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I. INTRODUCTION

Modern engineering structures have been experiencing a very
rapid decrease in their "thickness" dimension as severe weight (and
other) limitations have been imposed during recent years. As a consequence
many structures are used in a post buckled state, that is to say the loads
sustainéd are greater than those predicted in the usual "Euler column"
sense, The motivation for this state of practice is obvious, however,

a safe road to design remains to be paved. In addition, structures

loaded in this manner are frequently expected to survive an enviromment of
dynamic forces while subjected to these high static loads. The purpose of
the present study is to determine the dynamic characteristics of such a
structure. The results of this study are in the form of the natural fre-
guencies and shapes of the modes of vibration of a circular plate as the
function of a load parameter.

The free vibrations of elastic bodies or structures about an
equilibrium configuration have been studied extensively. The natural
frequency of vibration and the shape of the mode of vibration are the
most important features which are obtained out of the solution of an
eigenvalue problem,

If such a body or structure is first preloaded statically, then
the resulting frequency and mode of vibration exhibit interesting fea-
tures. In general, a tensile system of stresses or forces causes an in-
crease in the frequency of vibration, while compressive forces serve to
decrease the frequency of vibration. The initial loading affects the

effective stiffness of the structure and in the case of a compressive
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loading the effect is such as to reduce the stiffness to zero, which

is indicated by zero frequency of vibration, and thus buckling of the
‘structure in the conventional sense occurs. Indeed, a dynamic approach
to the evaluation of buckling loads predicts buckling when the frequency
of small vibrations about the static configuration goes to zero.

The most straightforward example of such a problem is the
lateral vibration of an elastic bar which is axially loaded.(l) The
mode shape is sinusoidal for a simply supported bar, and the square of
the frequency of vibration is linearly related to the axial force (or
an associated loading parameter). Lurie(g) has discussed several ex-
amples related to vibration and structural stability and cites both
theoretical and experimental results. He shows that, in general, within
the framework of linear theories, whenever the mode shape of buckling and
of vibration in the presence of axial loads is the same, then the inter-
action curve between the square of the frequency and some monotonic
increasing load parameter will always be linear, Massonnet(B) discusses
this same subject extensively, but frequently has to resort to approxi-
mate means, such as the Rayleigh-Ritz method, to solve the problem.
These problems are solved within the framework of a linear theory.

The buckling problem is phrased as an eigenvalue problem of
£hevlinear theory where the eigenvalue is associated with the critical
load and a buckling mode of undetermined amplitude is obtained. These
results imply no lateral deflection (the trivial solution) or that
buckling occurs suddenly and with uncontrolled amplitude. That this
paradoxical situation never arises in reality is explained by the

presence of some imperfections, either in the structure or in the



loading system, which always insure that the structure deflects
laterally as the load reaches the critical value. Even a crude
experiment with a simple column shows that the structure does not
collapse violently as the critical load is reached; however, the
deflections do become large. The effects of these large deflections
are not fully included in a linear theory. In order to discuss such
phenomena more adequately, an improvement in the theory is made which
results in nonlinear differential equations. In the case of a plat
such eguations were given by von Ké}méh.(h)

The solid circular plate is the structure to be investigated
here. The linear equations of the classical theory of plates have been
solved extensively.(5’6) The buckling of a circular plate was first
studied by Bryan.(7) Federhofer(8) studied the problem of the vibrating
clamped edge plate subjected to edge loads and presented extensive results
of the interaction between compressive (and tensile) forces and the fre-
quency of lateral vibration of the plate. *

There exist relatively few solutions for the nonlinear equa-
tions for plates, introduced in 1910 by wvon Ké}mdh. The problem is
particularly difficult for rectangular plates where several approximate
methods have been introduced, in particular by Marguerre.(9) Bisplinghoff
and Pian(lo) treated the case of vibration of a rectangular plate of
infinite length and some cases for plates of finite length. For the
circular plate, however, several more solutions are available, Way(ll)

solved, by power series methods, the problem of a circular plate subjected

to lateral load. Friedrichs and Stoker(le’lB) used perturbation and

* During the course of the present investigation it was necessary to
solve such equations for a simply supported plate. Results similar to
those of Federhofer for the clamped edge plate are presented in the
Appendix. B.
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power series methods to solve the problem of the simply supported
circular plate subjected to compressive radial loading (in the plane
of the plate). They treated only the axially symmetric case in a
very exhaustive manner. A nonsymmetric version is beset by consider-
ably more mathematical difficulties. The methods of these writers
were applied by Bodner(lh) to a clamped edge plate for the same type
of loading. Bromberg(IS) used the methods utilized by Friedrichs and
Stoker to study the effect of very large lateral loads which give rise

