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NOMENCLATURE

Bingham plastic constant defined in Equation (3.2)

Coefficient of Sin"e in the periodic part of the
dimensionless temperature in the fluid

Area, as defined locally in Appendix B; Aou , area
through which heat flows out of an element; Aiy, area
through which heat flows into an element; Aw, area

of an element in the wall; Ap, area of an element in
the fluid; ft°.

Amplitude ratio; AR = JAZ & B2/e sr 5 AR, = JCZ & Dz/e V;W

dimensionless

Coefficient of Cos['6 in the periodic part of the dimen-
sionless temperature in the fluid

Coefficient of Sin["@ in the periodic part of the dimen-
sionless temperature in the wall

Fluid specific heat, BTU/lbm-°F
Wall specific heat, BTU/lbm—oF

Coefficient of Cos]jg in the periodic part of the dimen-
sionless temperature in the wall

Diameter of bob in Brookfield UL Adapter, cm
Inside tube diameter, ft

Test section voltage, volts

EU_TE)

Di 2g )’ dimensionless

Friction factor, hp/(
Local acceleration of gravity, ft/sec2

Grashof number, /9?7é;{T—1;)L%//lLZ , dimensionless

Fluid velocity head, ft of water

Test section current, amperes

Thermal conductivity; kf, fluid; kl, liquid; kg, solid;

k,, wall; kwire’ thermocouple wire

ix



Re

¥

Hydrodynamic entrance length, ft
Length of bob in Brookfield UL Adapter, cm
Rotational speed, rev/min

Slope of logarithmic plot of torque versus
rotational speed, N, dimensionless

Pressure, lbf/ftg

‘Prandtl number, ALCf/kf, dimensionless

Volumetric heat generation rate, BTU/ftB-hr
Mean volumetric heat generation rate, BTU/ftB-hr

Surface heat flux, BTU/ftg—hr

Fluid flow rate, ftB/sec

Dimensionless energy generation term defined following
Equation (3.6)

A specific radius; R., radius of a specific point in
the fluid; Ri’ insige tube radius; RO, outside tube
radius; Ry, radius of a specific point in the wall;
Ryire» radius of thermocouple wire, ft

pu*Di

M

Dimensionless radius, r*/Ri

Reynolds number, , dimensionless

Radius, ft

Radius at which yielding takes place in a Bingham plastic, ft
Ratio of bob to cylinder diameter of Brookfield UL Adapter
Specific gravity

Temperature; Te, fluid temperature; T
ature; TO, entrance temperature; T

1 initial temper-

> wall temperature;

Tyms Mmixed mean temperature, °F
Time, sec

Dimensionless fluid velocity, u*/Qu*
m

Fluid velocity, defined in Equation (3.3); u¥, average

fluid velocity; uﬁax maximum fluid velocity; ft/sec

X



x*

m o

A mEr >0 3

I\

—\1

Dimensionless axial distance

Axial distance, ft

Dummy variable, dimensionless

Dummy variable, dimensionless

Fluid thermal diffusivity, ftg/hr

Wall thermsl diffusivity, £t/hr

Dimensionless parameter, prf/pWCw

Temperature coefficient of volume expansion, l/OF
Dimensionless frequency, aﬁig/af

Dimensionless wall thickness, o . 1

Ri
Dimensionless maximum periodic heat generation amplitude,
defined in Eguation (A-1)
Volume fraction of solids in a suspension
Dimensionless time, t Qf/Rig
Dimensionless paremeter, aw/af
Fluid viscosity lbm/ft-sec
Bingham plastic viscosity, lbm/ft-sec
Dimensionless temperature (T-Ty)/(T/-T;)
%14
Fluid density, 1bm/ft5

Wall density, lbm/ft”

Shear stress, 7T _, yileld shear stress of Bingham
plastic; ‘Tﬁ’ shear stress at wall, lbf/fte’

Phase lag of temperature with respect to the heat gener-
ation funection; ¢f, phase lag of the periodic dimension-
less temperature in the fluid; ¢W, phase lag of the
periodic dimensionless temperature in the wall; radians

Potential function, fto/hr

xi
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Ver

Pow
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Pw

(T“To)Kf
9, Ri®
Dimensionless fluid temperature

Dimensionless temperature

Dimensionless mixed mean temperature
Dimensionless wall temperature
Periodic part ofSﬂ%

Periodic part ofyyw

Steady part of V/f

Steady part of ij
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CHAPTER I

INTRODUCTION

Interest in heat transfer to slurries has been stimulated by
the increasing emergence of non-Newtonian fluids as important raw
materials and products in a large variety of industrial processes. With
the advent of the homogeneous nuclear reactor employing the suspensions
of uranium oxide or thorium oxide in heavy or light water as a reactor
fuel, there has been research activity in steady heat transfer to slurries
with internal heat generation. Slurries containing high concentrations
of oxide tend to behave as Bingham plastics. Since the velocity at
which the transition from laminar to turbulent flow occurs is rather
high and erosion and corrosion become serious problems at high velocity
in a typical slurry(l), heat transfer to Bingham plastics in laminar
flow is studied, despite the advantage of the high heat transfer co-
efficients realized in turbulent flow.

Poppendiek(e) has studied the fully-developed heat transfer
both in laminar and turbulent flows of a Newtonian fluid through circular
pipes with internal heat generation. Analytical solutions are given for
the temperatures of liquid metals and ordinary fluids. Fluid temperature
measurements, which are obtained in an experimental system with electri-
cally generated internal heat sources, are compared with predicted

(3) has analyzed the fully-developed laminar heat

values. Grigull
transfer to non-Newtonian fluids flowing through a circular tube.

Sparrow and Siegel(u) have made an analysis to determine heat transfer



characteristics for the laminar flow of a heat generating fluid in a
circular tube with heat transfer. Internal heat generation is permitted
to vary in an arbitrary manner both longitudinally along the tube and
radially across the section, and longitudinal variations in wall héat

(5)

transfer are present. Tachibana and Morishita have experimentally

investigated heat transfer in a slurry (consisting of distilled water
and alumina) flowing through a circular tube. The experimental data was
correlated by an equation similar to Dittus-Boelter's equation for
Newtonian fluids. Schechter and Wissler(l) have extended the work of
Sparrow and Siegel to include Bingham plastics, but only the case of an
insulated wall has been treated. Michiyoshi, et g£.<6’7) have further
extended Schechter and Wissler's analysis to the case in which the tube
wall is subjected to a heat flux. Solutions are given for both the
entrance region and the fully-developed region. Ayers(8) has investi=-
gated the transient heat transfer from the wall with timewisely sinusoidal
internal heat generation to the laminar flow of a Newtonian fluid in a
circular tube. The asymptotic solutions are obtained by means of numeri-
cal computations.

While steady heat transfer problems in slurries with internal
heat generation have been fairly well treated, less is known about its
transient behavior. This work investigates heat transfer to a laminar
tube flow of a Bingham plastic with transient internal heat generation
and inlet temperature. The nature of the disturbances is step and
sinusoidal, with respect to time. An approximate solution is obtained

by numerical methods using a set of finite difference equations derived



from the energy equations for the fluid and the wall. Both the fluid
and the wall temperatures are functions of radial and axial distances
as well as time. The experimental work includes the measurement of
velocity and temperature distributions. The experimental results are
in good agreement with theoretical predictions. The heat exchangers to
which this analysis apply include the homogeneous nuclear reactor and a

chemical reactor in which an exothermic reaction occurs.



CHAPTER TT

BINGHAM-PLASTIC FLUIDS

Real fluids may be divided into two main classes: Newtonian
and non—Newtonian fluids. According to Newton's law of viscosity a
plot of shear-stress versus shear-rate for a given fluid is a straight
line through the origin: i.e., the viscosity 1s a constant at a given
temperature and pressure. Non-Newtonian fluids are those in which the
viscosity at a given temperature and pressure is a function of the shear-
rate. This classification includes quite a few industrially important
materials such as colloidal suspensions.

Non-Newtonian fluids may be further classified according to
the variation of the viscosity with the rate of shear. The shear-stress-
shear-rate diagram is presented in Figure 1 for various non-Newtonian
fluids. The Bingham plastic, or ideal plastic, has a linear relationship
between shear-stress and rate of shear, once it has been deformed. The

relation may be written as

T = -——uggi (2.1)

where 7;4 is the yield stress, the amount of shearing stress the Bingham
plastic can withstand before deformation. The so called "real plastic”
has a constant viscosity at fairly high shear rate. The flow of a
pseudoplastic may be described as shear-thinning and that of a dilatant

as shear-thickening.
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Colloidal slurries of solids in liquids have been found to be
non-Newtonian by many investigators(l9). Through surface-attractive
forces the finely divided particles dispersed in the liquid are able
to exert a strong influence on the mechanical properties of the material
as a whole, when the particles are sufficiently small or sufficiently
close together. In aqueous slurries of uranium oxide and thorium oxide
this colloidal behavior gives rise to a definite yield stress below which

(28)

the fluid will not deform Thus, the Bingham plastic model has been

used to describe its rheological behavior.

(25)

Experiments
. et
T,= k7 U =p e
and for Tho2

¢

3 K
@: &n uezue

show that for an aqueous slurry of U02

where 7? = volume fraction of solids in the suspension
LL = viscosity of water
Ki, KE’ K5’ KM = experimental constants which depend upon partical size.

For a 1.4 micron particle size of er or ThO2

2

K = 150 1p/ft kK, = 1.8
- 5 -

Ky = 60 1b/ft K, = 0.8

Sufficiently small solid particles will diffuse throughout the
liquid due to their Brownian motion}in a normal gravity field, and such
dispersions are referred to as sols. For example, in aqueous solutions
the Th02 particles in a sol are less than 0.05 mierons, while particles

whose specific gravity is near unity may be as large as 0.5 microns<25)o



- =

When small particles coalesce to form loose, relatively
independent clusters of particles, they are referred to as floes and
may exhibit increased settling rates (although flocs of ThO2 have
hindered settling rates 10-50 times those expected for unfloceulated
slurries(QS)). Either suspensions of flocs or particles which are large
enough to settle are referred to as slurries and often exhibit colloidal
properties(25).

The thermodynamically stable condition of lyophobic sols is a
flocculated state, but electrostatic forces produced by ions which collect
on the surface of the particles cause mutual replusion, inhibiting the
formation of flocs and reducing settling rates. Flocs also can acquire
an electrostatic charge which results in hindered settling(EB). This
effect may be intensified by the addition of an electrolyte to the slurry
as suggested by the reduced yield stresses in a ’I‘hO2 slurry due to the
addition of oxalic acid(29).

For a given liquid and solid phase the two most important
variables which affect settling rates and fluid yield stress are concen-
tration and particle size. Tests indicate that the settling rate decreases
exponentially with increasing concentration(25) and yield stress is
inversely proportional to the particle size(28>. Either increased con-

centration or decreased particle size will result in both reduced

settling rates and higher yield stresses.



CHAPTER IIT

ANALYSIS

The physical system to be studied consists of an insulated
horizontal tube through which a Bingham-plastic flows steadily with
internal heat generation (see Figure 2). Heat generated in the fluid
is uniform spatially but may vary in either a step-wise or sinusoidal
manner with respect to time. Temperatures in both the fluid and wall
are cqnsidered to be functions of radial distance, axial distance, and
time. Since the steady solution has already been obtained by Michiyoshi,
(7) for both prescribed uniform wall heat flux and uniform wall
temperature, and insulated outer tube wall is considered in the model.
Due to the linearity in the differential equations of the system, the
principle of super-position may be applied to obtain the solutions for
the system with more complicated boundary conditions such as a specified
wall heat flux.

Since the Bingham plastic has a yield stress "Ty”, the fully-

developed laminar velocity distribution will exhibit a "plug' in the center

in which the velocity will be a constant. If the radius of the plug is =r

¥
%
T r *
— = Ri»zIr 2r - 3.1
= = % L y ) (3.1)
and
T} e
_7 - 2 - (3.2)
Tw R
Then Equations (2.1) and (3.2) yield the velocity distribution. For
¥
OS ﬁ]-_-i a
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2
X K ?; ‘1-CLJ
U—* (rx) - ,LLB Soa (3.38)
and for a < Ei <1
— Ri x P*— 2
u*(r\*) — RLlL/, 1-2a + 2a R1 —( R_L) (3.%0)
/-LB 2

The velocity profiles are illustrated graphically in Figure 3 for several

values of 'a', Also, by defining the mean velocity to be
* 1 R
X * *
Usw = =5 | WHr) 2 r*dr
m 77’&22 : (

and applying Equation (3%.3), one finds

” Ug /12 o«

In the formulation of the problem the following assumptions
are made:

a) The fluid is a Bingham plastic and flows in an incompress-
ible, fully-developed, laminar, steady manner. This assumption is valid
if an entrance length of the order L. 2 0.035 D Re 1is allowed,(eo)

Re < 2300, and there is no time variation of the axial pressure gradient
in the fluid.

b) Axial conduction of heat in the fluid and wall are negli=-
gible. When the Peclet number (Re Pr), which represents the ratio of
energy transport by enthalpy flux to that by heat conduction, is greater
than 100 this assumption is valid.(eu)

¢) The physical properties of the fluid and wall are independent

of temperature. ¥Fluid viscosity, however, is known to be quite sensitive
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Figure 5. Velocity Profiles for Various Values of
the Bingham Plastic Constant a .
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to temperature. Thus, a large temperature gradient across the tube
can lead to a considerable distortion of the velocity profile due to
a radial viscosity gradient.

d) The velocity and temperature are symmetric about the axis
of the tube. TFree convection can invalidate this assumption at low
Reynolds number when there is a large radial temperature gradient. The
buoyant forces associated with free convection can cause a secondary flow
which increases the temperature at the top of the tube and decreases it
at the bottom of the tube. This secondary flow also may cause a mixing
of the fluild which raises the centerline temperature above the predicted

value while lowering the average wall temperature.

Any settling of solids suspended in the fluid will cause the velocity
distribution to be distorted due to a viscosity gradient. The velocity
will decrease at the bottom of the tube and increase at the top of the
tube.

With the assumptions, the application of the first law of
thermodynamics to the system shown in Figure 2 yields the following
partial differential equations for temperature in the fluid and wall.
The veloecity distribution u(r) is given by Equation (%.3). (Details
of the derivation are given in Appendix A).

Fluid (0<r<1)

2 % | 2% "

2%

e tUrlsE S A SE t & )
Ro
Well (1 <r<z7)
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0 for step disturbance in inlet fluid temperature
where Q" = 1 for step disturbance in internal heat generation
€ Eﬂ%f79 for sinusoidal disturbance in internal heat generation

The boundary conditions to be satisfied are

Ve[ x,0,r] = 0 (initial)
Yelo6,r) = 0 (entrance)
2hior s
Ye(1,6,1) = Fulx 0,1] (fluid-wall interface)
%—7;/"—“ [X,6,1] = (adisbatic wall)

A. Step-Response to Inlet Fluid Temperature and Internal Heat Generation

The step response in fluid and wall temperatures is studied for
two cases:

Case 1. The inlet fluid temperature remains constant,
and energy generation is suddenly started in
the fluid.

Case 2. The fluid has no energy generation, but the inlet
fluid temperature is suddenly raised to a new level
and maintained there.

