7:— and 72-stresses
are needed within subcells to obtain the moduli of the
subcells. These averages may be obtained using shape
functions, but simple averaging of the values of these
stresses at the corners of a subcell gives identical

results.

c. Solution Procedure--The current and past
averages of the stresses and strains within each subcell

are used to compute the moduli within each subcell.
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From these moduli, Vsr and Vga.are computed for each sub-
cell using Egs. (5.21) and then these quantities are

used to locate the origin of each integration path. As
demonstrated in Fig. 5.3, which shows a Ctt path pro-
jected onto the r-z plane, the origin of this path,

(rA )EA) , is obtained by subtracting from the coor-
dinates of the terminal point, (rb >2P)' the spatial

components of the C** path giving

M = e = Vsra At
t‘ (5.39)
Zp T Zp - Vsaa b
The spatial length of this path, AS, is
= 2 2 .
as 1Vsm"’ Ysaa At (5.40)

The remaining paths are treated similarly.

To determine the values of the dependent
variables at the origin of each path the fields of the
dependent variables are first approximated within each
subcell using Eq. (5.30). As an example, the approxi-
mate 7;-stress field within a subcell is given as

Tr(r,2) = N(n=)TH + No(n2) T,

(5.41)
+ Na(ry2) 773 + Ng (r,2) Tra
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The values of the dependent variables are then deter-
mined at the origin of each path by introducing the
coordinates of the origin into these field equations.
The steps which have been discussed permit the
coefficients of Egqs. (3.37) to be computed and solving
these equations gives the solution at a node. Each node
within a medium is treated similarly and nodes along the
boundary are treated as described in Chapters III and IV

for the case of constant moduli.
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ACTUARL A
EUNCTION APPROXIMATING

FUNCTION

) - R
t
1
t
t
1
t
(N
{
t REGION
CORRESPONDING
TO SUBCELL
A
(a) Approximating Function, ¢(r, z).
Ni N9,
| \
PNy, 2)
Ny(P,2)

T, 4
7 2 3 Z 2 3
(b) Shape Function for (c) Contribution of Value
Corner 1. of Function at Corner
1, ¢1, to Approximating
Function.

Fig. 5.2: Shape Function Concepts Applied to Subcell
Having Corners 1, 2, 3, and 4 in r-z Plane.
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(rp=Vsradt,zp ~ vszatt )

y A

VsrA At

Fig. 5.3: Projection of C** Path Having Origin, A, and
Terminal Point, P, onto r-z Plane.



CHAPTER VI

EXAMPLES OF NONLINEAR INELASTIC BEHAVIOR

A. Introduction

In this chapter, the numerical procedure devel-
oped in Chapter V is used to obtain solutions to several
examples. These examples range in difficulty from
simple one-dimensional radial wave propagation to the
torsional response of a disk with mass resting on a half
space. In order to determine the effects of the proper-
ties of the medium on dynamic response, the medium in
these examples was treated first as a linear elastic
material, and then as a nonlinear inelastic material.
Relevant theoretical background and equations are also
given.

An energy balance was used to check the numeri-
cal solutions with respect to concept and grid adequacy.
The development of this energy balance is also

presented.

B. Equations for Variable Moduli

Ramberg-Osgood equations were used to determine

the variable moduli needed in the numerical analysis.

119
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These equations describe the effects of nonlinear
inelasticity on the properties of a material and have
been discussed by Richart (1975).

As shown in Fig. 6.1, hysteretic shearing
stress-strain behavior may be modeled using two
Ramberg-Osgood equations; one desribing a skeleton curve
and a second describing extended branches. The tangent

modulus, G¢, is obtained from these equations as

= Jizz = ) (6.1a)
G-t dr Go(l + Rl?i/r/vy,R—l ) a

along skeleton curves, and

G.= 4T _ G \ (6.1b)
5 d °(‘*‘ =< RV (- /2TyI R )

along extended branches. The quantityfty is a parameter

related to the shearing strength of the material (7; =
—_— g . . s

Cy7m). §1 and'/] define origins of the extended

branches at stress reversals and R and X are parameters

which describe the shape of the curves. The quantity

G defined in Chapter V and shown in Fig. 6.1, is also

SI
obtained from the Ramberg-Osgood equations and is given

as

|
e KT/ Ty IR > (6.2a)

GS= —5‘7:— - GO\/

along the skeleton curve, and
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Gs= F =61/ T/ TUT=7)/7y) (1 +
| (T=T0) /2Ty | R ) +Ga¥y /Ty ] % (6.2b)

along extended branches.

Along an extended branch the magnitude of Gg may
take on the values of zero and infinity. To avoid com-
puting difficulties, the value of Gg was given absolute
upper and lower bounds. During preliminary work,
however, it was observed that insignificant reversals of
strain triggered very large changes in the value of Gg
which caused erratic results. To prevent this diffi-
culty, the terms in which Gg appeared were linearized by
assigning to this quantity the constant value of the
elastic shear modulus. This improved results consider-
ably. Clearly, the less the strain amplitude, the
better will be this approximation. Also, the value of
the term involving Gg (see Eq. (5.20)) is inversely pro-
portional to the radius. Therefore the relative effect
of this term decreases with increasing radius. All

results presented are based upon this approximation.

C. Energy Development

At any instant of time during a transient, the
accumulated work done on a solid medium by applied

stresses must be equal to the sum of the accumulated
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energy lost and the instantaneous energy stored by the
medium. Energy may be stored as kinetic and elastic
strain energy. Energy is lost when the medium deforms
plastically.

The external work accumulated at time t + At is

given as

Wt+at) = Wat+ W (1) (6.3)

where W(t +At) and W(t) represent work accumulated at
the indicated times. The quantity Waty is the incremen-
tal work done during time increment, &At, and is given as

n u;(t"'At)

WAt = 2 gFt(‘t) C‘U'L (6.4)
L=t UL(t\

The quantity Fj(t) is the ith instantaneous external
fdrce and du; is the infinitesimal displacement in the
direction of this force. The displacements, uj(t) and
u; (t + At), at the point of application and in the
direction of the force occur at times t and t + At,
respectively. The quantity n is equal to the number of
forces which are applied. In a numerical solution,
external forces are obtained from stresses developed at
the nodes along the boundaries and acting over the areas
assigned to these nodes. Thus for a numerical solution

the i in Eq. (6.4) refers to the ith node. By changing
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variables from u to t and writing forces in term of
nodal stresses, Egs. (6.3) and (6.4) may be combined to
give
n tat
Wi +at) =L§Ef(ﬁL+TzL)A; Vi dt] + W(t) (6.5)
ot

where A; is the area assigned to the ith node. The
negative sign is needed because of the sign convention
used. Equation (6.5) is integrated numerically using

the trapezoidal rule to give the accumulated work as

Y
At
W(t+At)=L§ {- Af—‘-—[’/‘n(t rat) Vi (t+at) +

(6.6)
Tri (R V() + Tailt +At) Vierat) + T3 (8) Vi(t)]} + W)

With the Ramberg-Osgood stress-strain model,
accumulated hysteretic loss and instantaneous elastic
strain energy are combined. The sum of these quantities
for the medium at time t +At, SH(t + At), may be writ-

ten in the same form as Eq. (6.3) giving

SH(t +at) = SHap + SH(E) (6.7)

The incremental quantity, SHpt, may be obtained from the
area under the stress-strain curve corresponding to a

change in strain at a point by integrating this area
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with respect to volume. Mathematically, this process is

described by

Y+ A¥r Yz +AYz
SHA™ j(,( ~dy. + 5 /;c\b’;)c’v (6.8)

§p iz
where V is the volume of the medium. For use in the

numerical analysis, Eq. (6.8) may be written as

(D}‘*Arl‘)ave ([Z *AU‘E)QV&
SHat* Z ({ 'rave da‘rave "'J Teave d? "VQ>AVS. (6:9)
3= Trave Jzave

where j refers to the jth subcell and Vj its volume.

The symbol m represents the total number of subcells and

the subscript "ave" indicates the average value of a
quantity over a subcell, as obtained by use of either
shape functions or simple averaging. Integrating Eq.
(6.9) over time increment, At, using the trapezoidal

rule, and substituting the result into Eq. (6.7) gives
SH(L+AY) = Z 5\'_’/‘ (e+at)+ 7 (t)] [x,-(tmt)
- xr(t)_}avef‘ LE({:-EA'}.} +’T§;(t\)]ave. [Xi(t*'AtB (6.10)

- ]ave s, + SH®

The instantaneous kinetic energy of the medium

at time t + At, KE(t +At), is given as



125

\
KE (£ +at) = z g/ovzd\/ (6.11)

<i

For use in the numerical analysis, Eq. (6.11l) may be

expressed as
KE(t+at) = Y'Zn, < o [ Vi(E +a0)] AT (6.12)
+At "-:)zlz_/o ave y Vi

The degree to which work and energy balance at
time, t + At, may be given by an energy ratio, Er(t +

At), defined as

KE(t +At) + SH(L +A+)
W (£ + at)D

Eql+at)= (6.13)

At any instant during a transient the value of this
quantity is equal theoretically to 1.0. A value other
than 1.0 indicates error in either the numerical solu-

tion or the energy balance, or both.

D. Radial Wave Propagation

In this section, the propagation of one-
dimensional waves is simulated in the radial direction
in the manner described in Chapter IV. Only boundary
conditions which differ from those used in Chapter IV to
model this condition are discussed. Numerical solutions

to examples are also presented and discussed.
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1. Boundary Conditions

The configuration of the staggered grid used to
obtain numerical solutions was similar to that of the
square grid shown in Fig. 4.2. In order to excite the
body, a particle velocity which varied with time was
applied to each node along the inner boundary. Since
conditions do not vary with depth, both the rate of
change of displacement with respect to depth,EBu/az,
and, from Eq. (3.5), Uz-strains, are equal to zero.
Therefore, the second boundary condition at the inner

surface is

Tz =0 (6.14)

Equation (6.14) was also applied to the nodes along the
outer boundary for similar reasons. The outer boundary
was modeled as a free surface; thus, the second boundary

condition at this boundary is

’T} =0 (6.15)
2. Examples
Two examples which differed only in the proper-
ties of the material were solved. In one example the
material was treated as a nonlinear, inelastic material

and in the other example as a linear elastic material.
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The low amplitude shear modulus, Gy, in the nonlinear
model was given the value of the elastic shear modulus
used in the linear model (Ggy = 700250 psf = 4860 psi).
The shearing strength in the nonlinear model was assumed
as 62.5 psf (0.43 psi).

For each example, the radii of the inner and
outer boundaries were 1000.0 and 1004.7 ft, respectively.
In order to study the effects of the fineness of the
grid, solutions were obtained using coarse, medium and
fine grids consisting of 13, 25, and 49 nodes per row,
respectively. For the linear case, solutions were
obtained using the coarse and medium grids while the
medium and fine grids were used to obtain nonlinear
solutions.

A sinusoidal particle velocity having an ampli-
tude which varied linearly over the first cycle and was
constant thereafter was used to excite the body. The
constant amplitude of the excitation was 0.05 fps and
the frequency was 200 cps. Results from these examples

are presented in Figs. 6.2 through 6.7.

oY,
a. Stress-Strain Curves--Average /r-stress
vs. § p-strain curves obtained from a subcell located

0.75 £t from the inner boundary are given in Fig. 6.2
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for the linear and nonlinear cases. Both curves are
based on results obtained using the medium grid.

In the elastic case, the slope of the stress-
strain curve is within 0.4 percent of the given elastic
shear modulus. This difference decreases and the peaks
of the stress-strain curves increase with increasing
grid fineness. A small amount of artificial hysteresis
was observed in the stress-strain curves obtained from
subcells along the inner boundary. This effect, which
decreases with increasing grid fineness, is thought to
be caused by inconsistencies in obtaining values of the
dependent variables at the corners of subcells located
along boundaries.

In the nonlinear case, peak values of the
stress—-strain curves increase and the smoothness of the
curves improves with increases in grid fineness. It was
also found that the greater the degree of nonlinearity
the finer is the grid needed to ocbtain smooth stress-

strain curves.

b. Dependent Variables--Particle velocity
and 7;—stress are plotted for the two models in Figs.
6.3 through 6.6, as functions of time at a given radius,
1000.78 ft, and as functions of radius at a given time,

0.00916 sec. The excitation curve is included in Figs.
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6.3 and 6.4. Values of T-stress and 97,/dr are not
plotted since these values were small.

The influence of grid fineness on the values of
the plotted dependent variables is fairly small, espe-
cially in the linear elastic case. Therefore, the
dependence of the stress-strain curves on grid fineness
is due primarily to approximations introduced in
obtaining quantities for the subcells rather than
approximations in the numerical solution.

As shown in Figs. 6.3 through 6.6, within each
medium disturbances propagate with a shape and an
amplitude which depend on the properties of each medium.
In the linearly elastic case, each increment of distur-
bance caused by an increment of excitation propagates at
the same speed. Thus, as shown in Figs. 6.3 through
6.6, within the elastic medium the shape of the distur-
bance is similar to that of the excitation in radius and
time.

In a nonlinear medium, because the wave velocity
varies with stress level, the rates at which increments
of disturbance propagate from the excitation boundary
depend on the stress level at which these increments are
introduced into the medium. In addition, as described
by Kolsky (1963), within a strain softening, bilinear,

inelastic, one-dimensional finite medium which is loaded
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and then unloaded at one boundary, a complex series of
internal reflections develop. These reflections take
place when the rapidly propagating increments of distur-
bance caused by unloading the medium under elastic modu-
lus conditions overtake the more slowly traveling incre-
ments of disturbance which developed during loading. As
a result of these factors the form of the disturbance
within the nonlinear medium does not resemble the form
of the excitation in either radius or time.

As shown in Figs. 6.3 through 6.6, the amplitu-
des of the disturbance within the nonlinear medium are
smaller than those in the linear medium. One source of
these lower amplitudes is the loss in rigidity or the
reduction in shear modulus which takes place in the
nonlinear medium. The interactions between the loading
and unloading increments of disturbance also cause

reductions in amplitude.

c. Energy Balance--The results of the energy
balance are given in Fig. 6.7 as plots of energy ratio
vs. time for each solution. In both mcodels, as the
fineness of the grid is increased, the energy ratio
approaches 1.0; thus, work and energy approach a state
of balance. The elastic solutions converge to this

value more rapidly than the nonlinear solutions and as
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the degree of nonlinearity is increased, a finer grid
is needed to develop a given energy ratio.

Since the values of the dependent variables are
relatively insensitive to the changes in the fineness of
the grid, in the examples presented, improvements in the
energy ratio with increasing fineness of the grid are
due primarily to improvements in the accuracy of the
energy computations.

Work done is the most accurate of the quantities
in the energy balance because it is computed directly
from the values of the dependent variables. The various
energies are computed using average stresses, strains
and velocities. Each of these quantities depends on
shape functions and the grid scheme both of which intro-
duce errors. The average strains, discussed in Chapter
V, involve the greatest number of approximations, and
therefore, are the least accurately known quantities
used in the energy computations. The sum of the accumu-
lated hysteretic loss and the instantaneous strain
energy, which depends on average strains, is the energy
quantity which is most sensitive to changes in the fine-
ness of the grid.

Inaccuracy in the values of average stress and
strain is the major cause of the decay in the energy

ratio which occurs with time in the nonlinear models
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(see Fig. 6.7). These average values are based on the
sharply changing disturbances which occur in the nonli-
near case (see Fig. 6.5 and 6.6) and the peaks of these
disturbances are difficult to approximate in the
subcells. These peaks determine the peaks of the
stress-strain curves for the subcells which in turn
affect significantly the sum of the accumulated hystere-
tic loss and the instantaneous strain energy. As the
number of peaks of the disturbance in the medium
increases the ability to represent this sum decreases
and therefore the energy ratio is in a transient state.
Only when the number of peaks within the medium
stabilizes does the energy ratio stabilize. 1In the
nonlinear examples this occurs at a time of about 0.020
sec, when reflections from the outer boundary arrive at
the excitation boundary. As the fineness of the grid is
increased and the size of the subcells decrease, the
average values of stress and strain improve and, as
shown in Fig. 6.7, the magnitude of the decay in the
energy ratio decreases.

The properties of the material influence the
amount and distribution of energy introduced into the
medium for the given excitation. Based upon the solu-
tions using the medium grid, the energy introduced into

the linear medium was 30 percent greater than that
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introduced into the nonlinear medium during the same
period.

Energy in the linear elastic medium is stored
entirely as instantaneous elastic strain and kinetic
energies. In the nonlinear inelastic medium, energy is
dissipated by the permanent deformation of the medium as
well as stored. A measure of the amount of energy
dissipated per unit volume at a point is given by the
area enclosed by the stress-strain curves. As shown in
Fig. 6.2, in the nonlinear case this area is large.

The convergence of the energy ratio to the value
which is correct theoretically gives a great deal of
credibility to the nonlinear numerical solutions. Since
the convergence of the dependent variables is more
rapid, however, the energy ratio provides only a conser-
vative means of estimating the adequacy of a grid. The
balance of energy has been found to be very sensitive to
seemingly minor details in the analysis. Therefore, the
energy balance has been extremely useful in identifying
program errors and in evaluating the influence and
correctness of changes in the analysis. 1In addition,
energy computations are useful for interpreting a solu-
tion physically since these computations give infor-
mation on the amount and distribution of energy in a

medium.
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E. Wave Propagation Along a Cylinder

In this section the propagation of'T;-stresses
and Kz-strains along the longitudinal axis of a semi-
infinite solid cylinder is considered. The assumed
boundary conditions are discussed briefly and results

obtained from an example are presented and discussed.

1. Boundary Conditions

For convenience, the grid used in the problém of
a rigid disk resting on a half space was used to model
the solid cylinder. Details of the grid, shown schema-
tically in Fig. 6.8, and a discussion of boundary con-
ditions are given in Section F.l. As shown in Fig. 6.8,
the grid is divided into two cylindrical zones. One
zone has the same outer radius as the disk and repre-
sents the solid cylinder. The other zone surrounds the
solid cylinder and is made mucﬁ less rigid than the
solid cylinder by assigning to this zone much smaller
shear moduli. Because of its low relative rigidity this
zone does not develop significant stresses and most of
the wave energy created by exciting the top of the solid
cylinder remains within the bounds ofbthe cylinder.
Thus the less rigid surrounding zone has very little
influence on the response of the inner cylinder. The

system is excited by applying a torque to the disk which
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rotates in response, and excites the top of the solid
cylinder with a distribution of particle velocities

which is proportional to the radius.

2. ExamEles

In this section results are presented from an
example in which the solid cylinder was treated as a
nonlinear inelastic material. Since these results are
similar to those from the example of nonlinear radial
wave propagation given in Section D.2 only a very brief
discussion is given. Results are not presented for a
linear solid cylinder since these results are similar to
the linear results given in Section D.2.

As shown in Fig. 6.8, the radius of the solid
cylinder is 0.375 ft. To avoid division by zero, the
inner boundary was given a very small non-zero value:
0.001 ft. The grid, which consists of 55 nodal rows,
each containing 34 nodes, represents an area extending
1.90 ft in the radial direction and 1.56 ft in depth.
The disk was excited by a sinusoidal torque having an
amplitude which increased linearly with time. The
amplitude of this excitation after one cycle is 40 ft-1b
and the frequency is 300 cps. The low amplitude shear
moduli and the shearing strength (77, = 7&/0.8) of the

solid cylinder were given values of 700,250 psf (4860
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psi) and 44 psf (.31 psi), respectively. The low ampli-
tude shear moduli of the less rigid zone were assigned
the value of 70 psf which is equal to one ten thousandth
of those of the solid cylinder.

A curve of T,-stress vs. ¥,-strain obtained from
a subcell located within the cylinder at a radius of
0.288 ft and a depth of 0.0288 ft is plotted in Fig.
6.9. Both'T}—stresses and Vr-strains were found to be
small. The energy ratio vs. time is plotted in Fig.
6.10 and since neither the excitation nor the distur-
bance within the cylinder had stabilized over the span
of the analysis, the energy ratio is in a transient
state. Plots of the angular velocity of the disk, and
the particle velocity and the 77,-stress within the
cylinder at a depth of 0.115 ft and radius of 0.289 ft
vs. time are given in Fig. 6.11. Particle velocity and
7T,-stress within the cylinder at a radius of 0.289 ft
and a time of 0.00263 sec vs. depth is plotted in Fig.

6.12.

F. Disk Resting on a Half Space

In the following section, boundary conditions
are formulated for a nonlinear, inelastic half space on
the surface of which rests a rigid disk having mass.

Torsional loadings may be applied to this disk and slip
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is permitted along the interface between the disk and

the half space. The energy balance is then adapted to
this problem and solutions to examples in which a tor-
sional pulse was applied to the disk are presented and

discussed.

1. Boundary Conditions

Except at the disk, boundary conditions are
identical with those presented in Chapter IV for the
massless disk on an elastic half space and are not
repeated. The grid used to obtain solutions is also
similar to that used in Chapter IV and shown in Fig.
4.20.

Moments are applied to the rigid disk and as a
result the disk rotates. This rotation is resisted by
the inertia of the disk and shearing stresses which
develop within the half space and act along the
interface. Figure 6.13 shows the sign convention for
the applied moment, Mp, the angular velocity of the
disk,w , and the resultant moment, Mr, of the stresses
along the interface.

Values of the angular velocity of the disk and
of the shearing stresses and particle velocities within
the half space along the interface are obtained as a
function of time by applying Newton's Second Law to the

disk. Newton's Second Law is given as
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Mhe'\'(t) =1 %%-_

(6.16)

where I is the mass moment of inertia of the disk about
its vertical centerline and Mpet(t) is the instantaneous
net moment acting on the disk.

In the numerical analysis both the net moment
and the angular acceleration,fJuVAtq are averaged over
the finite increment of time, &t, starting at time t and
ending at time t + At. Thus, Eg. (6.16) is expressed
numerically, in an expanded form, as

Ma(t+at) + M (r+At) + Malt) + Mg(t)

C (6.17)

=1 wlt+at) - w i)
= At

in which MR(t + At) andw(t + At) are unknown.

By the use of the C*~ and C~~ path equations,
Mp(t +At) may be expressed in terms of W(t + At) and
Eq. (6.17) may then be solved for (t + At). In order
to obtain an expression for the resisting moment at time
t +At in terms of the angular velocity of the rigid
disk at this time, first a condition of no slip is
assumed-albng the interface. Under this condition the
half space does not deform along the interface; thus,

along the interface ¥, = 0 and
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T
r=0 (6.18)
Also, under this condition, the particle velocity of the
half space at each node along the interface may be
expressed in terms of the angular velocity of the disk at

time t + At as
Vilt+rat) = wiltrat) r; (6.19)

where the index i refers to the ith node along the
interface. An assumption is made that the node at the
centerline does not influence the motion of the disk;
therefore, this node is treated independently.
Substituting the two boundary conditions, Eqs. (6.18)
and (6.19), into each of the two path equations from
each of the k remaining nodes along the interface gives
2k equations in 2k + 1 unknowns: Q'P’z/arli(t + At),
Tzi(t + At) and W(t + At). At each of these nodes the
two path equations may be combined to eliminate
aTz/ar’i(t + At), giving 7zi(t + At) in terms of

w(t + At) at each of these nodes. As described in
Chapter IV for the problem of a massless disk on a half
space, the resisting moment Mg(t +At), may be written in
terms of the nodal stresses, T,j(t +At), using Eq.

(4.38). Expressing 7°,;(t + At) in terms of W(t + At)
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and absorbing all constants into one, Eq. (4.38) may be

written as

K
Mpltsat) = 2, B wtrat) (6.20)
L=l

where Bj is a constant. Substituting Eq. (6.20) into
Eq. (6.17) permits Eq. (6.17) to be solved for w(t + At)
which may be introduced into the path equations giving
values for‘7;i(t + At). The magnitude of each of these
stresses is compared with the magnitude of the stress
needed to cause slip along the interface. If this
magnitude is not exceeded then the solution along the
interface is completed by computing nodal velocities
using Eq. (6.19) and solving for&?&ﬁgr‘i(t + At) by
substituting the values of T,;(t + At) and Vj(t + At)
into the original path equations.

If, after obtaining the values of 77;(t + At),
it is found that the magnitude of the slip-stress is
exceeded at soﬁe node along the interface, the magnitude
of the stress at this node is replaced by the slip-
stress while the sign is retained. Mathematically, this
is stated as

T2 (t +At)

- (6.21)
751 (£+aty] - =Shp

’72i6t+1ﬁt)’=
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where 7;slip is the slip-stress. The value of the
incremental moment caused by the stress at the ith

slipping node, Mjgpg(t +At), may be obtained directly as

AMLRS (t+at) = (2 r Ar) T Tzi(t+at) (6.22)

The resultant moment may then be expressed as
the sum of two components: one caused by the stresses at
nodes at which slip occurs and a second caused by
stresses at nodes at which slip does not occur. The
latter component is a function of the unknown,

w(t + At). The resultant moment is given as

Mplt+at) =3 B witrat) + 3 A Migs (t +AL)

Non » ot
atd Shippin
] PP
Slpping 7rmcles:j
nodes
Equation (6.23) is substituted into Eq. (6.17) and a

(6.23)

solution is again obtained for w(t + At). This quantity
is substituted into Eg. (6.19) to obtain the particle
velocities of the half space along the interface at each
node at which slip does not occur. These particle velo-
cities are then substituted back into the path equations
and 75,;(t + At) is computed for each of these nodes.

The development of slip at any node causes a
redistribution of stress along the interface which may

cause slip at other nodes along the interface.
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Therefore, it is necessary to check the values of
7}i(t +At) to determine whether further slip has taken
place. If further slip has taken place, the procedure
for obtaining values of'7;i(t + At) under conditions of
slip and checking these stresses against the slip-stress
is repeated. This process continues until no further
slip takes place, after which the remaining unknowns
along the interface are computed.

To obtain a complete solution at slipping nodes,
a second boundary condition, in addition to that speci-
fying the slip-stress, is needed. At each of these
nodes the particle velocity of the half space is an
independent unknown. Also, as shown in Fig. 9.18,
deformations which cause'T}—étresses develop in slipping
zones. For the second boundary condition the assumption
is made that, since the slip-stress is a maximum stress,
at slipping nodes the rate of change of‘7;—stress with
respect to radius is equal to zero. Mathematically,
this is given as

27z

— = 2
$2=0 (6.24)

If the magnitudes of the 7;-stresses at slipping
nodes fall below the slip-stress, slip ceases and at
these nodes the half space and the disk have the same

velocities. Without slip the half space cannot deform
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in the plane of the interface; therefore,’??-stresses
are locked into the interface at these nodes until
further slip takes place. The'T}—stresses at these
nodes are assigned the values of the 7;-stresses
existing immediately prior to the return to the no-slip
condition. These values are retained until further slip
takes place at these nodes.

At the inner node along the interface three
boundary conditions are needed. For one of these, the
half space is assumed to behave rigidly along the inter-
face leading to Eq. (6.18). For the other two boundary
conditions, the half space is assumed to follow the
motion of the disk without developing 7;—stress. This

condition may be expressed by Eq. (6.19) and

Tz= O (6.25)

The boundary conditions along the interface are sum-
marized schematically in Fig. 6.14.