(16)

to certain instabilities. Keller and Reiss applied numerical
methods to the problem discussed by Friedrichs and Stoker. Similar
problems are studied by Alexeev(l7) and as a special case in a paper
by Panov and Feodossiev.(l8) Masur(l9), in a paper published in
1958, utilized a stress function space together with a minimum energy
principle to obtain a sequence of solutions with error estimates for
the post-buckling behavior of a plate using the von Kermen equations.
In a recent paper, Massonnet(eo) considered the effects of
initial curvature on the natural frequencies of vibration of an edge-
compressed, clamped edge, circular plate. He solves the static problem
by thé method of Friedrichs and Stoker and then assumes that the mode
shape of vibration is the same as that of the static problem, and
utilizing the Rayleigh-Ritz method obtains the approximate frequency
of vibration.
The present study is concerned with the linearized vibrations
of a circular plate relative to a static buckled configuration which is
governed by the von Kermen equations. The plate is subjected to radial

displacements which are the cause of the buckling and post buckling



equilibrium behavior, Although these boundary conditions are differ-
ent from those of Friedrichs and Stoker, they are nevertheless mathe-
matically equivalent for the static problem. It is here possible,

however, to treat the problem of nonsymmetric vibrations relative to

a symmetric buckling or static configuration.



IT. FORMULATION OF THE PROBLEM

For a preliminary consideration of the differential equations
governing the present problem consider the xy plane of a cartesian coor-
dinate system to be the middle plane of the plate. The z direction is
the direction of the lateral deflection. Such a plate may be subjected
to membrane forces in the plane of the plate and lateral loads in the z
direction. The thickness of the plate is h. In the absence of body
forces in the x and y directions there are two relevant differential
equations due to von Ka%mah.(u) The Equation (2.1) represents the equa-
tion of lateral equilibrium while compatibility is expressed by the

‘Equation (2.2).

DAV - cﬂxchF’aﬁw’ij = p (2.1)
_ _ BEh - -
AF = Foyigy = T3 CiapTopriy
= = Eh(ﬁ)mﬁ)w = V—i)}qr-"_q-)}qy') (2' 2)

where A represents the Laplacian operator, F is the Airy stress function,
W is the lateral deflection of the plate and p is the load per unit area
applied to the lateral surface of the plate. Further, the flexural
rigidity is

Eh)
12(1-v)

where E is the Young's Modulus of Elasticity and v is Poisson's Ratio,

~Bm



and
o _ 0 1
ij 10

Inherent in the utilization of these equations is the inclusion
in the strain displacement equations of nonlinear terms involving the
derivatives of W with respect to x and y.

For a moving plate the inertia terms which are due to the
motion of an element of the plate in the plane of the plate are neglected
in comparison to those due to the lateral motion.* These inertia terms,
which in actuality represent body forces, may, in this case then, be

treated as the lateral load

2

3
rp = - ph a

=l

(2.3)

i

where p is the mass per unit volume.

Only small amplitude harmonic vibrations with respect to the
static configuration of larger amplitude are considered. Consistent
with this assumption the following partitioning of the. stress function F,

the displacements, strains and other quantities is proposed

F o= FS 4 expDeltt
T o= W+ enpelint
) (2.4)
_ 8 D _iwt
eij = eij + e*eije
N, =N, + eyl et
iy ij iJ

where eij and Nij are the cartesian components of the membrane strains
and stresses, while w is the circular frequency of vibration and e¥* is

an arbitrary, small parameter.

¥ For a discussion to this point see references (21) and (22).
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The membrane stresses Nij are derivable from the stress
function F by

N Frop (2.5)

iy T ‘P

The membrane strains eij,are related to the stresses by

- 41 .
ey = = [(l+v)Nij kakaij] (2.6)

where 8.

13 the Kronecker delta, has values

R
i3 7 o 1

Substitution of these quantities in Equations (2.1) and (2.2) and retain-
ing only those terms which contain g% to the power of one or less yields
two sets of differential equations, one governing the static problem and

the other governing the dynamic problem, These are

S S _S
DAMWw - ciachF’aBW’ij 0
(2.7)
S Eh =5 =S
AAVY = 5 CiaC5p 7 0n" 13
- 5 D D _s D
DAAWD - Ciach(F’ozﬁW’ij + F,O@w,ij) = pha)awD
(2.8)

=D

e
AAFP - Eh CiaC B opVr 1

Since all detailed discussions of this plate are for a solid
circular one, of outside radius R, the problem is rephrased in terms
-0f the polar coordinates. The static configuration is assumed to be
axially symmetric., However, permit a nonsymmetric dynamic configuration.

In particular, all quantities are chosen in the following‘form* without any

* Henceforth, unless otherwise noted, a summation symbol not having the
summation limits specified is intended to be summed over n from O to o,



significant loss of generality:

T = GS(r) L = j{:ﬁg(r) cos né
F - B = o P - y;;]l?l(r) sin 0 + (1) Brr

P

ﬁs(r) P o= ;{jﬁg(r) cos né (2.9)

Fo

(r) = j;1Fz(r) cos né

where the u and v variables represent the displacement components in the
radial and tangential directions respectively.
Simultaneously it is advantageous to render all pertinent

gquantities in these equations dimensionless, and for this purpose let

r
X = =
R
- R =S _ R =D
U-;z“ U T o
14
. R =8 _ R =D
vV = 72'\’ 'V'n = ;I?Vn
-5 =D (2.10)
W o= ¥ o= B
7 4
D
o =E.S_ ¢n_Fn
D = D
2
where 72 = h2/12(l-v ) .