For a step disturbance in inlet fluid temperature the dimension-

T - T,
less temperature symbol Wf is replaced by gf = E_———El + The equation
o~ -1

for the fluid then becomes

D& + ur] b _ ¥,

> (3.7)



-1k

The equation for the wall remains the same, but the entrance boundary
condition is changed to

§€(0,9)r) = 1
These changes are so minor that it is unnecessary to treat Case 1 and
Case 2 as two distinet problems. Instead, Case 1 is considered below,

and important differences between Case 1 and Case 2 are noted.

1. TFinite Difference Equations

To solve the wall and fluid equations a radially and
axially divided grid is constructed as shown in Figure 4. All deriva-
tives in Equations (3.5) and (3.6) are approximated by finite differences
involving the wvariables of surrounding points. The resulting equations
are solved using numerical methods on the IBM 7090 digital computer.

The finite difference approximations to Equations (3.5) and
(%3.6) appear in Table I. (Full details are given in Appendix B).
Because the coefficients of the variables in the finite difference
equations of Table I form a square 3(M + N + 1) tridiagonal matrix,
where M and N are the fluid and wall divisions, respectively, the
method of Gaussian Elimination can be used for their solution. Tﬁus,
an explicit method is used in the axial direction, while an implicit
method is used in the radial and time directions. This is implemented
by solving for the varlables at the first axial location with Gaussian
Flimination. The axial dimension is incremented and the process con=-
tinued until the desired axial distance is reached.

2. Computer Solution

Computer program A, presented in Appendix E, is used to

solve the finite difference equations of Table I on the IBM 7090 digital
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Radial and Axial Grid Used in Finite Difference Equations.

Figure b,



-16-

‘7 xtpusaddy UT USATS ST 8TQqe3 UT pasn agngeTouswou wesSodd xoqndwod SSOTUOTSUSWI] x

Neve _
(04 3318 =
2 Q Weve 2 Q
(W)A Tﬂ-s + =)V + g + (T-WA (= W+=)V - TTeM
DGR t n spISINO (WA ()M o
ov (=2 +7)gz 28
.NIMIMMH (TH)A FE + H v -
It
Q v £ +T7)Q2 Q
(M)A A.mlu c + IH.V + (T-M)A S = -2 vV - TTeM "
2V M TeIoUDY DA (L™ P
N W 6 - N2 g d_d
Ma T+ T+~ OrE+R) v - -
g g8 2 N HE, 6V 2 SoBFA93UL (A (£L0) st
(M)s [F+R)v+ (T -N) +(T+73) 1|+ (IN)s (F - N)- TTeM-PINTS (N)s (£'N)" @
T ev Ie
T+ (I)n (I)13A 3 + i = (T+TI)s (7 + T)N- ‘
T eV
(1)s Amzm + QE@M +lﬁ..v + (1 = 1I)8 AHlﬁm - 1) A= pPINT A I
TeI2USY (I)s (r‘r)”s  -a
T ev T v A
T + (0)0 XVWA 5 + IO (T)s A - (0)s (GNft + 3 XVHA + =) SUTTIBIUIY (0)s (r0)¥p °=®
UoT3ENDY S0UaJI3IIT(J UoT4e007] coapdpoz, *qaoung ‘ubqyg
Jsqnduwoy .

5 SNOIIVNDE EONEMEAAIQ TIINTL ASNOISTY JEIS NOILVMENTD XOWANT TYNMEINI

L JIEVL



-17-

computer. The Program is written in the Michigan Algorithm Decoder
Language. The Gaussian Elimination method used in the radial and time
directions applies only to the solution of a tridiagonal matrix as would
be produced by the set of equations below; where 8> by» and c, are

coefficients of the variables Yp» end d, 1s a constant.
l%jﬂ'+ C>§§ = 4

WY, Hnd, + G Y, = 4 (3.8)

A, +hs 43 +C3 4,4 = %

Loy Yy t iy I oy

The variables; yn, of the above system of equations can be
found directly. Multiply the first equation by -za.e/b:L and add it to
the second equation. The second equation is replaced by this resulting
equation in which the coefficient of ¥y is zero. DNext, the third
equation is replaced by the result of adding to it the second equation
multiplied by 'aB/bE‘ This menipulation eliminates the variable y,
from the third equation. The process is continued until every equation,
except the last, contains only two unknowns. The last equation will
contain only one unknown, making the value of MY directly available.
By back substituting the value of Iy into the M-1 equation, whose
only unknowns are Y and YM-1 2 the value of V-1 can be found.

Thus, by continuing the back substitution process the entire system of
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equations is resolved. When made suitable for automatic machines, the

(26)

algorithm for Gaussian Elimination is given by

Yy = In ,

4 = 7& — C‘—g”-l i=M1, M-2, ... 1

8.
where ;f and }9 are determined by

/31:/6'1 ) 71’%

1z

o a; Cig .
/é% = Aé'{ - jZZTj;— . 1=2,3, ... M

C[i - & ?2-_1
B,

7¢=

e
]

2’ 5, a8 M

This method is unconditionally stable if the equations are
consistent. In practical applications this will always be the case,
since each equation will contain a unique set of unknowns not repeated
in any other equation. However, considerable roundoff error can
accumulate because of the large number of arithmetic operations involved.
Therefore, it 1s necessary to check the final result. The transient
solution should converge to the same steady-state solution already

(7)

obtained by Michiyoshi in closed form. If it converges to the
correct steady-state value, the solution can be assumed to be accurate

at all values of time.

B. ©Steady and Steady-Periodic Solutions to Internal Heat Generation

The term "steady-periodic' means that although the temperature

varies periodically with time, the effects of an initial time condition
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are no longer present. Thus, if a disturbance in the system varies

periodically with respect to time, so the temperature will also vary

periocdically with a frequency equal to that of the disturbance.
Because the governing equations and associated boundary con-

ditions are linear, the solution may be divided into two portions:

one a steady solution and the other a steady-periodic solution. The

method of handling the steady-periodic solution is similar to that

(8)

used by Ayers .

Fluid
Yelx0,r) = Yaelxr) + Welx,0,r) (3.10)
Wall

LI/W(X)Q) *AJ= k{')sw(x/’“) + L’JP\«/‘X)Q)I“) (3.11)

Substitution of Equations (3.10) and (3.11) into (3.8) and (3.9), respec-
tively, and separating the steady and steady-periodic portions yields the

following equations.

Fluid
‘.‘J 2
> Yo e EXi
o Try _ L / P{
< *U‘P)gx “Ste e +€ Sl (3.13)
Wall
<2
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DZWwa :A(bZkPPw "

26 onN* r or I

(3.15)

The boundary conditions are

Yselo,r] = — Frelo,0,r) = 0

dWse(x0] D %ﬁ(X/QO)
or - Dr

L/JSF(M) - qéw{x’l) N L'L/}%C(X/Q)l) - %W( X/le) = 0

=0

Wow(x 0, Rrr) o dYhw(X 6 Rosri] _

or yr = 0

Because a steady-periodic solution is being sought, valid as
© approaches infinity, and because the energy generation rate is
sinusoidal, q_(1 +€ Sin ['© ), it can be assumed that the fluid and

wall temperatures will also be sinusoidal. Thus it is assumed

7

SUP = [/-\Z(X/r‘) + BZ(X)I“” S.‘n{Fe—ng) (3.16)
2

Po - [cﬁx,r) n DZ(X,P)] Sin| T6-6,) (5.17)

b= Tan [R5 4= T[22
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By defining the amplitude ratio as the amplitude of the
steady periodic temperature divided by the temperature resulting from

an infinitely long period (r1ﬁ>0) , the following definitions are

derived.
AZ4— BZ
Re= .18
) W/CTZJ- 2
ARw = W (3.19)

Then, the temperature response for the fluid and wall can be expressed

as follows:

Ve = %4:(1 + € AR; Sin(PO —gb{)) (3.20)

Y, - L{sz(l + € ARy, Sin[To- 45w)) (3.21)

It may be .noted that the functions ARf, AR, ¢f and _¢W: are functions

of x and r .

l. Finite difference equations

The solution for the steady temperature distribution is
obtained by applying finite differences to Equations (3.12) and (3.1L4)
and solving the resulting equations on the IBM 7090 digital computer.
Similarly, the steady-periodic temperature distribution is obtained.
Eguations (3.16) and (3.17) are applied to Equations (3.13) and (3.15),
respectively, before they are written in finite difference form. For

example, substituting Equation (%3.16) into (3.13) results in
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AT CosTe — BT S0+ u[r][2A Siul™@ + 28 Cos 8

(3.22)
_[22A | DA’ | )B) .
— — o |
—+t— Farcsﬁ9+€3ﬂm

Br‘l roor,

%R

BP’+

Simle +

Because Equation (3%.22) is valid for all values of time, it
can be divided into two equations. One equation corresponds to the sum
of all the terms with Sin['© coefficients, and the other corresponds
to the sum of all the terms with Cos['©@ coefficients. In this way

the following equations are obtained.

OB _ 2*B | 9B

Al +U~(‘“) SX - Spz +_/“ S (3.23)
%A oA

Bl +a(r)g§‘( =SSt sh € (3.24)

Similarly the equations for the wall coefficients C and D can be
obtained by combining Equations (3.15) and (3.17) and separating the

result into its Sin[’© and Cos "6 components. The process yields

BZD | BD) o
["C =\ N,z ~ 5P (3.25)
s Bc) s s

To solve the wall and fluld equations all derivatives are
approximated by finite differences involving the variables of surrounding
points. The finite difference equations for the fluid and wall are pre-

sented 1n Appendix B and the results given in Table II. These finite
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difference equations compose a set of simultaneous linear algebraic
equations whose coefficients form a square 3(M + N + 1) matrix,
where M and N are the wall and fluid grid divisions, respectively.
An implicit method of solution is used in the radial direction,
while an explicit method is employed in the axisl direction. This
permits use of an iterative technique by reducing the number of vari-
ables to be solved for at any one time to those present at one axial
location. Starting at the first axial location, all variables are
solved for by means of the Gauss-Seldel iterative method until converg-
ence is achieved. Then the axial dimension is incremented and the
variables solved for at the new axial location. This process is con-
tinued as far down the tube as desired.

2. Computer solution

The computer program used to solve the set of equations in
Table II i1s presented in Appendix E, and is based on one developed by
Ayers(B). This program is written in the Michigan Algorithm Decoder
Language for use on the IBM 7090 digital computer. The flow diagram
also given in Appendix E schematically describes the order of computa-
tion used.

Stability tests are automatically made to insure convergence
for a particular set of data. If stability is not assured, the data is
rejected and the next set of data is read. For the Gauss-Seidel itera-
tive method, a sufficient condition for convergence requires that the
absolute value of the element on the main-diagonal of the matrix, con-

structed by the coefficients of the variables, be greater than or equal
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TABLE II

STEADY-PERTODIC FINITE DIFFERENCE EQUATIONS*

Computer
Egn, Function Notation Location Difference Equation
a. ¢ s(0) Centerline s(o) = W 5(1) + P/L VMAX U(0) + 1
st P/L TMAX + 4P
v, A0,3)  A(0) Centerline  A(0) = i A(1) + P/L VX B(0) + [ B(0) +
’ WP+ B/L TMAX
c. B(0,J) B(0) Centerline B(0) = b B(1) + P/L VMAX F(0) - T A(0)
e + /L VMK
Me(1+ ) 8(141) + ¥P(1- &) S(I-1) + § VEL(T) + 1
d.  Uge(T,3) 8(T) General s(I) =
Fluid aF + P/L VEL(I)
e,  A(LT) AT g]e-ngéal Ao NP(1+ £0) A(TH) + W(1- L5) A(Z-1)+F VEL(I) E(T) + IB(I) + ¢
UL =
2N + P/L VEL(I)
£, B(1,7) B(I) General - N2(1+ ;—I) B(141) + 1P(1- 2) B(1-1) +£-VEL(I) F(I) - TA(T)
Fluid B(I) =
2 + P/L VEL(I)
g, Ugp(N,3) S(N)  Fluid-Well P+ 55 8(141) + P(1- 57) 8(I-1) + § VEL(T) + 1
wsw(o,J) v(0) Interface S(1) = v(0) =
2 + P/L VEL(I)
RS D BT o - 0 DEWA0) 15 G H00)D0)
F(E%M + E%)
toBLD B IARll ) - b(o) - T3 08 ¥ 1/2) [O(1)-C(O)] + (- 1/2) [AGAWRL)] - ¢/2N
’ r(s/2BM + 1/2N)
3. wsw(K’J) s(N) General
Wall ¥ = S()
,ook,3)  o(x a 1 2
£ G0 el Woll o(x) = & ﬁz . T P8k - == =5 D(K) +M% + Mm D(K-1)
r|s 28(1+ i) ris 28(1+ gr)
1. 0(x,J) D(K) General M M 2A M
wirllir D(K) = - % {5—2*’ _——25(1+ ﬁ—a)} C(k+l) + T g2 C(X)
_A ﬁ - M C(X-1
r {52 28(1+ M-Ks ) (&-2)
e C(4,9)  cQ0) Quter ) = ZAQY0 2 0.5)(0() - DOE-1))
r 35 (1+8)
2. dM3)  D(W e o) o AQYE + Mo 0.5)(C00) - c(t-1)

r %71 (1+8)

*Dimensionless computer program nomenclature used in teble is given in Appendix E.
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to the sum of the absolute values of all the other elements in the same

(26).

row Thus, for the i-th row:
3(M+N+1)
lagg % Z,Qiil (3.27)
=1
J# ¢

The strict inequality must hold for at least one row. The stability
requirements given in Table III can be determined directly from the equa-
tions in Table II. Inspection reveals that the equations corresponding
to the steady solution are always stable. Inequalities 4, e, and f
are the most strict and are tested by the computer program. First,
inequality d 1is tested at location ©N-1 where it is most severe.

If it is not satisfied, the quantity P/L is increased until convergence
is assured. An upper limit is put on P/L 80 that excessive computer
time will not be required. Second, inequalities e and f are tested.
If they are not satisfied, the data is rejected and the next set of data
is read.

Once stability is assured and iteration of the difference equa-
tions has begun, it is necessary to test for convergence after each
iteration. Each variable is tested to see how rapidly it is changing
with each successive iteration. For example, the variable S(I) 1is
stored in location E(I) prior to each iteration. After each iteration

of the wall and fluid difference equations, the following test is made.

2] - El1]
st)(z)E } < ALPHA .28
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TABLE III

STEADY-PERIODIC STABILITY REQUIREMENTS*

Inequality Equation Reguirement
a. Steady 1> LN°
Centerline TR o+ %VMAX
b. Periodic UN° + T
: 1> =
Centerline = LN + P vMAX
L
c. Steady oNe
General 1> 5> P
Fluid 2N= + L VMAX
d. Periodic 2
+
General 1> 24 P L
Fluid 2N% + T VEL(I)
e. Pericdic o(N - L) +2 4 (M4 1)
, 2 'S 7
Fluid-Wall 1>
Interface B r(z & + L)
B2M 2N
£, Periodic AAME
General 1> ==
Wall I's
g. Periodic 2/\(M + M - -1-)
o) 2
Outer 1> S
[ = +
Wall o (1 + 5)

¥ Dimensionless computer program nomenclature used in table
is given in Appendix E.
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The size of the parameter ALPHA controls the degree of
convergence attained during the iteration process at each axial location.
Errors resulting from incomplete convergence of the solution will
influence the accuracy of the solution at the next axial location.
Although the error may be small at the first axial location, the error
will propagate in the axial direction and may become excessive. By
varying the magnitude of ALPHA, it was found that a value of 0.001 was
quite satisfactory. Decreasing ALPHA to 0.0001 resulted in a maximum
change in the solution of 0.0025 per cent after 150 axial nodal points.