The edge of the disk lies between two nodes.
Similar to all points centered between nodes, values of
the dependent variable are needed at this location.
Because at this location, functions such as 7;-stress
and the slopes of functions such as particle velocity
are discontinuous theoretically, a parabolic extrapola-

tion rather than the simple averaging of values from
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surrounding nodes is used to obtain values of the depen-
dent variables. The extrapolation is parabolic because
of the nature of the functions in this region. To
obtain the values of the dependent variables at this
location for use in the outer subcell beneath the disk,
the extrapolation is based upon the values of the depen-
dent variables at the outer three nodes along the
interface. To obtain values of the dependent variables
at this location for use in the inner subcell along the
free surface, the extrapolation is based upon the values
of the dependent variables at the inner three nodes

along the free surface.

2. Energy Development

In this section the energy balance presented in
Section C is adapted to the problem of a disk on a half
space.

At any instant during a transient the accumu-
lated work done by the disk on the half space must equal
the sum of the instantaneous energy stored within the
half space and the accumulated loss of energy caused by
slip at the interface and inelasticity of the half

space.
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An expression for the incremental work done on
the half space by the disk, Wygat, in rotating from
angular displacement -é(t) to é(t + At) is given by

B (++at)

What =J [-Me(t)] d& (6.26)
B

The negative sign in Egq. (6.26) takes into account the
sign convention used. A change of variables from ©to t

and the introduction of Eq. (6.26) into Eqg. (6.3) gives

t+AL
Wy (t+at) = -fMR(t)mu_)dt + Wyl (6-27)
+

where Wy(t + At) and Wyx(t) are accumulated work done on
the half space. Expressing Mg(t) in terms of 7;—stress
using Eq. (4.38), substituting the result into Eq.
(6.27), and integrating in accordance with the trape-

zoidal rule gives

K
Wy (tsat) = - $[( 2 T (tvat) AT, ) wit+at)
@ (6.28)

K
FHEMROAT ) we)] At + W)

L=
where k represents the number of nodes along the
interface.
If slip occurs between the disk and the half

space, the work done by the disk on the half space will
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differ from the work done by the stresses along the
interface on the half space. This is because, while the
stresses acting on the disk and the half space along the
interface are equal, the displacements of these bodies
along the interface are not. Energy is lost along the
interface in an amount equal to the difference between
these works. An expression for the incremental energy
dissipated by slip, SDpt, during finite time increment,

At, is given by

AU e+ A Al U(trat)
SDA-[-,= '( g (’Eslip dAJUI‘ - g g"\%slip dAClU\ ) (6.29)
o u'te) disk O u) .
base medium

in which the first integral is the work done by the disk
on the half space and the second integral is the work
done by the stresses along the interface on the half
space. The first negative sign in Eq. (6.29) is
necessary because of the sign convention used. The
notation, dA, represents the differential area of a con-
centric ring upon which the stress,'T;slip, acts. The
quantity, A, is the total area of the interface, and u
and u' represent the circumferential displacements of
the half space along the interface and the disk,

respectively.
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" Using the form of Eq. (6.3) and integrating Eq.

(6.29) numerically gives the accumulated loss of energy

due to slip, SD(t + At), as

sD(t+at) = 2{[uc +aty - u®], Tas)i,

Sl
ol
- LWt +at) —-u’(e)_‘]i_’/\;_S);PSAAL (6.30)

+ SD(D

where AA; is the finite area of the ring corresponding
to node i at which slip occurs.

The corresponding energy ratio is given as

SD(ryAt)+ SH(t +AL) + KE(t+AD)

ER(t‘P'A.t) =
Wy (t+A1)

(6.31)

The theoretical value of this energy ratio during a
transient is 1.0.

Some energy quantities, including the work done
on the disk by the applied moment and the kinetic energy
of the disk, were not needed in the energy ratio but
were computed throughout an analysis. The incremental
work of the applied moment as the disk rotates from
angle 6(t) to B(t +At), Wpt, during time increment, At,

is given by
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S(t+at)

\/\/AffMde (6.32)
Bt)

Changing variables from Sto t and substituting the

result into Eq. (6.3) gives
t+At
We+at) = [Mwdt + W) (6.33)
t

where W(t + At) and W(t) are accumulated work done on
the disk. The integral in Eg. (6.33) is integrated by

the trapezoidal rule leading to
W (trat)= LM +at) ot +ap) + M wi)]at + W (6.34)

The instantaneous kinetic energy of the disk at time

t + At, KEgq(t +4t), is given as

KEJltat) =+ T w?(esat) (6.35)

3. Examgles

In this section solutions are presented for
several examples in which a torsional impulse was
applied to a circular disk resting on a half space. 1In
order to illustrate the influence of the properties of
the half space on dynamic response, in these examples,

only the properties of the half space were varied. The
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half space was treated as a linearly elastic material, a
nonlinear inelastic material, and a nonlinear inelastic

material with slip permitted along the interface.

a. Description--The grid used to obtain the
solutions consists of 83 rows, each row having 49 nodes.
This grid represents a depth of 1.82 ft and width of
2.13 ft. A total of eight nodes are located along the
disk which has a radius of 0.334 ft and a moment of
inertia of 0.155 slugs-ft2. With these properties, the
disk models an actual model foundation. The time incre-
ment of the solution is 4.72 x 10-5 sec.

The properties of the half space are based
approximately upon the properties of a cohesionless test
bed used for model footing tests. For convenience,
Ramberg-Osgood equations were used to describe the
stress-strain properties of the linear model as well as
those of the nonlinear models of the half space. The low
amplitude shear modulus in each model is 700250 psf
(4860 psi). To give linear stress-strain curves under
the stresses encountered, the Ramberg-Osgood parameters,
R, X, Cy and'?& were selected as 3, 0.1, 0.8, and
5000 psf (34.7 psi), respectively. For the nonlinear
models these parameters were assigned values of 3, 1,

0.8, and 150 psf (1.04 psi), respectively. These values
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of R, & and C; have been found to give shearing stress-
shearing strain curves which model the behavior of sands
over a broad range of stress (Richart, 1975). The
values of 7§'and C1 give the half space a shearing
strength of 188 psf (1.31 psi). The slip stress was
assigned a value of 140 psf, small enough to demonstrate
the effects of slip yet sufficient to permit a reversal
in the angular displacement of the disk during the ana-
lyzed period of time.

The impulse consists of the positive half cycle
of a sine wave having an amplitude equal to 30 ft-1b.
and a duration of 0.00167 sec. The analysis was carried
out over a time span of 0.0058 sec, and using a-Fortran
G-level compiler and an Amdahl 470 V/6 computer,
approximately 346 seconds of CPU time were needed to

solve each example.

b. Response of The Disk--~The angular velo-
city of the disk vs. time is presented in Fig. 6.15
along with the applied torque. There are significant
differences between the results from the nonlinear ine-
lastic models and the linear elastic model. The posi-
tive velocities from the nonlinear models have larger
amplitudes and longer durations, and the negative velo-

cities have lesser amplitudes than the corresponding
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velocities from the linear model. The differences be-
tween the results from the two nonlinear models are
small. This is because the difference between the
shearing strength of the medium and the slip-stress is
fairly small.

To give greater insight into the response of the
disk, the angular velocity of the disk was integrated
with respect to time giving the angular displacement of
the disk, also shown in Fig. 6.15. The peaks of the
angular displacements from the nonlinear models are
greater and occur at a later time than those from the
linear model. The angular displacements from the nonli-
near models are positive throughout the analysis,
whereas those from the linear model become negative.

Since the applied moment and the mass moment of
inertia of the disk are the same in each example, dif-
ferences in the responses of the disk amongst the
various models are due entirely to differences amongst
the resultant moments of the distributions of shearing
stress along the interface. This distribution depends
primarily on the properties of the half space.

Plots of the average stress vs. average strain
from a subcell are presented for the linear and nonli-
near inelastic cases in Fig. 6.16 and 6.17 for each of

the coordinate directions. As shown in Fig. 6.18 these
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curves were obtained from a subcell located near the
edge of the disk, a region where deformation is signifi-
cant. The slope of the linear curve for the radial
direction is within 9 percent of the low amplitude

shear modulus whereas that in the z-direction is within
3 percent. These differences are caused by approxima-
tions in the numerical method and by approximations in
the techniques used to evaluate the average stresses and
strains for the subcells. Results improve with
increases in the fineness of the grid.

The stress-strain curves for the nonlinear model
are highly nonlinear and hysteretic and similar results
are obtained from the slip model. The initial loading
and the unloading slopes are within 4 percent of the
low amplitude shear modulus. Each curve, however, is
characterized by indistinct reversals of stress and the
curve for the radial direction is more hysteretic than
it should be for the stress level reached. This beha-
vior is thought to be due to the specific approximations
associated with the nonlinear model, in addition to the
approximations of the linear model.

At lower levels of nonlinearity, stress-strain
curves have been found to improve considerably giving
distinct reversals with increases in the fineness of the

grid. It is also important to note that the values of
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the moduli used in computations are obtained from the
Ramberg-Osgood equations and are not equal to the slopes
of the stress-strain curves from the subcells where
these slopes are clearly incorrect. 1In Fig. 6.19, which
‘gives the energy ratio vs. time, it may be observed that
energy and work balance quite well for all models.

In order to demonstrate the effect of the pro-
perties of the half space on the distribution of’7;—
stresses along the interface, this distribution is shown
in Fig. 6.20 through 6.23 for several times in the tran-
sient for the various models. Figures 6.20 and 6.22
give results from the portion of the cycle in which the
disk loads the half space. As shown in Fig. 6.20,
during this period, the buildup in the Vg-stress
distribution for the linear elastic model takes place
without a change in shape. The maximum stress is deve-
loped at all radii simultaneously and near the edge of
the disk the maximum stress is very large.

As shown in Fig. 6.22, the buildup in the 7;—
stress distribution for the nonlinear model does involve
a change in shape. As time increases, stresses at the
edge of the disk approach a limiting value while
stresses near the center continue to increase. This
happens because, at the edge, stresses are relatively

large, and consequently, the degree of nonlinearity is
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high. The corresponding reduction in shearing rigidity
prevents large increases in stress with increases in the
angular displacement of the disk. Likewise, because of
this stress-limiting phenomena, the stresses at the edge
of the disk are very much smaller in the nonlinear case
than those in the linear case. Near the center of the
disk less displacement is imposed on the half space than
near the edge. Thus, near the center, stresses are
lower, the material is in a more elastic, rigid state,
and increases in the angular displacement are accom-
panied by reasonably proportional increases in stress.

As shown in Fig. 6.22, behavior when allowing
slip at the interface is similar to that when slip is
not allowed except that stresses at the interface are
limited by the slip-stress. This limit leads to the
development of zones of constant stress within the
stress distribution at the locations at which the slip
has occurred.

Figures 6.21 and 6.23 give the stress distribu-
tions along the interface for each model for various
times during the portion of the transient in which the
disk unloads and then reloads the half space. For the
elastic case, there is no significant change in the
shape of the distribution with time. All radii develop

zero stresses as well as the maximum reverse loading
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stresses simultaneously. As shown in Fig. 6.23, in the
nonlinear case, unloading takes place at the edge of the
disk first. During unloading, oscillations appear in
these distributions. These oscillations develop because
the strains of all the subcells do not reverse
simultaneously. As the number of reversals which take
place decreases with time, these oscillations decrease
as shown in Fig. 6.23. The particle velocities of the
half space are somewhat sensitive to these oscillations
but the motion of the disk and the resultant moment at
the interface are not.

During unloading, stresses develop a value of
zero at the edge of the disk first. Since, at this
location, the half space had undergone the greatest
amount of inelastic deformation, much less reverse rota-
tion of the disk is needed to unload this region than to
unload the inner zones. For these "elastic" regions to
unload the disk must return to approximately its original
undisplaced state. As shown in Fig. 6.23, during
unloading, the stress distributions when slip is allowed
along the interface, are similar to those when slip is
not allowed, however, the minor oscillations in the
distributions are smaller.

The resultant moment of the distribution of
stresses along the interface and the angular displace-

ment of the disk vs. time are given in Fig. 6.24 for
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each of the three models. Large negative and positive
moments are developed in the linear elastic model.

These large moments are caused primarily by the large
stresses which act at the edge of the disk. Because the
half space develops large moments which resist the
motion of the disk, as shown in Fig. 6.24, the motion of
the disk is reversed very rapidly following the impulse.
In addition, because a large amount of elastic strain
energy is stored within the half space when the disk is
at its maximum angular displacement, the disk develops a
very large negative angular velocity as shown in Fig.
6.15. Assuming that the angular displacement at which
the resultant moment is zero (t = 0.0044 sec in Fig.
6.24) defines the equilibrium position of the disk, it
is clear from Fig. 6.24 that this equilibrium position
does not change significantly.

As shown in Fig. 6.24, the resultant moments in
the nonlinear cases are similar and, therefore, so are
the responses of the disk in these cases. These moments
do not develop to values as large as those in the
elastic model because the'T;—stresses which develop
along the interface are much less in the nonlinear
model. As a result the nonlinear half space with or
without slip does not have the capability to resist the

motion of the disk which the linear half space does.
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This is why, as shown in Fig. 6.24, in the nonlinear
cases, the disk rotates to a greater maximum angular

" displacement and why the reversal of the rotation takes
place at a later time than in the linear case. Assuming
that the angular displacement of the disk for which the
- resultant moment is equal to zero (t = 0,0057 sec in
Fig. 6.24) corresponds roughly to the equilibrium posi-
tion of the disk, it is clear that during the transient
motion, the equilibrium positions have changed con-
siderably in the nonlinear models. Because of the lower
magnitudes of the negative angular velocities of the
disk at these equilibrium positions, very little changes
are expected in these positions during the remainders of
the transient motions. Therefofe, the disk has under-
gone a large amount of permanent angular displacement.
This permanent angular displacement is caused by ine-
lastic deformation of the half space and, in the slip
model, also by slip along the interface.

While the effect of slip relative to nonli-
nearity has not been large in this example it is of
interest to study the phenomena of slip. The develop-
ment of slip along the interface is illustrated in Fig.
6.25. 1In this figure, the displacement of the surface
of the half space, and the simultaneous displacement of

the disk vs. radius are presented for two times during
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the transient. The later time corresponds to the time
at which the stress distribution along the interface is
near its maximum state. Slip, at a given radius, is the
difference between the displacements of the disk and of
the half space at this radius. As shown in Fig. 6.25,
slip initially develops at the outer edge of the footing
where stresses are highest, and migrates inwards along
the interface as slip-stresses continue to develop in
this direction. During slip, the progression of the
velocity distribution of the half space along the inter-
face is fairly complex. This is a consequence of the
development of 7}-stresses at the interface and
interactions between the slipping zones. Because of
this complex velocity distribution, as shown in Fig.
6.25, as time increases, slip develops further at some
of the inner nodes along the interface than at the outer

node.

¢. Response of the Half Space--In order to
study the response of the half space to the motion of
the disk, the particle velocity of the half space vs.
time is plotted in Fig. 6.26 for a point within the
half space for each of the models. As shown to scale in
Fig. 6.18, this point is located at a depth of 0.36 ft

and a radius of 0.67 ft. The velocities of the edge of
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the disk from the nonlinear and linear models are also
shown in Fig. 6.26 as a reference. This velocity from
the slip model is not plotted because of its similarity
to that from the nonlinear model in which slip is not
included. The particle velocity in the half space of
the slip modei is not as smooth as that of the no-slip
nonlinear model. This is because the development of
slip at a node causes abrupt changes in the particle
velocity at the node which are transmitted throughout
the half space. After approximately 0.0035 sec, minor
erratic behavior develops in the particle velocities
from both nonlinear models. This behavior was thought
to be caused by the abrupt non-simultaneous changes in
shear moduli induced by strain reversals in the
subcells.

As shown in Fig. 6.26, the initial peak of the
particle velocity within the half space in the linear
case is much greater than those in the nonlinear cases.
The values of all the dependent variables from the
nonlinear models are smaller within the half space than
those from the linear model. This is demonstrated in
Figs. 6.27, 6.28, and 6.29, in which are presented, for
a given time, the curves of the dependent variables vs.

distance from the outer node of the interface along a
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line at an angle of 45° relative to the horizontal (see
Fig. 6.18).

As shown in Fig. 6.26, for the elastic model,
the particle velocity at a point within the half space
is reasonably similar in shape to the corresponding
velocity of the edge of the disk. This is not the case
for the nonlinear models.

The effects of the stress-strain properties of
the half space on the disturbance within the half space
are similar to the effects of these properties on the
disturbance within a medium under one-dimensional con-
ditions (see Section D.2.b.). Geometry, however, is an
additional complicating factor under two-dimensional
conditions. |

As shown in Figs. 6.26 and 6.27, 6.28, and 6.29,
the effect of slip on the disturbance within the half
space is a slight change in the amplitude and shape of
the disturbance. Slip affects the nature of a distur-
bance by dissipéting energy along the interface, thus,
affecting the amount of energy, and the levels of stress

and nonlinearity within the half space.

d. Energy Considerations--The behavior of the
system may be viewed in terms of the distribution of

energy. During the transient motion, energy is



l6l

distributed between the disk and the half space and
energy is also distributed amongst several forms within
the half space. These distributions depend upon the
properties of the half space. To demonstrate the effect
of these properties on the distribution of energy be-
tween the disk and the half space, various energies are
given in Table 6.1 for each of the models at a time when
the disk in the linear model is at its maximum angular
displacement. At this time the work done on the disk by
the applied moment is approximately the same for each of
the models. In the linear elastic model, however, the
disk has negligible kinetic energy and almost all work
done on the disk is stored as energy within the half
space. In each of the nonlinear models, in which the
disk continues to rotate, the disk has significant kine-
tic energy and the half space has approximately 23 per-
cent less energy than that of the iinear model. The
least amount of energy is introduced into the half space
of the nonlinear model in which slip is allowed and in
this model the disk has the greatest amount of kinetic
energy.

The effects of the properties of the half space,
on the distribution of energy within the half space, are

similar to the effects of the properties of a medium, on
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the distribution of energy within the medium under one-

dimensional conditions (see Section D.2.c).
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HALF SPACE

Fig. 6.13: Schematic Diagram of Disk and Half Space
Showing Positive Moments and Motions.
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CHAPTER VII

TEST OBJECTIVES AND TEST EQUIPMENT

A. Introduction

An experiment was conducted in order to provide
a comparison with the nonlinear numerical analysis. The
arrangement of this experiment is shown schematically in
Fig. 7.1. In this experiment a rigid model footing
resting on the horizontal surface of a granular test bed
was excited torsionally and in response, the footing
rotated. This rotation was resisted by the inertia of
the footing and by shearing stresses which developed
within the test bed along the interface between the
footing and the test bed. The rotation of the footing
generated axisymmetric disturbances which propagated
into the test bed. Information obtained from these
tests included the history of the applied torque, the
angular velocity of the footing and particle velocities
within the test bed at selected locations.

In these tests attention was directed towards
developing high amplitudes of shearing strain to empha-

size the influence of nonlinear inelasticity. The

185
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strain amplitudes developed were on the order of 0.25
percent or larger. Such strains are often encountered
in earthquake motions and can be developed in the neigh-
borhood of nuclear explosions (Woods, 1978).

Tests were also conducted to determine the pro-
perties of the test bed which influence dynamic
response. These properties, needed primarily for the
numerical models of the tests, include the mass density,
the dynamic shear modulus, and the shearing strength.

In this chapter the objectives of the various
tests and the design of testing equipment are discussed.
A list of major equipment used in the tests is given
in Appendix II along with with the manufacturers and
model numbers of the equipment. In Chapter VIII the
procedures for performing all tests are described and
the results from these tests are presented in Chapter

IX.

B. Granular Test Bed

An ideal test bed is one which is uniform in
density, elastic shearing rigidity and shearing strength
and has adequate rigidity and strength. If the test bed
is uniform, then numerical modeling of the test is
simplified and the degree of repeatibility in testing is

greater. The strength and stiffness of the bed must be
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sufficient to develop dynamic motions within the bed
which are measured easily. In addition, to obtain con-
sistent results from tests, it is important that the
test bed may be reconstituted easily to its original
undisturbed state.

A facility designed to provide a test bed which
meets these objectives is described in the following
sections. Procedures taken to prepare the test bed

correctly are given in Chapter VIII.

1. Quicksand Tank

A quicksand tank, constructed and described by
Chon (1977), is shown in Figs. 7.2 and 7.3. The tank
contains a uniform, fine, cohesionless Muskegon Dune
Sand which simulated a nonlinear inelastic half space
for model footing tests. For this quartz sand, the uni-
formity coefficient was 1.5 and the maximum and minimum
void ratios were 0.78 and 0.55, respectively.

Water is introduced at the base of this tank
through a manifold as shown in Fig. 7.3 and flows upward
through a filter and the sand bed. As the rate of flow
is increased the sand loses its shearing strength and
becomes "liquefied." Upon reducing the rate of the flow

the sand is deposited. Thus, prior to each test it is
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possible to reconstitute the sand bed, starting with
this liquefaction procedure.

Because density, elastic, rigidity, and shearing
strength are functions of void ratio, the sand must be
deposited with a reasonably uniform void ratio. This
requires a flow which is distributed uniformly within
the tank and the component which governs the distribu-

tion of this flow is the manifold.

2. Surcharge Pressure System

Since the elastic moduli and shearing strength
of cohesionless soils depend upon the value of confining
pressure, as well as on void ratio, under simple gravity
loading these properties vary in magnitude from zero at
the surface to finite values within the sand bed. 1In
order to improve the uniformity of these properties a
uniform surcharge pressure was provided at the surface
by a pressure bag system. A detailed discussion of the
construction, installation and maintenance of this

system is given in Appendix III.

C. Model Footing

To simulate effectively the mathematical problem
of the torsional response of a rigid footing on a defor-
mable half space, the footing must be rigid relative to

the test bed. Also the applied loading must be a pure
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torque about the vertical centerline of the footing and
the response a pure rotation. The base of the footing
must be of sufficient area to develop a reasonable
distribution of stresses along the interface despite
minor variations in soil conditions, yet small enough
for the test bed to model adequately a half space. To
develop uniformity of the elastic rigidity and strength
of the test bed beneath the footing, it was important
that the contact pressure of the footing be equal to the
surcharge pressure. It was also of interest to design
the footing to undergo significant motions prior to the
arrival time of reflections from the wall of the
quicksand tank. At this time the assumption of half
space behavior is no longer valid (Drnevich, et al,
1966). Also, the practical considerations of handling
and compatibility with the surcharge pressure system
were included in the design objectives.

In the following sections the design and
construction of a footing which satisfies reasonably
these objectives is discussed. A measuring system
designed to sense and display the applied loading and

the motion of the footing is also discussed.
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1. Mechanical Design and Construction of Footing

Assembly

a. Principle of Operation--The entire

footing assembly is shown in Fig. 7.4 and a detailed
cross section of this assembly is given in Fig. 7.5. An
impulse device, consisting of a double-headed, freely-
rotating hammer arm and a lower target arm, was éttached
to the top of the footing. An impulse was delivered to
the footing by rotating the hammer arm into this target
arm. To assure proper functioning of the device, con-
siderable care was taken during machining, balancing, and

assembly.

b. Impulse System-~-The hammer arm carried
two hammer heads, one attachea to each end. Each hammer
weighed 2.23 1b, and was carefully machined and balanced
and bolted tightly to the arm. Pins were driven through
the arm and hammérs for additional security against
slip. A centered shaft, which defined the axis about
which the arm rotated, was welded perpendicular to the
arm.

The target arm supported two target heads upon
which the hammers impacted. These target heads were
built.up from balanced 1/4 inch thick plates firmly
secured to the target arm by bolts and pins as shown in

Fig. 7.6. For a distributed impact, the impact surfaces
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were machined at an angle relative to the length of the
arm. Two balanced 8 pound weights were attached to the
target arm at equal distances from the center. These
weights modified the arm motion and provided a more
desirable load-time impulse to the footing.

As shown in Figs. 7.5 and 7.7, the shaft of the
hammer arm rotated in a bronze bushing which also pro-
vided vertical support to the arm. The bushing was
carefully reamed to give a clearance of approximately
0.001 inch allowing free rotation of the shaft with a
minimum of free play. The housing of the bushing was
suspended by two diametrically opposed conically-tipped
bolts. These bolts were threaded horizontally into a
centrally located pipe welded perpendicularly to the
target arm. Adjustment of these bolts permitted lateral
positioning of the hammer arm in a direction perpen-

dicular to the length of the target arm.

c. Footing--~The footing was constructed from
steel for high rigidity relative to the test bed. As
shown in Fig. 7.5, the main body consisted of two thick
horizontal circular plates separated by a large outer
and a smaller inner cylinder. These components were
machined carefully to insure perpendicularity between

the plates and the cylinders, concentricity of the
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components, and a plane mounting platform for the velo-
city transducers. Holes for mounting the velocity
transducers and the load cell were located precisely,
drilled, and tapped. Then, these components were
assembled by welding. The base and the mounting surface
for the load cell were machined flat and perpendicular
to the vertical centerline. This order of fabrication
minimized distortions induced by welding.

To improve coupling with the test bed a layer of
sand was epoxied to the base. Dry sand from the test
bed was deposited carefully on a thin uniform coating of
epoxy cement spread on the base. After 24 hours excess
sand was swept off leaving a one-grain thick well-bonded

layer of sand on the bearing surface.

d. Load Cell--The mechanical functions of
the load cell, shown in Fig. 7.8, were to transmit tor-
sional pulses between the target arm and the upper plate
of the footing and to serve as a mount for strain gages.
For the transmission of pure torque, the distribution of
shearing stresses along the mounting surfaces of the
load cell must be uniform. This requires uniform con-
tact pressures; therefore, thick mounting flanges (see
Fig. 7.5) were selected for the load cell to prevent

localized distortion under bolting loads. Following
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assembly by welding, the mounting faces of the load cell
were machined flat and perpendicular to the axis of the
cylinder.

To improve transmission of energy through the
load cell, the joints were designed to prevent slip.
For this, the shearing resistance of the joint derived
from the clamping force of the fasteners must exceed
greatly the expected maximum shearing force. Thus, in
addition to the steps taken to insure the transmission
of pure torque, to prevent slip, a sufficient number of
correctly sized and torqued bolts were needed.

Prior to assembly, the mounting surfaces of the
load cell were degreased thoroughly and cleaned. The
load cell was attached by torquing sequentially the
attachment bolts in small increments to prevent distor-
tion of the flanges and plate.