By the use of the above expressions the differential equations

for the static case become,

v“w - ;l(-(qu')' = 0 (2.11a)
and o =-L (W) (2.11b)

2x

where V2() =1 [(x( )']'" and primes designate differentiation with
X

respect to x.
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The dynamic case for the nth mode* is governed by
n®\2 1 tyr , ne
(V- B)SR - 2 (en') + Z o WP (2.12a)
bd X x2
2
n' n
-1 (¢ W')' + }-{5 ¢nW" = unwn
X
and (v2 - %2) g = - [3]% (Wrwltr)r - Ez W] (2.12b)
2 .2
where u(n) = m%bn

In order to be able to state the boundary conditions clearly,
we rewrite all of the quantities involved, including moments, stresses
and strains, in terms of the non-dimensional quantities. This is a
matter of formal substitution and the results are listed below. As
an example, consider in detail the radial strain and the radial stress.
The radial strain for the dynamic configuration is defined as

D el
AN
where as before the superscript D refers to the dynamic configuration
and the superscript S refers to the static one. In terms of the dimen-

sionless quantities define a strain as

du aw  awd n
—3 — am———— - .
- % <€—n + cos néo % e coOs no

2
and hence el = (%—)e

rr XX

Consider now the definition for the radial stress component Ngr- The

static membrane stress (as obtained from the stress function F°), is
g o L&
rr  r ar

¥ Separation into modes is possible because of the assumed axial
symmetry of the static solution.
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The corresponding non-dimensional stress can be defined as

Tyx

L oa
x dx

and as a consequence the relationship among these two stresses 1is

Npp =

D
£

Similarly the various dimensional stresses and strains are as listed

below with their relationship to the dimensionless quantities.

S —
Nrr -

s
Ngg =

v =

re

W =

rr

L=

00

v =

re

Consequently the

gquantities are:

(]
il

i

D 1 D
=o' = T
R x Re XX
D 4n D
" = =T
RT REOG
0 = T (2.13)
2 (i gt~ n @) cos ne = 2 t?  cos ne
RZ [ X x= TR L x
D n" _D .n
EE :{: ¢ cos ne = EE ZZJ tgg cos ne
D [ AR _Dyn.
= j{j n (X ) sin ne = v __thg sin neo

stress strain relationships among the dimensionless

Exx = Txx - VTQG = % o ve!

Bgg = Tog - VT = @' - = ¢

Eyg = O (2.1k4)
R 1

Bo - v = vE

% D = 21+ v)ﬂ(% )
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since G = E/2(l+v).

Further the relationships among the bending moments are:

M

rr

]

2@+ L) = o) w,

_ 7y2,1 N A
Mog = DR W+ w) = D) Mg

M = 0 = M

re X0

= -D(%)ez [v® o+ v(% W fl; W] cos ne  (2.15)

rr
2.
= D(%) z m}rix cos né
2 "
= 22\ L. n' _n
Mgg = -D(R) j{:[x ' — w* + vw? ] cos no

n

752 o
D(R) }: mog COS 1o

. = D(l-v)(%)gj;1 n(- Lk + <§;) sin ne

L x
= Z 2 n .
= D(R} }: m o sin né

The appropriate boundary conditions for a circular plate must
now be considered. It is convenient to consider the relevant conditions
for the static equations apart from those associated with the differen-
tial equations governing the vibration motion. Let the plate be simply
supported at its circumference. The usual interpretation of "simply
supported" is to consider that both the deflection at the support and
the radial resisting moment offered by the support are zero. However,

a theory that includes membrane effects must in addition specify a

restriction, at the boundaries, upon the membrane displacements or
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stresses. Thus for the static problem a radial displacement at the
support is specified. Alternately, the radial membrane stress can
be specified, which is indeed the manner in which Friedrichs and
Stoker(lB) chose to state their problem. However, since this investi-
gation is primarily concerned with the dynamic problem a displacement
condition appears more appropriate, The effects upon the static prob-
lem depending upon the nature of the membrane boundary condition
specification are equivalent for either of the above cases. Physically
the most realizableisituatiOn‘is to specify a zero radial displacement
of the plate at the edge and then consider the effect of uniform
heating of the plate (the supporting structure being assumed rigid
in the usual sense as well as with respect to temperature changes).
‘Thermal effects would require an additional term in Equation (2.2) and
make the boundary condition homogeneous, which again is mathematically
equivalent to the situation chosen here.