When the convergence test similar to that given in Equation
(3.28) is passed for all variables, the iteration process is ended.

The program then continues to do other calculations before going on to
the next axial location. The closer the initial guess is to the true
value of the variables, and the further the inequalities (Table III)
are from being equal, the faster the solution will converge. An upper
limit of 100 is placed on the number of iterations, so that unnecessary

computer time will not be used.

C. Heat Transfer Computations

The temperature gradient in the fluid or wall at the fluid-
wall interface is important to any heat transfer problem. For the steady
periodic solution, the wall gradient is evaluated at m/6 time intervals

according to the equation

DY
?dr

- N[(A[N)—A(N—l))SmF@ +(B{N)—B{N-1))cosF9J (3.29)

r=1



-28-

In the step response solution both the fluid and wall gradients

were evaluated according to Equations (3.30) and (3.31) respectively.

Batp 1 N(S(N) —S(N'l)) (3.50)
D Pw M )
20 lpeg ?(VM V(O)) (3.31)

To achieve accurate values for the temperature gradients at the wall, a
very fine grid was necessary. This is often the case when using a finite
difference technique, because the fluid and wall temperatures change
very rapidly near the fluid-wall interface.

The mixed mesn temperature as defined by Equation (3.32) is
also evaluated.

[
£.Ce To uM[r) ride*
_ 2T » AR ) (3.52)

Tww = .
21 [ g, o w) dr*

Using dimensionless parameters and expressing the integrals over the two
velocity regimes of a Bingham plastic yields the following result for

the steady-periodic solution.

@ 1
[(1—0-)2 % PJr +j0;(1—20~ +2ar~r"‘)%rJr

— T (3.33)
f{ 1—61) rdr +f(1-2ou—2ar‘—r‘l) rdr
(] o~

44n7% =

Using finite differences this becomes
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Vom v :[(1‘QJ28;1V2(5(O)+A(0) sin[6 +B{0)Cosr9)
Ir=[aN]
+Z{1—c¢)27\§;(5(1) +Alz) Sl + Blr|Coslo

- .
+Z (( 1-20) L, +2a_-A§_2--/§-I)(s(z) + Alz) Sinl®

I=[aN]+1

+5(I)cosr9)J / | &+;ja*3)

(5.33)

The equation for the mixed mean temperature, as it applies
to the step response, can be obtained by dropping all terms in Equa-

tion (%.3%) which have a Sin['@ or Cos['@ coefficient.



CHAPTER IV

NUMERICAL RESULTS

The IBM 7090 digital computer, located at the University of
Michigaen Computing Center, was used to run the computer progreams given
in Appendix E. In order to conserve computer time, most runs were
made using the physical constants ﬁg ) _/\ and E; which applied
to a 25 per cent sulfuric acid solution, with and without fine alumina
particles, flowing through a polyvinylchloride tube of the size used
in the experiment described in Chapter IV. The parameter '‘a' defined
in Equation (3.2),which describes the velocity profile of a Bingham
plastic, was varied over the range O. «— 1. to study the effect of a
Bingham plastic on the temperature distribution. The numerical results
are presented in four parts: steady, internal energy generation step
response, inlet temperature step response, and steady periodic response.
The truncation error inherent to the finite difference technique is

discussed in Appendix B.

A. ©Steady Solution

The steady solution gives the temperature distribution in
the fluid as a function of x, r, and a. Volumetrically uniform
energy 1s generated in the fluid, and the outer tube wall is insulated.
Because the temperature is time-steady and the outer wall is insulated,
the tube wall has a uniform radial temperature equal to the temperature

of the fluid-wall interface.

-30-
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Figure 5 gives the steady temperature distribution in the
fluid as a function of radial distance for various values of x ; the
Bingham plastic constant 'a' equals 0.25. It can be seen that the
radial temperature profiles are continuing to develop at x = .0l.
Michiyoshi<7) has shown that this development will continue until
X = .30, after which both the centerline and wall temperatures will
increase linearly with respect to x .

Figure 6 gives the steady-wall and centerline temperatures
as a function of axial distance for various values of the Bingham
pPlastic constant 'a'. Even for very small values of x the center-
line temperature increases linearly with respect to x. However, the
wall temperature still is increasing non-linearly at x = .0l.

Figure 7 illustrates how decreasing the value of 'a' increases
the centerline-to-wall temperature difference. This increase is due to
the higher velocity present at the center of the tube when 'a' is small.
The effect of an increase in 'a' is much more pronounced at large values of
the parameter. For example, there is a considerably greater difference
between the lines a = 0,50 and a = 0.75 than there 1s between the
lines a = 0.0 and a = 0.25. The radius of the plug portion in the
fluid velocity profile is proportional to ‘'a', making the area of the
plug proporticnal to aE. This squared relation accounts for the
increased effect of 'a' on the temperature profile as the parameter

becomes larger.
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B. Internal Energy Generation Step Response

Program A, shown in Appendix E, was used to evaluate the
transient temperature response of the fluid-tube system due to the
sudden starting of internal energy generation in the fluid. The fluid
and wall temperatures are functions of § ,X ,A ,/\, a, and r. At
large values of time, the solutions obtained from the step response
were found to agree with those obtained from the steady portion of
the steady-periodic solution, and the analytical solution given by
Michiyoshi 7).

Figure 8 gives the transient centerline fluid temperature
as a function of axial distance and time. At small values of time and
large values of x, there is no x-direction temperature variation.
This is because the enthalpy flux, which started at location x = O
when © = 0, has not yet traveled sufficiently far down the tube.

The characteristic time required for the enthalpy flux to reach a
given location is x/u.

The development with time of the radial temperature profiles
in the fluid and tube wall can be seen in Figure 9. The equality of
heat fluxes at the fluid-wall interface requires that the slopes of
fluid and wall temperatures at the interface be of the same sign and

is expressed as

el _ A >t
0 B or

Inspection of the curves in Figure 9 reveals that the derivative of

(4.1)

the fluid temperature, with respect to radius, experiences a very

rapid change near the interface. This change of derivative appears
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Figure 8. Step Response of Centerline Fluid Temperature
versus Axial Distance.
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to be less drastic at smaller values of time. Evaluation of the radial
temperature gradient of the fluid at the wall would require an
extremely small grid size. Therefore, it was found more practical to
evaluate the radial gradient of the wall temperature and relate it to
the fluid gradient by means of Equation (4.1).

An increase in the Bingham plastic constant, 'a', yields a
faster transient response of the fluild-tube system. Figure 10 indicates
that the fluid-wall interface would reach steady state nearly twice as
fast for plug flow (a = 1.0) as for parabolic flow (a = 0.0). This
is due to the greater velocity present near the tube wall associated
with an increase in 'a' for a constant mass flow rate.

The radial fluid temperature gradient as & function of time
is displayed in Figure 11. At zero time, it is equal to zero since the
fluid and wall are the same initial temperature. As time increases,
the temperature gradient goes through a maximum before decreasing
again towards zero as steady state is approached. At infinite time,

a zero fluid-wall temperature gradient is required because of the
insulated outer tube wall.

A few computer runs were made to determine the effect of the
fluid and wall material properties upon the transient temperature
response of the fluid-tube system. The increasing importance of the
wall to fluid thermal diffusivity ratio,_/\, as the fluid-wall heat
capacity ratio, M , 1s decreased is apparent in Figure 12. A high
thermal diffusivity in the tube wall, large JAL, has a greater
retarding effect on the fluid-wall interface temperature as the wall

thickness is increased, M decreased. Heat conduction in the tube
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Figure 11. Response of Fluid Temperature Gradient at Fluid-Wall
Interface Due to Step in Energy Generation.
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wall results in a more uniform wall temperature response, retarding
the fluid-wall interface response and increasing the outer-wall

response. Greatly reducing the fluild volume or increasing the wall
thickness, M approaches zero, would result in an infinitely long

response time.

C. Inlet Temperature Step Response

A slight change in the data used in Computer Program A in
Appendix E will enable the program to be used for the temperature
response of a fluid-tube system in which there is no internal energy
generation, but whose fluid inlet temperature is suddenly raised to
some new value and held there. If, in the input data, Q is put
equal to 0.0 and INLET is put equal to 1.0, the inlet-temperature
step response may be studied. The fluid and wall temperatures are
functions of §, X , 8 ,/\, a, and r.

The temperature response resulting from a step increase in
the inlet fluid temperature is displayed in Figures 1% and 1hk. As
noted from Figure 14, for a = 0.5, the centerline response lags
that for a = 0.0, while the wall response leads. This difference
results from the change in enthalpy flux due to the decreased center-
line velocity and increased velocity near the wall as 'a' is increased.

The radial fluid-temperature gradient evaluated at the tube
wall is displayed in Figure 15. Initially the gradient is zero because
the fluid-tube system is at a uniform temperature. When the enthalpy
flux resulting from the increase in inlet temperature reaches a given

axial location, the gradient increases, goes through a maximum, and
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decreases towards zero as steady state is approached. The peak

value of the temperature gradient decreases with axial distance
because some cooling of the fluid has taken place due to heat transfer
from the fluid to the tube wall. An increase in the Bingham plastic
constant raises the peak value of the fluid-temperature gradient. The
greater heat flux due to the increased gradient is the factor which
causes the more rapid temperature rise of the fluid-wall interface

for larger values of 'a', as shown in Figure 16.

D. ©Steady-Periodic Solution to Internal Heat Generation

The steady-periodic solution gives the temperature distribu-
tion in the fluid and wall dvue to sinusoidal internal energy generation,
dy € Sinf’@, in the fluid. Quantities considered are the amplitude

VA*+ B? .
= ErTF———, and the phase angel, ¢. The steady-periodic
St

solution is a function of §,["X,€ , B, /A, a, and r.

ratio, AR

A resonance phenomenon is evident in Figures 17 and 18
which display the amplitude ratio and phase shift, respectively, versus
axial distance times frequency. This resonance phenomenon is known to
be characteristic of distributed parameter systems under distributed
disturbances(lg), As rix increases, the amplitude ratio decreases;
and the phase lag tends toward =/2.

Consideration of a simplified form of Equation (3.13), which
assumes plug flow and neglects the effect of the tube wall, reveals

some interesting results. The simplified equation becomes

75#% ‘ / :5k#% _ ‘ (k.2)
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The boundary conditions are
‘]Uf (X,0) = © (initial)

¥.0,0)

After solving Equation (4.2) and considering only that portion

|
(@]

(entrance)

of the result which corresponds to the steady-periodic solution (0 > E )s

the following result is obtained.

Y, = ﬁ— (1—Cos 2PX}Cos M6 + Sim 2Tx Siw M6 (4.3)
Now for the case of rﬁ= 0
%r':o = é_L)i- (%)

The ratio of the steady-periodic temperature to the temperature when

K

Ve _|1-Cos zPX)Cos ['6 + Siv 27X Sinle

(H;F___O 27X

O can be written

V2[1-Cos 2TX] . ~111-Cos 2T X )
T Sure+ T [ REE2 MM

Equation (4.5) and Figures 17 and 18 show that for the case of
plug flow (a = 1.0) there is a resonance phenomenon of period ["X = x.
As seen from Figures 17 and 18, decreasing the value of ‘a' increases
the period of resonance until at & = 0.0, (Newtonian fluid) the period
is about 2x. The quantity "X used for the abscissa in Figures 17
and 18 was shown to be meaningful by the natural occurrance of ['X in

Equation (4.5). Also the plots of AR versus "X from numerical
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solutions obtained for various values of [ fell on the same line.

The resonance phenomenon can best be explained physically
by considering a single fluid particle as it travels through the tube.
If the fluid particle passes the location x = O , where heat generation
is assumed to begin, with some inlet lag ['0' (see Figure 19), a
simplified equation can be obtained for an observer located on the
particle by eliminating the space derivative of Equation (4.2).

%

M .
= - ¢ Sm(re+re| (1.6)

_ Integrating Equation (L4.6) subject to the boundary condition
%{f (O) = 0 yilelds

Ve = Té-,—((l—Cos Mg Cos Mg’ + SinTO Siy Fe’)
The ratio of the steady periodic temperature to the temperature when

r; O can be written

Y _ Vaft-cosro) S(M[F@+T (_7_ cosre)]

%kr=o re Sim['6

(b.7)

From Equation (4.7) it can be seen that the resonance phencmenon
which appears in Figures 17 and 18 is due to the inlet phase lag shown
in Figure 11. At [%© =27, Lz, ... 2nx, the total energy generated in
the fluid is equal to the energy which would be generated by steady
state energy generation ( M= 0). The transient component of the
particle temperature would be expected to be zero. However, the effect
of the wall causes some transient component of the temperature to remain
even at [“G = 21, 4m, ... 2nx. For plug flow the time © can be replaced
by the physical time % = 2x. Again it i1s shown that rescnance occurs

for plug flow with a period of [0 = 21 or Mx =
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Figures 20 and 21 display the effect of radius upon the
amplitude ratio and phase angle respectively. As the wall is approached
(r -1), the demping effect due to the wall increases. This causes the
amplitude ratio to decrease and the phase angle to approach ﬁ/E.

The amplitude ratio and phase-angle lag versus radius are
given in Figures 22 and 23, respectively. A non-monotonic nature of
the curves for larger values of X 1is illustrated.

Figure 24 presents the temperature gradient in the fluid at
the fluid-wall interface as a function of time. The time-average of
the wall gradient was evaluated numerically and found to be less than

10-9. A zero average wall gradient is necessary becsuse the outer wall

of the tube is insulated.
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CHAPTER V

EXPERIMENTS

An experimental program was conducted in order to determine
the validity of the assumptions made in the analytical model, to
ascertain under what conditions the analytical solution can be used,

and to provide a confirmation of the numerical results.

A. Experimental Apparatus

The physical system to be experimentally investigated con-
sists of an insulated horizontal tube through which a fluid, with and
without solid suspension, flows steadily with electrically-produced
internal heat generation. A schematic diagram of the system is shown
in Figure 25. Temperatures were measured radially in the fluid and
at the fluid-wall interface at the top, bottom, and sides of the
horizontal test section. Mass flow rate, energy generation rate, and
inlet and exit temperatures were simultaneously measured. The
experiments were performed in the Heat Transfer ILaboratory, Department
of Mechanical Engineering, the University of Michigan.

As illustrated in Figures 25 and 26, the component parts
of the apparatus are; test section, fluid supply, heat exchanger,

direct current power supply, and appropriate instrumentation.