As a mount for strain gages, the load cell must
develop strains large enough to provide adequate output
from the strain gages. Localized flexibility was
obtained in the gage region by increasing the inside
diameter to reduce the thickness of the cylinder wall.
The minimum wall thickness was limited by torsional
buckling and plastic deformation. A transition radius
was machined at the boundaries of this zone to prevent

stress concentrations. Then the outer surface of the
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cylinder was machined smooth and polished to provide a

good surface on which to mount the strain gages.

e. Velocity Transducers--Two balanced,
horizontal velocity transducers were mounted trans-
versely to the underside of the upper plate of the
footing as shown in Fig. 7.9. These transducers were
placed in a diametrically opposed arrangement and each
was located 4.97 inches from the vertical centerline.
This arrangement permitted the sensing of pure rotation
The transducers were oriented precisely by matching
alignment marks scribed on the mounting frame of each
transducer and the upper plate of the footing. It was
necessary to insert shims between the mdunting frames
and the upper plate in order to develop sufficient
tightness of the mounting studs with the transducers

oriented correctly.

f. Properties of the Footing--With all
equipment in place the footing weighed approximately 97
lbs resulting in an average contact pressure of 1.95
psi. The mass moment of inertia of the footing about
its vertical centerline and below the midpoint of the
load cell, at which the applied torque is known, was
needed for the numerical model of the experiment.

Neglecting the contributions of the bolts, the
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constriction of the load cell, all welds, and the strain
gages, and with two vertical velocity transducers
attached to the footing this quantity is equal to 0.155
slugs-ft2. Without these transducers this quantity is

equal to 0.145 slugs-ft2,

2. Measuring System

The measuring system, used to measure simulta-
neously the loads applied to the footing and the motion
of the footing, consisted of load cells and velocity
transducers to sense these quantities and various com-
ponents to display and record permanently information
sensed. The possible components of load and motion are
shown in the diagram of Fig. 7.10. Only M, and® are
desired for pure torsional moments. The unwanted com-
ponents may be developed because of the mechanical
imprecision and imbalance of the footing, and testing

environmental influences.

a. Load Cells--Load components were sensed
by strain gages mounted on the load cell. These gages
were arranged to sense Mg, My, and Mz independently.
Forces and moments at the level of the load cell origi-
nate from one of the flanges of the load cell. The
forces, Fy and Fy., (see Fig. 7.10) at either of these

locations cause My and My at the level of the load cell.
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Thus by sensing My and My, generally, Fy and Fyx may be
sensed. The force F, was assumed to be small and gages
were not placed to detect this component.

The three load cells were designed to meet
several objectives: adequate sensitivity, durability,
insensitivity to other loading components and tem-
perature compensation. The torsional load cell con-
sisted of four Micro-Measurement EA-06-250BK-10C gages
spaced equally around the circumference of the load cell
and each mounted at 45 degree angles with the vertical
as shown in Fig. 7.11(a). With this arrangement £he
gages sensed the principal strains associated with a
pure torque (see Fig. 7.11(b)). For sensitivity, the
bridge circﬁit was connected such that the voltage
responses of the gages were cumulative. An inspection
of Fig. 7.11 reveals that this circuit was unresponsive
to force along the z-axis, bending in the x-z and y-z
planes, and to temperature changes.

Because the load cells used to measure bending
were identical except in position, only the load cell
used td‘measure bending in the x~z plane is discussed.
Two diametrically opposed Micro-Measurements
EA-06-250BK-10C gages, oriented vertically, were posi-
tioned along the x-axis and shown in Fig. 7.12(a).

These gages sensed the principal strains associated with
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bending in the x-z plane (see Fig. 7.12(b)). In Fig.
7.12, it may be seen that the responses of the gages
were cumulative and that the gage circuit was insen-
sitive to bending in the y-z plane, torque about the
z-axis, force in the z-direction, and temperature
changes.

All gages were cemented to the load cell in
accordance with instructions from Micro-Measurements.
In order to provide durability, the assembly was
completed by covering all gages with an elastic protec-
tive compound also manufactured by Micro-Measurements.
For a detailed discussion of applicable theory of strain
gages the reader is referred to the text by Dally
(1978).

The equipment and circuitry needed to display
information from the load cells are shown in Fig. 7.13
and 7.14. A preamplifier and power suppy were used to
supply the excitation voltage to the bridge circuits, to
amplify the output from these circuits and to provide
resistance to these circuits as needed. The preampli-
fier provided variable amplification and the capability
to balance the resistance and the capacitance of the
bridge circuits. The cables of these circuits were
collected conveniently at a junction box. A storage

oscilloscope provided additional amplification and a
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means of displaying information from the load cells. An
oscilloscope camera was used to obtain a permanent

record of the information displayed.

b. Velocity Transducers--As shown in Fig.
9.15, pairs of velocity transducers in various positions
and orientations were used to detect the components of
unwanted motion of the footing. The equipment and cir-
cuitry needed to display information from all velocity
transducers attached to the footing are shown in Fig.

7.15.

c. Pre-Impact Triggering System--The equip-
ment and circuitry needed to trigger the sweep of the
oscilloscope are shown in Fig. 7.16. The hammer and
target arms functioned as a switch in the triggering
circuit. As shown in Fig. 7.7, these arms were isolated
electrically from one another by an insulating cylinder
which separated the bronze bearing from its housing.
Electric contact between the hammer and target heads
closed the circuit. An electronic triggering circuit
was included to shorten the rise time for the buildup to
triggering voltage (Woods, 1978).

To capture a complete record of transient
signals, it was necessary to effect triggering prior to

impact. For this purpose a brass rod (Fig. 7.17) with a
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weak spring extending from one end was slip-fitted into
a hole machined perpendicular to the face of the hammer
head. A lateral set screw permitted this rod to be
locked into an adjustable position. For effective pre-
impact triggering the rod was secured with the spring
protruding slightly from the impact face of the hammer
as shown in Fig. 7.17(b). By varying the. length of
protrusion it was possible to vary the time delay
between triggering and impact.

D. System for Measuring Particle Velocities
within Test Bed

l. Sensing System

Horiziontal velocity transducers, waterproofed
with silicon sealant (for operation in a moist environ-
ment), were used to sense the particle velocities within
the test bed. These transducers were suspended in the
sand at preselected locations during the preparation of
the test bed.

A suspending system, conceived by Ben Bourland,
consisted of a track, two adjustable frames and two
adjustable rods. As shown in Fig. 7.18, the tracks
bridged the outer frame of the quicksand tank. Four
clamping screws permitted each frame to be locked into

any position along the track. The rods from which the
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transducers were suspended were made from aluminum.

The 3/8 inch diameter of each rod was large enough to
prevent significant flexing during the preparation of
the test bed, yet sufficiently small to avoid excessive
disturbance to the sand. Each rod was oriented Qer—
tically by a 2 inch long guide fixed to each frame and a
slip-fit permitted vertical and rotational movement. A
horizontal, plastic-tipped, clamping screw allowed each
rod to be loéked into position without damage. By
locking each rod, the position of each transducer was
fixed.

Each suspending rod was designed to be removed
after the test bed had been prepared, leaving each
transducer oriented properly in the desired location.

As shown in Fig. 7.19, each of the three feet long rods
consisted of two basic components: an inner solid steel
rod and an outer aluminum tube. The tube was threaded
very loosely into an aluminum ring fixed to the trans-
ducer. Twisting a locking knob to advance the rod rela-
tive to the tube, placed the tube in tension. This
locked the threaded connection of the tube and the ring
and, consequently, the orientation of the transducer.
Retraction of the rod loosened the connection and per-

mitted the free removal of the suspending rod.
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In order to improve coupling with the sand bed a
layer of dry test sand was cemented to the surfaces of

the transducers.

2. Recording System

Equipment and circuitry, used to display infor-
mation sensed by the velocity transducers within the
test bed, are shown in Fig. 7.20. This information was
displayed along with the information sensed at the
footing. A photograph showing the entire measuring
system used in the dynamic model footing tests,
excluding transducers, 1is presented in Fig. 7.21.

In most of the dynamic footing tests, signals
from the transducers located within the test bed were
clouded with a high frequency noise of unknown origin.
This noise, which impaired the ability of the
oscilloscope to display information, was eliminated from
the output of these transducers by the use of low pass
filters. These filters had nominal cutoff frequencies
of approximately 1500 Hz and were designed and con-
structed by Lou North.

E. Equipment for Tests Related to Dynamic Model
Footing Tests

The following sections describe equipment needed
to perform tests which were conducted in preparation for

the dynamic model footing tests.
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1. Calibration of Load Cells

In the calibration of an elastic load cell, the
linear relationship between the applied load and
electric signal developed is established. Each load
cell was calibrated statically by applying a sequence of
static moments about an axis of interest and measuring
the voltage response of the load cell.

As shown in Fig. 7.22, a pair of horizontally
opposed forces directed perpendicular to the length of
the target arm of the footing was used to provide a sta-
tic torque about the vertical centerline of the footing.
These forces were generated by two sets of balanced
weights, each of which was suspended vertically by a
hanger. Each force was applied to each adjustable eye
bolt attached to each end of the target arm and each
force was directed by an adjustable pulley.

To apply a static moment about the y-axis, an
arm was constructed which attached to the center of the
target arm and extended horizontally in a direction per-
pendicular to the length of the target arm. Load was
developed by suspending vertically a series of weights
from the outer end of this additional arm. Bending
moments were applied about the x-axis by suspending ver-
tically a series of weights from either end of the

target arm.
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The measuring systems used for calibrations were
identical to those used to measure loads in the dynamic

footing tests and are shown in Figs. 7.13 and 7.14.

2. Calibrations of Velocity Transducers

In the calibration of a velocity transducer, a
linear relationship between the velocity of the trans-
ducer and the electric signal developed is obtained for
applicable ranges of frequencies and displacement
amplitudes. 1In order to calibrate a velocity
transducer, a sinusoidally varying displacement of known
amplitude and frequency was imposed on the transducer.
The voltage response of the transducer was measured and
the procedure was repeated for the relevant ranges of
frequencies and amplitudes.

The equipment and circuitry shown in Fig. 7.23
was used in calibrating the transducers. Harmonic
displacements in either the horizontal or vertical mode
were imposed by the vibration exciter. The oscillator
provided a harmonic signal for the vibration exciter
which was amplified to a level needed to drive the
exciter. The frequency of this motion was controlled by
the oscillator and the amplitude was controlled by the
amplifier and the field coil. Power was provided by the

power supply. Accurate measurements of frequency were
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obtained using a period counter. The displacement of
the velocity transducer was detected with an optical
displacement transducer. Outputs from the displacement
and the velocity transducers were displayed using ac
voltmeters for accuracy, and an oscilloscope to allow
inspection of the waveform. 1In order to reduce high and
low frequency noise appearing at the output of the
displacement transducer, the signal from this transducer

was filtered.

3. Filter Tests

The filters discussed in Sections D.2 and E.2
modify the amplitudes and phases of signals to a degree
which depends on fréquency and amplitude. To correct for
this effect it was necessary to obtain experimentally the
modifying characteristics of each filter. Only the
effect on the amplitude of a signal was needed for the
filter discussed in Section E.2.

To determine the manner in which a filter
affected the amplitude of a signal, a sinusoidal signal
of known frequency and amplitude was applied to the
input terminal of the filter. The voltage was measured
at the output terminal. The ratio between the rms value
of the output and input voltages gives the amplificatioh

of the signal at the selected frequency and amplitude.
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To determine the manner in which phase was affected by
a filter the time shift between the waveforms of the
input and output signals was measured. These tests were
repeated over relevant ranges of frequency and
amplitude.

The equipment and the circuitry used to obtain
the characteristics of the filters are shown in Fig.
7.24. The harmonic signal was provided by a function
geﬁerator which permitted control of the frequency and
the amplitude of the signal. An oscilloscope camera was
used to acquire permanent records of the displayed wave-
forms from which phase shift characteristics were
obtained. The functions of the remaining equipment

shown in Fig. 7.24 were as described in Section 2.

4. Preliminary Dynamic Model Footing Tests

The horizontal angle between the target and
hammer arms at contact and the resilience of the
impacting surfaces of the hammer heads influenced the
nature of the load applied to the footing and thus the
response of the footing. The horizontal angle affected
principally the distribution of impact energy between
the two ends of the target arms. This angle was
adjusted by repositioning the bearing which supported

the hammer shaft and by sanding lightly the impact faces
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of the target heads. The resilience of the impacting
surfaces, which was varied by attaching gum rubber pads
having various thicknesses to each of these surfaces
(see Fig. 7.17 (b)), affected primarily the character of
an impact.

Prior to performing the model footing tests in
the quicksand tank, a number of preliminary tests were
conducted in a small pan containing sand from the test
bed. The corresponding test set up is shown in Fig.
7.4. These tests were performed to adjust the horizon-
tal angle between the hammer and target arms to obtain
the best performance from the footing and to determine
the optimum resilience of the impacting surfaces. 1In
addition the unwanted components of load and motion were
measured.

The electronic measuring equipment used in these
tests was identical to that used in the footing tests

conducted in the quicksand tank.

F. Equipment for Dynamic Model Footing Tests

1. Accessories to Surcharge Pressure System

The clamping method used to seal the air bags
along edges, described in Appendix III, restrained the
deformation of the air bags locally. As a result a

large annular zone surrounding the base of the footing
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remained unconfined. To reduce the width of this
region, an eight inch diameter tire tube with a separate
line for air pressure was located beneath the underside
of the central air bag. As shown in Fig. 7.25, this
tube was positioned concentrically with the central
access hole. A cylindrical guard constructed from sheet
metal was attached to the lower clamping ring to prevent
the expansion of the inner tube towards the footing.
With this arrangement, surcharge pressure was applied to

within 1/2 inch of the edge of the footing.

2. System for Leveling of Test Area

In order to provide a level base for the footing
and to promote a favorable distribution of contact
pressure the surface of the test bed exposed by the
central access hole was leveled prior to the placement
of the footing. A scraping device, shown fully
assembled in Fig. 7.26, was constructed for this
purpose. The device consisted of a knife-edged straight
blade attached to an aluminum rod three feet in length.
This device was capable of sweeping out a plane horizon-
tal circle slightly larger in area than the base of the
footing. The rod defined the axis about which the blade
rotated. The angle between the blade and the rod was

adjustable. The rod was guided by lower and upper
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slip~-fit guides which were attached to the track-frame
system. A clamping screw, used to lock the position of
the rod, was threaded into the upper guide.

As shown in Fig. 7.26, the upper guide was
housed in the inner race of a ball bearing and the outer
race of this bearing was housed in a large diameter
threaded coupling. This assembly, conceived by Ben
Bourland, permitted the rotation of the locked rod and
the fine adjustment of the scraped plane in the vertical

direction.

3. System for Placing Footing

In order to develop uniform contact with the
level surface of the sand the base of the footing must
be placed horizontally. In addition, to position the
footing correctly relative to the velocity transducers
within the half space, the footing must be centered pro-
perly on the centerline of the test bed. As shown in
Fig. 7.27, a suspending system consisting of three
cables was assembled to place the footing properly.
Each cable was attached to an inverted eye bolt which
was supported by the track-frame system. To lower the
footing, the eye bolt was lowered by turning its
retaining nut. Each cable of the system was adjustable

in length thus permitting leveling of the footing. The
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lateral positioning capability provided by the track-

frame system allowed the centering of the footing.

4. Frame for Controlling Impact

In order to excite the footing with repeatable
purely torsional impacts, it was necessary to devise a
means to control the impulses. An inverted T-frame was
constructed for this purpose and, as shown in Fig.
7.28, this frame was suspended above the footing from
the track-frame system. At each end of the hammer arm a
spring from a matched set was connected between the arm
and the appropriate end of the T-frame. The attachment
points of the springs to the T-frame were triaxially
adjustable thus permitting the alignment of each spring
and variable pretensioning.

Energy for the impact was derived from tension
in the springs developed by separating the hammer arm
from the target arm. The extent of the separation at
the release of the hammer determined the energy and the

character of the applied torque.

G. Equipment for Evaluation of Properties of Test Bed

1. Density, Void Ratio

The density and the void ratio of the test bed
were determined by analyzing samples obtained from drive

cylinders which were suspended within the test bed
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during liquefaction. These newly machined cylinders
were thin-walled, 3 7/8 inches in inside diameter, and 4
inches‘in depth. As shown in Fig. 7.29, the cylinders
were suspended vertically by strings from a horizontal
pipe which spanned the platform opening of the quicksand

tank.

2. Low Amplitude Shear Modulus

Torsional seismic crosshole tests were conducted
within the test bed to determine shear wave velocities.
From these, the low amplitude shear moduli of the test
bed were calculated. 1In this test a torsional distur-
bance was introduced into the test bed. A shear wave
propagated from this disturbance and the velocity at
which this wave propagated was measured.

The equipment needed to conduct a torsional
seismic crosshole test included a torsional source which
generated shear waves and a measuring system for

obtaining shear wave velocities.

a. Torsional Source--The principal wave
generated within the test bed by the torsional source
was a horizontally polarized shear wave in which the
particle motions were horizontal. This disturbance was
similar to that developed in the dynamic footing tests

and the purity of this disturbance facilitated data
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analysis. Because vertical penetration of the source
during testing was minimized, the torsional source also
gave good depth control.

The entire test set up is shown schematically. in
Fig. 7.30. Torsional disturbances were generated by a
torsional hammer, suggested by Woods. This device, shown
in Fig. 7.31, is basically the same impacting device
which was used to excite the footing in the dynamic
footing tests (Sections C.l.a and C.l.b). As applied to
the seismic crosshole test, this device was in an
earlier stage of development than for the footing tests.
Hardwood bearings were used to guide the shaft of the
hammer arm rather than the bronze bearing used in the
footing. While adequate for the cross hole test, these
wooden bearings did not provide the precision necessary
to conduct high quality dynamic footing tests.

Disturbances generated by the torsional hammer
traveled down a straight 8 foot long, 1 inch diameter,
steel pipe coupled tightly to the bottom of this device.
A straight, thin-walled, concentric Shelby tube, 14
inches in length and two inches in diameter was threaded
tightly to the end of this pipe. The Shelby tube
coupled the disturbance into the test bed. To improve
the coupling a layer of sand was cemented to the surface

of the Shelby tube.
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To minimize the introduction of non-torsional
disturbances into the sand by lateral sway of the source
during a test, a wooden guide, conceived by Don
Hutchings, was constructed for the source. This guide,
shown in testing position in Fig. 7.32, consisted of two
wooden bearings with which to align the source.
Clearances in each bearing were adjustable to permit
corrections for wear. The upper bearing was also
adjustable in height. This feature provided maximum
lateral stability to the source by allowing the largest
possible spacing between the bearings to be used for

testing at any given depth.

b. System for Measuring Shear Wave
Velocity--To determine the shear wave velocity, a
measuring system capable of sensing the disturbance
within the test bed and recording permanently the infor-
mation sensed was needed. As shown in Fig. 7.30, two
horizontal velocity transducers were placed at the depth
of the tip of the Shelby tube and in line with the
Shelby tube to sense the disturbance. The spacing
between the transducers was about 20 inches and this
arrangement spanned the zone of interest. To maximize
the response of each transducer to the radiating

wavefield, each transducer was oriented transversely to
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the horizontal radius extending from the Shelby tube and
intersecting the transducer.

In order to position the source and the trans-
ducers within the test bed it was necessary to gain
access to the surface of the sand. As shown in Fig.
7.33, access was provided by three plastic pipes each
1 foot in length and 3 to 4 inches in diameter. These
pipes were placed through the covers of the surcharge
pressure system to the surface of the sand. The outer
pipes were wedged between air bags and a light frame,
shown in Fig. 7.33, was needed to maintain these pipes
in position under pressure from the air bags.

The suspending rods, shown in Fig. 7.19 were
used to place and orient the transducers at depth in the
boreholes. In order to improve coupling with the sand
a layer of sand was cemented to the surfaces of these
transducers.

The components of the recording system and the
connecting circuitry needed in the torsional seismic
crosshole tests are shown in Fig. 7.30. An oscilloscope
camera was also used. The triggering system was as
described in Section C.2.c except that the pre-impact

triggering device was not used.
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3. Shearing Strength

The shearing strength of the sand at the surface
of the test bed was determined by conducting a static
torsional loading test on the model footing in its dyna-
mic testing environment. 1In this test a static torque
was applied incrementally to the footing and the
resulting angular displacement of the footing was
measured. By loading the footing to a level approaching
failure it was possible to obtain an estimate of this
shearing strength.

Only the torsional loading system and the system
for measuring the angular displacements of the footing
were different from those used in the dynamic footing

tests.

a. Loading System--A torque was applied
statically to the footing by imposing equal but opposite
horizontal forces at the end of each target arm. These
forces were directed perpendicular to the length of the
target arm. As shown in Fig. 7.34, this force system
was developed by suspending vertically at each end of
the target arm a hanger supporting a matched set of
weights. Adjustable pulleys, rigidly attached near each
end of the target arm to the I-beams of the surcharge

pressure system, were used to direct these forces.
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b. System for Measuring Angular
Displacements--To obtain the angular displacement of the
footing about its vertical centerline, the transverse
displacement of the footing was measured at two
locations. A diametrically opposed arrangement of two
horizontally oriented dial gages centered on the cen-
terline of the footing was used for these measurements.
In order to extend the radius of the measurement for
greater sensitivity two horizontal arms, one for each
gage and each directed radially, were attached to the
underside of the upper plate of the footing.

A third gage was mounted in order to detect
unwanted lateral translation of the centerline of the
footing. The sensing arm of this gage was positioned
against the upper flange of the load cell in an orien-
tation directed horizontally towards the centerline of

the footing.
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Fig. 7.1: Schematic Diagram of Experiment.
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Fig. 7.2: Quicksand Tank.
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Fully Assembled Footing on Small Scale Test

Bed.

Fig. 7.4:
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[/

Fig. 7.6: Hammer and Target Heads at Contact.
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Fig. 7.7: Cross Section of Bronze Bushing Assembly.
Long Axis of Target Arm is Perpendicular to
Plane of Diagram.
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Fig. 7.10: Possible Components of Load and Motion: X,
Yy, 2 = Translational Components, @, Oyr Bz =
Rotational Components, Fy, Fy, Fz = Force
Components and My, My, Mz = Moment
Components.
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(a) Arrangement of Gages. (b) Principal State of Strain
Associated with Bending
in x-z Plane.
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Fig. 7.16: Components and Circuitry of Pre-Impact
Triggering System.
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with Spring. in Hammer Head.

Fig. 7.17: Components of Pre-Impact Triggering System.
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Fig. 7.20: System for Measuring Particle Velocities
within Half Space.

Fig. 7.21: Components of Measuring System Used for
Dynamic Model Footing Tests.
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Fig. 7.22: Loading System Used for Calibration of
Torsional Load Cell.
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Fig. 7.29: Schematic Diagram of Set up for Density and
Void Ratio Tests Conducted in Quicksand Tank.
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Fig. 7.30: Schematic Diagram of Set Up for Torsional
Seismic Crosshole Tests Conducted in
Quicksand Tank.
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Fig. 7.31: Torsional Hammer Used tor
Torsional Seismic Crosshole
Tests.

Fig. 7.32: Guide for Torsional
.Source.
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Fig. 7.33: Surcharge Pressure System
as Adapted for Torsional
Seismic Crosshole Test.

Fig. 7.34: Equipment Set Up for Static Torsional
Loading Test.



CHAPTER VIII

TEST PROCEDURES

A. Introduction

In this chapter, the procedures which were used
to carry out each test are described. These procedures
include preparation of the test bed, evaluation of the
properties of the test bed, and those related to the
dynamic model footing tests. Techniques of processing

data obtained from various tests are also presented.

B. Preparation of Test Bed

During the preparation of the test bed the rate
of upward flow through quicksand tank was slowly changec
by increments to allow equilibrium to develop at each
flow level. This was done to maintain uniform flow con-
ditions needed to provide a test bed having a uniform
void ratio. For repeatability in the preparation of the
.test bed, it was necessary to establish a set prepara-
tion procedure. This involved finding the optimum maxi-
mum flow rate, the time needed to develop this flow
rate, and the time needed to stop the flow. After each

preparation, the overall void ratio of the test bed was

237
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checked for consistency by measuring the depth to the
sand surface of all corners and midedges of the rec-

tangular platform opening of the quicksand tank.

C. Evaluation of Properties of Test Bed

1. Density, Void Ratio

The in-situ density was obtained by suspending
leveled drive cylinders within the liquefied test bed at
the locations shown in Fig. 8.1. The flow was allowed
to reach a state of equilibrium with these cylinders in
place, after which the flow rate was reduced and
reversed. After the tank had been drained, the
suspending lines were cut and the soil surrounding the
drive cylinders was excavated very carefully to expose
each buried cylinder. Each cylinder was supported care-
fully by hand and a thin wire was looped around the soil
beneath the base of each cylinder. To separate the
cylinder and its contents from the supporting soil, the
loop was contracted slowly using a sawing action.
Following separation the sample was quickly, but very
carefully, trimmed and placed into a reasonably airtight
container. Weights and water contents were taken

immediately.
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2. Low Amplitude Shear Modulus

a. Test Procedures--The shear wave veloci-
ties within the test bed were evaluated by torsional
seismic cross hole tests for a sequence of surcharge
pressures. The test bed was first prepared by
liquefaction, then the surcharge pressure system was
installed as described in Appendix III.

At each testing depth crosshole tests were con-
ducted for each pressuré of the selected sequence of
surcharge pressures. To maintain consistent water
contents, prior to preparing for tests at each depth,
the water level within the tank was raised slowly to the
depth at which the preceding test was conducted, and
then drained, leaving the sand in a partially saturated
state.

Immediately following drainage, the boreholes
for the transducers were augefed vertically.to depth
using a three inch diameter hand auger. 1In order to
develop adequate coupling between the Shelby tube (See
Chapter VII, Section G.2.a) and the sand a precise bore-
hole of minimum diameter was needed for the source. Such
a borehole was excavated by use of the fully assembled
source appropriately positioned in its guide. This

excavation was taken to a depth which provided a six
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inch embedment of the Shelby tube. In order to deter-
mine accurately the spacings between boreholes, plumbli-
nes were lowered to the center of the base of each
borehole. Spacing measurements were then made at the
surface between these centered plumblines.

The transducers were checked for identical
polarity of response and the suspending rods were
attached to the transducers. To enable the alignment of
each transducer from the surface, a straight rod was
clamped perpendicular to each suspending rod and in a
direction parallel to the sensing axis of the
transducer. Taut horizontal strings intersecting the
centerlines of the boreholes functioned as alignment
references along the surface. The alignment of each
transducer centered in the base of each borehole was
carried out by squaring the clamped alignment rod with
the taut string. Then, to improve the coupling between
the transducers and the test bed, the boreholes were
refilled partially with sand to bury the transducers.
The added sand was tamped lightly from the surface using
a long, flat-ended rod.

The entire source assembly was relocated above
the appropriate borehole and the guide for the source
was firmly clamped to its support. To minimize the

sensing of compressional waves, the target arm was



241

oriented in the direction of the transducers and then
the source was forced carefully to the testing depth.
To begin testing, the surcharge pressure was
slowly brought to the desired level. Throughout
testing, each change in the surcharge pressure was
followed by a 15 minute time delay to permit readjust-
ment of the soil grains to the new load. After this
period, the pressure in each air bag was rechecked. To
conduct a test, a torsional impact was delivered
manually with an amplitude large enough to give an ade-
quate signal-to-noise ratio in the voltage response of
the transducers yet insufficient to cause excessive
disturbance to the soil. Tests were conducted using
various settings of the oscilloscope, and records
thought to be useful in the reduction of data were pho-
tographed for later analysis. This procedure was

carried out for each surcharge pressure.

b. Data Reduction--To obtain the reported
results, it was assumed that the shear waves traveled
along horizontal paths between the two transducers. The
shear wave velocity was computed by dividing the spacing
between the transducers by the travel time of the
disturbance between the transducers as determined from

test records. As illustrated in Fig. 8.2, this travel
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time is the difference in time between common points on
the waveforms obtained from each transducer. For
greatest accuracy, most computations were based upon
records obtained at the maximum sweep rate. Records
obtained at low sweep rates were generally used to
assist in interpretations.