Thus the boundary conditions governing the solution of the

static problem are

B,(w) = w(1) = 0 (2.16)
By(W) = (W' - iw')X= = 0 (2.17)
and : Gs(l) = - xGE (2.18)

Here ﬁﬁ is the magnitude of the radial displacement which is required
to cause the plate to buckle in the usual or linear, Euler, sense, The
term N\ is a parameter determining the extent to which the post buckling
domain is penetrated. This third condition is conveniently rephrased

in terms of the stress function &. TUtilizing the relationship between
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GS and egg for a symmetric configuration, one finds
=S _ S
U= x egg

Consequently, by Equation (2.1k)

x[x(2 o)t + (1-v)(x )] _ =-p (2.19)

B5(®)

R —
where UE = ;E U

The boundary conditions for the dynamic equations require more
careful consideration as a consequence of the permitted occurrence of non-

symmetric modes. Again the notion of simple support implies that

0 (2.20)

By (v")

and B, (v?) 0 (2.21)

I

Consistent with Equation (2.9) the prescribed membrane displace-
ments at the boundary take the form

u(1,8) = }: A, cos n@

(2.22)
v(1,0)

ji Bn sin ne + B*x
J

where the A's and B's are specified.

It appears then that a specification of An and By provides the
necessary number of conditions required of the problem. For the axially
symmetric case, n = 0, v is identically zero (plus the possibility of
rigid body motion) and just one condition needs to be imposed to specify
the problem completely. However, a notable situvation exists when n = 1.
Tt can be shown™* that in this case, also, just one additional condition

is sufficient to specify the problem completely.

*¥ This and other details for the case, n = 1, are carried out in detail
in Appendix A.
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The situation for n = 0 permits choosing the boundary condition
which is similar with that for the static case, i.e. zero radial dis-

placement, which in turn is synonymous with
Q1) = o (2.23)
o

Furthermore, this same condition is admissible and sufficient for n = 1.
These are the only cases for which c omputations are carried out. Conse-

quently the third boundary condition used for the dynamic case is

" P2
B(#Y) = eg(1) = [ - vE P -] =0 (22)

with n =0, 1.



ITII. THE PERTURBATION SOLUTION

In recalling the differential equations and boundary condi-
tions governing the problem, we consider first the static case. It is
‘required to solve the following differential equations

W -1 (e*w) = o (2.11a)
b4

FHo* = - %; (wewr)' (2.11b)

and the associated boundary conditions™*

Bl(w) = 0 (2.16)
B,(W) = 0 (2.17)
35(0*) = -\Ug (2.18)

It is convenient here to partition the stress function such that
*
0" = A+ O (3.1)

where the function ¢, satisfies the differential equation

N .
Ve, = 0 (3.2)

and the boundary condition

35(°°) = -Ug (3.3)
Consequently, the function ¢ satisfies the differential equation
o = - L (ww) (3. 4)
2x
and the boundary condition
B3(¢) = 0 ‘ (3.5)

i It should be understood that the regularity requirements at the origin
are being considered implicitly.

16w



The first of these equations will be recognized as the usual
problem of plane elasticity whose well-known solution for the solid
disk is

2
o = - IX_ (3.6)

where T = £

and where Up is found in Equation (3.17).

In order to proceed to the topic of this thesis, it is first
necessary to reproduce the solution previously obtained by Friedrichs
and Stoker. There are two reasons that necessitate the repetition of
this work. First, although these writers have completely solved this
problem, their results are presented in such a form as not to permit
direct application to the present work. Secondly, they were able to
simplify the problem by a substitution of variables for W and for
the stress function thereby reducing the order of the differential
equations and making them directly integrable, at least in part. This
is not.possible here, since in the dynamic equations, due to the inertia
term, w will appear explicitly and hence neither the integration nor
the substitution of variables appears to be possible. Consequently, it
is necessary to proceed with a solution in terms of W and ¢ following,
however, the example set forth by Friedrichs and Stoker.

Assume the functions W, &, and A to be expandable in perturba-

tion series:¥

* It can be shown that the other terms vanish.
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W = er + e5W5 + €5W5 + e
2 L

€®2+€

oy + Bog + e (3.7)

©
I

P
1

2 L ceen
ko + € kz + € xh +

Here € 1is the perturbation parameter which will be chosen as
a monotone increasing function whose direct significance will be fixed
at a later point in the development. It will eventually be related
directly to the amount of deflection in this problem. On the other
hand, it could represent the amount of radial displacement or, indeed,
it could be any other monotone increasing function.

Substitution of these perturbation expansions in the differen-
tial equations and boundary conditions yields a sequence of differential
equations, with associated boundary conditions, when coefficients of like
powers of € are equated. Consider now the various differential equations.
It will be recognized that associated with eO we obtain the equation whose

solution is the function @o.

For el the differential equation is
1 Wyt -
vAwl -2 x0(¢owl) 0 (3.8)

or alternately by Equation (3.6)

1t AT % (W)t = 0 (3.9)

and the boundary conditions are

B(W;) = O (3.10)

(3.11)

[
(@]

B,(Wy)

This is seen to be the linear eigenvalue problem for the buckling of the



plate subjected to compressive edge traction or displacement (koT
represents the eigenvalue of the problem), There exists an infinity
of eigenvalues and the solution to the problem may be represented as

a development in the form of the associated modes or eigenfunctions* as

W, = Z A](_m) B, = z A](_m)[Jo(amx) - I (o) (3.12)
m=1 m=1

This solution automatically satisfies the boundary condition B. The
elgenfunctions must satisfy the associated characteristic equation
which is obtainable from the boundary condition B,. The characteristic
equation for the mﬁh mode is

(L+v) Jy (o) + apdoloy,) = O (3.13)
where Jp(x) is the Bessel function** of the first kind and of order p
and o is a root of the characteristic equation. There is an infinite

number of such roots,

However, Oy, 1s related to l(m) and T through the differential

(o]
equation by
Wy g2 (3.14)
o) m

(m)

o T, Since the

Consequently the characteristic equation determines A\
interest here centers around the first buckling mode, i.e, the symmetric

one, only the lowest eigenvalue and its associated eigenfunction is

* Superscripts in parentheses are intended to identify the variable and
not to act as an exponent, Wherever possible, however, parentheses will
be omitted whenever there is no possible confusion and will be included
only to avoild confusion in isolated cases.