1l. Test section

The test section is a 3/4" 1.D., 7/8" 0.D., polyvinyl-
chloride tube, 1 foot in length. The fluid flowing through the tube

is 25 per cent sulfuric acid, a good electrolyte, through which an

- 59_
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Figure 26. Experimental Apparatus Showing Test Section,
Knife Switches, and Four Channel Sanborn
Recorder.
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electric current is passed from two platinum electrodes to produce
internal heat generation. The polyvinylehloride tube was selected
because of its corrosive resistance against the acid, besides being
an electrical and thermal insulator. Preceding the test section
was a 5 feet length of tubing encased in styrofoam insulation. This
served the double purpose of establishing a fully-developed hydro-
dynamic condition as well as eliminating any influence on the inlet
fluld temperature resulting from radial conduction of heat.

Following the test section, mixing baffles were installed
in the tube just upstream from the outlet fluid thermocouple as shown
in Figure 27. This thermocouple read the mixed mean temperature of
the fluid leaving the test section. The baffles are made of 0.1 inch
thick polyethylene disks of negligible heat capacity with alternately
spaced holes.

2. TFluid supply and heat exchenger

A steady-state flow of test fluld was established by a
constant-head tank located about 15 inches above the test section.
The flow rate was measured using the discharge from the test seetion
which was pumped continuously from a lower collection tenk by &
1/15 horsepower stainless steel pump. Before returning to the constant-
head tank, the fluid was passed through & heat excheanger consisting of
a 50 foot coil of 5/8 I.D. polyvinylchloride tubing submerged in &
constent-temperature water bath. Heat generated within the fluid in
the test sectlon was removed by the low temperature coolant in the

heat exchenger.
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3. Thermocouples

The locations of the wall and fluid thermocouples, all
made from 0.002" diameter copper and constantan wires, are shown in
Figures 25 and 27. One fluid thermocouple was located upstream of
the leading electrode, one immediately after the mixing baffle, and
three at a distance of 7.8" from the leading electrode. The last
three thermocouples were placed radially at the centerline and at
distances halfway between the centerline and the inner surface,
respectively. They were encased in 0.011" I.D. polyethylene tubes
and placed in an 0.050" I.D. stainless steel tube, as shown in
Figure 27. It was necessary to coat all thermocouples which extended
into the fluid with General Electric 1201 Enamel. This coating pro-
tected the thermocouples from the corrosive effects of the sulfuric
acid and eliminated any direct current voltage from being superimposed
on the thermocouple emf. The final diameter of the coated thermocouple
Junction was estimated at .005 inch.

Four well thermocouples were installed at a distance of 7.8
inches from the leading electrode at the top, bottom, and both sides
of the inner surface. Holes were made in the tube wall. Then the
thermocouples were placed as near as possible to the fluid-wall
interface and the holes filled with a solvent mixture of the wall
material. Care was taken to electrically insulate the thermocouple
wire from the fluild by en estimated .005 inch of the wall material.

The inherent lag of the coated thermocouple mede from 0.002"
diasmeter copper constantan thermocouple wires was found to be less

than 0.1 second by monitoring the transient thermocouple response with
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a Sanborn recorder when energy generation was suddenly started in
the test section while the fluild was stationary.
By considering the thermal resistance of the air outside
the tube, the tube wall, and the fluid inside the tube, the calculated

e for a lOOF temperature

heat loss from the tube was about 1 BIU/hr-ft
difference. This heat loss amounts to less than 0.1 per cent of the
heat being generated in the tube. However, when considering the
thermal resistance of the fluid and a 0.005 inchvcovering of wall
material on the thermocouple,»a O.MEOF error in temperature measurement
results.

Embedding a thermocouple wire of high thermal conductivity
in a low conductivity material can cause an error resulting from
increased heat conduction along the wire. J. V. Beck(jo) considered
the problem of a cylinder embedded in a semi-infinite solid perpendicular
to a surface subjected to a heat flux. The equation for the disturbance
is given below, where evaluation of the factor F was done numerically

and presented in graphical form.<5o)

AT =F 2 Rusice Kuire (5.1)

KW
For a copper wire embedded a distance of two wire diameters
below the surface of a seml-infinite polyethylene solid whose surface

receives a heat flux of 1 BIU/hr-rt°

, an upper limit on F may be
obtained by extrapolating the graphs presented by Beck. Substitution
of the appropriate values into Equation (5.1) results in a temperature

disturbance of O.ESOF due to the presence of a wall thermocouple being

embedded in the test section tube wall.
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Lk, Heat generation device

Two platinum electrodes placed 11 inches apart at the
sides of the tube were made of spirals of 36 gage platinum wire and
enclosed 1n & polyethylene chamber as shown in Figure 27. A 3/8 inch
hole was made in the tube wall next to the electrodes to allow
electrical contact with the circulating fluid. The polyethylene
chambers were located at a place where all gas generated at the
electrodes due to electrolysis was caught and vented through a vertical
tube. Thus, gas bubbles were prevented from entering the fluid flowing
through the test section.

The location of the electrodes at the side of the tube
caused a non-uniform energy generation across the tube section,
especially near the region of the electrodes. It is estimated in
Appendix C that the electrical entrance length, defined as the one
per cent variation of the potential across the channel cross-section,
is about 1.3 diameters. This is not totally insignificant since the
test section thermocouples were located roughly 10 diameters from the
leading electrode. However, temperature measurements given in section
C disclosed no consistent asymmetry in the fluid temperature resulting
from the nonsymmetrical location of the electrodes.

Because the electrodes were of finite size and the electrical
potential was non-uniform near them, an effective length between the
electrodes was taken as 10.5 inches. This length is subject to an
uncertainty of + 0.5 inches.

For an experimental fluid, a good electrolyte was necessary

in order to electrically produce internal energy generation. A sulfuriec
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acid solution (25% by weight) was chosen because of its high
electrical conductivity(e).

It is possible to eliminate electrolysis of the fluid at
an electrode by using an alternating current power source of about
LOO cycles per second(jl). However, when transient temperature
measurements are to be made the resolution of the recording instrument
is often reduced by the superimposing of an alternating voltage upon
the thermocouple emf due to inductance between the power source and
temperature-sensing instrumentation.

Attempts to use both a 60 cycles per second alternating
current power source and a full wave rectifier resulted in an a.c.
pickup which was not eliminated by extensive electrical shielding.
Finally, several 12 volt automobile batteries were used either in
parallel or series for the power source. The voltage applied to the
electrodes ranged between 24 and 48 volts.

For the electrolysis of a strong acidic solution the
reactions at the electrodes are given by(32)
cathode reaction

2 H T+ 2 — 24,1
anode reaction

400 — O, + 2 K0 +4e

then the net reaction is

gt a0 — 2 1110t + 2 H,0
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Faraday's Law of Electrolysis states that the weight Qf a
substance produced by a cathode or anode reaction in electrolysis is
directly proportional to the quantity of electricity passed through the
cell and is proportional to the equivalent weight of the substance.
Using the heat of formation of water, Faraday's Law, and the definition
of a faraday (magnitude of the charge of one mole of electrons) as being
equal to 96,500 ampere-seconds, the energy absorbed at the electrodes
due to electrolysis is found to be equal to 5.05 BTU/amp-hr. The
resistance of the loop external to the test section was calculated to
be at least 200 times that of the test-section, so that essentially no
energy generation occurred externally. Considering electrolysis and
resistance heating, the energy generation taking place in the test-section

fluid is given by

W_ 343 EI — 5081 (5.2)
7 TR 2L

5. Instrumentation

Instrumentation was required to measure and record fluid

and wall temperatures, voltage and current, and fluid flow rate.

Transient measurement of thermocouple emf and test section
voltage were recorded on a four channel Sanborn 150 series recorder
which had a meximum sensitivity of 1Opv/mm. The resolution of the line
on the recording paper was estimated to be better than + 0.5 millimeters.

A leeds and Northrup model 8662 precision potentiometer was
used to record the steady state thermocouple emfs. The resolution of

the instrument was estimated to be 0.005 millivolts.
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Volume flow rate was determined by a calibrated 1100 cm5

3

vessel, accurate to 5 em”, and a stop watch.

The voltmeter and ammeter used to measure test-section energy
generation were calibrated against Weston laboratory standard instruments.
The resolution of the voltmeter was 0.2 volts and that of the ammeter

was 0.02 amperes.

6. Bingham-plastic fluids

As described in Chapter II, colloidal slurries of solids in
liquids behave like Bingham-plastic fluids when the solid particles are
sufficiently small or sufficiently close together.

Slurries of titanium dioxide and Kaolin with 25 per cent
sulfuric acid were found to be unsatisfactory because of rapid settling
rates resulting from large particle size. Finally, aluminum oxide was
adopted as a solid phase. After grinding the A1205 with water in a
rotating ball mill for 10 days, the particle size was reduced to about
3 microns. On a microscope slide the particles formed floes in concen-

trated areas, although independent particles were present as well.

B. Test Procedure

Major experimentael programs conducted were velocity and heat
transfer measurements for both Newtonlian and Bingham plastic fluids,
and the measurement of some rheological properties of Bingham-plastic
fluids. Tube pressure drops and laminar velocity profiles were found
with pitot-tube probes, while transient and steady-state temperatures
were sensed by fine-wire thermocouples. Determination of viscosity and
yileld stress of A1205 slurries in HQSOA was done with a Brookfield rota-

tional viscometer.
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l. Velocity measurements

Attempts to measure velocity profiles and wall shearing
stresses in slurries with pitot-tube probes were not very successful.
Static pressure probes 0.10 I.D., spaced 50 diameters apart, were
located in the tube wall. In addition, the radial position of a total
pressure probe 0.030 in I.D. was controlled by a mlcrometer screw. A
Chattock gage(35), precision manometer, was modified to allow measurement
of differential water pressures by replacing the usual water phase of the
gage with an oil of specific gravity equal to 1.2. This replacement
increased the sensitivity of the instrument by a factor of 5, so that
the resolution of the gage was 00013 inches of water.

Prior to making tests with slurries, wall friction factor and
pitot tube efficiency tests were conducted. The results are shown in
Figure 28 where he represents the velocity head. The measured friction
factor agrees quite well with the usual Moody diagram while the total-
static pitot tube probes are seen to be about 95 per cent efficient.

Measurement of the velocity profile in distilled water yielded
the expected results for a Newtonian fluid as given by Figure 29. The
solid lines corresponding to the velocity headof a parabolic velocity
profile were calculated from flow rate data. The tendency of the
experimental points to lie above the calculated line could have resulted
from the tendency of the observer to read the Chattock gage a little high.

A slurry of A1203’ 1.3 per cent by volume with a particle size
of about 1 micron, was‘prepared and circulated in the test apparatus.

After 20 hours of operation, a hard cake had formed on the bottom of the
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tube which fractured when deformed (a report has been made of a 1/L

to 3/8 inch layer of ThO, cake being built up on all parts of a 3 inch

2
200 gallon per minute circulating system(25)). Attempts to measure the
velocity profile in the slurry were frustrated by the plugging of the
pitot tubes with solid particles and time variant density changes of

the fluid in the pitot tubes. The pitot tubes were down-flushed with
water to clean out the A1203 particles and to remove any density gradient
in the probes. However diffusion, small disturbances in the fluid flow
rate, and radial movement of the total pressure probe caused particles

to enter the pitot probes, cause density changes, and seriously disrupt
the measurement of pressures. One velocity profile of uncertain accuracy
is presented in Figure 29. The zero velocity at the bottom of the tube
was known to be present by the inability of the pitot tube to penetrate
to the tube wall. The velocity profile shifts upward, but does not
exhibit the characteristic plug of a Bingham plastic and appears to be

Newtonian in nature.

2. Measurements and evaluation of physical properties of
Bingham-plastic fluids

Increasing the concentration of the slurry to reduce
settling and increase yield stress worsened the plugging of pitot tubes
and inaccuracies of pressure measurements due to changing vertical density
gradients in the probes. Finally a Brookfield LVT rotational viscometer
with a UL adapter was used to rheologically define the properties of
denser slurries. The UL adapter consisted of a rotating bob contained
in an open eylinder with a ratio of cylinder to bob diameter, s , of

1.0983. By a method given by MEtzner(l9) the torque versus rotational
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speed data in Figure 30 were converted into the conventional fluid-

flow curves shown in Figure 31l. The shearing stress is expressed as

2 TJorque
md2d

The shearing rate was evaluated from the following equation:

(5.3)

T

dw_ _ 47N (_i_ - ) F
—CT?——I— 1/s* Lo+ K5 I+ % n ~ 1 -4
where K = —i;—;é 1+%/n5

s*-1 /
K, = —== S
2 652 n

and n" is the slope of the corresponding curve in Figure 30.

The slurries used were relatively dense (13% by volume, AlQOB)
and 95 per cent of the particles were less than 3 microns. Other
investigations(5h) of yileld stresses and viscosities for slurries of
A1203 in water are given in Figure 3%2. These results show rough agree-

ment with the slurries of AlQO in 25 per cent HESOM which were tested

b
here.

Experiments have shown that the evaluation of the thermal
conductivity of a slurry by averaging the conductivities of the solids
and liquid according to the volume fraction of each phase present gave
predicted thermal conductivities which were erroneous by an order of

magnitude<l9)a Orr and Dalla Valle<55) recommend the following equation

for the evaluation of k of a suspension.
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ke = K, 2 Ky + ks — 27| Kg =ks)

(5.5)
2 Ke + ks + T [Ky - K

where Ki and KS represent the conductivities of the liquid and

solid particles, respectively, and N represents the volume fraction
of solids in the suspension. Whenever possible, experimentally
obtained values for thermal conductivity should be used. Tachibana
and Mbrishita(5) measured the thermal conductivity of A1203 and

HéO slurries. The results shown in Figure 33 were extended to slur-
ries of A1203 and 25 per cent HéSOh as given by the broken line.
For a 13 per cent by volume slurry of A1205 in HoSQy , the thermal
conductivity was taken as k = 0.52 BTU/hr-ft-F.

The heat capacity of the slurry was taken as(5)

W&i?ktAﬂzo_% + WQ'7tlt HZSO;}-
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3. Transient and steady-state heat transfer measurements

The transient response of the fluid and tube temperatures
was studied when subjected to a step change in the internal energy gener-
ation. A 25 per cent by weight H2802 solution with and without fine
suspended alumina particles, 95 per cent less than 3 microns in diameter,
was circulated through the test loop. Without the suspended alumina,
the fluid corresponded to the limiting case of a Bingham plastic (a = 0.0),
a Newtonian fluid. For 13 per cent by volume of AlQO3 suspended in the

HESOM solution the Bingham plastic constant, 'a', was calculated from

rheological and flow rate data. Equation (3.4) can be put in the following

form:

* 4
_(,izn_ _ a “4&. +3 (5‘7)
RJ?&/LLB 12 @

Since the factor 'a' cannot be solved for explicitly, a trial
and error procedure was necessary using the rheological data from Figure
31 and the flow rate data corresponding to a given test condition.