Reflections from the surface of the test bed and
compression waves caused random shifts in the peaks of
the waveforms. To reduce the effects of these shifts,
wave velocities were obtained for as many distinct wave-
points from a given pair of records as possible prior to
the arrival time of reflections from the walls of the
quicksand tank. The shear wave velocity reported for a
particular surcharge pressure-depth combination was the
average of all of the velocities obtained for this

combination.

3. Shearing Strength

To determine the shearing strength at the sur-
face of the test bed by a static torsional loading test,
the test bed was prepared, the surcharge system was
installed, and the footing was placed in the manner
described for the dynamic footing tests. The loading
and displacement measuring systems were attached to the

I-beam grid. During preliminary testing this grid was
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found to displace significantly in response to changes
in the surcharge pressure. Therefore, to maintain the
alignments of the loading and measuring systems it was
important to apply the test pressures to the air bags
immediately prior to carrying out alignment procedures.
Then, the dial gages, the pulleys, and the eyebolts
attached to the target arms were adjusted or aligned to
give the desired arrangement of gages and system of
forces. The distance between the forces of this system
was measured.

Prior to testing, the water level within the
guicksand tank was raised slowly to the surface of the
sand and then the tank was drained. 1In order to mini-
mize disturbances to the gages, it was necessary to
avoid excessive contact with the grid. For this
purpose, the track-frame system was adapted to support
the investigator during testing. With this system in
position the pressures in the air bags were rechecked
and all gages were zeroed. Load was applied incremen-
tally by placing simultaneously on each hanger a matched
weight from each of the balanced sets. To permit the
sand grains to readjust to a new load, a time delay of
several minutes was imposed between loads. Loading was

carried out to a level at which nearly unrestrained
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rotation occurred, a condition indicated by large

responses and rates of responses of the dial gages.

D. Tests Related to Dynamic Model Footing Tests

In the following sections, procedures are given
for tests which were conducted in a separate lab in pre-
paration for the dynamic model footing testé. In each
of the tests, the appropriate electronic instruments

were warmed up for one hour prior to testing.

1. Calibrations of Load Cells

Calibrations of each load cell were similar, and
with noted exceptions the following procedure applied
generally. The footing was leveled and appropriate
loading systemé Were assembled. For the calibration of
the torsional load cell, the components of the loading
system including the pulleys, the supporting arms of the
pulleys, and the eyebolts attached to the target arm
were adjusted or aligned to give the desired system of
forces. Then the lengths of appropriate moment arms
were measured.

The required electronic equipment was connected
using the same cables which were to be used for the
dynamic footing tests. The preamplifier was set to an
amplification of 50 microstrain/div, the maximum sen-

sitivity for which the preamplifier operated in the
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linear range for the loading ranges of interest. With
the footing fully unloaded, the capacitance and
resistance of the bridge circuit of the load cell were
balanced. The calibration was carried out by applying
incrementally and then removing the weights from a
selected sequence of weights. The calibration of the
torsional load cell required the simultaneous applica-
tion or removal of two matched weights from two matched
sets of a selected sequence of weights. At each loading
level, the voltage response of the load cell was

recorded.

2. Filter Tests

The variable filter was set at preselected upper
and lower cutoff frequencies. Each filter was tested
using the procedure described in Chapter VII, Section
E.3. In addition, the display of the oscilloscope was
photographed when testing filters for which phase shift

characteristics were needed.

3. Calibrations of Velocity Transducers

To insure that the variable filter performed as
originally set, the characteristics of this filter were
spot checked at several frequehcies and amplitudes. The
connecting cables used with the velocity transducers

were those which were to be used in the dynamic footing
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tests. All structural bolts of importance were checked
for tightness.

A static calibration factor of the Optron was
needed to analyze the data. This factor was obtained by
imposing a static displacement on the Optron relative to
the target and measuring the voltage response of the
Optron. This procedure was repeated over a range of
displacements. The dynamic calibration was then carried
out as described in Chapter VII, Section E.2. The
voltage waveforms from the Optron and velocity trans-
ducers were inspected, and if found acceptable, the rms

values of these waveforms were recorded.

4., Preliminary Dynamic Model Footing Tests

First, preliminary dynamic model footing tests
were conducted to obtain the optimum rotational response
of the footing. For this the horizontal angle between
the hammer and target arms was adjusted. To determine
the effect of an adjustment, an impact was delivered
manually at a selected amplitude and the responses of
the velocity transducers mounted on the footing were
displayed. These responses were irnspected and served as
the basis for readjustments of this angle. This proce-
dure was repeated until improvements were no longer

observed. To further improve response, the resilience
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of the impacting surfaces of the hammer heads was
changed until, again, improvements were no longer
observed.

Then the magnitudes of the unwanted components
of load and motion were checked. To measure related
components simultaneously appropriate load cells were
connected to the measuring circuitry, and appropriate
arrangements of the velocity transducers were assembled
on the footing. Dynamic footing tests were conducted
and the excitation and response were recorded. The

footing was adjusted as needed.

E. Dynamic Model Footing Tests

Preparations for the dynamic model footing
tests, and procedures for performing these tests and
for processing results from these tests are described in
the following sections.

1. Placement of Velocity Transducers Within Test
Bed

Velocity transducers were placed within the test
bed by first excavating a trench of sufficient dimen-
sions to expose the sites of these transduceré. Then
the vertical centerline of the test bed was determined
using a plumbline. The system for suspending the trans-

ducers within the test bed (see Fig. 7.18) was aligned,
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leveled and centered on the test centerline. The
velocity transducers were positioned carefully at the
correct depths and horizontal radii from the centerline
of the test bed. Each transducer was oriented with its
sensing axis perpendicular to its horizontal radius.

All fasteners and clamps were rechecked, as were all
measurements, and the trench was refilled carefully with
the excavated sand, avoiding disturbances to the trans-
ducers and the supporting frame.

The test bed was liquefied, and after draining
the tank partially, with the suspending system as shown
in Fig. 8.3, the rods suspending the transducers were
unclamped from the suspending frame and unlocked from
the transducers. Each rod was unscrewed carefully from
each transducer ring and removed carefully from the
soil, minimizing disturbances. The remaining holes were
refilled with sand.

In order to maintain the reference used to place
the transducers, prior to disassembly, the position of
the track-frame system and the relative positions of all
its components were marked. This permitted the
reassembly of the system to its original state.
Following the disassembly of this system the surcharge
pressure system was installed as described in Appendix

I1T.
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2. Leveling of Test Area

The test area exposed by the central access hole
was leveled using the track-frame system adapted to sup-
port the scraper as shown in Fig. 7.26. The edge of
the scraping blade was adjusted to sweep out a plane
surface on rotation. After shimming the track ends to
give a horizontal scraped plane and aligning the axis of
rotation of the scraper with the centerline of the test
bed the blade was lowered to the surface of the sand.

In order to prevent excessive disturbance to the sand
caused by scraping, the water in the tank was raised to
a level sufficient to eliminate capillary tension at the
surface. Scraping was carried out by repeated careful
rotation of the blade and fine lowering of the blade
until sand had been collected over the entire length of
the blade. Then the water level was lowered slightly to
allow capillary tension to redevelop, and using a putty
knife, sand clinging to the blade was removed carefully.
This procedure was repeated until the entire test area
was horizontal at the desired level. During this pro-
cess a mound of unleveled soil surrounding the scraped
area developed. With the soil under the influence of
capillary tension, this mound was removed carefully using

a putty knife.
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3. Placement of Footing

Prior to placing the footihg, all assembly bolts
of the footing were checked for proper torque and the
velocity transducers were checked for tightness and
orientation. Preliminary torsional impact tests were
conducted to verify the satisfactory operation of the
footing.

With the track-frame system appropriately
assembled and positioned and with the footing suspended
above the central access hole as shown in Fig. 7.27, the
suspending cables were adjusted to level the footing.
Using centralizing marks made on the I-beams during the
installation of the surcharge pressure system, the
footing was also centered on the centerline of the test
bed. Then the footing was lowered slowly to the sand
surface. During this process, the levelness and central
alignment of the footing were frequently rechecked and
readjusted as needed. After placing the footing, the
pressure in the air bags was brought slowly up to test

pressure.

4. Installation of Frame for Controlling Impact

The frame needed to control the impact delivered
to the footing was installed as shown in Fig. 7.28.

Large changes in surcharge pressure caused relative



251

displacements between the footing and this frame. These
displacements affected the alignment of the springs
attached between this frame and the hammer heads of the
footing. 1In order to minimize misalignments, the
pressure in the air bags was checked, and if necessary,
brought to teét level before alignment procedures were
carried out. With the springs equidistant from the cen-
terline of the footing, each spring was aligned properly
and then adjusted equally to provide a very small

pretension.

5. Connection of Electronic Components

The electronic components needed for the dynamic
model footing tests were connected and cables leading
from the footing were routed so as not to exert signif-
icant restraining forces on the footing during its

motion.

6. Miscellaneous Procedures

Immediately prior to conducting the model
footing tests, the water level in the quicksand tank was
raised slowly above the surface of the sand, and then
the tank was drained. Pressures within all air bags
were checked and corrected if necessary. The depth of
the upper plate of the footing relative to the track-

frame system was measured carefully at several locations
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as a reference from which to detect settlement of the
footing. The drive springs attached to the hammer head
were rechecked for equality in the pretension, and the
pre~impact triggering device was adjusted to insure an
adequate recording lead time preceding impact. All
oscilloscope settings were checked after which the

bridge circuit of the load cell was balanced.

7. Dynamic Model Footing Tests

Dynamic model footing tests were performed by
separating the hammer heads from the target heads by a
preselected distance and then releasing the hammer. The
information sensed during the resulting transient motion
was displayed on the oscilloscope, and if judged to be
adequate, this display was photographed for later
analysis. Throughout scheduled testing, the levelness
and permanent settlement of the footing were checked
carefully.

8. Measurement of Positions of Velocity
Transducers within Test Bed

The positions of the velocity transducers within
the test bed relative to the base of the footing were
measured accurately following the completion of testing.
To obtain these measurements, the entire installation,

excluding the transducers within the test bed, was
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disassembled carefully, avoiding disturbances to the
soil. Using the references marked during preparations
for the tests, the track-frame system was reconstructed
to its original pretest state. The sand surrounding the
buried transducers was excavated carefully to expose
these transducers and the depth, radial position and

orientation of these transducers were remeasured.

9. Processing of Recorded Data

In order to process recorded information, first
records were digitized and using appropriate calibration
factors, the digitized records were converted to applied
torque-~ and velocity-time histories. To facilitate
processing, all digitized records were redefined on time
scales having common increments by using linear
interpolation. The two records giving the transverse
velocities of the footing were converted to angular
velocity records and then averaged.

Records giving filtered information needed addi-
tional processing ﬁo correct for the magnifications and
phase shifts introduced by the filters. Techniques of
Fourier analysis were applied to correct these records.
As shown in Fig. 8.4, such a record was inverted and
reversed to give a fictitious, odd periodic function

having a period equal to twice the length of the record.
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This function was decomposed into Fourier sine com-

ponents using the following equations:

N
Fy £ 20 bnsin D—Tﬁ'— 7.1(a)
nel T
. T'
_ 2 . it
bn= =, gf(tlSm Lall dt
where f(t) = the approximate representation of the

function
T' = the length of the record
n = the number of cycles of the nth Fourier
component contained in one period of the
fictitious function
N = Maximum n used for the approximation
Integrations were carried out numerically using the
trapezoidal rule, and for each record so processed, the
quality of the Fourier approximation was tested by com-
paring the reconstructed unprocessed record with the
original record.

The phase shift and amplification charac-
teristics of the filters, which were obtained experimen-
tally for discrete values of frequency, were represented
as continuous functions of frequency in a piecewise
linear fashion. Each Fourier component of each fic-

titious function, was phase shifted and amplified an

amount determined by the frequency of the component and
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the characteristics of the relevant filter. Then these
modified components were added giving the final pro-

cessed record.
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CHAPTER IX

EXPERIMENTAL RESULTS, SAMPLE
CALCULATIONS AND DISCUSSIONS

A. Introduction

In this chapter, experimental results and sample

calculations are presented and discussed.

B. Properties of Test Bed

1. Density, Void Ratio

The density and the void ratio of the test bed,
as well as other related properties, were based upon
results from 6 tests, in which a total of 12 drive
cylinders were suspended within the test bed. These
tests were conducted only after a repeatable technique
of preparing the test bed had been developed and profi-
ciency at sampling had been achieved. Because of dif-
ficulties in obtaining samples at greater depth, cylin-
ders were suspended only at depths of 6 and 12 inches.
It is, however, the properties near the surface which
have the greatest effect on the dynamic response of a

shallow footing.

258
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Test results, presented as averages in Table
9.1, covered a broad range. Relative densities varied
from 4.3 to 60.9% and from 21.7 to 65.2% at depths of 6
and 12 inches, respectively. One source of this scatter
was nonuniformity in the void ratio of the test bed
caused by sand currents and boils which developed during
the preparation of the test bed. These disturbances
were most intense directly above the inlet of the mani-
fold and the lowest values of relative density were
found directly above the opposite end of the manifold.
Thus, this nonuniformity in the flow was believed to
have been caused primarily by the manner in which the
manifold distributed flow.

A second major factor causing scatter in the
results and giving an apparent nonuniformity was thought
to be the sampling process. The process used can cause
nonuniformities within as well as amongst the samples.
These nonuniformities develop as a result of the tilting
of cylinders and friction along the walls of the
cylinders. During liquefaction, the flow within a
tilted cylinder is nonuniform leading to nonuniform void
ratios within the cylinder. During deposition, ffiction
along the wall of a cylinder restrains the displacements
of particles near the wall but not near the center

line.
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The overall volume of the test bed, as indicated
by the average height of the surface of the sand
measured after each preparation, was quite consistent.
Amongst the 6 tests conducted, this height was found to
vary by no more than 1/4 inch.

The observed nonuniformities of the test bed,
whether real or apparent, did not appear to have a large
adverse effect on the quality or repeatability of dyna-

mic model footing tests.

2. Low Amplitude Shear Moduli

a. Results from Tests -- The shear wave
velocities within the test bed were obtained by con-
ducting torsional seismic crosshole tests for the
following sequence of surcharge pressures: 5, 4, 3, 2,
1, 2, 3, 4, and 5 psi at depths of .5, 1, 2, 3, 4, and 5
feet.

A selection of records from tests conducted at
each depth for the surcharge pressures of 1, 3, and 5
psi is given in Figs. 9.1 (a), (b), and (c¢). 1In each of
these records, the upper and lower traces give the
responses of the transducer nearest to and furthest from
the source, respectively. 1In Figs. 9.2 (a) and (b) are
given examples of records obtained at a slower sweep

rate than those of Fig. 9.1. 1In each of the records in
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Fig. 9.2, traces 1 and 3 give records for one impact,
and traces 2 and 4 give records for a second,
successive, impact: a format which shows the reproduci-
bility of results from the tests. The times at which
the high amplitude portions of the records from the near
and far transducers begin to differ in Fig. 9.2 (a) and
(b) correlate with the arrival times of reflections from
the wall of the quicksand tank.

As shown in Figs. 9.1 and 9.2, in most tests the
response of the far transducer was similar to that of
the near transducer. In some tests, however, there was
a significant loss of high frequency information between
the two transducers. This loss was most pronounced at
low surcharge pressures and shallow depths. Thus this
loss was believed to have been caused by the inability
of the granular test bed to transmit high frequency
disturbances at low levels of confining pressure. An
extreme example of this behavior is given by the record
in Fig. 9.1 (a) for the depth of 2 feet. Because the
loss of information in this test was so large it was
necessary to use a record obtained at a low sweep rate
(Fig. 9.2 (a)) for assistance in interpretation.

In some tests, particularly these conducted at
shallower depths, an initial low amplitude disturbance

appeared in the record from the far transducer but not
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in that from the near transducer. This disturbance,
pointed out in Fig. 9.1 (b) in the records obtained from
the depth of .5 feet, was thought to be caused primarily
by reflections from the surface of the test bed and

compress ion waves.

b. Reduction of Data -- To demonstrate the
reduction of data, the results obtained from the records
shown in Fig. 9.3 are presented in Table 9.2. As shown
in Fig. 9.3, the wavepoints which were used to obtain
results were the distinct peaks and troughs of the

waveforms.

c. Results from Analysis -- Results from
the entire analysis, along with statistical information
are given in Table 9.3. Selected statistical results,
taken from Table 9.3 are presented in Table 9.4 which
gives, for each depth, the maximum and average ranges of
shear wave velocities as percentages of the average
shear wave velocities. These percentages are not large
indicating that the technique used to obtain the
reported average shear wave velocities was acceptable.

The total time of testing at a single depth was
approximately 12 hours. Over this period of time,
drainage, evaporation and the continual readjustments of

grains to the surcharge pressures caused changes in the
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elastic properties of the test bed. Table 9.5, which
gives the profiles of shear wave velocity under the ini-
tial and final surcharge pressures, both 5 psi, shows
that for each depth, the difference between the shear
wave velocities in these two states was small. Thus,
over the span of 12 hours the changes in the elastic
properties of the test bed were small.

The curves of shear wave velocity vs. depth are
presented in Fig. 9.4 for the pressures of the
increasing portion of the sequence of surcharge
pressures. Increases in the surcharge pressure caused
increases in the shear wave velocity at all depths,
however, these increases were largest near the upper
surface of the test bed.

Waves refract toward zones of higher wave speed.
In order to estimate the amount of refraction within the
test bed to determine whether the curves in Fig. 9.4
needed to be corrected for this effect a simple‘method
presented by Dobrin (1961) was used. This method
assumes a linear variation in wave velocity with depth
and gives circular ray paths. Based upon a bilinear
approximation of the curve of shear wave velocity vs.
depth for the surcharge pressure of 5 psi, refraction in
the upward direction was found to be less than 3/4 inch,

and therefore was neglected.
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d. Theoretical Explanation of Results =-- In
a mass of cohesionless soil having a reasonably uniform
void ratio, the shear wave velocity is primarily a func-
tion of the confining pressure. Therefore, thelbehavior
observed in Fig. 9.4 may be accounted for largely in
terms of the distribution of confining pressure within
the test bed. An empirical expression giving the shear
wave velocity as a function of void ratio and confining
pressure, in a round-grained, cohesionless sand, in
which the void ratio is less than 0.8, is given below as

(Richart, Hall and Woods, 1970)

— .2
Vs (Fps) = (170 -78.2 e) Go (pif:) (9.1)

To explain the curves in Fig. 9.4, each of two
simplified models describing one dimensional distribu-
tions of vertical stress were used to estimate the
distribution of confining stress within the test bed.
Each distribution of confining pressure was then intro-
duced into Eq. (9.1) to obtain theoretical curves of
shear wave velocity vs. depth for comparison with the
experimental profiles.

'In the first model, vertical stress is developed

by combined gravity and surcharge loadings and the
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corresponding distribution of confining pressure is

given as

G = (‘%ZK)(VE“'P3 (9.2)

where p is the surcharge pressure, ¥ is the unit weight
of the soil and K is the ratio of the lateral to the
vertical normal stresses. In the second model, for-
mulated by Terzaghi (1943), and suggested by Richart,
the medium in which the stresses are developed is
bounded laterally by the rigid wall of a cylinder having
radius, R. In addition to gravity and surcharge
loadings, this model takes into account shearing
stresses developed along the wall in response to gravity
and surcharge loadings. The magnitudes of these
shearing stresses are determined by the Mohr-Coulomb
failure theory and the local normal stresses acting on
the wall. The distribution of vertical stress given by

this theory for arching in a cohesionless soil is

= . Ry _ -(?-KZ/)Q)‘l‘an$)
v —EkTun¢

- (9.3)
e—(zka/m-l-cmcp

P
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where ¢ is the angle of internal friction of the soil
and E; is the effective vertical stress. The confining
pressure is related to 3; by

5 = ( 'i;" ) G, (9.4)

Relevant values of the properties of the test

bed which were obtained experimentally include ¥ =

102.15 1b/ft3, e = 0.69 and ¢ = 32.5. The value of

was based upon a series of drained triaxial tests. The
value of K was assumed to be 0.4, the value used by Chon
(1977) for the test bed at a relative density of 76%.
Results were found to be insensitive qualitatively to a
variation of K over a typical range: 0.4 to 0.6 in a
cohesionless soil under at rest conditions.

The curves of shear wave velocity vs. depth
based upon the two assumed stress distributions are
shown in Figs. 9.5 and 9.6 for the surcharge pressures
of 0, 1 and 5 psi, along with test results for the
surcharge pressures of 1 and 5 psi. As shown in Fig.
9.5, the theoretical profiles based upon the Eq. (9.2)
do not give good agreement with the experimental
profiles. Shear wave velocities and normal stresses
(Eq. 9.1) are overestimated at depth and underestimated

near the upper surface of the test bed. As shown in
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Fig. 9.6, the theoetical profiles based upon the stress
distribution given by Eg. (9.3) give improved agreement
with experimental profiles. Nevertheless, for the
surcharge pressures of 1 and 5 psi, shear wave veloci-
ties are underestimated near the upper surface of the
test bed and for the surcharge pressure of 5 psi, shear
wave velocities are overestimated at depth.

In view of Eq. (9.1), the curves in Fig. 9.6
imply that, at least for the surcharge pressure of 5
psi, confining pressures near the surface of the test
bed are underestimated and at depth, overestimated.

Near the center of the upper surface of the test bed,
where conditions are approximately one-dimensional, ver-
tical stresses were believed to have been within the
bounds given by the two theories. Thus differences bet-
ween theoretical and experimental results at this loca-
tion were believed to have been caused by underestimates
of lateral stress.

Lateral stresses developed within the test bed
depend on the lateral displacements of the flexible wall
of the quicksand tank. Lateral displacements occurred
because the upward load from the surcharge pressure was
transmitted eccentrically to the wall of the tank and
because this corrugated wall stretched in the vertical

direction when the surcharge pressure was applied. The



268

lateral stress and the shear wave velocity which develop
at a level within the test bed during the application of
a given vertical stress will be larger if the tank
contracts and smaller if the tank expands than if the
wall remains rigid.

Using a dial indicater, the lateral displace-
ments of the wall of the quicksand tank were measured
along the West side of the wall during the crosshole
tests. These rough measurements were obtained at both
the crests and troughs of the corrugations. The net
lateral displacements of the wall, estimated from these
measurements, are given in Table 9.6 as a function of
depth for the surcharge pressure of 5 psi. Above a
depth of approximately 19 inches, the tank contracted.
As argued, theory would be expected to underestimate
shear wave velocity above this depth and as shown in
Fig. 9.6, this does happen.

The larger lateral stresses associated with
contraction also allow larger shearing stresses to
develop along the wall near the surface of the test bed.
This factor further restricts the effects of surcharge
pressure to locations near the surface of the test bed.
Neglecting this factor contributes to overestimates of
the confining pressure and the shear wave velocity at

depth.
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e. Application of Results -- The experimen-
tal curves of shear wave velocity vs. depth were used to
select the surcharge pressure which provided a test bed
having the most favorable characteristics for the dyna-
mic model footing tests (See Chapter VII, Section B).
From an examination of Fig. 9.4, it was judged that the
surcharge pressure of 2 psi gave the best soil
properties, and this value was used for the footing

tests.

3. Shearing Strength

a. Results from Test -- The results from
the static torsional loading test are plotted in Fig.
9.7. This figure shows the moment applied to the
footing vs. the angular displacement of the footing.
The angular displacement was obtained by averaging the
values of angular displacement obtained from each of th
two transverse dial gages.

Two measures of the quality of such a test are
the percentage difference between the readings of the
two transverse displacement gages and the ratio between
the average transverse displacement and the lateral dis-
placement of the centerline of the footing. A small
percentage difference and a large ratio indicate a high

degree of pure rotation. The value of the percentage
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difference at the maximum angle of rotation is 11 per-
cent and that of the ratio is 67. The maximum torque

obtained from the torsional loading test is 11.73 ft-1lb.

b. Results from Analysis -- Given an
applied moment and assuming a shape for the distribution
of shearing stresses along the base of the footing, the
amplitude of this shape may be cbmputed using Eq.
(4.32). This equation relates a distribution of
shearing stresses to its resultant moment. To determine
the shearing strength of the test bed at the surface,
7énp a uniform distribution of shearing stress (See
Fig. 9.8) was assumed to be resisting the maximum
experimentally applied moment, Mpayx. This distribution
represents a fully plastic state and its amplitude,

which is the shearing strength, may be evaluated from

Eq. (4.32) giving

3 Mmay
T2 - v—— 906
Iz Eyn-rb3 ( )

Substituting measured values for Mp,x and ry into Eq.

(9.6) gives Emg 150 psf (1.04 psi).

c. Discussion of Results -~ This method for
obtaining 7§n,is a approximate for a number of reasons.

The assumption of a uniform distribution of shearing
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stress at the maximum moment assumes a uniform distribu-
tion of contact pressure along the base of the footing
and fully unrestrained rotation of the footing.
Because, in this test, an unconfined ring approximately
1/2 inch in width surrounded the edge of the footing,
the capacity of the sand to withstand normal stress was
reduced in this zone. As a result, the contact pressure
and shearing strength of the test bed were thought to be
less at the edge than near the center of the footing.
Although approached, a state of unrestrained rotation
was not developed in the torsional loading test. Theo-
retically, the zone of the test bed near the center of
the footing is the last zone to develop its shearing
strength under rotation of the footing. Thus, if this
rotation is less than maximum, full shearing resistance
is not developed in this zone.

A probable distribution of shearing stress which
takes these factors into account is sketched in Fig. 9.8
using a dashed line. By assuming a uniform distribu-
tion, the shearing strength of the test bed has been
overestimated at the edge of the footing and underesti-
mated elsewhere. In view of the small size of the
unconfined gap and the close approach to unrestrained
rotation, the degree of these approximations was

believed to be small.
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The estimate of shearing strength by static
means neglects the dynamic effects of strain rate on the
shearing strength of the test bed. These effects have
been found to be small for dry sands (Richart, 1977) and
the partially saturated test sand was assumed to behave
similarly.

Despite these approximations, the torsional
loading test does offer significant advantages over the
readily available alternative of using the Mohr failure
criterion in conjunction with results from triaxial
tests to predict the shearing strength of the test bed.
The torsional loading test simulates closely dynamic
testing conditions. The equipment, loading, geometry,
and environment of the dynamic footing tests, including
the surcharge pressure, water content, and relative den-
sity are taken into account. The stressing of the test
bed in the dynamic and static tests 1is similar and
little interpretation is required to arrive at the
shearing strength. In addition, the torsionsal loading
test was considered to be a precisely prepared and con-
ducted test and throughout testing, the geometry of the

test bed changed by only very small amounts.
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C. Tests Related To Dynamic Model Footing Tests

In the following sections, results and
discussions are given for tests which were conducted in

preparation for the dynamic model footing tests.