**In view of the varying defintions for the various Bessel functionms,
the ref, (23) is used as a standard throughout this thesis to avoid
possible confusion.



considered. Consequently

W= AP o) - To(e)] (5.15)
and lgl)T = ai (3.16)

It is convenient to choose

A= A = 1
o o]
whereby
T = a2
1
Furthermore, let
1
(1) _
1

This choice governs the selection of €, Having obtained T, the value

of UE is now determined,

Up = (1-v)T = (1-v)a§ (3.17)

The above-mentioned eigenfunctions form a complete set of func-
tions satisfying the boundary conditions at x = 1 and the regularity
conditions at the center of the plate and may be utilized in developing
expressions for other functions by the familiar expansion property of
eigenfunctions. This property will be utilized extensively in the sub-
sequent paragraphs. *

For 62 the differential equation for @2 is obtained,

vt = - L

, = - = () (5.18)

in which;wl represents the function just obtained.

¥ For a detailed discussion of systems of eigenfunctions and their
properties see ref. (24) or (25).



The associated boundary condition is
= .1
35(¢2) 0 (3.19)

The equation is partially integrable and upon using the regularity con-
ditions at the origin the following expression in closed form is obtained

through the use of familiar recursion relations, reference (23),

2
(-}lz o) = - % [35(0nx) - Toloyx) T, (gx)]  (3.20)

Further integration of this expression seems impossible except by sub-
stitution of an infinite series. When this is done and another integra-

tion performed, the result is

: 2 o () (e &
2 = 7 rZO r!((2+r)! )2 (14r)! Fo G

1o
X

;rLg

Further integration is not necessary since the function @2 will not be
needed explicitly. The constant C can be determined from B5'

For 63 the differential equation governing W5 is obtained

Ll(w3) = Fj(x) (3.22)
where

() = = ag(0W) + FA(x)

1 ' x (3.23)
= = = xET(xwl)' + FB(X)

and where

*

Fi(x) = = (agn) (3.24)
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The associated boundary conditions are
By(W5) = 0O (3.25)
By(Wz) = 0O (3.26)

The differential equation here is nonhomogeneous, but the
associated homogeneous equation is identical with Equation (3.9). This
homogeneous system has the nontrivial solution W;. Hence the nonhomo-
geneous differential equation may have no solution or, if it has a solution,
then this solution is not unique inasmuch as there can be added to it any
arbitrary® multiple of Wl. In order that the above nonhomogeneous equa-
tion possess a solution, the right hand side must satisfy an orthogonality

condition which is, in this -case,

1
f FB(X) Hix dx = O (3.27)

(&)

This orthogonality condition serves to determine the coefficient 12,

1 1
J F*E x ax [ o ax
\ o 31 _ o 211 (3.28)
2 1 1 )
T [ x(xH!)'H dx T [ xH'H!'dx
S 17 " i i

The particular solution can now be constructed and the procedure con-
tinued to determine further perturbation coefficients and functions.
However, as will become apparent in the sequel, there is no need to
pursue the solution of the equilibrium problem beyond this point.

Turning now to the subject of this thesis, which is the vibra-
tion of the plate in the presence of the static or initial configurations
and the associated equilibrium system of stresses discussed in the pre-

vious paragraphs, it will be noted that the method of solution in the

* While the choice is theoretically arbitrary, the specific value is
selected on the basis of convenience of computation.
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dynamic case has much in common with that used above and hence only
the essential points are presented.

The equations governing the motion of the plate are (2.12a),
(2.12b) and, as a matter of convenience, they are presented again,

" By substitution of (3.6), Equation (2.12a) is further simplified to

2 2 . )
(F - n_2.)2wn £ ATV - z_e)wn - § (o1t + 2 o ym

x X (3.29)
1 nt 1'12 Ty g1t nn
- = (ghw) +;§¢w =pw
2 1
(v2 - 27?)2 o= - [% (Wwl )" - %Sw"wn] (2.12b)

As pointed out in Chapter II, the boundary conditions are

B, () = 0 (2.21)
By(w?) = 0 (2.22)
and B4(¢n) = 0 (2.24)

if attention is restricted to the cases
n = 0
and n = 1,
In general, the functions w, ¢ and p are expanded in pertur-
bation series utilizing the same parameter € as in the static case.
W o= wg + €2w? b
¢Il

n:

]

e¢? + e5¢? IR (3.30)

2
B by + €THp +

Upon substitution of these perturbation expansions* in the differential

¥ The fact that w" and un are even expansions in € and that @* is an odd
expansion may be easily verified upon substitution in the relevant equa-
tions. For the sake of brevity these steps are omitted here.
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equations and associated boundary conditions, a new sequence of differ-
ential equations is obtained whose solution will follow very similar
methods to those presented for the static case. It will also become
apparent that the partitioning of the stress function o* makes this
future work similar to the previous paragraphs.