Test section voltages ranged between 24 and L8 volts, while
the Reynolds number was varied from 368 to 13%3 for the HéSOu and from
417 to 685 for the A1205 - HyS0), slurry. A typical value of internal
energy generation, 80,000 BTU/ftBhr, resulted in a bulk fluid temperature

rise of about EOF.
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All tests were conducted with the inlet fluid temperature
at room temperature to reduce any heat transfer to the test section.
The inlet temperature was adjusted by varying the heat exchanger coolant
temperature and waiting whatever time necessary for thermal equilibrium
to be established. Three flow measurements were made before each test.
Once the desired flow rate was achieved, all thermocouple emfs were
recorded with a precision potentiometer. The test section power was
then turned on and transient centerline and wall temperatures recorded
on the Sanborn recorder. Once steady state had been reached, the temper-
atures were again recorded with a precision potentiometer and three

additional flow measurements made.

C. Results and Discussion

Experimental results obtained for a 25 per cent by weight
stoh electrolyte are presented in Table IV. These results correspond
to a Newtonian fluid or Bingham plastic with constant a = 0.0. Similar
results for a slurry of 13 per cent by volume of A1203 in HESOh are
presented in Table V. The Bingham plastic constant, ‘'a‘', ranged between
0.30 and 0.39 for the slurry data. While the internsl energy generation
calculated from the rise in bulk fluid temperature agreed to within
5 per cent of that calculated from test-section voltage and current
for the HéSOu, a disagreement was noted in the slurry data. Measured
bulk fluid temperatures would indicate a greater energy generation than

that given by the test-section electrical power measurements. Since

this is physically impossible, the disagreement is attributed to the
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TABLE IV

EXPERIMENTAL RESULTS FOR 25% H,SO)

Temperature (°F)

To(inlet) 7.5 M5 7.5 7.5 L0 T2 Tl
Ty op~TO L Lh 777 5.55 5.69 6.09 5.16 6.89
Toenter—T0 7.55 1.33 0.49 0.62 0.80 0.40 0.755
Ty ot tom=T0 1.38 2.76 2.1% 2.00 2.98  2.13 2.62
T:ide-To 1.51 3,33 2,27 2.09 2.4  1.91 2.9%
Ty ge~TO 1.51 3.20 2.58 1.96 2.89 2.31 3,02
Toxit-TO 1.56 2.80 1.33% 1.11 1.78 0.977 2.04
Volts 23.4 33,9 33.0 34,0 34,0 3h.,0 34,0
Amperes l.2h 1.95 1.95 1.96  1.99  1.97 1.98
Re 368 L71 963 1190 790 1333 634
Pr 10.8 10.8 10.8 10.8 10.8 10.8 10.8
X x 107 5.27 k12 2.02  1.65  2.44  1.L6 3.06

Qyenp (BTV/Br-£t3) 34,400 79,400 77,000 79,300 83,600 78,200 77,500
Gopec (BIU/br-££7) 35,140 81,730 79,460 82,400 83,660 82,820 83,240

2
WSteady. avér].'erall 2.19 1.78 1.3% 1.2k 1.k7  1.19 1.58

2
Usteady celitzin 0-678 0.513 0.195 0.237 0.302 0.152  0.286

GrPr % X 10'“ 0.k 0.8 0.8 0.8 0.8 0.8 0.8

* Wall temperature on same side that electrodes are located.
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TABLE V

EXPERIMENTAL RESULTS FOR 13% M 05 in HyS0)

Temperature (°F)

To (inlet) 78.4 78.4 78.6 78.6 78.7
Ty op-T0 2.22 2.66 5.11 1.55 1.60
Tabove center-TO 0.222 0.355 0.666 0.222 0.311
Teenter ~TO 0.400 Ou Lk 0.89 0.311 0.800
Thelow centerTO 1.55 5.50 16.0 3.77 10.09
Tyottom=TO L.66 10.2 2k.9 5.11 15.40
T, 3 -T0 1.3% 3.33 8.56 2.00 5.55
Tg1ge-T0 0.89 2.99 5.0k 2.22 L2
Texit-TO 0.579 0.890 2.0k 0.489 0.756
Volts 2k.2 36.2 48.3 24.3 36.2
Amperes 0.98 1.49 2.00 1.0 1.50
Re NN 540 533 530 685
Pr 7.22 7.22 7.22 T7.22 7.22
X * 107 7.00 5.40 5.46 5.58 .25
qgemP(BTU/hr-ftj) 38,600 76,600 174,000  L1,500 82,600
Ge1ec (BTU/hr-£t7) 28,78 66,867 124,467 29,881 67,320
l{} steady ave}zs.lerill .00 k.32 5.33 5.29 5.8
%’steady centrln x 102 0.752 0.359 0.387 0.563 0.643
a 0.39 0.34 0.34 0.34 0.30

* Wall temperature on same side that electrodes are located.



8-

filling of the cavities between the mixing baffles with solid particles
resulting in inefficilent mixing of the fluid.

For each test the transient response of the centerline fluid
temperature was recorded as shown in Figure 34. TFor 25 per cent HQSOlL
the experimental measurements give & faster response than predicted at
the initial state, and then fall below as the system approaches its
steady state. However, the discrepancy between the theory and experiment
is within an acceptable range. For the A1203 suspension the measured
response falls below the theoretical prediction but approaches the
predicted steady state at large values of time. This deviation is
thought to be due to a slower centerline fluid velocity than expected,
resulting from settling of the solid phase or adhering of solid particles
to the thermocouple probe. The 95 per cent confidence limits obtained by
the method outlined in Appendix D are presented in Figures 34 and 35.

The steady-state temperstures for the fluid and wall are
shown in Flgure 35. TFor 25 per cent HQSOu, & Newtonlen fluid, the
experimental data of the centerline fluid temperature agree fairly
well with the theoretical curve. However, a verticel assymmetry is
noted in the wall temperature. Thils deviation is thought to result
from free convectlion which was neglected in the esnalysis. The buoyant
forces due to temperature differences in the fluid could cause a
secondary flow which results in a radial mixing of the fluid, raising
the centerline fluid temperature and lowering the average wall temper-
ature.

This conclusion is supported by Metais and Eckert's study<27>

of forced, free, and mixed convection regimes for horizontal tubes.



-85-

ol

-oanqesadme], pINTL SUITX23Ud) Jo asuodssy ds3g - h¢ 9InITd

01 X 6

P2 9 S v € [ |

/nmvoo.onx

¢0=0 * 626000=Xx* os’H+ %0Iiv A

0'0=D * 2000=x"‘ *0s°H ©

v'0

8°0

el

9|

0'¢

v'e

8¢

2’

9°¢€

o'v

LR 4

8'v

01 X A



-86-

20 T T T T T

0] H2304 ’ a=0.0

VB
0F v Al,0z*H,S0 e |
203 *HpS0, A
ol 0.3< 0<0.4 Vg, B
gL SUBSCRIPTS i
A - AVERAGE WALL 2 ww
B - BOTTOM WALL AR %
4l C - CENTERLINE FLUID Y, 3:@
S- SIDE WALL S
3 T- TOP WALL

2 T v ]
=) e
»
39 [ ’//, /’//
B OB
0.8~ S c -
L e
0.6 P i
95 % CONFIDENCE LIMITS 0 Ve
S C
0.4 ve 4
CENTERLINE N/
0.3 Oc¢ Sc _
/oc -
o2r / - C ——— 020.0 ]
v % — — 4=05
0.1 I | ! | |
| 2 3 4 6 8 10

X -
—(Re Pr) ' IO3
Ri

Figure 35. Steady Fluid and Wall Temperatures as a Function of
Axial Distance.



-87-

Their findings for the case of constant wall temperature are shown in
Figure 36, where the Grashof number, Gr, is based on the tube diameter
and the difference between wall and fluid bulk temperatures. These
results can be compared to the case under study here: internal energy
generation in the fluid with insulated tube wall. As the quantity

X* (RePr)_l is decreased, the average wall temperature in Figure 35

Ri
is seen to approach the predicted value. The quantity GrPr % associated

X* -1
£ (r)

with each test is nearly constant and equal to 8 x 105. Since Pr
is nearly constant, as Reynolds number is increased and GrPr % held
constant the effect of free convection is diminished. This would
correspond to approaching the forced convection region in Figure 36

from the mixed convection region along the line GrPr D =8 x 105.

L

This apparent agreement between Metais and Eckert's results and ﬁhose
presented here might have been anticipated because of the similarity
of fluild temperature profiles resulting from either a heated tube wall
or internal energy generation in the fluid and an insulated tube wall.

For 13 per cent by volume alumina in 25 per cent HéSOu, the
centerline temperature agreés ﬁith the theoretical prediction. However,
the bottom tube wall temperature is significantly higher than expected,
causing the measured average wall temperature to fall above the predicted
value. This disagreement was due to settling of the solid particles to
the bottom of the tube. A non-symmetric vertical velocity gradient was
~established which greatly affected the temperature profiles. The denser,

slower moving fluid at the bottom of the tube lost less heat due to the

enthalpy flux, and became warmer.
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Further illustration of the vertical temperature profile can
be seen in Figures 37 and 38, One curve in Figure 37 corresponds to
the Newtonian fluid, HéSOh, and exhibits the lncreased upper tube wall
temperature thought to be due to free convection. All the other curves

for the Al slurry exhibit an increased lower wall temperature which .

203
is attributed to settling of the solid phase. A time dependent effect

is disclosed by Figure 37, resulting from the continued settling of

the solid phase. The test conditions corresponding to the triangles

and hexagons are nearly the same. However, the asymmetry of the temper-
ature profile is becoming more pronounced as slurry-circulating-time
increases. The tests as listed in Table V were separated by approxi-
mately one-half hour intervals from left to right. Thus, the test
corresponding to the hexagons in Figure 37 took place about 2 hours

later than that corresponding to the triangles. From the vertical
temperature profiles it appears that the solid phase is slowly continu-
ing to settle and increasing the fluid temperature assymmetry.

Examples have been cited where the solid phase of a slurry has

(e5)

Even in

turbulent flow, a laminar sublayer exists in which particles can settle<20>.

continued to settle until the flow was entirely choked off

The settled particles may act as the effective tube wall, so that settling
can continue until an equilibrium thickness is reached, or the tube is
completely blocked. The rigidity of a settled bed appears to be inversely
proportional to the particle size. Therefore, slurries. utilizing large
particles may form a vertical density gradient, but the thick mud at the
bottom of the tube will continue to move rather than forming a hard cake

and eventually plugging the tube.
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CHAPTER VI

CONCLUSIONS

1. The largest steady centerline-to-wall temperature
difference exists for a Newtonian fluid, (a = 0.0). As the Bingham
plastic constant ‘'a' is increased, the centerline-to-wall temperature
difference decreases until at a = 1.0 (plug flow) it is equal to zero.
This is due to the uniform velocity and insulated outer tube wall.

2. The response time necessary for the fluild-tube system
to reach equilibrium is decreased by an increase in the Bingham
plastic constant *a'. A resonance phenomenon is observed in the
steady-periodic temperature response. The period of resonance equals
2x for a Newtonian fluid (a = 0.0) and equals =« for plug flow
(a = 1.0). The heat capacity of the wall dampens the temperature
fluctuations of the fluid near the wall.

3, The wall heat capacity has a large effect on the transient
temperature response. This effect is one of increasing the length of
time required to reach steady state and is intensified as the ratio
of wall to fluid heat capacity 1s increased.

4, The regimes of forced, mixed, and free convection proposed
by Metais and Eckert(27), for a horizontal tube with constant wall
temperature, appear to be valid for the case of internal energy
generation in a Newtoniasn fluid with an insulated tube wall.

5. Settling of suspended particles in a slurry distorts
the velocity profile and produces & higher than expected temperature

-92...
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at the bottom of a horizontal tube when energy is being generated in
the fluid. Experimentally, the centerline fluid temperature agrees
with the predicted value, but the average wall temperature is higher

than expected.
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APPENDIX A

DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATIONS

Under the assumption listed in Chapter III, the first law

of thermodynamics can be written for the model showin in Figure 2.

Fluid
"
_B_T'f'_ v DT;C . oT¢ 1 37})4_ 7_ (A.1)
2t i )>x flam 2t 7 5rFl Tic,
Wall
2Tw _ =Ty 1 9T
2 - | L - £ o) -

For the three types of problems considered, steady-periodic,
internal energy generation step response, and inlet temperature step

response, the term q" in Equation (A.1l) takes the following forms

energy generation step: ¢" = a4,
inlet temperature step: ¢" =0 t >0
steady periodic: ¢" = g, € sinwt

The boundary conditions for the general problem are

7}:( X*)O) P*) = rw( XTOJ r\*) = TL (initial)

T.-(:(O,Z'I) r") =T, (entrance)

B_ﬁ:(x’j f/O) =0 (symmetry)

or

E(X;‘z—) Rc) = Tw()("; f)RL) (fluid-wall interface)
oTw(X T Ro| _ (adiabatic wall)

St bRl = o

_95_
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By defining the following dimensionless variables

Bﬂ :-Lz::élgﬁ :for disturbances due to internsl heat
9, R{ generation
r-7c o I
é; = a:jT;:— :for step disturbance in inlet fluid temperature
° ¢
# - (A.3)
r='£i X= ﬁi;ﬁL = jL(ReRJ :
R 2 Uy, R2 ki
*
g t s - w R* e u(r)
R’ oA ¢ 2 U,
Equations (A.1) and (A.2) may be written in dimensionless form as
Fluid
2% Lc(rJ——-W‘c S SR L Y. (a.1)
6 oX 2r* P or
Wall
AN AR
30 Srz r 3r (A.5)
where Q" =1 :for step disturbance in internal heat generation

QH

€ Sin[jO :for sinusoidal disturbance in internal heat
generation

and V/=§E’ Q'=0 :for step disturbance in inlet fluid tempera-
ture.

The boundary conditions are

Hxo,r) - Wlxo,r) =0

< O :for disturbances due to internal heat generation

1 :for step disturbance in inlet fluid temperature
only.



%_‘l:i(x,e)o) _

#(x 0,1 = Hulx6,]

W
g_rz( X, 6, Ro/R;| _
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APPENDIX B

FINITE DIFFERENCE EQUATIONS

1. DNotation

As shown in Figure 4, the physical model in Figure 2 is divided
radially and axially to form a grid, and a system of notation»used by
Ayers<8) adopted. The center of each element is referred to as a nodal
point whose temperature is the average temperature of the element. Any
nodal point in the fluid can be described by using a double subscript
notation (I, J) , where I 1is the radial counter and J is the axial
counter. For a wall nodal point the radial subscript is X , so a point
in the wall is referred to by the subscript (X, J).

Radially, there are N + 1 fluid elements and M wall elements.
It follows that the radial grid dimension in the fluid is 1/N , while in

the wall the radial grid dimension is

RO/RL - 1
M

_ 5
M

The radius of any fluid nodal point is given as I/N,(I =0, 1, 2, ... N),

and the radius of any wall nodal point is 1 + %,(K =0, 1, 2, ... N).
Axially, there are P divisions of the tube length L , so the

axial grid dimension is L/P. The axial distance is JL/P , which is

measured from the point where energy generation begins, X = O .

2. Finite Difference Approximation of Derivatives

If a function u = u(x, y) is assumed to have enough partial

derivatives, the value of the function at the two points (x, y) and
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(x + Ax, y) can be evaluated by the Taylor's series.