1. Calibrations of Load Cells

a. Calibrations —-- Results obtained from
the calibrations of the torsional load cell are given in
Fig. 9.9. 1In this figure the applied torque vs. the
voltage response of this load cell is plotted. The
slight hysteresis present in this curve was believed to
be caused by pulley friction. The calibration factor,
which is the ratio of the applied moment to the voltage
response, was obtained as the slope of a least squares
fit to the data. Curves for the bending load cells were
not hysteretic and calibration factors for these load
cells were obtained directly and are listed in Table

9.7.

b. Supplementary Tests =-- Supplementary
tests were also conducted. The influence of the move-
ment of various connecting cables on the calibration
curves of the load cells was examined. Only the
movement of the cables connecting the load cells to the
junction box was found to affect the calibration curves

and this effect was a zero shift. To obtain accurate
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results it was therefore necessary to secure these
cables during calibrations and dynamic footing tests.
To interpret properly output from the bending
load cells it was necessary to determine the degree to
which torsional loading of the footing excited these
load cells. This interactive effect was found to be

small.

2. Filter Tests

The characteristics of the variable filter were
obtained using cutoff frequencies of 20 and 400 Hz.
This range permitted the transmission of information of
interest while blocking noise effectively. The charac-
teristics of this filter were determined over the range
of frequencies of 5 to 500 Hz which included both cutoff
frequencies. The smallest voltage amplitude applied to
the input of the filter, 40 mV, was limited by the
triggering requirements of the period counter. The
largest voltage amplitude, 2V, was selected as one which
would exceed the maximum voltage generated by the opti-
cal displacement transducer during calibrations of the
velocity transducers.

In Fig. 9.10, voltage magnification vs. fre-

quency is plotted for the variable filter for each of
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the limiting voltage amplitudes. The effects of voltage
amplitude were found to be small.

The characteristics of the filters which were
used in the dynamic model footing tests were also
obtained for the range of voltage amplitudes of 40 mv to
2V. The latter value exceeded the maximum voltage which
was expected to be developed by the velocity transducers
in the footing tests. The range of frequencies over
which characteristics were determined, 10 to 1750 Hz,
was chosen to include all frequency components expected
in the footing tests. A record used to demonstrate the
evaluation of phase shift is given in Fig. 9.11.

In Fig. 9.12, voltage magnification and phase
shift vs. frequency are plotted for one of the filters
for the limiting voltage amplitudes. These curves indi-

cated that the influence of voltage amplitude was small.

3. Calibrations of Velocity Transducers

The velocity transducers were calibrated over
ranges of frequencies and amplitudes as large as 20 to
500 Hz and 0.0005 to 0.005 inches, respectively. Due to
power limitations, the largér the amplitude imposed on
the transducer, the smaller was the possible upper limit
of the frequency range. The low end of the frequency

range was determined by the frequency response of the
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transducers. The low end of the amplitude range was
limited by noise from the displacement transducer.

The calibration factor of a transducer was
defined as the voltage response of the transducer per
unit velocity. The results from the calibrations of one
transducer are presented in Fig. 9.13 in which curves of
calibration factor vs. frequency are plotted for several
amplitudes. Curves were fitted to the somewhat scat-
tered data by inspection and no trends were observed
with amplitude. For each transducer an average calibra-
tion factor based on the regions of flat response was
reported. If the results from tests conducted on the
footing fell beyond the amplitude range of the
calibrations, however, the calibration factor for the

amplitude closest to the test amplitude was used.

4. Preliminary Dynamic Model Footing Tests

a. Adjustment of Footing -- Selected
records from tests carried out to adjust the horizontal
angle between the target and hammer arms are presented
in Figs. 9.14 (a) and (b). Each photograph in Fig. 9.14
gives the response of the two velocity transducers
attached to the footing, caused by a high amplitude
impulse delivered to the footing. The response of these

velocity transducers would be identical in shape,
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amplitude and timing if the footing rotated about its
vertical centerline.

The records shown in Fig. 9.14 (a) were obtained
using an incompletely adjusted hammer with unpadded
faces. These records differ considerably in shape and
timing. Records from a similar test in which the hammer
was well-adjusted are presented in Fig. 9.14 (b). 1In
these records the shape of the waveforms and the initial
timing are in reasonable agreement, however, the ampli-
tudes do not compare well; initial peaks differ by 25%.

The records presented in Fig. 9.14 (c) show the
further improvements and changes in response brought
about the use of gum rubber pads attached to the impact
faces of the hammer. Agreement on the shape and timing
is good in these records and the amplitudes of the first

peak are within 2% of one another.

b. Unwanted Components of Load and Motion --
Tests were also conducted to estimate the unwanted com-
ponents of the load and motion, including bending in the
y-z and x-z planes, rocking about the x- and y-axes and
translation in the x-, y- and z-directions. The com-
ponents of the motion were measured using the arrange-
ments of transducers shown in Fig. 9.15. Records

corresponding to a standard impulse test are given in
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Fig. 9.16 (a). 1In this figure trace 1 gives the
response of the torsional load cell and traces 2 and 3
give the responses of the velocity transducers as
mounted to detect the rotation of the footing about its
vertical centerline. Records from tests in which the
amplitude of the impulse was similar to that in Fig.
9.16 (a) are given in Figs. 9.16 (b) and (c). These
records show the loads and motions sensed by the
arrangements shown in Figs. 9.15 (a) and (b) and are
highly erratic. The amplitudes of these records were
compared with those obtained from Fig. 9.16 (a). For
this the percentages of the peak amplitudes of the
unwanted components of load and motion with respect to
the corresponding amplitudes of the peaks obtained from
Fig. 9.16 (a) were calculated and are presented in Table 9
.8. Clearly, torque about the vertical axis was the
dominant loading and rotation about this axis was the

dominant response.

D. Dynamic Model Footing Tests

In the following sections, several topics
related to the dynamic model footing tests described in
the introduction to Chapter VII, are discussed, and the

results from these tests are presented.
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1. Arrays of Velocity Transducers

Four main dynamic model footing tests,
designated G, H, I and J, were conducted. These tests
differed primarily in the locations of the two velocity
transducers within the test bed. The arrangements of
the transducers corresponding to each of the main tests
are shown in Fig. 9.17. 1In test G, the transducers were
placed axisymmetrically. For each of tests H, I and J,
the two transducers were placed in a linear array at an
angle with the horizontal and intersecting the center of
the base of the footing. However, to minimize inter-
ference with the propagating disturbance, as shown in
Fig. 9.17, the trahsducers in each array line were
arranged on opposite sides of the axis of symmetry.

For several reasons, the precise positions of
these transducers relative to the base of the footing
were unknown prior to testing. The location of the base
of the footing depended upon the height of the sand in
the test area after deposition and scraping. The ini-
tial positions of the transducers were altered by the
weight of the soil and negative skin friction acting,
after deposition, on the transducers and the suspending
rods. Also, the transducers displaced downwards upon

separation from the suspending rods. Because of these
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factors, the coordinates of the transducers given in
Fig. 9.17 were only nominal target values.

The positions of the transducers relative to the
base of the footing, as measured carefully following
each main test, are given in Table 9.9. These posi-
tions were reasonably close to the nominal positions in

radius, depth and angular alignment.

2. Effects of Disturbances and Incomplete

Seating

a. Discussion--In each of the main tests, a

sequence of torsional impulse tests was conducted.

These tests were classified as low amplitude tests which
did not cause measurable permanent angular displacement
of the footing, and high amplitude tests which did. The
number of tests conducted in each category is given in
Table 9.10.

Because of effects of stress history, void ratio
changes, changes in the seating of the footing, and
changes in residual stresses, even under identical
impulses, the response of the footing will differ
amongst the tests conducted in a sequence. In the
numerical models of the experiment, these factors were
not taken into account; therefore, it is necessary to
demonstrate that the collective effect of these factors

was small.
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Stress history and changes in void ratio cause
changes in the shearing stress-strain properties of gra-
nular materials. The effects of stress history are
discussed by Richart, Hall and Woods, (1970). Changes
in void ratio, which may accompany either vibration or
the application of shearing stress, cause changes in
stress-strain properties by affecting the low amplitude
shear modulus and shearing strength of the material.

Residual stresses affect the state of stress
within the soil and the buildup of'7;-stresses along
the interface during the motion of the footing.

Residual stresses develop within the test bed as a
result of slip at the interface and nonlinear
inelasticity. To show the effects of slip the displace-
ment of an originally undeformed radius,AB, in the soil
at the interface, with and without slip is shown in Fig.
9.18. Without slip the soil along the interface does
not deform; therefore,'T} = 0. Slip however, permits
deformations of the type that cause 7}-stresses. If, at
any region undergoing slippage, the'Té-stresses fall
below the shearing strength, slip ceases. When slip
ceases, deformations and'?}-stresses existing at

this time are locked in at the interface in this zone

until further slip takes place.
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To demonstrate the manner in which nonlinear
inelasticity causes residual stresses, the condition
without slip, shown in Fig. 9.18, is reconsidered.
Assuming an undisturbed material, under rotation of the
footing, the §,-strains and'T;—stresses, and, therefore,
the degree of nonlinear inelasticity along the interface
are greater near the edge of the footing than near its
center. Because of inelasticity, less reverse rotation
of the footing is necessary to relieve the 7,-stress at
the outer edge of the footing than near the center.
Since the footing is rigid and can have only one angle
of rotation, in returning to a new equilibrium state,
residual rl\;;-stresses and Zfz- strains, develop along the
interface. The distribution of these stresses will be
such that equilibrium of moments about the vertical cen-
terline of the footing is satisfied. Under subsequent
reloading, the development of the distribution of
ﬁvé-stresses along the interface will differ from that
under the initial loading of the undisturbed soil.

Incomplete seating of the footing causes nonuni-
formities in the distribution of normal stresses along
the interface and thus in the properties of the test bed
near the interface. Incomplete seating may be caused by
angular differences between the plane of the base of the

footing and the surface of the test bed, and the
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trapping of grains in unstable positions. Motion of the
footing causes a repositioning of grains the degree of
which depends upon the amplitude of the motion and this
repositioning leads to improved seating. These changes,
however, change locally the properties of the test bed.

It is difficult to avoid entirely the effects of
incomplete seating and disturbances. To seat the footing
completely, prior to testing, the interface must be
preloaded in torsion. Such preloading, however, intro-
duces the effects of disturbances. In the assembly of
the test set-up and during testing, procedures were
taken to provide adequate seating while minimizing the
effects of disturbances. The test bed was leveled and
the footing was placed very carefully to.give good
seating. The minimum number of tests needed to provide
the necessary data were carried out. In addition, a
testing program was followed in which the impulses
either remained constant or increased in magnitude, thus
avoiding excessive preloading.

Testing conditions were thought to be favorable
for minimizing disturbances to the wvoid ratio. The
apparent cohesion of the test bed, caused by partial
saturation, helped reduce densification induced by
vibration. Over the span of each major test the accumu-

lated settlement of the footing, which is a measure of
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densification, was found to be within 1/32 inch, indi-
cating that densification was small. The footing was

also found to remain level during testing.

b. Evaluation of Effects =-- To analyze the
collective effects of disturbances and incomplete
seating, an impulse having an amplitude which had never
been exceeded, was delivered to the footing and the
records of the loading and motion of the footing were
stored. A selected number of unrecorded impulses of
similar amplitude were delivered, followed by an impulse
in which the results were again recorded. If the
effects of incomplete seating and disturbances are
large, then the differences between the two recorded
responses would be large.

Records from such tests, in which the amplitudes
of the impulses were large, are shown in Fig. 9.19. 1In
this figure traces 1, 3 and 5 give the outputs from the
load cell and the velocity transducers, respectively,
for an initial impulse. Traces 2, 4 and 6 are the
corresponding outputs for a final impulse. Figure 9.19
(a) gives the records from a first and second test con-
ducted at a given amplitude. The differences in the
degree of seating and the level of disturbance are

greater between the first and the second tests conducted
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at a given amplitude than between other successive tests
conducted at the same amplitude. Thus differences in
the response of the footing are expected to be greatest
between these two tests. In Fig. 9.19 (a) corresponding
records are similar in shape, amplitude and timing.
Figure 9.19 (b) gives similar results for a second and a
fifth test. The slight shift in the horizontal position
between the records for these two tests was caused by
differences in the triggering of the sweep. Also, the
amplitude of the second impulse was slightly less than
that of the fifth and this carried over to the records
of the response. These records as well as other simi-
lar records indicate that the combined effects of
seating and disturbance did not influence excessively

the response of the footing.

3. Correction of Filtered Records

Tests were conducted to evaluate the quality of
the numerical correction process applied to filtered
output. A test was conducted in which information from
the torsional load cell and unfiltered information from
the velocity transducers within the test bed were
recorded. Then a second, similar test was conducted in
which the information from the transducers was filtered.

The response from the second test was corrected
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numerically and then compared with the response from the
first test.

The records from such a test are presented in
Fig. 9.20. Traces 1l and 2 give the records from the
torsional load cell for two consecutive tests and both
records are similar in shape, timing, and amplitude. The
unfiltered responses of the transducers are given in
traces 3 and 5, and the filtered responses in traces 4
and 6.

In Figs. 9.21 (a) and (b), the processed records
and the digitized, unfiltered records corresponding to
Fig. 9.20 are shown for comparison along with the
digitized, unprocessed, filtered records. The Fourier
series approximations of the unprocessed, filtered
records are also shown as a check. In each figure,
there is a small difference between the amplitudes of
the processed, filtered curves and unfiltered curves
which may be due partially to slight differences between
the amplitudes of the impulses. The shape and timing of
the processed, filtered curves shown in Figs. 9.21 (a)
and (b) are in reasonable agreement with the shape and

timing of the unfiltered curves.
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4. Unwanted Components of Load and Motion

Tests similar to the tests described in Section
C.4.b were conducted to measure the magnitudes of the
unwanted bending loads developed under testing con-
ditions in the quicksand tank. Records from such a test
are presented in Fig. 9.22. In each photograph in Fig.
9.22, trace 1 gives the output of the indicated load
cell and traces 2 and 3 give the outputs of the velocity
transducers attached to the footing in the arrangement
used to detect rotation about the vertical centerline.
From these figures, it is clear that bending moments
were an insignificant fraction of the torsional loading.

Unwanted components of motion were not measured
for practical reasons. Since these components were
found to be small in the preliminary tests and since the
control over the preparation and performance of tests in
the quicksand tank was much greater than in the prelimi-
nary tests, these components of motion were considered

to be quite small.

5. Axisymmetry of Wavefield

The numerical model is axisymmetric; thus, for
valid comparisons between numerical and experimental
responses, experimental results must also be

axisymmetric.
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Test G was conducted to demonstrate the axisym-
metry of the propagating wavefield. As illustrated in
Fig. 9.17, in Test G, the transducers were placed sym-
metrically within the test bed. If the wavefield is
axisymmetric then the response at the sites of these
transducers will be identical.

A schematic diagram of the set up used in Test G
and the records from two high amplitude tests, obtained
at different sweep rates, are presented in Figs. 9.23
(c), (a), and (b), respectively. 1In each of Figs. 9.23
(a) and (b) trace 1 gives the output of the torsional
load cell, traces 2 and 3 give the responses of the
velocity transducers attached to the footing, and traces
4 and 5 give the unfiltered responses of the velocity
transducers within the test bed. Clearly, the responses
of the transducers within the test bed are very similar

in shape, amplitude and timing.

6. Presentation of Results

a. Motion of Footing -- Records obtained
from the dynamic model footing tests, using slow rates
of swéep, are given in Figs. 9.24. Traces 1, 2 and 3 in
these records give the same information which these tra-
ces give in Fig. 9.23 (a) and (b). As shown in Fig.

9.24, the records from the velocity transducers contain
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an initial transient and two slowly decaying components
having frequencies of approximately 95 and 335 Hz.

Peaks corresponding to the 95 Hz component are marked in
Fig. 9.24 (a), while peaks of the high frequency com-
ponent are apparent.

The mode of the motion at the low frequency was
one in which the footing and target arm rotated approxi-
mately as a unit. The motion at the high frequency
involved the motion of the target arm relative to that
of the footing.

For further insight into the motion of the
footing, the velocity records in Fig. 9.24 (a) were
integrated to lead to the curve of the angular displa-
cement of the footing vs. time plotted in Fig. 9.25.

The offset of the second rise from the initial angular
displacements at a time at which the motion of the
footing has decayed, indicates that slip and significant

permanent deformation of the test bed had taken place.

b. Response of Test Bed -- The records shown
in Figs. 9.23 (a), 9.23 (b), 9.26, and 9.27, give the
responses of the transducers within the test bed at the
locations shown in Fig. 9.17 as well as the responses of
the transducers attached to the footing. Traces 4 and 5

in the records shown in Fig. 9.26 and 9.27 give the
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filtered responses of the velocity transducers nearest
to and furthest from the footing, respectively. As
shown in Figs. 9.20 and 9.21, the most apparent effect
of filtering is a time delay. For purposes of
inspection, traces 4 and 5 in Figs. 9.26 and 9.27 should
be visualized as shifted to the left by approximately
0.5 ms; 1/4 division in Fig. 9.26 and 1/2 division in
Fig. 9.27.

In the records shown in Fig. 9.23, 9.26 and
9.27, the initial 13 to 16 ms following the beginning of
the transient were reasonably free of reflections from

the boundaries of the test bed.
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Table 9.1: Selected Properties of Test Bed. Based on
Gg = 2.63, epjn = 0.55 and epyx = 0.78 as
Obtained by Chon (1977).
Average Average Overall
Property (Depth = 6") (Depth = 12") Average
e .70 .68 .69
D,(%) 33.0 45.6 39.3
¥ (gm/cm3) 1.61 1.66 1.64
W (%) 4.34 5.84 5.09
3& (gm/cm3) 1.53 1.57 1.55

Table 9.2: Shear Wave Velocities Determined from
Records in Fig. 9.3. Average Shear Wave
Velocity = 562 fps. Range = 549 - 582 fps.
Range Percentage = 5.9%.
Number of Divisions
Between Common Shear Wave
Wavepoint Wavepoints Velocity (fps)
1 2.84 572
2 2.79 582
3 2.87 566
4 2.91 558
5 2.90 560
6 2.90 560
7 2.96 549
8 2.96 549
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Table 9.3: Results from Torsional Seismic Crosshole Tests.

Surcharge Shear Wave Range as Percentage of
Depth Pressure Velocity (fps) Average Shear Wave
(ft) (psi) Average Range Velocity (%)

.5 3.01 559 542-580

8 2.02 R12. AQ2.8AN

L]

9
.5 4.03 609 580-645 10.
6
a

0O~




293

Table 9.3: {(Continued)

Surcharge Shear Wave Range as Percentage of

Depth Pressure Velocity (£fps) Average Shear Wave
(ft) (psi) Average Range Velocity (%)
3 5.05 484 469-499 6.2

3 3.97 486 478-497 3.9

3 2.97 476 465-487 4.6

3 2.02 464 456-478 4.7

3 1.04 443 433-453 4.5

3 2,02 452 444~462 4.0

3 3.01 464 458-474 3.4

3 4.10 483 473-493 4.1

3 5.10 495 488-505 3.4

4 5.05 493 486-501 3.0

4 3.04 493 481-499 3.7

4 1.04 476 469-491 4.6

4 3.01 485 478-492 2.9

4 5.03 500 489-508 3.8

5 5.05 481 473-491 3.7

5 2.99 482 467-492 5.2

5 1.04 477 461-488 5.7

5 3.01 480 467-488 4.4

5 5.03 489 486-492 1.2
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Table 9.4: Maximum and Average Ranges as Percentages of
Average Shear Wave Velocities. From Table
9'3.

Depth Maximum Average

(ft) Percentage (%) Percentage (%)

.5 10.7 8.8

1 9.5 6.6

2 9.7 7.6

3 6.2 4.3

4 4-6 3'6

5 5.7 4.0

Table 9.5: Shear Wave Velocities at Initial and Final
Surcharge Pressures (Both 5 psi). From
Table 9.3.

Shear Wave Percentage Difference

Depth Velocity (fps) Between Initial and

(ft) Initial Final Final (%)

) 647 657 1.5

1 556 582 4.7

2 510 509 «2

3 484 495 2.3

4 493 500 1.4

5 481 489 1.7
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Table 9.6: Lateral Displacement of Wall of Quicksand
Tank as Function of Depth Beneath Upper
Surface of Test Bed. Surcharge Pressure =
5 psi. Positive (+) Indicates Contraction

of Tank.
Depth (inches) Lateral Displacement (inches)
7 +0.010
12.5 +0.005
18 +0.001
22 -0.002
27 -0.002

Table 9.7: Calibration Factors of Load Cells.

Load Cell Calibration Factor (Ft-1lb/volt)
Torsional 67.7
Bending (y - z Plane) 61.9

Bending (x - z Plane) 86.4
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Table 9.8: Amplitudes of Unwanted Components of Load or
Motion (Figs. 9.16(b) and (c)) Expressed as
Percentages of Values of Peaks of Appropriate
Torsional Records (Fig. 9.16(a)).

Trace Number

and Parameter Percentage

Measured Arrangement Arrangement
(Fig. 9.16) of Fig. 9.15(a) of Fig. 9.15(b)
2 - Velocity 6.4 4.1

3 - Velocity 2.1 2.1

4 - Velocity 3.3 2.1

5 = Velocity 3.4 .9

Table 9.9: Nominal and Actual Positions of Velocity
Transducers within Test Bed.

Positions of Transducers

Depth (Inches) Radius (Inches)
Test Nominal Actual Nominal Actual
H 12 11 7/8 6 5 7/8
H 24 24 12 11 3/8
I 6 5 7/16 6 5 31/32
I 12 11 13/32 12 11 7/8
J 6 5 19/32 12 11 31/32

J 3 2 1/2 6 5 15/16
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Table 9.10: Number of Low and High Amplitude Tests
Conducted in Each Major Test.

Number of Low Number of High
Test Amplitude Tests Amplitude Tests
G 17 19
H 27 9
I 29 7

J 30 12
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(a)

(b)

(c)

Fig.

Depth = 2 ft,

Sweep Rate =
2 ms/div,
Surcharge
Pressure =
1 psi.

Depth = 5 ft,

Sweep Rate =
2 ms/div,
Surcharge
Pressure =
1l psi,

Depth = 0.5 ft

Sweep Rate =
1 ms/div,
Surcharge
Pressure =
5 psi.

9.2: Records
Tests.

300

Sensitivity
(mv/div)

10

10

from Torsional Seismic Crosshole
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Wavepoints
Depth = 0.5 ft, 123456 78 Sensitivity
Surcharge Pressure 1lCbr 1 1 (mv/div)
= 3 psi,
Spacing of 5
Transducers =
19.5 inches 1

Wavepoints

Fig. 9.3: Records from Tersional Seismic Crosshole Test.
Sweep Rate = 1 ms/div.
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< .
I
w
wn
i

Fig. 9.4: Shear Wave Velocity vs. Depth Obtained from
Torsional Seismic Crosshole Test for
Increasing Sequence of Surcharge Pressures.
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Fig. 9.8: Distribution of Shearing Stresses Developed
Along Base of Footing in Static Torsional
Loading Test in Response to Maximum Applied

Moment.
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Fig. 9.9: Calibration Curves for Torsional Load Cell.
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- AMPLITUDE
® 0040 V
- - 2V
o
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i
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Fig. 9.10:

Voltage Magnification vs. Frequency for Two

Voltage Amplitudes for Variable Filter.
Sensitivity
(mv/div)
Input
Voltage 50
Output
Voltage 50
% ,‘%‘\?& “«%j;va ‘
'l I' Time Shift = 0.95 div =
0.475 ms
Phase shift = (BQ. div) (sweep rate) . 44,
period of wave
= 34,20
Fig. 9.11: Record Used to Obtain Phase Shift of

Filter.
0.5 ms/div.

Frequency

200 Hz, Sweep
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Fig. 9.12: Phase Sshift and Voltage Magnification by
Filters Used in Dynamic Footing Tests vs.
Frequency for Two Voltage Amplitudes: 40 mv
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Fig. 9.13: Calibration Factor of Velocity Transducer vs.

Frequency at Several Amplitudes.
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(a) Unadjusted Hammer,
Unpadded Impact
Faces.

(b) Adjusted Hammer,
Unpadded Impact
Faces.

(c) Adjusted Hammer,
Padded Impact
Faces.

Fig. 9.14: Records from Preliminary Dynamic Model
Footing Tests. Sweep = 2 ms/div.
Sensitivities: Trace 1 = 0.2 v/div,
Trace 2 = 1 v/div. Calibration Factors:
Trace 1 = 0.49 v/(in/s), Trace 2 = 1.35
v/ (in/s).
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My
‘ SENSING AXIS
f\ OF
TRANSDUCER
R4 RS
N e X R RECORD NUMBER
\ IN FIG 9.16
NN NN
R2 R - R3

B

(a) Rocking about y-Axis, Sliding in Direction of
x-Axis, and Vertical Motion.

R4 Y $R5

R2 = NN R3

N

B H

(b) Rocking about x-Axis, Sliding in Direction of

y=-Axis, and Vertical Motion.

Fig. 9.15: Footing with Transducers Arranged to Measure
Indicated Unwanted Components of Motion.
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0.1

0.5

0.2

50m

0.1

20m

50m
50m

(b) Records Using Arrangement
in Fig. 9.15(a).

50m
0.1

10m
50m

50m

(c) Records Using Arrangement
in Fig. 9.15(b).

Sensitivity Calibration
(v/div)

Factor

ft-1b
volt

volt

l°3STIH7§T

0.49

67.7

ft-1b
volt

1.35 volt
‘T (1n/s)

86.4

0.49
1.28

0.99

ft-1b
volt

volt
(in/s)

61.9
1.35

0.49
1.28

0.99

Fig. 9.16: Records Showing Various Components of Load

and Motion.
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Schematic Diagram of Test Bed Showing
Arrangements of Velocity Transducers Used in
Dynamic Model Footing Tests Along with
Designations Corresponding to Main Tests.

SLIP ZONE

A\

INTERFACE

Plan View of Half Space at Interface
Demonstrating Rotation of Undeformed Slice of
Half Space, ABC, to Deformed State, AED,

With Slip. Slice Rotates Rigidly to AGF
Without Slip.
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Sensitivity Calibration

(v/div) Factors

1 ft-1b
5 } 0.2 67. 7%
3 volt
1 } 0.5 1.35m
5
6 } 0.2 0.49

(a) First and Second Tests,

Test J, Sweep =lms/div.

1 ft-1b
) } 0.2 67.7W
3 volt
2 }0.2 0.49

(b) Second and Fifth Tests,

Test G, Sweep = 2 ms/div.
Fig. 9.19: Records Used to Show Combined Effects of
Incomplete Seating and Disturbances.