For €© the differential equation is

L) = (¥ - _)2 + AT - ) e - uhE = 0 (3.31)

(o)

and the associated boundary conditions are

Bl(Wg) = 0 (3.32)
BQ(ch’)l) = 0 (5»55)
The solution of this equation is
A=y e (3.34)
o /, ~o "o °
m=0
where
nm
In(Bs ) nm
wo' = J(eptx) - 22 0 1 (B x) (3.35)
I.(ey)

which immediately satisfies Bl and where In is the modified Bessel
function. This eigenvalue problem is governed by the characteristic

equations obtained in the usual fashion from the boundary conditions, Bg.

L (BT [(2n + 1 + v)BS 1 (BE%) - (85N J,.0(85)]

(3.36)
+ 3 (Bo)[(2a + 1+ v)By I, (By ) + (B] )F I (87 )] = ©

nm nm ) m
where B, and B, are related to AT (i.e., 0q) and ™" by
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(827 - (817 = of
nm (3.37)
= (18"

The functions wo obey the usual orthogonality conditions which, in this

case, are

L/; VWit xax = 0 (3.38)

o

Mom # Hrs
and 1 , ,
2
f (V- 22 52 4 A 2(V - E) wo'lwg® xdx = 0 (3.39)
x
o

It should be noted that, for a specific value of n, represent-
ing the number of nodal diameters, there exists an infinity of roots of
the above system which are designated by the index m. The index m repre-
sents the number of nodal circles appearing in the vibration pattern of
the plate. A similar system for the case of a clamped edge plate was
(8)

solved by Federhofer in 1935.

For el a differential equation governing the function ¢i is

obtained which is

(F =207 ¢y = - gx) (3. 40)
where
1 1 g
g (x) = L (0wg') - B (3.41)

and the associated boundary conditions are

B,(F]) = O (3.42)
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This is a problem of integration; however, the form of the function

g1(x) is such that a numerical integration is evident except for n = O.

For €® a differential equation governing the deflection function ng
is obtained which is
nm
Ly(wy ) = f£5(x) (3.43)
where
nm nm *
fg(x) = Mo W +f2(x) (3. bk)
and where
2
% _ n nm 1 1 1!
£5(x) = - (P - 55) o + & (apm™)
2 v omm ' 2 (3.45)
n 1 ! n
-5 %% Y3 (f W) -8
X X
and where associated boundary conditions are
nm
B,(w, ) = O (3.46)
B, (") = 0O (3. 47)

By the now familiar process, fz(x) must satisfy an orthogonality condi-
tion in order to obtain a solution for LY and out of this relation
emerges unm
2 1 4
J fo(x)wvi xax
m o 2 °©
o= - - (3.48)

1
nm_nm
g Vg Wy Xdx

For the special case, n = O, numerical results are readily
obtained. In particular the value of the rate of change of frequency
with respect to the load parameter is desired in the neighborhood of

the condition of linear buckling which is

Lin  Gp | lim o duyeddy )
€-» 0 dA €— 0 (de)/(de Hz/}\z (5.49)

where u, and A, are defined by Equation (3.30).



In pursuing the analytical steps outlined previously for
o]
the symmetric mode of vibration it becomes apparent that ¢. becomes

a multiple of &, and hence from Equation (3.48) and by the use of

2

Equation (3.21)
1
[ xmimtax

20T O_l__l.._l_ (3.50)
£ xH, H, dx

Ho

which is readily evaluated. Thus finally
= . l
b/ Ay 49, 29 (3.51)

In closing, then, it is evident that when the critical or
linear buckling condition is reached the frequency of vibration is
zero and as the plate proceeds into the post buckled condition the
square of the frequency increases initially in a linear fashion with
the buckling parameter.

Further calculations with the perturbation method become
exceedingly cumbersome and are abandoned in favor of the power series
method of the next chapter. However, the present result is exact as
€ approaches zero since higher order expansions vanish for this con-

dition.



Iv. THE POWER SERIES METHOD

Another possible means of solving the system of differential
equations presented here is to develop the solution in terms of a
power series. Again we borrow the results of Friedrichs and Stoker
for the solution of the static problem. The phrasing is slightly differ-
ent and some of the numerical computations used are only minor variations

of theirs.

The system of differential equations for the static case is

T - % (o'wt)' = 0 (2.11a)
Fo = - L (W)’ (2.11b)

2x

and the boundary conditions associated with them are

Bi(W;) = 0 (2.16)
By(W;) = 0 (2.17)
35(®) = -\ (2.19)

Iet the functions W and @ be expressed in power series of

the coordinate =x. These series are even functions in x.