U 2 XU

The above equation can be solved for the first derivative

L" ) ’(’L')'
30; - U.-H,ZX {4 -+O{AX) (5.2)

Equation (B.2) is known as the forward difference approximation to the
first derivative. The truncation error involved is of the order Ax .
A more accurate approximation to the first derivative can be

had by writing Equation (B.1) for the point u

i-1,

2 Z‘L
Uig = Mi,S—AX%(;T'F%%F—"' (8.3)

Then, subtracting Equation (B.3) from (B.1l) and rearranging the result

yields

IS _ Wipr = Uiy
oX 2 AX

2
o[ax) (B.4)

Equation (B.4) is the central difference approximation to the first
derivative, It has a truncation error of order of magnitude sz .
The central difference approximation to the second derivative

of u(x, y) can be obtained by adding Equations (B.1) and (B.3) and

eliminating unwanted derivatives.
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B;Xu_z _ “('+:,J+}L\j;‘*3 -2 W3 - O(AX}Z (B.5)
AN E

Whenever possible, the central difference approximation to
derivatives should be used because of the smaller truncation error in-

volved,

3. Steady Finite Difference Equations

The partial differential equation for the sleady temperature

distribution in tho fluid may be obtained from Appendix A as

Ste  2HRe 1 s
Wl S5 = 57 + 750+ (8.6)

Note that the wall need not be considered, because at steady state it
has a uniform temperature equal to the fluid-wall interface temperature.
When.writing the finite difference approximatipns to Equation
(B.6), the axial counter need not be used since the resulting equations
are only solved at one axial location at a time., This makes the designa-

tion of the nodal points more simple.

Yool = 1] ol 5,3) = V[K)
Yee[1+1,7) = s[z+1) Yool k+1,3) = v(K+1)
Vel T-1,3) = s[z- Yeul 1-2,7] = V{K-1]

I

Yse [T, -1 ulz)



Using the above notation, the finite difference approximation

for the terms in Equation (B,6) can be written

Wse _ slz]-vfz]

Yl Y (B.7)
L oY% _ 4 { S{r+1)~5(r-1})

YT/ 2/N (8.8)
D*We _ slr+1] + s[r-1) - 2 sz

'ar\z . I/NZ (B.9)

Note that a central difference epproximation is used fadially, but axially
8 forward difference approximation is used. This is made necessary by
the explicit method used in the axial direction,

- Substitution of Equations (B.T), (B.8), and (B.9) into (B.6)
gives the finite difference equation for a general point in the fluid.

Fluid

w?er 37) Slorahnfe- Esira] £ veLfr] ulr] +4

2n8* + £ vEL[T

slz] = (.10)

A special equation must be written for the centerline and fluid-
wall interface elements, as special conditions exist at such limiting
nodal points, Ab the cenberline, the term in Equation (B.6) = Nsr

al points, e centerline, e term in Equation (3B. TS

is not defined at r =0 , By l'Hospital's rule it is found that
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Lim 1 OTse _ D% VWee
r-=0 r r — 3r*

Therefore, the governing equation for the fluid at the centerline of the

tube is
e 3V
Umax S5 = 2 -5??; + 1 (3.11)

Using finite differences, Equation (B.11) becomes

psls) + v o] +
£ vmax  + 4 N?

(o) = (.12)

The fluid-well interface element, whose fluid subscript is
(N, J) , has a thickness equal to one-helf of a general fluid elément,
The governing equation becomes

0=~ K 5

+ 9.V (3.13)
r=1

In terms of dimensionless parameters, the preceeding equation becomes

o = - Re Dot L Se (.24)
R or ly=1 Ri

where R{ _ .1 1 . jiﬁ = _l__
Y 2N ) A 2N

R
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Application of finite differences then yields the following equation

1

. _ (B.15)
2NiN-1/2) + S(N l)

L. Steady-Periodic Finite Difference Equations

n
=
f

The partial differential equations governing the steady-periodic
temperatures in the fluid and wall have been found to be

Fluid

> '¥he (r B‘HD{_ 92%7‘_,_*/_%1‘

Se tUNSE = Srs Frgr HE Sl (226)
Wall

2% 22Pew | | W

S A - S 230,

Let the perliodic temperatures be written as follows

<
v
{

= Alx,r] Snlo + B[X,r| Cos 6 (.18)

Fow

c(x,r) sinTe + D[x,r]Cos e (5.19)



~10Gh-

Substituting Equation (B.18) into (B.16) gives the following
result for the fluid.

AP Cos [© = 7S Te 4 wn) \): Soal® g[; Cos I8
::‘(aZA f,‘ %ﬁ)“:n re +(§2B —r':-gg-)cﬁ 6 + € Sinl'®  (B.20)

Because Equation (B.20) is an identity, it can be separated into its
Sin 'e and Cos I'® components.

2%B
AT f‘i(r)%%: ST +%§§ (B.21)
oA A A

—R[ + (.{(r‘) X - Sre *'rlr‘-,: + £ (B.22)

Again the notation can be simplified,

Al = Alr) B|z.3) = 81
Alr+1,3) = AlT+4] B[z+1,3) = B|T+1)
AlT-1, 7] - Alz-2] B|z-1,3] = 8[z-4
Alz,71) = E1] Blr,3+1) = Flz]

Employing finite differences with the above notation results

in the following two equations for the fluid.
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Az = /\r/l(ifjr)s(rﬂ) ’r‘,'z( ﬂ) B|r-1]

2 P

- 2|,N + LPF VEL(I)) B(I)-#—L—l;-VELfr) F{r)‘ (B.23)
-N? 2

Blz)= - (l+§—I)A{I+1} - -N(:{l—_;lf) Alz-1)

2 P P
+( QFN t T VEL|T })A{r)+-L—[—;I/EL{I} ——ﬁ-— (B.24)

By the same procedure given in Equations (B,18) through (B.2k),

the following result can be obtained for the wall.

N | y?
clk] = 7‘52 + 25( = J)D(K-I-:L)
* T % - _zm)) Dfx-1] - ‘%ASML D(k]  (z.e5)
AN M
D[K| = = ( = +25(T+ ’,&1—5)} C[k+1)
A ME M 2\ M*
X st 28—(1-1- _%:_J)C(K—l)-l— ——F S= C_(K) (B.26)

The equation for the centerline element takes on a special form

because a term in Equation (B,16) is changed.
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Lim 1 W _ 32 Yer
r+0 r asr or =
Applying Equations (B.18) and (B.19) and finite differences to the

modified form of Equation (B,16) yields the following result for the

centerline element,

_4N? N 2 4+ VMAX -
Alo) —-‘-’-F-B(z)—-(‘* +r’L, )3(0) Tvmaxflo]  (e.en)

: < 2, F
Blo) = =EL fe) +[ HEEL D

- )A{o)— -L-F,-vmx ElO}—g- (B.28)

The fluid-wall interface element is a composite of both fluid

and wall materials, The energy equation for this element can be written

) BT - - . "L
6V Cu +4, Vi Gl 57 = 7,4 M S g€ Smwt  (3.29)
where
S
V, = 2T R, — - oTw
w 2M qo“r KW Dr“ ri;’R
Ve = amr Rgg;-v
- » S oT;

. — . 1
AM/ -— 27T R\‘i"j"v-
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A combination of dimensionless parameters, the above gquantities, Equa-
tions (B,18) and (B.19), and finite differences, results in Equation

(B.29) becoming the following two equations.

- el (8- glw-] + S| +£[ote] -ofo)

A(N): 4 7 (B.30)
F(ZZM *’2/\/) 3

" (N-vz)(Aw)—?rw-i))1 At gew o -&
F(EE_M +27)

The element at the outside of the wall (M, J) has a thickness

of one-~half that of a general wall element, The energy equetion is found

to be

-
fw Cw Y %‘{-ﬁ = 7. A//v

(B.32)
where
Vy = 2R, 2
Aw = 2T R(1+ —2%)
3T
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Using the above quantities, dimensionless parameters, Equation
(B.19), and finite differences, Equation (B.32) is transformed into the

following two equations.

A +M~V;¢)(D‘M} ‘D(M‘l)
m21+8]

C(MJ = (B.33)

W - ALE 0 AR
S (118 (2 34)

/ll

5. Step Response Finite Difference Equations

Both the inlet temperature step response and internal energy
step response are so similar that only the latter case will be considered;
The only difference separating the two cases is the energy generation term.
in the fluid equation which is not present for the fifst case,

The energy equations for the fluid and wall were given in

Chapter II. They are repeated here,

2 Y *H 1 kK
E*W”)ax =5r: tr3F t1 (B.35)

0 'tw A(BQWW N 19%/)

o * T (B.36)
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Notation used in the finite difference equations can be simpli-
fied by eliminating the axial subscript and the superscript relating to
time increments. This is possible because the variasbles are solved for
at one axial location and for one time increment during any phase of the

solution.
Fluid Wall

n+1 n+1

Vel1,3) = S|z Yo (17 = v(K)

Y (1+1,3) = S|t +1] \}/Wm'{mlg): V{k+1)
#2130 = sfe-4 -1, = V1)
¥z, 34 = olz] W, = wik)

Central finite difference approximations to the derivatives
are used in the radial direction, but forward differences are necessary
in the axial and time directions due to the method of solution., The

terms in Equation (B.35) can be written as follows
3V _ sl]-Fr)
26 AS

2% glr) - vlz)
oK L/P
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1% (S(I-uJ—S(I—l))
ror I/N 2/N

> Wy g(r+1}+s(r-1)—2 S{rj
R e

Substitution of the above quantities into Equation (B,35) gives

s(r]

—N(1-; )S(I 1) = M+—E—VEL{I) ulr) + 1

~NH 1+ L) s[ri1) 4-(/_’,## vitfz) + 200

AYS; (B.37)
The equation for a general point in the wall can similarly be found,
M*
A Ve ¢l +2 5 T
—AlS MZ— M ) /(K-1] = MK—) (.38)
28(1+ ’;f} ) '

Equation (B.36), changed to apply to a centerline element,

takes the following form.

AR ) <

5
So + Unn S = 2w + ]

(B.39)

In terms of finite differences, the centerline equation becomes



|28+ T VMAX + 4N%)s[0] - N2 g[a)

_ Flo
A6

+ B ymax Ulo) + 1 (3.40)

The composite fluid-wall interface equation appears as

(_5_ +_LJBW —__‘ )3%
28M " 2NIo6 T 2N r=1
A 5| >H 1
A St |, Toam (B4

If it is noted that S(N) = V(0) , Equation (B.41) takes the following

form when written as a finite difference equation,

Lt K R P A NS R AR ]
—%\:(—SM— +/2) via) =2—2@(%M+-,HF(N) +2—1/7 (3.42)

The energy equation for the half element at the outside of the

wall can be written

A,

2M(1+s) Sg =~ 148 - )ij (3.43)

r=1
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Applying finite differences results in the following equation

for the element located at the outside of the wall,

A =32 Vin-) [ S A 4w v

= 8leg] w(M) (B.44)

2 46 M

6. Truncation Error

Because the finite difference approximation to a derivative is
found from e truncated Taylor series, an error of the order (Ax)2 is
introduced. This truncation error is directly dependent upon the grid
size used ih the numerical solution. Too few radiai or axial divisions
in the fluld or tube will cause a consideresble deviation between the true
solution and the numerical result. However, too many divisions will
require more computations and increase the compﬁter time,

Figure 3¢ shows the comparison between the exact solutiqn/by
Michiyoshi, gg,gg#(7) and the numerical solution with 20 radial grid
divisions.

| Figure 'O shows the effect of axial grid size. It can be seen
that convergence to the correct solution is quite rapid as P/L is ine-
creased, |

Evaluation of temperature gradients near the fluid-wall inter-
face is difficult because of thg large.temperature changes which occur
there. In the step response solution as many aslloo fluid and wall di-

visions were used to accurately evaluate the temperature gradients,
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APPENDIX C

ELECTRICAL ENTRANCE LENGTH ASSOCIATED WITH ELECTRODES

A non-uniform energy generation across the tube section in
the region of the test-section electrodes results from their non-
symmetrical location at the side of the tube. An estimate of the
entrance length required before the electrical potential is uniform
across the tube can be obtained by considering a two-dimensional
infinite channel of width Di which has a source at the origin and a
sink at + o (see Figure L41). The potential for this configuration
can be obtained by adding the potential which causes a uniform flow
of nM/EDi along the positive real axis to the potential resulting
from an infinite number of equi-distant sources of strength 2aM
(36) e

separated by a distance 2Dy along the imagninary axis

resulting potentisl, ., is given by

g, = M dn | cosh TZ - Cos TZ)— TM 5 (o)

Numerical substitution reveals that at 72 = 1.5Di there is

only a one per cent variation of the potential across the channel section.
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/”—-— - T

A —  Sink —
I
‘\_/,é/ T $Z

SOURCE OF STRENGTH 27M

Figure 41. Two-dimensional Infinite Channel with Source
at Origin and Sink at + « ,



APPENDIX D

CONFIDENCE LIMITS

By a method outlined by Kline and MbClintock(37), an
uncertainty interval or confidence limit can be placed on an experi-
mental result which is a function of several variables that possess
an uncertainty themselves. The uncertainty interval is specified as
that interval about the mean into which a certain percentage of the
values of a variable or result would have fallen if the experiment
had been repeated an infinite number of times. When the result R
is a function of n independent variables, then the uncertainty

interval is given by

> 2 A
oR oR R
Wo = [[2Bm| +(22w,) 4 -0 4 [2R .
R v 7 Tlav, 2 W, (p.1)
where: Vh = 1independent variables
Wgp = uncertainty interval of the result
Wy, = uncertainty interval of the independent variable

Table VI contains typical mean values of important variables
with an uncertainty of which the author is 95 per cent confident.
These values will be used to determine the confidence limits for
typical results in order to illustrate the method employed and the
factors considered.

Energy generation in the test-section fluid is seen from
Equation (5.2) to be a function of test-section voltage, eampersge,

radius,. and length between the electrodes. The uncertainty interval

-117-
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TABLE VI

UNCERTAINTIES IN VARTABLES

Description Mean Value Uncertainty (1)
r¥* 0.371 in. 0.002 in.
Length between electrodes, L 10.5 in. 0.5 1in.
x* 7.8 in. 0.3 in.
Test-Section Voltage 36 volts 0.2 volts
Test-Section Current 2 amps 0.02 amps
Position of fluid thermocouples ' 0.050 in.
Absolute thermocouple reading 750F lOF
Wall thermocouple error due to heat o
loss to ambient 10°F 0.47°F
Wall thermocouple temperature o .
disturbance 10°F 0.25°F
Resolution of Sanborn Recorder and
Potentiometer 0.2°F
q" 88,915 __BIU_ 1489 —BTY
hr-ft2 hr-ft2
o o}
Wall temperature 10°F 0.84°F

Centerline fluid temperature 0.5%F 0.284°F
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of this result is given by

.29, ) 2 )
"(aEWE a;rW

Wq

(D.2)

/ ’/2
29 )‘7‘
5L

W+

By taking the appropriate derivatives and using the values given in

oR;

Table IV, the uncertainty in energy generation is found to be
de= 4480 BTU/hr-ftB. The mean value of energy generation is
88,915 BTU/hr-ft5. Thus, the uncertainty is about 5 per cent of the
total.
The centerline fluid temperature uncertainty is a funection of

the resolution of the recording instruments and radial and axial loca-

tion of the thermocouple
21/
(D.3)

el + &

T
WT = (BR WR) + M/Xx

Assuming the mean value of the centerline temperature rise to be 0.5°F,

the uncertainty may be evaluated

2 ; 2 k;
‘)

0.2
7.8 o

(o.l)(o,z)) (___.. 005

0,371

Wr = (D.4)
This uncertainty equals 56.8 per cent of the total centerline fluid
temperature.