1 ft-1b
2 } 0.2 67'7GSIE“
3 volt
4 } 5m 0'66(in 5)
5

Fig. 9.20: Records Showing Effects of Filtering on
Information Obtained from Velocity
Transducers within Test Bed. Test J,
Sweep = 1 ms/div.
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(b)
Fig. 9.21: Unprocessed Records from Fig. 9.20 and
Processed Records.
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Sensitivity Calibration
(volts/div)  Factor

ft-1b
volt

[\
2 1 /1:7{:Xx/ 4//\\ fx | 1 1.35?§§%§7
; B 1/ / \}\J,\:t:j'\\w/f\\\ &J | 0.5 0.49
Z | ,,/\V’” \Wa Vi \w\’\/\, - _ _
. amwm«f/xcxx\\/}ii\xj\\th;*@gkjfﬂg

0.2 67.7

(a) Torsion

1 0.2 61.95E21b
volt
2 1 1.35-Y0lt
(in/s)
3 0.5 0.49
£t-1b
1 0.2 864
2 1 1.3501t_
(in/s)
3 0.5 0.49

(c) Bending in x-z Plane

Fig. 9.22: Records Showing Various Components of Load. Test I,
Sweep = 2 ms/div.
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Sensitivity Calibration
(volts/div) Factors

ft-1b
0.2 67.7volt
0.5 1.350LE_
(in/s)
0.2 0.49
5m 0.66
5m 0.66
(a) Sweep Rate = 1 ms/div
ft-1b
0.2 67.7volt
volt
: ++3>Tin/ey
0.5 0.49
5m 0.66
5m 0.66

(b) Sweep Rate = 2 ms/div

Fig. 9.23: Records from Dynamic Model Footing Tests (Test G) and
Schematic Diagram of Arrangement of Equipment in
Test G.
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Troughs of Low Frequency
Oscillations in Trace 1.

[Sensitivity Calibration
(volts/div) Factors

ft-1b
1 0.5 67.7volt
2 1 1.35v0Lt_
(in/s)
3 0.5 0.49
Peaks of Low Frequency
Oscillations in Traces 2 and 3.
(a) Sweep Rate = 10 ms/div.
ft-1b
1 0.5 67.7volt
volt
2 2 1.3SZIE7ET
3 1 0.49

(b) Sweep Rate = 20 ms/div.

Fig. 9.24: Records from Dynamic Model Footing Tests (Test G)
Obtained at Different Sweep Rates.
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(volt/div) Factors

1 0.2 67,755t
2 1 1.35—(%2—)
3 0.5 0.49
4 20m 0.66
5 10m 0.66
1 0.2 67,7251
2 0.5 1.35&}—5
3 0.2 0.49
4 5m 0.66
5 2m 0.66

(b) Test I
1 0.2 67,7250
2 1 1.3}(%
3 0.5 0.49
4 5m 0.66
5 5m 0.66

(c) Test H
Fig. 9.26: Records from Dynamic Model Footing Tests. Sweep

Rate = 2 ms/div.
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l Sensitivity Calibration

(volts/div) Factors
ft-1b
0.2 67.7volt
0.5 1,350kt
(in/s)
0.2 0.49
5m 0.66
5m 0.66
ft-1b
0.2 67.7volt
0.5 1.35901t

° (in/e)




CHAPTER X

COMPARISONS BETWEEN EXPERIMENTAL AND
NUMERICAL RESULTS

A. Introduction

In Chapter IX, the results were presented from
several dynamic model footing tests (See Figs. 9.23(a)
and 9.27). In this chapter, these experiments are simu-
lated numerically using a nonlinear, inelastic half
space to describe the test bed. 1In this half space,
slip is permitted along the interface between the
footing and the half space. In addition, Test G is
modeled using a linearly elastic half space.

First, the details of these numerical models are
given. Then numerical solutions, obtained using these
models, are compared with experimental results. The
discussion of solutions which was presented in Chapter
VI, Section F applies equally to the solutions given in
this chapter; therefore, very little discussion of

results 1is presented.
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B. Details of Numerical Models

1. Boundary Conditions

The boundary conditions which were used to
obtain the numerical solutions presented in this chapter

are identical to those given in Chapter VI, Section F.

2. Grids

Each numerical solution, except that based upon
Test H, was obtained using a staggered grid consisting
of 103 rows, each having 59 nodes. This grid and the
footing are shown to scale with dimensions in Fig.10.1l.
The grid used to obtain the solution based on Test H
consists of 127 rows, each having 71 nodes and repre-
sents a. rectangular area having a depth of 2.80 ft and
a width of 3.11 ft. In each grid, 8 nodes are located

along the interface.

3. Properties of Test Bed

The properties of the test bed which were
obtained experimentally and used in the numerical models
include the average mass density, the average shear wave
velocity and the average shearing strength along the
interface. The values of these quantities are 3.17
slugs/ft3, 470 fps and 150 psf (1.04 psi), respectively.
The average shear wave velocity was based upon test

results obtained from the upper two feet of the test
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bed. It is the upper portion of the test bed which has
the greatest effect upon the motion of the footing.
Also, as shown in Fig. 9.17, it is the upper two feet of
the test bed in which particle velocities were measured.
All values of shear wave velocity from the appropriate

profile are within 8.7% of the average value.

4. Properties of Half Space

a. Density--The mass density of the half
space was given the value of the average mass density of

the test bed: 3.17 slugs/ft3.

b. Slip-Stress--The slip~stress, used in
the nonlinear models, was given the value of the
shearing strength of the test bed along the interface:

150 psf (1.04 psi).

c. Low Amplitude Shear Modulus--The entire
half space in each of the models was assigned a single
value of the low amplitude shear modulus. This value
was calculated from the average shear wave velocity and

is given as G5 = 700250 psf (4860 psi).

d. Shearing Strength--In order to define
the nonlinear properties of the half space the values of
the maximum shearing stresses which may be applied to
the faces of an element, oriented as shown in Fig. 10.2,

are needed. In torsion these maximum stresses,
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designated as'?}m and 7;m, develop under conditions of
constant normal stresses. Based upon the Mohr-Coulomb
failure criterion, under the condition in which the

lateral normal stresses are a fraction, K, of the ver-

T

tical normal stresses, /,; may be given by

ol

k) — . =
[

m=1 & 5ind +

_ _ _ a2yl (10.1)
ceost ] -[ O35 5 T o

where ¢ is the cohesion of the medium (Hardin and
Drnevich, 1972). A similar equation may be derived
giving Typ, which is determined by the lateral stresses

alone, as

Trm = KE“VsinES + Tcosd (10.2)

In each nonlinear model, the shearing strength
of the half space was given the value of the shearing
strength at one point within the test bed. 1In the
numerical model of Test G this strength was based upon
that obtained at a depth of 1 ft wusing Eq. (10.1).
This depth is centered on the array of transducers
within the test bed. The value of Gy, needed to calcu-

1ate<7;m, was obtained at this depth by assuming a
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simplified distribution of vertical stresses developed
within the central region of the test bed due to gravity
and the loading from the surcharge pressure of 2 psi.
Using the average value of the unit weight of the test
bed, 102psf, this assumption gave a vertical stress of
390 psf at a depth of 1 ft. A value for K was
obtained for this depth by using Eq. (9.1), Eq. (9.4)
and the value of the shear wave velocity measured for
this depth: 475 fps from Fig. 9.4. Using the average
value of the void ratio of the test bed, 0.69, a value
of 0.58 was obtained for K. The value of &, 32.5°, was
determined from a series of drained triaxial tests con-
ducted on partially saturated samples of sand from the
test bed.

Because the test bed was in a partially
saturated state, during testing the sand had an apparent
cohesion. The value of ¢ which was used to deter-
mine /,, at a depth of 1 foot is that value of ¢
which, when substituted into Eg. (10.1) along with the
values of 5:\, at the surface, :E and K, gives the
shearing strength along the interface as found by the
torsional loading test. To determine this value of
c, the value of 3; at the surface of the test bed, 288
psf (2psi), caused by the weight of the footing, the

value of the shearing strength of the test bed along the
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interface, 150 psf (1.04 psf), and the values of & and K
were substituted into Eg. (10.1). This equation was
solved for c giving a value of 47 psf (0.33 psi). Then
the quantity T,;, was obtained at the depth of 1 foot by
substituting the value of the assumed vertical stress at
this depth along with the values of K,a;, and ¢ into Eq.
(10.1). For the depth of one ft,'Tém was calculated to
be 187 psf (1.3 psi) by this procedure. Using these
same values onfv, K, and ¢, a value of 160 psf (1.11
psi) was obtained fo: 7}m from Eq. (10.2). Since,
however, this value is reasonably close to that of 7;m'
for convenience, the value of'7;m was also used for 7}m'
In the numerical models of tests H, I and J, the
shearing strength of the half space was given the value
of the shearing strength along the interface: 150 psf
(1.04 psi). This value is believed to be an improved
estimate over the larger value used in the model of test
G. This is because in a sand the shear wave velocity
and the shearing strength depend strongly upon the same
parameters: the confining pressure and void ratio.
Thus, assuming uniform water contents, the curves of
shear wave velocity vs. depth (see Fig. 9.4) may be used
as rough guides indicating the nature of the variation
of shearing strength within the test bed. As shown in

Fig. 9.4, for the surcharge pressure of 2 psi, the shear
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wave velocity within the test bed decreased slightly
with depth. This indicates that the confining pressure
decreased with depth (Eq. (9.1)). In a sand, shear wave
velocity is a function of Gy 0:5 and shearing strength is
a function of 6% (Richart, 1977). Thus the shearing
strength is also thought to have decreased with depth
for this surcharge pressure. During the excavation of
boreholes in preparation for the crosshole tests, at the
maximum surcharge pressure, the upper surface of the
test bed was noticeably more resistant to penetration of
the hand auger than the test bed at depth. This obser-
vation indicates that the curves in Fig. 9.4 do give
reasonable indications of trends in the shearing
strength within the test bed.

A uniform rather than a decreasing profile of
shearing strength was used in the numerical model of
tests H, I and J primarily to maintain simplicity. This
is a reasonable assumption because the profile of the
shear wave velocity for the surcharge pressure of 2 psi
is reasonably uniform (See Fig. 9.4).

To model linear behavior under the stresses
developed, the shearing strength of the half space of
the linear model was assigned the relatively large value

of 6250 psf (43 psi).
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e. Ramberg-Osgood Coefficients--For each of
the nonlinear models the Ramberg-Osgood coefficients, A
and R, were assigned values of 1.0 and 3.0, respec-
tively. Richart (1975) has found that these values give
stress-strain curves which give good agreement over a
broad range of stress with stress-strain curves obtained
from tests conducted on sands. To promote linear
behavior, & was assigned the relatively low value of 0.1

in the linear model.

f. Discussion--~In the nonlinear numerical
model it was assumed that the parameters which define
the nonlinear stress-strain curves in either of the
coordinate directions are unaffected by the state of
stress in the other direction. This assumption is not
believed to be strictly valid for granular materials.
Shearing stresses applied in either coordinate direction
cause shearing stresses to develop at intergranular con-
tacts which affect the elastic rigidity and the strength
in the other direction. An improved model of the
shearing stress-strain behavior at a point is believed
to be one in which the behaviors in the two coordinate

directions are interrelated.

g. Weak Zone--The weak zone surrounding the
edge of the footing and caused by the lack of confining

pressure in this zone was taken into account in the
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nonlinear models. For these models a zone approximately
1/2 inch in depth and 1/2 inch wide located at the edge
of the footing was given values of moduli equal to 70
psf. The size of this zone was based upon the width of
the unconfined ring, 1/2 inch, and the manner in which

stresses spread with depth.

5. Mass Moments of Inertia of Footing

For test G the mass moment of inertia of the
footing was 0.155 slugs-ft2. For tests H, I and J a
pair of vertical velocity transducers attached to the
footing had been removed causing a reduction in the mass

moment of inertia to 0.145 slugs-ft2,

6. Computing Information

In each analysis, results were obtained for a
duration of 0.00718 sec. using a time step of 0.0000472
sec. Each solution was obtained using an Amdahl 470V/6
computer and a Fortran G-level compiler. A CPU time of
1090 sec was needed to obtain the solution corresponding
to test H and 627 sec were required for each of the

remaining solutions.

C. Results

1. Motion of Footing

The measured and computed responses of the

footing to the measured applied moments are presented in
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Figs. 10.3 through 10.10 for each test. The angular
velocity of the footing vs. time is given in Figs. 10.3
through 10.6 and the angular displacement of the footing
vs. time is given in Figs. 10.7 through 10.10. 1In each
of these figures the measured applied moment vs. time
is also presented for reference. In addition, corres-
ponding results from the linear analysis are given in
Figs. 10.3 and 10.7.

As indicated by these figures the agreement be-
tween experimental and nonlinear numerical results is
good while that between experimental and linear numeri-
cal results is poor. As explained in Chapter VI, dif-
ferences between results from the linear and nonlinear
analyses are caused by the effects of the properties of
the half space on the distribution of'7;-stress along
the interface. This stress distribution is plotted in
Fig. 10.11 for the linear and the nonlinear models for
times at which each distribution is at the maximum

state.

2. Particle Velocities Within Half Space

The particle velocities vs. time, which were
obtained for selected locations within the half space
(see Fig. 9.17), are given in Figs. 10.12 through 10.16.

In Figs. 10.14 through 10.16 (tests H, I and J) the
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particle velocities which were obtained experimentally
are presented as processed by Fourier analysis in the
manner explained in Chapter VIII. Such processing was
not needed for the records from test G, shown in Figs.
10.12 and 10.13, since the responses from the trans-
ducers in this test were not filtered. 1In each of Figs.
10.12 through 10.16, the measured and computed veloci-
ties of the edge of the footing vs. time are plotted as
a reference.

Oscillations develop in the latter portions of
the records from the numerical solutions corresponding
to tests H, I and J. There are a number of possible
reasons for these oscillations. The most probable
reason is that the grid was not quite fine ehough for
the degree of nonlinearity developed in the models of
these tests. Greater nonlinearity was developed in
these models than in the model of test G because in the
models of test H, I, and J the half space was treated as
a weaker material. These oscillations did not influence
the motion of the footing significantly.

As shown in Fig. 10.12, the nonlinear model
gives much better agreement with measured results than
the linear model. In general the peaks of the particle
velocities from nonlinear models are approximately twice

as large as those obtained experimentally. The motion
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at the sites of the velocity transducers is believed to
have been suppressed by the relatively large mass of the
transducers. These transducers are approximately 2.5
inches long, 1.67 inches in diameter and roughly 3 times
as dense as the surrounding soil. The excess mass pro-
vided by these transducers was not taken into account in
the numerical models. The differences between the
shapes of the waveforms given by the nonlinear models
and thé experiment (see Figs. 10.12 through 10.16) are
also believed to have been caused by effects of the
excess mass of the transducers.

As indicated in Figs. 10.12 through 10.16, each
of the numerical models predicts fairly accurately the
arrival time of the disturbance at points within the
half space.

In Table 10.1 is given the ratio of the peak
velocity of the edge of the footing to the peak of the
particle velocity within the half space. This ratio is
given for each of the locations within the half space
designated in Fig. 9.17. These ratios are based upon
results obtained from the nonlinear solutions and may
also be obtained from Figs. 10.14 through 10.16. The
information given in Table 10.1 indicates that particle
velocities within the half space are much smaller than

the velocity of the edge of the footing. Also geometric
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decay of the disturbances is observed within
space with increasing distance from the edge
footing. As an example, the velocity of the
footing is 26 times larger than the particle

computed for the site nearest to the edge of

the half

of the

edge of the
velocity

the footing

(near transducer, test J) and 300 times larger than that

for the site furthest from the edge of the footing (far

transducer, test H).
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Table 10.1l: Ratio of Peak Velocity of Edge of Footing
to Peak of Particle Velocity at Indicated
Site within Half Space (See Fig. 9.17).
Based on Results from Nonlinear Numerical
Model.
Site of Near Site of Far

Test Transducer Transducer

H 123 300

I 39 105

J 26 69
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334 FT
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= R
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J 2.58 FT
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Fig. 10.1: Grid Used to Model Tests G, I, and J
Numerically.
a,
Trm
Trm
- / sz Trm
Ko, K3y

Fig. 10.2: Normal and Maximum Shearing Stresses Acting
on Faces of Element.
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CHAPTER XI
SUMMARY

Using the technique described in Chapter III, a
numerical procedure capable of solving the equations
governing axisymmetric, two-dimensional, torsional wave
propagation within an elastic medium was formulated.
Solutions obtained using this procedure was found to
agree nearly exactly with several one-and two-
dimensional theoretical solutions involving wave propa-
gation in various elastic media. For one problemn,
however, that of a rigid disk on a half space, the
theoretical solution, which gives infinite shearing
stresses within the half space at the periphery of the
disk, was only approached. Soils cannot withstand infi-
nite stresses and since these stresses affect signifi-
cantly the response of a disk having mass it was
concluded that the elastic solution was not realistic
for soils.

To limit the magnitudes of stresses the numeri-
cal procedure was reformulated to allow nonlinear ine-

lastic shearing stress-strain properties. Also for the
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disk on a half space problem, slip was permitted along
the interface between the disk and the half space.
Solutions were obtained for one-dimensional problems and
two-dimensional problems involving a disk resting on a
half space and excited torsionally. 1In each case the
medium was treated as a linear elastic and nonlinear
inelastic material. Ramberg-Osgood equations were used
to describe the shearing stress-strain properties of the
media. The adequacy of the grids and the correctness of
these solutions were checked using an energy balance.
Work and energy were found to approach a balanced state
as the fineness of the grids was increased. The proper-
ties of the media were found to affect significantly the
amplitudes and shapes of disturbances within the media
and the response of the disk. The disk was found to

undergo permanent angular displacements when treating

the half space as a nonlinear inelastic material which
permitted slip along the interface.

To verify the practical application of the
numerical procedure, several experiments were conducted.
In these experiments, torsional impulses inducing large
strains were applied to a rigid model footing resting on
a pressure confined granular test bed. The applied
torque, the angular velocity of the footing, and the

particle velocities within the test bed were measured.
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These tests were similated numerically using linear
elastic and nonlinear inelastic models for the half
space. The low amplitude shear modulus and the shearing
strength of the test bed, needed to define the stress-
-strain properties of the half space, were obtained by
conducting torsional seismic crosshole tests and a
static torsional loading test within the test bed,
respectively.

In response to the measured loadings, the non-
linear model predicted the motion of the footing quite
well while the linear model did not. Each model pre-
dicted accurately the arrival times of disturbances at
selected sites within the test bed. However, the linear
model overestimated the amplitudes of these disturbances
by a factor of 7 and the nonlinear model, on the
average, by a factor of 2. The excess mass of the
transducers used to measure the motions of the test bed
was believed to have suppressed particle motions at
these locations. This factor was not taken into account
in the numerical solutions. Because the amplitudes of
the motions within the test bed were very small absolu-
tely (measured as 0.0014 to 0.00019 fps) and relative to
those of the edge of the footing (measured as 50 to 450
times larger) the agreement given by the nonlinear model

was quite reasonable.



CHAPTER XII
CONCLUSIONS

The shearing stress-strain properties of the
soil in a soil-structure system have a large effect on
the response to dynamic loads of the structure and the
soil. Nonlinear inelastic soil behavior, which develops
at high amplitudes of strain, causes energy dissipation,
affects the distribution of energy, affects the amplitu-
des and shapes of disturbances within the soil, éffects
the motion of the structure, and causes permanent

deformation of the soil and permanent displacement of

the structure. Thus, in order to predict accurately the

dynamic response of soil-structure systems under con-
ditions in which large shearing strains develop, nonli-
near inelasticity of the soil must be taken into
account.

A method leading to a practical numerical proce-
dure was developed. This procedure may be used to pre-
dict accurately the torsional response of a soil-
structure system consisting of a rigid circular footing

resting on either a linear elastic or nonlinear
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inelastic half space. Thus the method was applied to a
two-dimensional system. This method is potentially
general, perhaps permitting the solution of practical
multi-dimensional problems involving compression as well
as shearing disturbances. Such problems include the
predictions of the vertical and rocking motions of
various types of foundations as well as the motions of
soil masses subjected to dynamic loadings. Effort must
be directed towards reducing computational storage space
and time needed to obtain solutions. Several possible
and very significant means of meeting these goals
include the use of grids with variable spacings between
nodes, the use of boundaries within the half space and

localized treatment of nonlinear inelasticity.
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APPENDIX I
NODAL POINT EQUATIONS AND COEFFICIENTS

The nodal point equations, which represent the
integrated form of the differential equations [Egs.

(3.34) or Egs. (5.25)], are given as

a, Tep +b/zpfcvp+d'3;;‘}\= |

az Tep + b /;P+C3V?+A3B7‘a - e,

Qg Trp + b T2p + C5 Vo +ab3’% - es (3.37)
07/-.\—-? + b lip-l» C.7\/ +d7%7”ilp e,

For the linearly elastic model the coefficients in Egs.

(3.37) are given as

b, =-%— ar:p
G = pYs -+ ’2'?%,)
d, p - g (A.1.1)
e = (2- G—Z)"/‘ea ¥ (‘%'*{r- Ve +
\ p 372
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d3= ('”p-r‘,.,)
e Teye L (3B ToN o
€= (2 ’”A)/“+(Z.'E'%)/u‘
Vs )+ 2 Y
20 )t 5 (rp=rw>
- I
05 P (A.1.1)
3 rc
k)5=“—2“‘+2-—$.p
! £
“5 =Pv5(-—£+2;p>
ds = rp-rp
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d7= *(Fp'YZ)

e,= (z- &)Trc+ (% 2Q>7Ec

/‘Ws(a 2,.)\/( + (ry- "‘cva/i

or le

For the nonlinear inelastic model the coefficients in

Egs. (3.37) are given as

Y
Q,’Z""‘Q

Fe
b = -Gsrs _ poVsrpVYses .__f‘_q)
! Vsag 7 26&53 Cp
= - RV
\/
d = Mste . _
l Vsap ( P rr3>
v
- Mo\ 5~ ., - | 528
e, = _(2.-—2 Tre [Vs%
(A.1.2)
V \'
PVsrp Vsz -
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Vszg ' P78 )

Vsrg T4
72 (’*'r*g>v3 (fp-1 i
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Cz= .—;Q\ésf‘A (|+%>

_ _ Vsra )
d5"' Vo z A <rp rA>
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€3 (2-%)7\0\ -}-[--—A-V‘SP \/.SAVS?.A(
A rA

Vsza 7 2 Gzea
0 ]Ten — A (14 2y, +
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_ Vv
Cg = /Q___Qgr () + —é)
Ver (
- — r— r~ _r, \
db Vszp p-p
e = I: Vsro
es = (2- &) -V -

AU (G- ]y, « P (10

te Vsrp 3%
Ve ~ Vs () 3 £|

|3
Q, = 2 - —
7 "’ Vsre V.
- Ysrc P Vsre Vsz2C |-
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APPENDIX II
LIST OF MAJOR EQUIPMENT

A list of the major equipment used in the
various experiments described in Chapters VII, VIII and

IX is given in Table A.2.1.
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APPENDIX III

SYSTEM FOR APPLYING SURCHARGE PRESSURE

A. Introduction

The system for applying a surcharge pressure
consisted of four major subsystems: a system of three
flexible rubber air bags, a structural restraining
system, a system for distributing air and a system for
measuring the pressures in the air bags. The various
components of these subsystems'are shown schematically
in Figs. A.3.1, A.3.2, A.3.3, A.3.6 and A.3.7. Details
of the construction, maintenance and installation of
these subsystems are given in the following sections.

Fully assembled in the quicksand tank and under
testing conditions, surcharge pressures of up to 5 psi
have been applied safely. This represents a force of
approximately 32,000 lbs distributed uniformly over the

surface of the test bed.

B. Air Bags
Three air bags, shown in Fig. A.3.1 through

A.3.3, were used to apply surcharge pressures to the

surface of the test bed.
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l. Construction

a. General--The air bags were constructed
from Goodrich pure gum rubber sheets 36 inches wide and
3/32 inch thick. This material is durable but
deteriorated in the presence of o0il. Patterns were cut,
joined and folded to give the shapes shown in Fig.
A.3.3. All rubber to rubber joints were bonded using
Rema Tip Top Special Vulcanizing Cement #54 manufactured
by Remaco Incorporated, Northvale, New Jersey 07647.

The following outline gives the steps for bonding two
rubber surfaces.

1) Wash, rinse, dry, roughen and brush off
bonding surfaces.

2) Apply thin coat of cement to bonding
surfaces.

3) Let cement dry 15 minutes.

4) Join bonding surfaces carefully.

5) Sandwich entire joint between boards.
6) Place weights on boards to clamp joint.

7) Allow 30 minutes set time.

b. Valve Stems--Valves from automotive tire
tubes were used in the air bags as inlets for supplying
air and outlets for measuring pressure. As shown in
Fig. A.3.4, these valves were centered on circles cut 6

inches in diameter from the tubes. These circles were
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bonded to the inside of the skin of the air bags with
the stems protruding outwards. As shown in Fig. A.3.4,
a reinforcing layer of rubber 6 inches in diameter and
centered on the valve was bonded to the outer skin of

the air bags.

c. Joints--As shown in Fig. A.3.3, the air
bags were assembled using various types of joints.
These joints are shown in detail in Fig. A.3.5. Lap
joints 3 inches wide were used to Jjoin rubber sheets
together to form large shapes. A number of strips 3
inches wide were needed to provide reinforcement, to
reduce the sharpness of folds and to eliminate steps
created by lap joints. Butt joints, shown in Fig. A.
3.5, were used in joining these strips to other strips,
to sheets or to the inside of a fold. Edge joints were
used along the unfolded edges of the air bags.

Unlike lap joints, edge joints were weak under
pressure and required external clamping. As shown in
Fig. A.3.5(c), clamping was provided by two 3/8 by 3/8
inch aluminum bars. Each bar was centered on the
reinforcing strip on each side of the joint. Aluminum
was selected to minimize corrosion. The clamping force
was provided by 2 inch long No. 6-32 machine screw and

nut systems spaced at 2 inches along the bars. These
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bars were shaped to conform to the air bags by
repeatedly pulling these bars through an adjustable
bender. Matched clamps were aligned and clamped
together and then vertical holes for the screws were
drilled through these matched clamps. To prevent damage
to adjacent air bags the ends of the clamps were rounded
as shown in Fig. A.3.5 (d). Circular clamps for the
central access hole were machined from aluminum plates.
To clamp a joint, matched bars were
appropriately located and the ends of the bars were
fastened as shown in Fig. A.3.5 (d). Holes for the
clamping screws were punched through the layers of the
joint using a punch with a slanted face. After each
hole was punched, a threaded fastener was inserted and
its nut hand tightened. After placing all the fasteners
these fasteners were tightened sequentially and
repeatedly to give an air tight seal without excessive
squeezing of the joint. To prevent damage to other air
bags, the ends of the screws protruding from the nuts
were clipped and filed flush. For additional security
against loosening, nuts were taped to the bars using a
waterproof tape. Then the outer edges of the joints
were trimmed to within 1/2 inch of the clamping bars to

improve the fit of the air bags in the quicksand tank.
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d. Folds--The folds of the air bags were
particularly susceptable to abrasion and damage caused
by handling and testing. As shown in Fig. A.3.3, rein-
forcing layers were cemented to the air bags along the

folds.

e. Leakage Tests--Following construction,
each air bag was tested for leakage by pressurizing each
bag to an expanded state and then submerging each bag in
a large tub of water. Leakage was detected by the for-
mation of bubbles and corrections were carried out as

needed.