W = }: amggm (4 l)
m=0
2m
o = }; b x (L. 2)
m=0

It is easy to show by substitution in Equation (2.1la) and (2.11b) that

the coefficients 8gs 271, bo, and bl are, at this point, arbitrary and

~28—
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that all of the other coefficients of the two series will be given

by the following recursion relationships.

m=1
1 . .
a. = i(m-i) a.b_ | (4.3)
m Eazz;jzj im-i
i=1
m > 2
m=1
1 Z .
b, =ee— i(m-1i) a:a_ . (k1)
n hmz(m-l) L i“m-1i

In terms of the coefficients in the power series, the previously

stated boundary conditions become

§i & = O (4.5)

Ej m(2m - 1 + v) a =0 (4.6)
1
Xm(am-l-v)bm=-3‘-gﬂ (&.7)
1

It is evident that Equation (L4.5) serves only to determine
the coefficient a9 after the others have been computed. The two equa-
tions (4.6) and (4. 7) must be solved simultaneously for the values of
ay and bl. The value of the coefficient by remains arbitrary and this
is as might be expected since the stress function ¢ can in general be
varied with respect to as much as an arbitrary linear function of the
cartesian coordinates without affecting the stresses.

Hence, in principle, once the value of N is specified, it is
possible to obtain all of the necessary‘coefficients in order to be

able to describe the complete solution for the static case.



For the dynamic case the differential equations to be solved

are

(P - )2 P L (o) 4 2 AR
x2 X

<2
(2.12a)

[ ] 2 1"

‘-.]_'(¢nW)+£_¢nW-pnwn=O
X x2
2

(V@ - 55)2 P o= - L () - 22 ] (2.12p)

X X x2

The associated boundary conditions® are

Bl(wn) = 0 (2.20)
By(w?) = 0 (2.21)
B(#") = o (2.2k)

The solution of the above differential equations may be ex-
pressed as power series in x. Upon calculating with the power series
by the usual methods, it becomes clear that the solutions which are not

singular at the origin are

00

Wn) - n }; céé)xam (L. 8)
and
¢(n) - P j{: dI(nn)xzm (. 9)
m=0

The recursion relationships for all values of n +that evolve from this

system are, after dropping the superscripts for ¢ and d,

s

* For n > 2 the number of boundary conditions increases to four.



] 1 (w),
T D)) e

+ (2m+n-2) j{j 2i(n+2m-21)(aqdy g +bicp )
i=1

m
- n° Z{j 21(21'1)(aidm-i4'bicm-i)}

i=1 (4, 10)
m> 2

m
_ 1 . .
a =- {(em+n-2) j{j 2i(n+2m-21) ase s

16m(m-1)(m+n)(m+n-1) =

(k. 11)
- 25121(21-1) a5Cp_ 1}

while the coefficients cqp, ¢, dg, and d; remain, at this point, undeter-
mined.
In terms of these power series, the boundary conditions for

the dynamic problem assume the following form:

8

ey = O (k. 12)
m=0
z [ (2m+n) (2m+n-1+v ) -vng]cm = 0 (k. 13)
m=0

[(2mn)(2min-1-v) + vn°ld, = O (4, 14)

n=1

It is readily verified by examination of the recursion rela-
tion in the cases when n = O and n = 1 that 4y will not appear in the
problem and this 1s again plausible in view of the remark made in con-

nection with bo.
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The boundary conditions thus present a system of homogeneous
linear algebraic equations in the three unknown coefficients Cys Cqp» and
dy, as well as of the eigenvalue p. The explicit form of the character-
istic determinental equation associated with this system is, by virtue
of the form of the boundary conditions and the recursion relations,
probably unattainable. In any case, no particular benefit would be
derived from it since a numerical solution will have to be attempted
and the appropriate algorithm can be stated in terms of these equations.

The solution of this system of equations is to be performed
on a digital computer in the following menner. An arbitrary value,
such as mnity for example, is assigned to the coefficilents Cys Cq and
dl. The remeining coefficients in the power series expansion are
determined by the recursion relationship. A generic term in the
series depends upon Cor 1 and dl and polynomials in terms of .

Briefly then, each coefficient in the power seriles is the sum of

three polynomials in p, the coefficients of these polynomials being
the constants Cos Cp and dl respectively. The various coefficients
can be generated and their polynomial representation is substituted
into the boundary equations (4.12), (4.13) and (4. 1L4). Theoretically
at least, each equation is composed of infinite series 813 in p having

as their coefficients cy, ¢y and d;. In matrix notation

AB = 0 (k.15)
where A = {alJ} i, = 1,2,3
c
and B = cg)_
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This system of equations will admit a nontrivial solution when the
determinant of the coefficient matrix A is zero. This determinant
is equivalent to a power series in p whose roots represent the
required eigenvalues.