The uncertainty in the wall temperature measurement is a
function of the resolution of the recorder, axial location, heat loss
from the tube wall, and the disturbance due to the presence of the
thermocouple itself. For a 10°F wall temperature rise, the uncertainty interval

is 0.84°F, which amounts to 8.4 per cent of the total.
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The uncertainty interval or confidence limit on the result

can be expressed in a dimensionless form

- ___f_T”" (D.5)
9" R*
Wy 2 War|? We: 2] 2
_ (WTJ +(___c;_) 2|2 R\) (D.6)
‘]U T q” R¢
For the dimensionless centerline temperature
Z
W‘f’{- {0284 2+(4,4-8O |2 2(0.002))2' 2:0,57/ (0.7)
Yo S g8, 95 | 01371 )

and for the dimensionless wall temperature

I3
2 (o. ))7_
210-902. =0,0908
-l—( 5 37] 7 (D.8)

Vi,

Y

0,y4.) 24_( 4!480
10 gy) ql8

The 95 per cent confidence limit placed on the dimensionless center-
line and wall temperatures would be 57.1 and 9.85 per cent, respectively,

of the total, based on the typical mean values considered.



APPENDIX E

COMPUTER PROGRAMS

The Computer Programs A and B were used to solve the finite
difference equations listed in Tables I and III for the step response
and steady-periodic temperature distribution, respectively. The steady-
periodic computer program and ncmenclature are based on those developed
by Ayers(S).

A flow diagram preceeds each program to schematically show

the order of computations.
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-122-

START

/%EADDAW\

Figure 42,

!

PRINT DATA

=

INITIALIZE
VARIABLES

A

COMPUTE
CONSTANTS

COMPUTE

MATRIX
COEFFICIENT

A

SOLVE
MATRIX

PRINT
RESULTS

F INCREME
Car =
T

INCREMENT
TIME

4

T (/ STEADY STATE F _
REACHED X=0

Computer Program A Flow Diagram, Step Response.




MIXEDT

COMPUTER PROGRAM . NOMENCIATURE

STEP RESPONSE

‘Coefficient of first indépendent variable in Equatioh I

v

Convergence limit o
Coefficient of second independent variable in Equation I
or Ce/oy Cy

Coefficient of third independent variable in Equation I
WGRAD(A/B)

Time step counter

Time increment

Dimensionless wall thickness, o

Constant terms in Equation I

Temperature gradient in fluid at fluid-wall interface
Storage matrix for ¥.(I, J)

Time frequency of solution printoﬁt

Redisl counter in the fluid, (I = 0, 1, 2...N)

Inlet fluid temperature

Axial counter, (J =0, 1, 2,..P)

Radial counter in wall, (K =0, 1, 2...M)

Length of grid network in the axial direction

A

Number of radial elements in the wall

Mixed mean temperature of fluid

Number of radial elements in the fluid
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P Number of axial elements in the fluid and wall

Q . Internal energy generation switch, (Q = 1.0,. there is energy
generation; Q = 0,0, there is no energy generation)

* RATIO Bingham plastic constant, a

S(1) Fluid temperature , Vs
T Time , ©

u(1) 5(I, J-1)

V(1) Wall temperature , V.

VEL(I) Fluid velocity , VEL(I) = u(r)

VHAX Maximum fluid veloeity , VMAX = uX . /2u¥

WGRAD  Temperature gradient in wall at fluid-wall interface
W‘(I,J) Storage matrix for ?Ifw(K, J), x = (X*/Ri)(RePr)_l

X Axial distance



START

LOOPA

Laoee
ENTRYA

LooPC
Laoro

LOOPE
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COMPUTER PROGRAM A - STEP RESPONSE

DIMENSLON A(200)+8(200),C(200),Dt200),S(200),EPS(200),GAMMA(200),

1 F16000,AC),H(40004AD),V{100),VEL{100),U(100}
VECTOR VALUES AC=" 2,20420
VECTOR VALUES AD= 2,20420
INTEGER GOUNT,FREQsNsMoTsKsd
PRINT GOMMENT S$ZHEAT TRANSFER TO BINGHAM PLASTIC IN LAMINAR

"1 ELOW WITH INTERNAL HEAT GENERATION s« STEP RESPONSE eess

READ OATA
PRINT COMMENT $1 NEW DATAS

PRINT RESULTS NyMyRATIO,FREQ)DELT+BETA¢LAMyDELTAsL P »ALPHA,Q, INLET

WHENEVER (P#N.G.6000) .OR. (P#N.G.4000).OR.N.G+100+0R.M.6.100
PRINT COMMENT $DIMENSION OF ARRAY EXCEEDED. DATA REJECTEDS
END OF CONDITIONAL
VMAX =(3.%{1,=RATID}«Pe24)/(RATID.Po&o=4.*RATIO+3,)
WHENEVER RATIO.E.l.
THROUGH LCOPA, FOR [=0,1,I1.E.N
VEL(1)=0.5
TRANSFER TO ENTRYA
END OF CONDITIONAL
THROUGH LCOPBy FOR I=0y1s1.E.N
IF=1
NF=N
VEL{I)=3.8(1,~2.%RATIO+2.*RATIO®IF/NF-1Fe[F/NF/NF)/{
1 RATIOP.4 =4, #RATIO*3.)
WHENEVER IF/NF.LE.RATIO, VEL(I)}=VMAX

CA = NaN

C8 = P/L

CC = N-0,5

CD = 0.5/DELT*(DELTA/BETA/M+1./N)
CE = LAM/BETA#(M/BETA+0.5)

CF = LAMsMeM/DELTA/DELTA

C6 = 0,5¢LAMNM/DELTA

CH = DELTA/M

Cl = LAM® (M/OELTA+M-0.5)

CJ = 0.5#DELTA#{1.4DELTA)/DELT/M

PRINT COMMENT $THE CONSTANTS GENERATED By THIS DATA ARES
PRINT RESULTS CA¢CByCCyCDyCEsCFyCGyCHyCIyCIyVELIO) oo oVELIN=1)
COUNT = 0

T = DELT

THROUGH LCOPDy FOR Ju0¢l9JeGeP

THROUGH LQOPC, FOR 1s041,1GeN

FllyJ) = Qo

THROUGH LCOPDs FOR KslylyKeGoM

WiKed) = So

B(O) = 1./DELT+VMAX®CB+4,#CA

ClO) = =4,0CA

THROUGH LCOPEy FOR I=lylsleGeN-1

Al1) = =CAetle=0.5/1)

1./DELT+VEL{[)#CB+2,#CA

~CAe(1.40.5/1)

-CC
CD+CC+CE
~CE

>
z
e wan

=001
+001

003

*005
*006

01

']
01
B3



LOOPF

ENTRYB
LOOPFA

LOOPG

LOOPH

LOoPK

LooPL
LOOPM

LOOPN
LOOPO

Lgors

LOOPT

Laorp

-
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THROUGH LCOPF, FOR K=lyloKeGeM~-1

A(N+K) = -CF+CG/(1.+K#CH)
BIN+K) = 1./DELT+2.#CF
CIN+K) = —CF=CG/{l.+K#CH)
A(N+M) = -CI

BIN+M) = CJ+CI

THROUGH LCOPFAy FOR I=0,141.G.N

UlI) = INLET :

THROUGH LCCOPPy FOR J=l,lyJeG.P

THROUGH LCOPGy FOR [=0y1l,1.G.N-1

O{1) = FUI,J)}/DELT+VEL(I)eCBeU(1)+Q
CONTINUE

D(N) = CO#F{N,J)+0.5+Q/N

THROUGH LCOPHy FOR K=1,1,KeGeM-1

DIN+K) = W{KsJ)/DELT

DIN+M) = CJeW{M,J)

EPS(C) = B(O)

GAMMA(0) = D(O)/EPS(0)

THROUGH LCOPKy FOR I=1l9lsleGoM#N

EPS(1) = g(I1)-A(I)#C(I-1)/EPS(I-1)
GAMMA(TI) = (D(I)=-A(1)*GAMMA{I=-1})/EPS(I)}
SIM+N) = GAMMA(M+N)

THROUGH LCOPLy FOR I= M4éN-1,-1,1.L.0
SUI) = GAMMA(I)-C{I)®#S(I+1)/EPS(I)
THROUGH LCOPM, FOR K=0,1,K.G.M

VIK) = S{N+K)

THROUGH LOOPN, FOR I=041,1.G.N

U(T) = FlI4J)

FlIyJ)a S(I)

THROUGH LCOPO, FOR K=lylyKeGoM

WiKyJd)w VIK)

WHENEVER (COUNT+1}/FREQ.E.{COUNT+1.)/FRE

PRINT COMMENTS * LA A HEBRBRRBBERIRRS
X = J/CB

PRINT RESULTS T,X

PRINT RESULTS S{0)eeeSIN)sV{O)seaviM)
FGRAD= N#{S[N)=-S(N-1)}

PRINT RESULTS FGRAD

WGRAD= M#{V{1)-V(0))/DELTA

PRINT RESULTS WGRAD

CMPARE= WGRAD®*LAM/BETA

PRINT RESULTS CMPARE

FAC= 12.#(1.-RATIO)«Pe2./(RATIOPshe~4,#RATIO+3.)
SUMS= FAC#S(0)/8./CA

THROUGH LCOPS, FOR I=1,1,1.G.RATIOsN
SUMS = SUMS+S({I)#FAC*I/CA

THROUGH LCOPT, FOR I=I,1,1.G.N~1

FAC= 12./(RATIOWP.4e~4.#RATIO+3.)@((1.=2.%RATIO)&I/CA+
2.#RATIO®I#I/(NePo3a)=1oPe3a/(NePobe))
SUMS= SUMS+FAC#S(1)

MIXEDT= SUMS

PRINT COMMENT $OTHE MIXED MEAN TEMPERATURE ISs

PRINT RESULTS MIXEDT

END OF CONDITIONAL

CONT INUE

COUNT = CCUNT+1

T = T+DELT

WHENEVER COUNT/FREQ.E.(COUNT+0.0) /FREQ

WHENEVER .ABS.({V{1)-V(D))#M/DELTA).G.ALPHALOR.TobL5.#X/U(D)

TRANSFER TO ENTRYB

END OF CONDITIONAL

TRANSFBR TO START

END OF CONDITIONAL

TRANSFER TO ENTRYB

END OF PROGRAM

051
052
053
*05¢4
+055
056
057
=058
559
*060
061
#062
#063
*064
065
*066
*067
*068
*069
*070
*71
*072
«073
*074
*075

076

077
*078
*079
*080
+081
082
«083
084
*085
086
«087
+088
089
*090
#0091
*092
*(93
*09¢4
«095
*096
«097
+098
+098
*099
=100
+101
«102
#103
*104
*105
2106
»107
108
109
110
111
#112
«I13
116

01
01

01
02

02
01
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> READ DATA |¢

\

PRINT
DATA

PRINT DATA

REJECT
STATEMENT

IS DATA
STABLE

T

COMPUTE
CONSTANTS

Y

y

INITIALIZE
VARIABLES

A

ITERATE
DIFFERENCE
EQUATIONS

Y

HAVE VARIABLESY [g
CONVERGED
INCREMENT

PRINT DATA vT X
REJECT T IS CONVERGENCE ‘
STATEMENT TOO SLOW £
¥

COMPUTE J=pP
PHIF AND AR T

A

COMPUTE PRINT
WALL >
GRADIENTS RESULTS

N\

Figure 43. Computer Program B Flow Diagram, Steady-Periodic.




A(T)

ALPHA
AMPRAF(I)

AMPRAW(K)

COMPUTER : PROGRAM i NOMENCLATURE
STEADY-PERIODIC
Sin e coefficient in ¥ at the point (I, J) in the fluid;
pf ’
A(z, J)
Convergence limit

Periodic amplitude ratio at the point (I, J) in the fluid,
VA(I)2 + B(I)2 /e S(I)

Periodic emplitude ratio at the point (K, J) in the wall,
Je(x)2 + D(k)2 /e V(K)

Arctangent subroutine

C?s I'e coefficient in wpf at the point (I, J) in the fluid;
B(I, J)

Pe Cf/pw Cw

5%2 rg) coefficient in wpw et the point (K, J) in the wall;
’

Iteration counter

g?i Fg) coefficient in wpw at the point (K, J) in the wall;
t

Dimensionless wall thiékness, o)

A(L, J-1)

€

Periodic fluid temperature gradient at wall
Axial frequency of solution priﬁtout

B(I, J-1)

A(I, J) after the previous iteration. Used in the convergence
inequality for A(I, J)

r



H(I) B(I, J) after the previous iteration, Used in the convergence
inequality for B(I, J) :

I Radial counter in the fluid, (I =0, 1, 2,,.N)
J Axiel counter, (J =0, 1, 2,..P)

K Redial counter in the wall, (K = 0, 1, 2...M)
L Length of grid network in the akial direction
IAM A

M Number of radial elements in the wall

MIXEDT Mixed mean temperature of fluid

N Number of radial elements in the fluid

P Number of axial elements in the wall and fluid
PHIF(I) @¢ = Arc tan - B(I)/A(I)

PHIW(K) ¢w = Arc tan - D(K)/C(K)

PERCOF(I) Periodic coefficient in the fluid, VA(I)® + B(I)?