2. Maintenance

The gum rubber was found to develop cracks with
time. To eliminate this problem the air bags were
washed, rinsed and dried regularly and then coated
liberally with talcum powder. The insides of the air
bags were also treated by introducing talcum powder into

the air bags through the valve stems.

C. Restraining System

A restraining system transmitted the upward
pressure from the air bags to the wall of the quicksand
tank. This system also limited the expanded volume of

the air bags.
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The restraining system, shown in Fig. A.3.6,
consisted of two semi-circular, 1/4 inch thick, plywood
sheets reinforced with expanded metal mesh (See Fig.
A.3.7) and held down by a grid of I-beams. This grid
was attached to the wall of the quicksand tank by
brackets.

The basic shape and size of the covers were
designed to give a snug fit inside the quicksand tank.
All edges of the plywood covers were rounded and to
further protect the air bags a split garden hose was
slipped over the edges. Also round headed bolts were
used for fasteners passing through the covers and con-
tacting the air bags.

In order to provide freedom in the placement of
the air bags and covers, holes in the covers through
which the valve stems protruded were made much larger
than the stems. Plywood disks somewhat larger in area
than these holes were used to avoid localized bulging of
the air bags in this zone. These disks, provided with
holes for the valve stems, were sandwiched between the
air bags and the underside of the covers.

At times it was necessary to totally deflate the
air bags with all equipment in place. To prevent the
empty air bags and soil from supporting a large fraction

of the weight of the grid small angles were welded to
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the top of each secondary I-beam. With this arrangement
it was possible to suspend these beams from the primary

I-beams.

D. System for Supplying Air

The system for supplying air to the air bags is
shown in Fig. A.3.1. Air was drawn from the building
supply and the pressure of the air was regulated by a
pressure regulator. The air was routed past a pressure
gage used for coarse measurements and through a
manifold. This manifold, which distributed air to the
air bags, was connected to the air bags using flexible

Tygon tubing.

E. System for Measuring Air Pressure

The system for measuring independently the
pressures of the air bags, shown in Fig. A.3.1, con-
sisted of a detachable mercury manometer, a line of
Tygon tubing, and a bleed valve. The end fitting from a
bicycle tire pump was attached to the end of the tubing
leading from the manometer. This fitting permitted the
pressure in each air bag to be measured rapidly. The
bleed valve was inserted in this line to minimize the
oscillations of the mercury brought about by sudden

changes in pressure.
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Installation of System for Applying Surcharge
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8) Engage suspending angles of secondary
I-beams.

9) Align central access hole with plumbline
defining centerline of test bed.

10) To connect air lines without excessive loss
of air from air bags first adjust pressure
regulator to give fairly high rate of flow.
Remove inlet valve from one air bag and slip
end of matched air line over threaded length
of valve stem rapidly. Tape and clamp joint
using screw clamp for additional security
against leakage. Repeat process for
remaining air bags. Reduce flow of air
after making each connection to prevent
buildup of pressure in air bags over that
needed to support grid.

The system for applying surcharge pressure is
disassembled by reversing the steps for assembly. The
pressure in the air bags should be negligible during

disassembly.
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Fig. A.3.1: Schematic Diagram of Components of System
for Applying Surcharge Pressure.
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(a) Plan View.

(b) Positioned in Quicksand Tank.
Fig. A.3.2: Photographs of Air Bags.
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'ig. A.3.4: Inlet/Outlet Assemblies for Air Bags.
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SECONDARY REINFORCED
I-BEAM PLYWOOD SHEET
TO AIR
> SUPPLY
>
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(a) Plan View.
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———————
SUPPLY MANOMETER
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(b) Elevation View.

Fig. A.3.6: Schematic Diagram of Restraining System as
Assembled in Quicksand Tank.



381

ACCESS HOLE

ot I o

HANDL ( "‘ ’ “‘.‘ .
E % ‘M“o’o‘o 0’ 0“0 ‘n
’ .
| ,«,0, ,n 00
ﬁ"g%ﬂﬂ“’{éz é."‘.““h") ‘&ﬂ“" ‘},
JXXKRLNK 0 o DO R 00N
‘w’ qahaﬁ‘ " : ‘»‘. "I’ .‘a‘ "" ,
o MO0 ’0 0’0 ‘
_,"0‘“&&;‘%&‘%’ "‘, 1‘.‘) ‘ ‘
K000 m, AR X0 g.
n‘n A0 H | 0 \Q 0
o w nm n 0 n N.'
NS AREX 0‘0‘0 (0
\/ o’ mm or S m A0S
| u o XXRART ‘ 0 W
w ». :.:«.\:0 . '
,’ n, ‘v ,0»

S A AN AANA XX X X

\

GARDEN HOSE
GUARD

Fig. A.3.7: Plan View of Covers for Air Bags.
Approximate Diameter = 7.5 ft.
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APPENDIX IV

COMPUTER PROGRAM USED FOR PROBLEM OF FOOTING
ON NONLINEAR INELASTIC HALF SPACE WITH
SLIP ALONG INTERFACE



oW aNe!
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DIMENSIONING ANC INITIALIZATICN CF ABRRAYS

IN

10

PR

50

LIMENSICYH V(127,71),1R(127,71),T2{127,71),PDR(127,71),
1yp (127,71) ,TEB(127,71) ,1ZE(127,71) ,PLRP (127,71),
20(127,71) ,R (141) ,TREAVE {126, 140) ,TZAVE (126, 140) ,
3GMZAVE (126,140) ,G¥EAVE (126,140),GZT (126, 140) ,
4GRT (126,143) ,IVCR (126, 140),2 (127),A4(8) ,RO(8) ,RI(8)
5,IVCZ(126,140) ,DVCI (140),ISLLE (8),00(8)
6,PEAMOM (1€5) ,ERCME (165) ,PREHOY (165) ,PRT(165) ,
JERTZFT (165,8) ,PRVP1(165),PRVYP2 (165) ,PRTRA(165) ,
8ERGHUEA (1€5) ,PRTZA (165) ,PRGMZA (165) ,PRUS (165,71),
9ERWORK (16%) ,PRDISK (165) ,PRHSWO (165) ,PRSLWO (165),
9PRENKE (16%) ,PRPEPH (165) ,PRENRA (165) ,PRENBH (165) ,
9PRUFTE (1€5)

CoMMCN aL,TY,GC,RR

COE!CN/CCCEFI/A] ®1,c1,C1,E1,A3,83,C3,03,E3,
1a5,85,C5,05,E5,47,E7,C7,L7, &7

DATA V,IR,TZ,PDR,VE,IRE,TZE, PDBP,U/811S3*0./

CATA TRAVE,TZAVE,GNZAVE,GHRAVE,GZT,GRT,
1IVCZ,IVCE/70560%0. ,3528C%700253.,35280%1/

DATA INCE,INLC,INDG,INDH,INDI,INDM,ISLIP,NROW/14%0,1/

DATA T,UC,AMO4,AMCYP,RMCM,RACHE,ON,ONP,HCRK,
1EEPHI, ENEAT,HSWORK,ENRAES, SLWOBK,T1R,TTZ ,GUR,
2CP1E,GM2/26%C.

DATA PBAFMCHM,ERCMP,EERMCM,EFT,PRTZFT,PRVP1, PRVP2,
1PRIRA,ERGMEA,P5TZA,PRGMZA, PRUS, PR¥ORK, PRLISK,PRHSHO,
1ERSL#O,PRENKE,PRPEEH,PEENEA, PRENEH, PRUFTE/16170%0./

PUT CF DATR

INTEGER KN
NAMELIST,LATA/GO,REO,AL,BR,TY,R,REND,
1TMAX,KP3,EN,NRH,NCL,XMI,TZHAX, NDP
2,MER1, KEE1,MEB2,¥BE2,MPR3, NPR3,JPR,INDN
3,NCVC,NSCC

BEEAL (10,L2TA,END=99)

BEAD(11,4500) (PRANOM(I),I=2,NDP)

ELTMINAFY COMPUTATICNS AND INITIALIZATIONS

NREM1=NR%~-1
NCTZM1=2%KCL-1
NCTZM2=2%NCL=2
DR=(RENL-E (1)) /NCTZH42
DZ=LR

LO 50 N=1,NCTZN1
E(N)=R(1)+ (N-1) *D5

LO 55 ¥=1,NEW
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55 2 (#)=(U=-1)*L[2
GZS=GO
§S0=SCET (€0, RHC)
CT=DE/VSQ
CZE=CR*TZ
CXMI=2.*%XFI/TT
EI=3.14156
L0 €06 N=Z,RN
FEI(N)=R(Z*N-1)-DR
EC (N) =R (Z*N~1) +DR
60 A(N)=PI#*((EC(N)**2)~- (RI(N)**2))
CO €5 N=1,NCTZM2
65 DVOL(N)=EI*( (5 (N+1)**2) = (R(N)**2))*[Z

NCCL=RN
c .
C PRINTING OUT OF INPUT DATA AND RESULTS
C

WRITE(6,4C0C) GO,RHO,R(1),REND,THAX,
1vs¢,CR,D1,KEG,EN,X¥I,AL,BR,TY, NEW,NCL, TZMAK,
2NDE,¥PE1,NEE1, ¥ER2,NERZ,MER3, NER3, NLVC,NSCC, JPR

WRITE(6,4200) (E(N),d¥=1,NCT201)

WRITE(6,451G) MNDPB, (PEA¥CM(I),I=1,NLP)

IF (INDN.EC.1) GO TC 100

WRITE(19,4€30)

WRITE(18,U4€C0) NDVC,NSCC

30 WRITE(18,4€13) T
LO 4611 ¥=44,4s
DO 4611 ¥=11,12
4611 SRITE(18,4616) TR(¥,N) ,IZ(4,N),V(d,N),PDR(M,N),U (8,N)

SRITE (18 ,4614)

CO 4612 #=44,45

LO 4612 §=22,23

4612 WRITE(18,L€17) TRAVE (M,N),TZAVE(M,N) ,GURAVE(Y,YN),
1GMZAVE (4,5) ,GRT (M, N) ,GZT (¥,¥) ,G2ZS

IF {ERCR.EC.C) NCOL=8N

INCH=INLF+1

ERT(INCM) =1

EROME (INT ¥)=CHE

EEEMOM (INL¥)=RECME

Lo 5¢00 1=1,RN,JPR

5006 ERTZFT (INIX,I)=TZ (1,I)

ERVP 1(INL¥)=V (4PR1,NBR 1)

ERVEZ (INCM) =V (¥PRZ,NPR2)

ERTRA(INLM)=TEAVE (MPR3,NPR3)

ERTZA(INLF)=TZAVE (¥BE3,NERJ)

ERGMRA (INI¥)=GMRAVE (¥PR3,NER3)

ERGMZA (IKL*)=GMZAVE{¥PE3, NER3)

CO 5010 I=1,5CCL,JER

5010 ERUS (INC¥,I)=U(1,I)

ERUFTE (INIH)=UETE

EEWOEK (INIM) =WCRK

ERCISK (INIM)=DISCKE
ERHSWO (INIM) =HSWORK
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ERSLWC (INIM)=SIWOEK

ERENKE (INLM) =ENKE

PREEEH (INIM)=FEEHL

ERENEA (INLN¥)=ENRAT

ERENRH (INIX)=ENRAHS

IF (NROW.EC.G) GO TC 10

C DEVELCEMENT CF MATERIAL PRCPERTY MATRICES
C ANLC ENEEGY CCMEUTATICSHS
C

20 T=T4LT

INCC=INLC+1

INCI=INCI+!1

IF ((NROW,Z)*Z.EQ.NROW) GO TO 8G1Q

NO¥BN=Z3KCCI-2
INLG=1

G0 1C 80ZC

8010 NUMEN=2*XCCL-1

INDG=2

8020 NUMBM=NECEK-1

IF (INDE.EC.C) GO TC 8043

NUMBE=NECH

NOUMEN=2#%NCCL

8040 IF (INDI.EC.1) S0 TG 9805

ENRE=0.

DO 2G00 F=1,NUMEM

DO 2000 K=1,NUKEN

INCEAR=1 :

CALL NCIEEI{(TIvVa,TVE,IVC,TYD,TR,H,N,NR¥,NCL,
1MEGOW,NCCL,INLB,INDG,RN,INDPAR, CHE, 5, NCT211)

TTE= (TVA+1VE+TVC+17D) /4.

INCEAR=2

CALL NLCLPEI(TVA,TV3,1IVC,1VD,TZ,M,N,NRH,NCL,
15RC%,NCCL,INCB,INLG,EN, INCEAR, CHE,R,NCT2H1)

T12= (TVA+TVE+IVC+TVD) /4.

INCEAR=5

CALL NCIEEI{1V3,IVE,TVC,TVLD,U,M,N,NEW,NCL,
1NECW,NCCL,INLE,INDG,RN,INDPAR, CME, B, NCT2M1)

GME=~-(ALCG (R (N+1) /B (N) )/ (2.%DR*=%2) ) *
T1{R(N+1)% (1VA+TVB) =R (N) * {(1VC+TVD))

GMZ= (TVE-TVA+TIVC-TVD) / (2.%DZ)

CALL ZMGCLC(T1Z,TZAVE,GHZ,GMZAVE,H,N,NBRRM],NCT242,
1627T,IVCZ)

CAII RMCI (115,TRAVE,GHE, bMuAVa, ,N,NEHWH1,NCT242,
1GR1,IVCE)

IF (INDE.E(.1) GC TC 8560

INCPAR=3

CALL NCLEEI(1VA,TVB,TVC,TVD,V,H,N,NRY,NCL,
1NRCW,NCGL,INCB,INDG,RN,INDPAR,CHP,R,NCT2H1)

JAVE= (TVR+TVE+TVC+TIVD) /4.

CAIl ENEEGY (¥,N,AHCMP,O4P,AH0¥,CH,DT,T,
1%O8K,X¥I,11E,G*R,T12,GH42, IRAVE, TZAVE,GHRAVE,
2GMZAVE, NES 21, NCT2M2,EEEEL, EHG, VAVE, LVOL,
3ENKE,DISCKE,SECHP, EMCH,5SHORK, ISLIE
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4,EN,U0,1Z,5,NCTI241,A,SLWORK, NRW, NCL, U)
TZAVE (M,N)=11Z

TRAVE (¥,N)=T1IR

GMZAVE (¥,F) =GM2

GMEAVE [F,K)=GHE

AMOM=AMCNE

FMCM=RKCMUE

CM=CHP

IF (RCBK.§E.C.) GC 1C 93¢0

ENEAT=0.

GC 1C 902¢C

ENEAT= (CISCXE+ENKE+PEPHL+SLWORK) /WORK
IF (HSWORK.NE.Q.) GC TO S¢30

ENEAHS=C.

GO TC 9&(C*t

ENRAHS= (ENKE+PEPHL +SLWCEK) /JHSWCEK

Lo SEQQC ¥=1,2

IO $800 §=16,17

GRT {8, N)=.00C1*G0

GZT (M,N)=.GCC1*GQ

CAL ECINT SCLUTICWN

p=1

EMOMSL=C.

0O 3410 ¥=2,RN

ISLIE(K)=C

INDS=Q

INC2=0

INTK=0

INCL=0

E7=0.

E8=(0.

§=2

CALL COEFF (¥,¥,GRT,G2T,NEW,NCL,RHC,R,DZR,
1z,C1,v,TR,T2,PLR,GZS,NRWM1,NCT2H2, NCT2M:1
Z,NECW,NCCI,INCE,INCG,RN,INDPAR,QH)
E13=C7*E1-L1#B7

E14=-(C7421-CL1*17) /P13
E15=-(C7#C1-L1#C7) /P13
E16=(D7*E1-L1%E7) /E13

IF (INCA.FE.Q) GC TC 3060

ET=E7+ {R(Z*M-1)%%2)%A [N)*E15

ES=E8+ (K (2*N-1)*A (N) )* (TR (1, N) *P 14+P16)
IF (INDK.EC.1) GO IC 3478

N=N+1

IF (N.LE.EF) GO TO 3040

AMCME=EGARCH (INLI+ 1)

CHP= (AMCHI+L8+AMCE+RMCH+CX KI*QY) / (CXHI-PT)
¥=2

INCA=1

GO TG 3Q34C

VE (M,N)=F (Z2#*N=1) #C2D
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TRE(¥,N) =15 (¥,N)
TZE(M,N)=E14*TEE (M,N)+E15*VP (4,N)+B16
EDEP (M,N)= (E1-21*TEP (4, ) -E1*TZE (¥, N) ~C1*VP (M, ) ) /D1
IFP(INDL.EC.1) GC TC 3439
=N+1
IF (N.LE.EX) GO TC 3040
9999 N=2
3460 IF (ISLIE(Y).EC.1) GG TC 3400
IF (ABS(T2E(¥,N)).1E.T2¥AX) GO TC 3400
IF (1ZE(¥,}) .GE.Q.) T2ZP (M, N)=TZM¥AX
IF(1ZP (M,}) .17.0.) TZP {E,N)=-TZMAX
ISLIP (N)=1
INCS=1
CALL COEFF (4,N,GRT,GZT,NRW,NCL,RHC,R,DZR,
1Z c1,v,1IE IZ,PDR GZS5,NRWM1,3CT2H42, NCT2M1
¢+ NECW, SCCL,INLE, INILG, BN IhCPAR ,CH)
910 C7*A1 C1*A7
E11=-(C7*E1-C1%B7) /E10
E1Z= (C7*E1-C1#E7) /E10
TREP(M,N)=E11*TZE (¥, N)+E12
VP(H,N)=1£1-E1*TZElﬂ,N)-A?*TRP(M,N))/C1
ECEE (M,N)=0.
EMCESL=EXCMSL+E (2%N-1) *A {N)*TZP (M, N)
3400 N=N+1
IF(N.LE.EF) GO TO Z4e€Q
IF(INDS.EC.J) GO TC 354¢
3530 E7=C,
E8=C.
INL2=Q
INCK=1
INCI=0Q
§=2
344 IF (N.GT.EX) GO TO 3450
IF (ISLIP (X).EC.1) GO TO 3470
GO TC 3C4¢
3470 N=N+1 .
GO TC 344¢
3450 CHP?QAECBI+PS+BMCESI+AEC&+EMOM*CXMI*OM)/
1(CX¥I-P7)
INLK=Q0
N=2
INCA=1
INLI=1
3500 IF(N.GT.EK) GO TO 3510
IF (ISLIE (¥).EQ.1) GO TO 3490
GC TO 3Cuc
3490 XE=N+1
GG 1C 35C¢
3510 INTI=Q
N=2
INTS=0
INCA=Q
GC 1C 34¢¢C
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EMCYE=F7*(HE+P8+R¥CHSL
CALL CCEFF¥{(%,1,GRT,52T,NRW,NCL,RHC,ER,DZR,

1z,o1,v,1%,12,PDR,GZS5,NR&M1,HCT2M2,NCT 211
2,NEQOH,NCCL,INCB,INDG,RN,INDPAK,CH)

TZE (¥, 1)=C.

TRE (¥, 1)=C.

VB (M,1)=E(1) *CME

EDRP (M,1) = (E7-CT*VE(M,1)) /L7

CALL CCEFF {¥,N,GET,GZT,NR%,NCL,EHC,E,ZR,

2,N5OW,NCCL,INCE,INCG,EN,INDPAR,CH)

3100

30340

3C80

TZE{4,8)=C.

EC5P (H,N)=C.

VP (¥,N)=(27*E1-A1%E7)/ (A7*C1-41%C7)

TRE (M,N)=(E1=-CT1*VE {¥,N)) sA1

N=N+1

IF(N.LE.NCCI) GC TC 3070

JF (NEOW.EC.1) GO TC 3830

H=M+1

§=1

CAIL CCEFE(¥,N,GRT,GZT,MBW,NCL,RHC,E,CZR,

12,01,v,15,TZ ,EDE,G2S,NEW¥1,NCT2M2, NCT2H1
2,NECW,NCCI,INCE,INIG,RN,IND2AR,CH)

IF | (K/2)*Z.EC.»®) GC TC 3089
IF (N.NE.T) GC TC 3030

TZE {M,N)=C.

VP (M,N)=C.

TEP (4, N) = (C7*ES=DS*E7) / (D7*A5-D5%A7)
EDEE {M,N)= (ES-A5*TRP (4,N)) /D5

E=N+1

6C TC 3CSC

F1=D1%*23-[3%21

F2=D1%E3-[3*E1

F3=C1*C3-13%C1

FU=C1*E3-[3%F1

F5=[S*a1-[ 1*AS

F6=D5#*E 1=[ 1#ES

F7=LS#C1-L 1%C5

F8=D5*E1-[ 1*ES

FG=CD7*AS5-[5+27

F10=C7#ES-L5%*B87

F11=L7#C5-L5%C7

F12=[7%F5-05%57

G1=FC*xFZ=F 1*F6

GZ=FE*F3-11%F7

G3=FE%F4-F 1*F8

GU=FG*F6-FS#F1(

GS=FG*F7-F5%F11

G6=FS*FR~-FS*F12

VP {M,N)=(C4%G3-G1%G5)/ (G4*G2-G 1*G5)
TZE (¥,N)={G3-G2*YP (4,N))/G1

IRE (M,N)= (FE-FE*TZE (¥, N)-F7*VP (M,N)) /F5
EDEP (M, N)= (E3-A3*%TRP (M,N)-B3*1ZP (X,N) -
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1C3*ve (8,N)) /L3
K=K+ 1
IFP(INCE.EC. 1) GC TIC 323¢
IF((NRC¥,2)*2.EC.NECH) GC TO 3200
IF{{¥/2)*2.EC. K. ANL. N. EC.NCOL) GC IO 3095
2200 IF(N.LE.NCCI) GC TIC 3090
3095 IF(M.LT.NECW) GO TC 3100
EC 3210 §=2,RHN
3210 UQ(N)=U{1,N) _
UFTE=UFTE+R (2*REN) * (OUP+CM) *DT/2.
3800 £O 31148 ¥=1,NROW
LC 3114 ¥=1,8CCL
E(B,N)=Ut£,ﬁ)+(VP(E,N)+V(ﬂ,N))*ET/2.
TR (M,N)=TEE {¥,5)
1Z (M,N)=TZE {¥,XN)
V(4,N)=VE (M,X)
EDE (M,N)=ELEE (M,N)
3110 CONTINUE
IF{INCB.NE.C) GO TIC 312(
NECW=NECHR+1
IF({(NRC%/2) *2.NE. NECH) FCCL=NCCL+1 ,
IF (NRO®.IE.NEWE1) GC TC 3130
WEITE(15,4€40) T
1=1
J=EN
3820 WRITE{19,4€58) R(z*J-1),2(I),TR(I,J),TZ2(I,d),
1v{I,4J) ,ECE(I,d),0(I,Jd)
IF(I.EC.MEW) GC TC 3330
IE1=1+1
WEITE(19,4€50) R(2*J),2(IRP1),TR(IP1,J),TZ2(IP1,J),
1v(1p1,J) ,ECR (IF1,J),U0{IE1,J)
I=IE 1+1
J=J+1
GG 1C 38:2z(C
3€30 INDB=1
NECK=NRC#-3
NCCL=NCC1l~-2
GO T0 31:=¢C
2120 NRCUW=NECW-2
KCCI=KCCI1-1
3130 IF(INCC.NE.KER) GC IC 20
INCC={
IF(T.LE.TEA1) GC TC 30
GC TC 1C
99 WRITE(1Z,4£20) (PRT(I),ERAMOM(I),PRCHMP(I),
1EREMQOM (I),I=1,INCl)
WRITE(13,&53C) (R({z*I-1),I=1,RN,JPR)
FRITE(13,L53¢
LC 5110 I=1,INCH
5110 ®EITE(13,4540) PRT (I), (EETZFT (I,d),Jd=1,RN,JPR)
WRITE (14,4550) MPR1,NPR1,4PR2,NPR2, (PRT(I),
1EEVP1(I) ,ERVPZ (I),I=1,I8DH)
WRITE(15,45€C) MPRZ,NPRZ, (PRT (I-1),EPRTRA(I),
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1ERGHEA (I) ,PRTZA {I),PRGAZA (I) ,I=2,IND¥)
WEITE(1€,457C) (PR1{I-1),ERWORK(I),PRDISK(I),
1ERHSWO(I) ,ERSIWC(I),ERENKE (I) ,EREEEH(I),
ZERENEA (I) ,EFENRH(I),I=3,INLCH)
®RITE (17,458C0) (&(2*I-1),I=1,NCL,JER)
WRITE (17,4585)
LC 5120 1=1,INTN
5120 WRITE(17,4599) PRT (I),PRUFTE(I), (PRUS(I,J) .,
13=1,8CL,JER)

100 STOP
C
C FOEMAT SPECIIICATICANS
C

4000 FCHEMAT ('1¢0=',¥20.2/' REC=',F10.5/' R(1)=',

1E13.6,' FENLC=',E13.6/' TFAX=',F12.9/

2' ys0=',F12.6/' DE=',

3E13.6/" [1=',E13.6,' KEE=',I5/' EN=',I5/' XMI='
4,¥12.9, 21=',E13.€/

£t EE=',E13.6,' TY=',E13.6/' NRW=',I5/' NCL=",I5/

€' TZMAX=',E13.6/' NDP=!',I5/' MER1=!,I5/' NPR1=',I5/
7' MPE2=',15/' NPRZ=',IS/' MPR3=!',I5/' NPR3=!,I5/

8t NCVC=',I%,' NSCC=!,I5,' JPR=',I5)

4200 FOBMAT (*C',5CX,'NODAL CCLUXN RADII','0', (9F13.6))

4500 FOFMAT (2GX,Ez3.10)

4510 FCEMAT ("CSCE=',IS/'GPRAMCM'/(' ',E13.6))

4520 FOEMAT (€X,'TIFE',12X,'ARCH',13X,'CME',13X,
1'RECHE! ) (412%,E13.6)))

4530 FCEMAT (' SHEAF STHEESS DISTRIBUTICN BENEATH FOOTING !
1,50%,'RALII'/ (15X,7 (2X,E13.6)))

4535 FCEMAT ('C',5X%,'TINE',40X,'STRESS?')

4540 FOEMAT (8 (2X,E13.6)/ (15X,7 {2X,E13.6)))

4550 FGEMAT (2X,'SELECTED MEDICM VELCCITY RECORDS'/
16X, TIME',8%,"NODE (*,12,',',12,')',4X, " NCDE(',
<12,',',12,')'/(3(2%,E13.6)))

4560 FCEMAT (2X,'SIRESS STRAIN CURVE FOR SUBCEIL(',I2,',!
1,I12,1')'/6X,'TINE', 14X, 'TR', 13X, 'GHR' ,14X," T2,
2133,'Gr2', {5 (2X,E12.6)))

4570 FOEMAT(5C3,'ENEBGY ACCCUNT'/SX,'TIME',10%,'WORK',
110%, 'DRKKE',16X,"HS®C', 1CX, *SLWC', 10X, ' ENKE', 10X,
2'PEALY,10%,"ENSA?, 10X, "ENRH'/ (9(1X,E13.6)))

4S80 FCEMAT (253,'FCCTING EDGE AND SUBRFACE CISPLACEMENTS!
170", 40X, 'RATII"/ (30X,6 (2X,213.6)))

4585 FOEMAT ('C',€X,'TIME',12X,'UFTE',12X,' SURFACE
1CISBIACENMENTS?)

4590 FCRMAT{(8 (2%,E13.6)/(30%,€(2X,E13.6)))

4600 FCEMAT (' EEINT OUT COLUAN'/' NCDAL COLUMN=',
1IS,' SCECELI CCLU¥N=',I5/%3?,6%,'T3',13X,! 12",
213%,'v*,13X,'FCR",13X,'U"'/'Q",5X, ' TRAVE! ,10%X,
3'IZAVE!,S3,'GMEAVE',9X, '"GUZAVE', 11X, 'GRT',
4123,'G21',12%,'62S?")

4€13 FOEMAT('CT=',E13.6,10DVI/" 1)

4E14 FOEMAT ("CRE', ' ')

4616 FOBMAT (% (<X,E13.6))
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4617 FCEFMAT{7(<X,E13.6))
4€30 FORMAT (' [EZENCENT VARI2ZELE KECCELS AT INSTANT IN TIME'/
1! EECCRC LINE EXTENDS FECM FOOTING ELCGE AT 45 DEG ')
4€4Q FCEMAT('CI=',E13.€,7X,'E',14X,'2", 15X, 'TR' , 14X, T2,
114%,'V',12%,'EDE',13%,0U")
4650 FOEMAT(7(2Y,E13.6))
ENC

SUBECUTINES

SUBECUTIINE NLIPHI

SCTERCUTINEF NLCLEHI{EHIA,EHIE,PHIC,PFHILC,PHI, N,N,
15E%,NCL,NECWh,NCCL,INDB,INDG,RN,INDPAR,OM,R,NCT2HT)
CIMENSICK PHI(NRW,NCL) ,E (NCT2HT)
INTEGER EX
M 1=M-1
EM1DZ= (N-1) /2
NP1D2=(N+1) /2
EB1=¥+1
NE3L2=(K43) /2
MEZ=N+2
NDz=N/z2 .
NB2LZ= (k+2) /2
IF((K/2)*2.EC.E) GC TC 1¢00
IF{(N/2)*2.EC. M) GC IC 1610
IF (N.NE.1) GC 1IC 1020
IF(M.NE.1) GC IC 1030
EHIE= (PHI {#,N) +PHI (MP2,N)) /2.
EHIL= (PRI (M,NP1D2) +BHI (¥,NP3D2)) /2.
GC T0 1C&4¢C
1030 EHIE=(FHI (4,N)+PHI (122,¥)) /2.
EHID=(EHI {M,NE1D2) +BHI (¥¥1,NE1L2) +PHI (M,NP3D2)
1+PHI (KE1,ME1L2)) /4.
GO 1C 1Q4C
1020 IF (M.NE.1) GC TIC 1050
EHIE= (BHI |ME1,8M1C2) +PRI (¥,NP1D2)+PHI (4P 1,NP1D2)
1+PHI (MPZ,NP1L2)) /4.
EHID=(PHI {M,NP 1DZ) +PHI (M,NP3D2)) /2.
GO 1TC 1C4¢C
1050 FPHIE=(EHI {ME1,NM1LZ)+PEI(4,NP102)+PHI (4P1,NP1D2)
1+#PHI (ME2,FE1LZ)) /4.
EHID= (EHI (¥,NE1D2) 4+BHI (X¥1,NB1L2) +EHI (M, NP3D2)
1+BHI (RE1,)ET1L2)) /4.
1040 EHIA=PHI(¥,NE1D2)
FRIC=PHI (¥EF1,NP1DZ)
GC TC 111¢C
1010 IF{M.NE.1) GC TO 1L6€¢
EHIA=(PHI (¥ ,NCZ)+EHI(¥,ME2L02)) /2.
GC 1IC 1C07¢C
1060 EHIA=(PHI(M,NDZ)+PEI (¥k1,ND2)+EHI(M,NP2D2)
1+PBI (MBP1,KC2)) /4.
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1070 EHIC= (PHI (XP1,N8DZ) +PHI (¥,NP2D2)+PHI (ME1,NP2D2)
14PHI (MEZ,}P2L2)) /4.
ERIB=PHI (AP 1,NL2)
EHIC=FHI (» ,NEZC2Z)
GC 1C 111¢

1600 IF((N/2)*2.EC.N) GC TG 1083
IF(N.NE.1) GC 10 1090
EHIA=(PHI |¥M1,NP1DZ) +PHI (¥21,NE1DQ)) /2.

G0 10 114¢C
1090 EFHIA=(EHI (M,NM1C2) +PHI (MM 1,NP1D2)+2HI ({4,¥P1D2)
1+PHI (ME1,NE1L2)) s 4.
1100 EHIC= (EHI(EI1,N“1B4)+°hI(‘,NP1E2)*PHI(HP1,NP3DZ)
1+PHI (ME2,)B1L2)) /4.
EHIE=PHI (LE1,NE1D2)
FHILC=PHI (¥ ,NE1T2)
GC TC 111¢€
1080 EAIB=(EFHI (MP1,NLC2) +PHI (¥, NDZ)*PHI(MP1 NP2D2)
1+PRI (MFZ,¥L2)) 14,
FHIC=(FHI (¥4,ND2) +EHI (E¥1,NE2D2)+EHI (M, P2D2)
1+FHI (ME1,ME2L2) ) /4.
ERIA=BHI(2,¥L2)
EH1C=PHI (¥E1,NP2D2)

1110 IF(INCE.EC.1) GO TC 1128
IF{M.LT.NFCW-1.AND.N.LT.NCCL*2-2) GO TG 1120
IF(INDG.EC.2) GO TC 113¢
IFP(M.NE.NEOWK-1) GG TC 1143
IF{(N/2)*2.0ME.N) EBIC=C.

IP{{N/2)*2.EC.}) EHIE=Q.

1140 IF (N.NE.NCCL#*2-2) GO TC 1120
IF|(Ms2)*2.)E.F) EHIC=Q.

IF{(M2)*2.EC.Y) EEIL=Q.
GC TC 112¢C

1130 IF (M.NE.NEQK-1) GG TC 115C
IF((N/2)*2.NE.N) PEIB=C.

IF{(N/2)*2.EC.N) PBHIC=4.

1150 IF(N.NE.Z2*NCCL-1) GO TQ 1120
IF((M/2)*2.NE.¥) EBIL=C.

IF((My2)*2.EC.¥) EBRIC=0.

1120 IP (£.NE.1) GC 1IC 120C
IF (8.NE.Z2*EK-1) GC TC 1210
CALL EAEAE(hN,N,INLPAR,EFHID,OM,R,NCT211,
1¥EW,NCL,EEI)

1210 IF (N NE.z*EN) GO 1TIC 12{8
CALL PARAE (EN,N,INCPAR,EHIA,ON,R,NCT2M1,
1NBW,ECL, EEI)

1200 RETCEN

ENT
C
C SUEEBCUTINE ZXCL
C

SCEECUTINE Z¥CT (IT,CTIT,GAN,O0GAE,N, N,

1NE®81,NCI2M4Z,G6,1IVC)

ccxucy 2r,1Y,G(,RR

EIXEdSIC) CIT{NRWN1,NCTZM2),0GAH (NBWMT, NCT2H2) ,G (NRWH1T,NCT2M2),
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TUBE(126,14C) ,IVC(NEWET,HCT212) ,IC (126, 1490) ,
Z14({7,126,140)
GN(DV)—1./(1 +ER*A1*ABS (LY) ** (EE-1.))
GRG (DY,LYC)=1./ (1.+EE*AL*AES ( ([Y-LY0)/2.)** (RR-1.))
I=T1,11}
CT=01T (¥,N) /1Y
IF (IVC (#,}3) .EG.C) GO TC 30
IF (ABS (GAl).1T.ABS (0GAH (M,N))) GC 1IC 20
10 G(®,%)=G(*GV{(T)
IC(*,N)=C
EETUEN
20 IvC(¥,N)=0
UPE (M, N)=1.
IF (GAM.LT.0CAM (4,N)) UEE (M,N)=-1.
IC(4,M)=
YA(1,8,8)==-C1
¥ (Zz,N8,8)=CT
G(M,¥)=GC*GEC(1,CT)
120 EETCURN
30 IF{AES(T).CE.AES{Y®(1,%,N))) GC TG 45
IF (UBP (4,N)* (GAX-CGAM (4,8)).GE.D0.) GO TO 5V
UBE (8,N)=1.
IF (GAM.L11.0GAN (U,N)) UEE(¥,N)=-1.
IC(M,N)=IC(H,N)+1
IF(IC(M,X).GT.€) IC(¥,K)=5
IF (UBP (¥,5)* (I~ YH(IC(H,&)—] 4,5 .GT..0) GO 10 60
IM{IC (¥,N),2,%)=CI
40 G (M,N)=GC*GEC (T,YX (IC(#,N),H,N))
160 EETUEN
45 IVC(H,N)=1
IF (AES (GA¥) .LT.ABS (OGAM (4,N))) GC TC 20
GG TC 1C
50 IF (UEP {M,5)*(T-IM(IC(M,N)=-1,H4,5)).1T.0.) GO TO 40
60 IC{M,N)=IC(E,N)=2
IF (IC(X,d).EC.1) IC(M,N)=2
IF{IC(M,8).EC.2Z) GC TG 40
IF (IC(¥,%).3¢.0) GC TC 45

GO TIC 58

ENC
c
C SUBROUTINE EBICT
C

SUEEQUTINE EMOL (IT,0TT,GAM,0GAN,H,N,

1NRWM 1, NCTZIMZ,G,IVC)

corMCN 21,1Y,GG,RR

CIMENSICY CTT(NEWM1,NCTZM2),0GAM (NRWMI,NCT212) ,G (NBWH1,NCT2H2),
1TPE (126, 140) ,IVC (DERET, 2CT242) ,IC (126, 1u0),

ZiM {7,126, 14Q)

GV(DY)=1., (1.+EA*AI*ABS (LY)*% (F&=1.))
GRC(CY,CYC)=1./ (1.+KE*AL*ARS ((LY-LYC)/2.)** (RR-1.))
1=11,T1

CI=CTT (¥,N) 1Y

IF(IVC(¥,d).EQ.0) GO TG 30
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IF (AES {GA¥) .IT.ABS (OGAH (#,N))) GC TC 29

G(¥,5) =G{4GV (1)
IC (¥,N)=C
EETUBN

I1vC {4,8)=¢C

UPE (M,N)=1.

IF (GAM.LT.CGAM (M,N)) UEE (¥,¥)=-1.

IC(M,N)=2

¥ (1,4,8)=-C1T

I%(Z,¥,8)=CI

G{M,§)=GC4GEC{1,CT)

BETCRN

IF {AES{1) .CE.ABS (Y¥(1,¥,N))) GC TC 45

1F (UPP (M,K)* (GAM-CGAHN (¥,N)).GE.0.) GO TO 50
UPE (M,N)=1.

IF (GAM.L1.0GAM (M,N)) UPE (M,N)=-1.

IC (¥, N)=IC (4,N)+1

IF (IC(¥,N).G1.6) IC(¥,N)=5

IF (CEP (M, K)* (T-YM(IC(¥,5)-1,H4,%)).GT..0) GO TO 60
IM (IC(¥,N),¥,N)=CT
G(M,N)=GC*GEC (T, T (IC(M,N),H,N))

FETUEN

IVC (4,N)=1

IF (AES (GA#®) .LT.ABS {OGAM (M,N))) 6C TC 20

GG TO 16

IF (UEE (M, N) * (T-YM (IC(¥,N)-1,4,5)).1T.0.) GO TO 40
IC (*,N)=IC (¥,N)-2

IF(IC(¥,8).EC.1) IC(¥,K)=2

IF(IC(M,¥).EC.2) GC TC 40

IF (IC(M,N¥).EC.C) GC TC 45

GO TC 50

ENT

EECUIINE CCEEFF

SUEROUTINF CCEEF(¥,N,GRTI,GZT,NEW,NCL,RHO,R,DZR,
12,LT,v,15,T2,PLR,G2S,NRGF1,NCTZMZ, NCT281
Z,NEOW,NCCL,INCE,INCG,RN,INDPAR,CHM)

INTEGER RN

LIMENSICN GET(NRWH1,NCTZM2),GZT(FRW¥1,NCT242),2Z (NR¥)
1,V(NE%,5CI) ,TE (KEW,5CL) ,TZ (NEW,NCL)
Z,PLR{¥E¥",8CI),B(NCTIZH1)

CCMMON/CCCEFE/21,E1,C1,01,E1,A3,E3,C3,D3,E3,
145 ,E5,¢5,t5,85,A7 ,7,Cc7,27,287

MP1=M+1

EM 1=y~ 1

NTZMZ=2*K-2

NTZzM1=2#%5-~1

NT2=2%X

NTZP1=2%§+1
IF((M/2)*2.EC. M) GC TO 100C

EE=R (NTZ¥1)

IF (4*N.EC.1) GC TG 161G
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IF (#.EC.1) GC TO0 1C30

IF (N.EC.1) GC 10 1C1C

CALL SHEUM{FN1,NTZXZ,NTZH1,%,NTI2M1,8,H81,NT212,
1§R%M1,NCTZ¥Z,NCTZE1, NEW,NCL,CZE, LT, V, TR, IZ,PCR,VA,
Z1RA,TZA,FLEA,GET,GZS,621,EH0,6,2,-1,-1,R2P,Z4P
3,VSEAP,VSZAE,GZSAE,NECW,NCCL, INLE, INLG, RN, INLP AR, OH)

1030 CALL SHICBlE,NIZH2,NT2ﬂ1,E,NTZ!T,ME1,H,NT2&2,NBWH1,

1NCT2M2,8C1ZF1, NEW,5CL,D2k,LCT,V,TR,TZ2,PLR,VE,IRB,
21ZE,PLEE,€RT,GZS,62T ,RHC,R,%2,-1,1,EBP,ZBP
E,VSBEP,VSZEP,GZSBP,NROW,NCOL,INDE,INDG,BN,INDPAB,OM)

1010 CALL SHFUF {M,NTZM1,NT241,4,NT2,¥P1,¥4,NT2M41,NBRUT,

1§CTZP2,NCT2ZM 1, NRW,NCL,[2R,DT,V,TR,TZ,PDR,VC,IRC,TEC,
ZELEC,GRT,CG2S,62T,FHC,5,2,1,1,BCE,2CE
3,VSRCP,VS2CE,G2SCE,NECH,NCOL, IKLE, INLG, RN, INCPAR,ON)
IF (4*N.EC.1) GC TC 1020

IF (2.EC.1) 6C TC 1C4Q

CALL SHEUEF {MM1,NTZ2M1,NTZM1,M4,NT2,H8,M441,NT2M1,NRWA1,
1NCTZ¥2,NC12M1,NBW,5CL,D2R,DI,V,TR,T2,PDR,VD,TRE,TZD,
ZELED,GRT,€25,621,RE0,R,2,1,-1,RDP,ZDP
3,VSRLE,VSZLE,GZSCE,NR0W,NCOL, INDE,INDG,RN, INCPAR,ON)
IF (N.EC.1) GC TC 1C26 :

GC 1IC 1CE¢C

1000 EE=E [NT2)

CALL SHEFC) {¥M1,NTZM1,NTZ,H,NT2,M,M¥1,NT2H1,NEYM1T,
1NCT2M2,NC12M41, NRW ,NCL,D2R,DT,V,TR,TZ,PDR,VA,TRA,TZA,
ZELEA,GRT,C2S,G2T,KEO,R,2,-1,-1,RAE,ZAP
3,VSRAP,VSZAE,GZSAE,NROW,NCOL,IKDB,INDG,RN,INDPAR,OH)

CAIL SHFCN(¥,NTZM1,NT2,¥,NT2,ME1,4,NT2M1,KRWHT,
1NCT2M2,NC1Z¥1,}s%,8C1,L258,LT,V,TR,TZ,PCR,VE, TRB, TZB,
ZELEB,GRT,G2S,G2T,5EC,R,2,-1,1,EEE,ZEP
3,VSREP,VSZEE,C2SBE,NECW,NCOL,INCE, INLG,RN, INLPAR,OHN)

CALL SHEFUX{¥,812,NT2,M,NTZE1,H4E1,H,NT2,NBWH1,
1NCTZM2,NCT2M1, XRW,NCL,D2R,DT,V,1IR,T2,PDR,VC,TRC,
272C,PLRC,CRT,G2S,62T ,REC,R,Z,1,1,BCP,ZCP .
3,VSECP,VS2ZCEF,62ZSCP,NROW,NCGL, INDB,INDG,RN, INDCPAR,ON

CALL SHFUY (M21,NTZ,NT2,2,NT2P1,8,2M1,NT2,NRWYT,
1NCT2#2,NC1Z¥1,ME%,¥C1,025,0T,Y,TE,TZ,PLR,VL,TRE,
212C,ECEL,CRT,G2S,62T ,BHC,5,Z,1,-1,8C0P, 2P
3,VSBRLP,VS2LP,GZSDE,NROW,NCOL, INDB,INDG,RN, INDPAR,OH)

1050 23=Z.-RAE,RP

E3=VSRAEF/VSZAE+EHC*VSRAE*VSZAP* (1.-RAP/RE) /
1{2.%GZSAF)

C3=-FEHC*VSEAE*(1.+5AL/EE) /2.

[3=-VSRAE* (RE-FAP),/VSZAE

E3=(2.-FE/FAE)*TRA+ (VSEAE/VSZAE-FEHC*VSEAE*
1VSZAE* (EE/RAE-1.)/ (2.%GZSAE) ) *TZA-RHO*YSRAP
2% (1.+BE/52E)*Y3/2. +VSRAE* (5P-EAP) *ECRA/VSZ AP

1640 21=2,.-REE/RP

E1=-VSREE/VSZEE-REC*VSEBE*VSZEE* (1.-RBB/R?) /
1{2.%GZSEE)

C1=RHC*VSEEE* (- 1.-EBB/RE) /2.

L1=VSREE# (FE-REP) /VSZBE
E1=(2.-EI/BEE) *TRE- (VSEEE/VSZBE-FEHC*VSRBE*
1VSZBE* (EE/REE-1.)/ (2.*GZSEE) ) *TZE~RHC*VSRBP
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2% (1.+RE/FEB)*YE/2.-VSRRE* (RE~KEE) *PORB/VSZEP
1¢20 A7=2.-ECE,FE
E7=VSRCE/VS2CP+REC*VSRCE*VSZCE* (1.~ECP/RP) /
1(2.*GZSCE)
C7=EBO*VSECE* (1.+BCP/RP) /2.

L7=-VSRCE* (RE-RCP) yVSZCE
E7=(Z.=-BE/RCE) *TRC+ (VSKCP/VSZCE-RHC*VSRCE*
1VSZCE* {FE/RCE=-1.) / {2.*GZSCP) ) *1ZC+RHC*VSRECP
2% (1.+BRE/ECE) #VC/2. +VSRCE* (RP-RCP) *PDRC/VSZCP

IF(M.EC.1) EETTEN
35=2.-GELE/FE
E5=-VSECE,VSZCP-RHC*VSEDE*VSZDE* (1.~-ECB/RP) /
1(2.%GZSLE) :
CS5=BHO*VSELE* (1.+ELP/RP) /2.
L5=VSRLE* (FE-RLP) /VSZDP
ES=(Z.~-FEE,FLE)*IRL~- (VSELP/VSZDE~RHC*YSRD E*
1VS2LE* (EE/ELE~1.)/ (2.*G2ZSCE) ) *TZL+5EC*VSRDP
2% {1.+RE/RLE) #*VL/2.~-VSEDE* (BP-RLE) *ELRC/VSZLP
EETUEN -
ENC
C SUEECUTINE SEFOUN
C
STEROUTINF SEFCN(1,Jd,K,1,II,JJd,KK,LL,NRWH1,
15CTZ242,NC1Z41,NBW,NCL,C025,D%,VY,TR,TZ,PDR,VE,
21BE,1ZE,PIRE,CRT,GZS,621,5H80,R,2,INDE,INDZ,RE, ZP
3,VSKEE,VS2I,GZSE, NFCW,NCCI,IND3,INDG,RN,INDPAR,CH)
INTEGEE E}
REE2L NA,NE,NC,KD
LIMENSICN GET(NRWM1,NCTZM2),
1GZT (NRWM1,NCTZ%2) B (NCTZM1),Z (KRW) ,V (NBRW,NCL),
ZTR (NEW,NCI),TZ (NRW,NCL) ,BDR (KR &, NCL)
SFVAL(TVA)= (NA*TVA+NB*TVB+NC*TVC+ND*TVD) /D2ZR
GZSE=GZS _
IF(I.GT.2) GC TO 1CC
IF(J.1T.1€.CF.3.G1.17) €C TG 10
G2SE=.C(C1*GZS
100 VSRE=SCE1T (GET (I,J)/EHC)
VS2P=SCR11GZ1(I,J)/RHEC)
FE=R (K) +VSEE*DT*INLR
ZE=Z (L) +VSZE*DTI*INTZ
NA= (RP-R (1I))*(ZB-2 {JJ))
§B=- (EE-E |II))*(2P-2 (KX))
NC=(BB-5 (11))*(ZE-2 (KK))
§D=- (RE-F (LI))* (2E-Z {JJ))
INLEAR=3
CALL NCLEFI(1V2,TVE,IVC,IVL,V,I,J,NEW,NCL
1,4EOW,NCCI, INLB,INLG,RN,INDPAR,CHM, R, NCT2M1)
VE=SEVAL (1V3)
INCB2R=1 .
CALL NCLEEI(TVA,TVB,1VC,1VD,TR,I,J,HNRW,NCL
1,NBC%,¥CCI,INLE,INLG,B5,INCPAR,CHM,R,NCT2H1)
TRE=SFVAL (1VA)
INCEAR=2
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CALLI NCLEEI{1V2,TVE,TVC,TVC,TZ,I,Jd,NBW,NCL

1,NEOW,NCCI, 1NCE,INCG,RN,INDPAR,CH, B, NCT241)
TZE=SFVAL (IVA)

INCEAR=4

CALL NCLEEI{1YVA,TVE,1VC,TIVD,PDR,I,J,NR%,NCL
1,NEC%,5CC1,INCE,INIG,BN,INCPAR,CN,B,NCT2H1)
EDEE=SFVAL({1Va)

EETCEN

ENL

BEECUTINE ERERGY

SUERCUTINE ENEEGY {(¥,N,ANCME,QNE, AMCM,O¥,LT,T,
1%CEK,XMI,11E,G¥R,TT2,G42,TRAVE, TZAVE,GMRAVE,
ZGMZAVE,¥RwM1,NCT2MZ,PEEHL,Ri0, VAVE,DVOL,ENKE,DISCKE,
3JEMCMP,ENCE,ESWCRK,ISLIP,RN,U0,12Z,R,
4NCTZM1,A,SIWCEK,NE®,NCL,U)

INTEGEE F)

TIMENSICN TEAVE(NEWM1,NCT2M2),TZAVE (NRWH1, NCT2M2),
1GMZAVE (NE&¥1,NCT2M2) ,GMEAVE (NRWM1, NCT242), DVOL (NCT2M2)
z,1SLIP (RK),UC {EN),1Z {NBR®,3¥CL) ,E{NCT2%1) ,A(BN)
3,U(NRW,NCI)

IF (M*N.§E.1) GC TC 100¢

CRCRR=.5% (AMCNI*CPE+AMCE*CH) *L1

CHSWCR=.5% { {~5E¥CME) *CHME+ (~EMCN) *CH) *LT

WOBRK=WCEK+LKCEK

ESWCEK=HSHCEE+LHSHCE

[ISCKE=.S#XNI* [CME*%2)

LO 163C I=Z,RN

IF(ISIIE(1).EC.0) GO TO 13430

CFIDIS={CME+CN)*E (2*I-1)*CT/2.

SLRCEK=SISCEK+ ((U(1,1)-UC(I))-LFTLIS)*T2 {1,I)*A(I)
CCNTINTE :

TMI1=T1-L1

CPEFHL=.5#( (ITR+TRAVE (M,N) )% (GXR-GMRAVE (4,N) )+
T(TTZ+TZAVE (M,N))* (CHZ-G¥ZAVE (¥,N))) *DVCL (N)

EEEEL=FEEFL+CPEPHL

CENKE=.S*FHC* (VAVE**Z) *TVOL (N)

ENRE<ENRE+LENKE

FETCEN
ENE

SCEBCUIINE EAEAE

SUEECUTINE PAEAB{EN,N,1XDEAR,PHIE,CH,R,NCT2M1,
1¥BW,NCL,EEI)

INTEGER E&

CIMENSICN E (NCTZM1),EHI (NRW,NCI)

A(E1)= (Y14 (EZ-EF3) +12#* (53-51) +Y3* (E1-R2)) /

T{(E1#%2) % (E2=83)+ (E2#*2) * (E3-K1) + (E3#*2) * (R1-R2))

E(R1)=(12~13-2(F1) % ({R2%%2) - (E3*%2)})/ {R2=R3)
C(R1)=Y1-2 (E1)* (R1%%2) =E (§1) *5 1
IF (N.EC.Z*EF) GC 1C 100
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IF (INCEAF.KE.1) GC TC 110

EHIE=0.

EETUEN

IF (INDERE.NE.3) 6C TG 115

EHIE=CM3E (Z*E})

EETCEN

IF (INDPAE.KE.S) GC TC 120

EHIF=PHI (1,EN) +.5% (EHI {1,RN)-BHI (1,BN-1))
FEETURN

E1=E (2%E5K-5)

EZ=E (2*E)-3)

E3=E {2*EA-1)

Y1=EHI (1,E5-2)

12=EBI (1,58-1)

13=PEI (1,EN)

EHIE=A(E1)% (5 (2*RN)*%2) +E {R1) *R (2*BN) +C (R1)
FETUEN

IF(INDEAE.NE.Z.ANL.INLPAR.NE.4) GG TGO 140
EBIE=0.

EETGEN

IF (INCP2F.NE.3) GG TC 145

EHIE=CH#E [Z*RN)

FETUSN

IF (IKDEAF.NE.S) GC TG 150

EHIE=PHI (1,58) +.5% (EHI (1,E5N) -EEI {1,BN=1))
RETUEN

E1=F (2*EX+1)

EZ=§ (2*REE+3)

E3=F (2%BK+E%)

Y1=BHI {1,EN+1)

Y2=EHI(1,iN+2)

¥3=CHI(1,E}+3)

EHIE=A (E1)* (E(2*RN)%#*2) +E (K1) *F (2%EN) +C (E1)
FETCEN

ENT
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