'PERCOW(K) Periodic coefficient in the wall, vC(K)® + D(K)?
(K) C(K, J) after the previous iteration

RATIO Binghem plastic constant, a

R(K) D(X, J) after the previous iteration
S(I) ¥ge 8t the point (I, J), in the fluid, S(I, J)
SQRT, Square root subroutine

TIMEAV - Time Average of periodic fluid temperature gradient, FGRAD
u(1) s(I, J-1)

VEL(I) Fluid velocity, VEL(1) = u(r)

VMAX Meximum fluid velocity, VMAX = uk /2 u¥

V(K) ()

W(I) S(I, J) after the previous iteration

oy 8t the point (K, J) in the wall; V(X, J)

Y(K) V(K, J) after the previous iteration
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COMPUTER PROGRAM B - STEADY-PERIODIC

CIMENSION A(59)4B(50)9CL5G)yD(5C)F(50),G{5C)HI50),Q(50),RI57),
A S{52) U501 E(50) sWI5C) 2 YL5C) 2 PHINLSQ) »PHIF(5Q) ,PERCOF(5D),
2 VELIS57)4EPSw(5D),0PPF(50),CPPW(5)4ACJF{53),ACINI(5C),
3 AMPRAFL(57) JANPRAW(SD)  PERCCWISY)
INTEGER [4JeKy¥,NyP,COUNT,FREQ
PRINT COMFENT $2 HEAT TRANSFER TC BINGHAM PLASTIC IN CIRCULAR
1 TUBES IN LANINAR FLOW WITH INTERNAL HEAT GENERATICNS
GTART. . _REAL CATA
PRINT COMMENT $1INEW DATAS
PRINT RESULLTS EPS,BETA,LAM,GAM,DELTASL P,RATIONNM,FREQ
PRINT COMMENT $ THE NUMBER GF RADIAL PCINTS IN THE FLUID ISS$
PRINT RESLLTS N
CELT= 19,0E-37
ALPHA = ({01
Pl = 3.14159
WHENEVER RATIO.E.Ll.
THRCOUGH tCOPhy FCR I=0,1sI1.E.N
LCCPh VEL(I)=%.5
VMAX=(,5
TRANSFER TO ENTRY
END CF CCNDITICNAL
VMAX =(3,#(1.,=RATIC).P.2.)/(RATIC.P.4s~4.#RATIC+3,)
THROLGH LCCPXy FCR I=CylalsELN
1F=1
NE=N
—MELLE)23.0(1.=2,#RATIC42,. ¢RATIO®IE/NF-IF#LE/NEINFL/ Y
RATIC.P.4.~4,#RAT{C+3,)
Lceex WHENEVER 1E/NF.LE.RATIOf VEL(I)=VMAX
ENTRY THROUGH LCOPT, FOR P=P,5,.P/L.G.5C00N
WHENEVER P/L.G.GAM/VEL(N-1)
PRINT COMNENT $CTHE NUMBER OF AXIAL NCCAL POINTS 15§
PRINI RESLLIS P
TRANSFER TO ENTRYA
CTHERKWISE
CONTENUE
LCEET END €F CCNDITIONAL
PRINT CONMVENT $OCIVERGENCE OCCURS IN THE FLUIC EQUATIONS WHEN
1 P IS INCRFASED TQ P/ 4 SCQLN. CATA REMECTEES .
TRANSFER TO START
ENTRYA . THROUGH LCOPL, FCR.M=M s~liM.Ls2. . .
WHENEVER GAM .Go{2.#N-1.+2.#LAM#M/BETA/CELTA+LAM/BETA}/ (DELTA/
1 BETA/2./F$Q.5/N)AND.GAM.G.% . #LAV#MeM/CRLTA/DELTA
PRINY CCMVENT $0 THE NUMBER OF NCDAL PCGINTS IN THE WALL 43»
BRINI
THANSFER TO ENTRYS
CTHERWISE
CONTINUE
Loeee £ENC CE. - -
PRINT CONMENT$0 CIVERGENCE OCCURS IN THE WALL EQUATIONS WHEN

-

TRANSFER TO START
ENIRYS LA = N.P.2,
(B8 = 1.#P/L

#0201
#7201
*201
#0531
002
113
#0703
#0504
*505
#0206
07
*508
*09
{13
#0111
012
#0113
#0014
.‘.\15
*3l6
*N17
*018
*019
529
*021
#2322
*N22
*(23
#024
025
*026
#9217,
*028
*029
*:30
*031
*032
. 2032

w033

Q34
*035

%035

*036

=037

«038
*039
*040
#0641
*042
042
*043
*044
*045

61

o1
o1
01

01



LcEPaA

Lcoev

Leeec

LL0eC
ENTRYC

Leeee

LeerF
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CC = CB/GAM

CC = M/CELTA+2.5

CE = LAM/GAV

CF = MsM/CEITA/CELTA

CG = GAMSCELTA/LAM/2./¥

CH = LAM#*(M/CELTA+M-3.5)

Cl = GAMeCEI TA#3,5/ Me(1.+4CELTA)

PRINT COMFMENT $TTHE CONSTANTS GENERATEC BY THIS CATA ARES
PRINT RESLLTS CA,CByCCHCEHCESCF CGoCH,C1 VMAX, VELIC) .o VELIN-1)
TH GH LCOFA, FCR [25,1,1.G.N

a(1) = 0.

B(I) = 2,

Sty = ¢,

ELr) =

ELL).

uif) = 2.

THROLGH LCCFVy FCR I=841,1.6eM

ct1) = 7,

CL1) = 6.

THROLGH LCC¥By FCR JEl41+J.GoP
THROUGH LCEPCy FCR I20,1,1.GeN

Gi1) = 0,
FLI) = Q.
wii) = 0a,
THRCLGH LCOPC,y FCR 1#£0,141.G.M
CL1) = ¢,
RII) = Q.
CCUNT= 9

C(M)= CHe(CIVM)=C(M=-1))/CI
CiM)s —CrolU{M)-CIM-1))/C1
THRCUGH LCOPEs; FCR K=M=1,-1,K.Ls1
FAC= 2.,#CELTAS(K#DELTA/M+1.)
CEK)= ~CEw (CE#M/FAC)C(K£L)~CE®(CF=VN/FAC)C(K=1)
+2.#CE#CF#C (K}
. CAK)* CE#(CF4M/FAC)#D(K+1)+CE#(CF~M/FAC)#D(K=1)=2.4CE¥CF#D(K)
BIN)= (-LAM/BETA#CD#{C(1)-CIO})+(N-0.5)%(A(N)=B(N-1))~EPE
420 /K)/(GAM® {DELTA/BETA/ 2. /M#0a5/N] !
A(N)= (LAM/BETA=CD#(D(1)=+D(0))-(N=C.5)e(B(N)=-B.(N=-1)))/
} {GAMs( ) 2IM40,5/N))
SIN)® 0,5/(NeN-0.5#N) +S(N-1)
CLQ)= A(N)
CL{0)= B(N)
AHROUGH LCOPFy FOR I=N-1l,-1af.L.1
AlL)= (CA®(1.4C.5/1)%A([+1)+CA®{1.~0.5/1)8ALI=1)£CROVEL(I)»
1 MaB(1)+EP «CA+CRw
BiI)= (CA®#[1.40.5/1)#B(1+1)4CA®#(1.-0.5/1)wB(I=1)+CBaVEL({)
L #F([)=GAN#A(T))/(2.%CA+CBeYEL(L})
Stl)= {CAR{1.40.5/1)5(1+41)+CA#{1,~C.5/1)#8(1=1)+CBaU(L)
1 AVELAL)414) /L2, 2CA+CBRVEL 1))
ALO)E (4,5CAsA(1)+CBOVMAXSE(C)+GAMRB(0)+EPS)/
L] 4
B¢0)= (4, #CA#B(1)+CBAVMAXSFLIU)=GAMRRLQ) )}/
L l4.#CA+CBeYMAK)
$10)= (4,0CA%E{1)+CBRVMAX#UL0)+1.)/:(CBEVVNAX+4,9CA)
THROUGH. LCCPGy FOR I=0,Ls1eGaM
* WHENEVER oJARS {C(I))at «DELT.ORL.ABS.(DIT))ILLDELT
JRANSFER 10 ENTRYE

-

-

CTHERWISE
WHENEVER .AES,(C(0)/C{1]).G.10C0000.ANC..ABS.(LL0)/L(])}.6.1CC0000
TRANSFER TC LGCOPG ’



LCccer

LCEFI

LCCRG

—

~No—-

1

1

1
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ENC CF CCADITICNAL

WHENEVER GAPS {(CII)=C(I))/CUI)) LaALPFARLY, ANC,
ABBSAIRLIL~RII)I/C(I))oLa ALPHARLY,

CCNTINUE

CTHERWISE

CCUNT=CCLAT+1

WHENEVER CCUNT.G.1CD

PRINT COMVENT oo s uuus s s nnuunaaun asnuannsdnaddaassncununeng

PRINT CCMMENTS CCNVERGENCE IS TCC SLCW. DATA REJECTECS

PRINT CCMMENTS SLOW CCNVERGENCE IN THE WALL ECQLATICNS.$

PRINT RESULTS S{T)aaoSIN) oW (Theaah(N)9A()eead{N)4G(C)aaaGiN),y

BUN) e aBIN) R () e e dHIN)yCIG) 00 o CUM) pC{G ) a0 e QUMY C(C) e, CIM),

RIDYeseR(M)

PRINT COMMERNT Suus s snan s anau s nsu i naaussaunsaunssssnsnsnnns

TRANSFER TC. START

CTHERWISE

CCNTINUE

END CF CCNDITICNAL

THROLGH LCCFPy FCR K=2y1aKeGoM

C(K) = C(K)

R(K) = DIK)

THROUGH LCCFPIy FCR Kel,y14K.GoN

G{K) = A(K)

RH{K) = B(K)

wik) = S(K)

TRANSFER TC ENTRYC

END CF CCNCITICNAL

ENC CF CCNDITICNAL

CCNTINUE

THROUGH LCCPJy FCR {=2,1,1.G.N

WHENEVER .ABS.(A(I)).L.DELTACRA4ABS.{B(1))aLoCELT.CR..ABS,

(StI}).LJCELT

IRANSFER .JO ENTRYE -

CTHERWISE

WHENEVER o ABS. ((ACI)=G(I))/A{I))sLoALPHALANC. ABSLL(B(I)=HII)})/

BEI)) oL ALPRALANC. JABSCISIT)~WIE))/S{T) ) oL ALFHA

CONTINUE

CTHEERWISE

COUNT=COUNT+1 -

WHENEVER COULNT.G. 25 AND..ABS (B(i)) GeoABSa (1. OE G5#A(1))

PRINT COMNERT 32 R R P YRR R 2 YTy

PRENT COMMENT $SLOW CONVERGENCE IN FLUIC EQUATIONS BECAUSE A
TENCS TCWARC ZERCS

PRINT RESLLTS W(Q)eeoWIN)9GIC)ausGIN)»E(0)uasHIN)

JRANSEER IO._ENTRYD

END CF CCNDITICNAL

WHENEVER CCUNT.G.1CD

PRINT CONMENT § #0aasansssnsnn s asnnetsdasanuenansseenesg

PRINT COMMENT$ CONVERGENCE IS TCOC SLOW. DATA REJECTEDS

PRINT COMMENTS SLOW GCNVERGENCE IN FLUIC EQUATICNS.S

PRINT RESLLTS S(0)auaS(N Lol {0)eoaW{N)sB(Q)asoBIN)B(G)aaaGIN),.

BIC)aeoBIN) s F(0)aa s HIN)JCID)eueaCIM)pClO)eeaCiM)gC(0)easDIM),y

RIQ)asaRAN)

PRINT CONNERT SHasaaunudan s an s s aautauda st s nenaendannnnaneg

TRANSEER TG START |

CTHERWISE
CONTINUE

TEND CF CCACITHCNAL

THROUGH LLORK, FCR K=yl oKaGaM
CLK) = Ci(K)



~133%-

LCGRK _._. RIK) = £{K)
THROUGH LCCPLy FCR Kel414K.GuN
————BIK) = A(K)
HIK) = B(K)
LeaeL W{K) = S{K)

TRANSFER TG ENTRYC
- ... .. FEND CF CCADITIONAL
ENTRYE END CF CCNCITICNAL
. ACEPJ _ CONTINVE.
ENTRYD THROUGH L
E(L) = A1)
Fti) = B(I)
LCeer L) = s{I)
WHENEVER JZFREQ.E.(0.G+J)/(Q.0+FREQ)
X =J/C8 S
PRINT COMNENT $C$
PRINT RESLLTS X CCUNT
THROUGH LCCPNy FOR 1=(y1,1.G.M
NCRMF = 1./{.ABS.{B(I)))
CPPF(I) 3 ~A(1)=NORMF
_ADJFCI) s A(I)*NORMF
PHIF(1) = ATAY.(CPPF(I)/ADJF(I))
. LEEPN PERCOFLI) = (SQRTL((COPPF{1}.Pe2.)+(ACUF(I)eP.2.)))/NCRMF
THRCUGH LCOPC, FCR K=C,1,K.G.M
NORMW = 1./(.ABS.(D(K)})
CFPW{K) = —-LC{K)*NORMN
e ACJW = CHK)ENORMW
PHIKIK) = ATAL.(CPPW(K)/ADJWIK))

1=Cy1s14GuN

- teepg. . . PERCOH(K) 2 (SCRT.((OPPWIK)aPa2.)+(ACIWIK)aPL2.)))/NCRMI
THROLGH LCCPCy FCR I=041s1.G.N
_LECPC. . AMPRAF(I) = PERCCF(I)/{(S(I)=*EPS)
THRCUGH LCOPRy FOR 1=041,14G.M
LEEPR AMPRAW(]) = PERCCW(I)/(SIN)*EPS)

FAC= 12.#(1.=RATI0).P.2./(RATIC.P.4.=4.+RATIC+3.)
_SUMS= FAC#SIC)/8./CA
SUMA= FAC*A(L)/8./CA
_.SUMB= FACSB{C)/8./CA
THROLGH LCGRP; FOR 181y1,1.G.RATIC*N
SUMS = SUMS+S{T)FACSI/CA___ .
SUMA = SUNA+A{T)*FAC*1/CA
10eefp SUMB = SUMB4BI1)+FACHI/CA
THROLGH LCOPZ, FOR IsIy1,1.G.N~1
FAC= 12./(RATIONP 4.4 ¥RATIO+3. )% L (1.=2 #RATIC)*1/CA+
2.%RATION %I/ (NJP.30)21.P 30/ (NPL4L))
SUMS= SUMS$FACeS(I)
SUMAE SUMA+FACYA(T)
ACORZ__ . SUMB= SUMB+FAC*B(1)
NUMA= N*(A(N)=A(N-1))
. _NuMB= Ne(BLN)-BIN~1))
PRINT COMMENT $OTHE STEADY PERIOCIC WALL TEMPERATURE
GRADIENY IN PI/6 INCREMENTS 1§ e
SuM= C.
_ THROLGH LCCRSs FOR ARG=PI/64sP1/644ARGiG.24 %P1
FGRAC= NUFAsSIN. (ARG)+NUMB*COS. (ARG)
e . SUM= SUM+FGRAD
MIXECT= SUMS+SUMA*SIN. [ARG)#+SUMBSCOS. (ARG)
_1€@PS  PRINT RESLLTS ARG.FGRAC/MIXEDT
TIMEAVS SUNM/12.
e .. .BRINT COMNENT $OTHE TIME AVERAGE OF THE WALL TEMPERATURE
. I GRADIENT 1§$
R __BRINT RESLETS TIVEAY
PRINT RESLLTS 5(0)..u5(N)iPHIFIQ)oi  PHIF (N}, ANERAF10) o0 LANPRAF(N)
BEIWIMME o
2 ANPRAK(D)..  BHPRAK(N)4CLD) v o C LM} D(0)0 0 o CLM)
e ——.____END PF CCNDITEIONAL . _
Leces CONTENUE
.. JRANSFER .10 START
END CF PRCGRAM

-

e

*15%
+151
#152
#153
#1564
*#155
#1506
#157
#1518
*159
#len
*161
*162
*163
*164
*#165
*166
*167
*#168
*169
*17¢
*171
*172
#173
*174
®175
*176
*177

*#178.

*179
180
#181
#182
*183
*184
#185
*186
#187
#188
*189
#1970
*191
*#192
#192
+193
#194
#195
*196
*197
*198
*198
*#199
#2068
#201
*202
*203
*2N4
»205
#2046
#206

«2C7
»208
*208
#208
209
#2127
*211
*212

02
neg
Q2
Q2
u2
02
[
Gl

0l
01
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