Clearly the procedure here must be modified to truncate
this process. The coefficients of the power series of w and ¢ are
computed until a particular term becomes less than a designated
value. However, convergence at this point alone is not necessarily
the final test. Satisfying the boundary conditions yields an approx-
imation to the aij in that they are now polynomials. It should be
noted that the first neglected temm, for instance, provides, in general,
a contribution to all the previously computed coefficients in 8y3
However, the system was sufficiently convergent to insure convergence
in this sense. The a;j are polynomials in p of order m/2 to the
nearest integer when m +terms are taken in the power series. It
is quite clear then that the determinant when expanded is capable
of yielding a polynomial whose order is three times that of the
order of the aij‘ This determinant may be expanded algebraically,
by the computer, producing a polynomial characteristic equation which
must be solved for the roots, by standard methods.

Generally, about sixteen terms in the power series produced
sufficiently convergent terms in the aij and it sufficed to take five
or six terms in the characteristic equation to obtain the roots. TFor
very large penetration of the post buckling domain the size of the

numbers involved and the number of terms required for the necessary
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accuracy required a modification of this technique due to the limita-
tions imposed by the available computer.

The modified procedure consisted of an iteration procedure
one step earlier in the above process. The aij were evaluated using
trial values for p and then checking to see if the determinant is zero.
Computing time of this iteration procedure was approximately eight

times longer than by the first method. ¥

* Weinitschke(géj who faced a similar computation in connection with a
problem in shells chose to use several power series expansion each being
valid in part of the region and then matching them together. By this
means fewer terms In each series were required for convergence.



V. RESULTS AND DISCUSSION

The penetration of the post buckling domain is measured by
A\, a ratio of the edge displacement to that required for the initial
instability. Friedrichs and Stoker(lg’lB) use a parsmeter XS based
upon a stress ratio. For convenience the results here are expressed
in terms of A; Figures 4 and 5 show the relation between the two param-
eters. The main result offered here is the relation between u (the
squared frequency parameter) and A. Figure 1 shows the relation for a
symmetric mode (n = 0) and the first mode having a nodal diameter (n = 1).
The details of this relation in the vicinity of A = 1, the early stages
of penetration of the post buckling domain, are shown in Figure 2. In
Figure 3 the shapes of the modes of vibration are depicted. The data
used in plotting Figures 1, 2 and 3 and further information are given
in Table I.”*

The fact that p 1ncreases linearly with XA in the vicinity
of initial instability for the symmetric mode as shown by the power
series analysis is borne out by the perturbation analysis. From Figure
2 the numeric value of the slope is fifty which compares rather well
with the results of Equation (3.49), i.e. 49.29. It is interesting to
observe that after some increase in X the frequency of the nonsymmetric
mode is lower than that of the symmetric mode., Examination of the modes
for the symmetric case shows that at a value of A between 13 and 19 a

nodal circle appears for the lowest frequency. Near this value of A

¥ A1l calculations are based upon the value of Poisson's ratio v = . 318,
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the frequency of the axially symmetric mode increases less rapidly and
eventually becomes again less than that for n = 1. This behavior of
the frequencies is reasonable inasmuch as the nonsymmetric mode is
essentially inextensional while the symmetric mode is essentially
extensional and consequently the frequencies of the symmetric mode can
became greater than those for n = 1. Upon the appearance of the nodal
cirecle in the n = 0 mode, this mode also becomes essentially inextensional
and the frequency increases at a lesser rate while A 1s increased.
Under these circumstances the frequency can, and does, become less than
that for n = 1. Apparently the frequency reaches an asymptotic value as
A is increased. ‘It should be noted, however, that as A becomes large
the accuracy* of the results becomes less certain but in any case they
also become less meaningful because by the time A reaches values
approaching o the equilibrium configuration is in, what Friedrichs
and Stoker call, the asymptotic range. In this range the plate has
been stretched as a membrane except for a narrow boundary layer at the
edge where large bending stresses occur. That a plate could reach such
a state is subject to question on practical grounds, in particular, if
one considers the effect of imperfections upon the behavior of the ideal
plate considered here. Also the onset of plastic yielding or secondary
buckling is likely to invalidate these somewhat academic results.

A very significant result is that, in the range of computations,

the frequency of vibration does not return to zero for A > 1. This implies

* Accuracy was determined by the amount the deflection at the edge differed
from zero with respect to the magnitude of the largest deflection. For

good ﬁesults this amounted to one part in 10° while for poor results one part
in 107,



that, at least within the limitations imposed here on the nature of
the assumed vibration modes (i.e. small amplitude vibration), the
positive definiteness of the potential energy and hence the stability
of the buckled configuration is unchanged if only expansions up to

the second power in the terms representing the additional neighboring
deflections are included. It appears likely that this is true also

in relation to higher modes. Consequently the experimentally observed
phenomenon of secondary buckling(le) cannot be explained in terms of a
simple branch point. Research delving into this matter is continuing
and attention is directed at the possibility of a discontinuous snap-
through to a position of lower potential energy. This becomes possible
when the quadratic form introduced in reference (19) loses its positive
definite character. This is indeed the case as pointed out in the

paper, reference (19). The problem of secondary buckling therefore

shows grest similarity with that of buckling of certain types of shells.
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APPENDIX A

THE DYNAMIC BOUNDARY CONDITIONS FOR THE CASE n = 1

The boundary conditions for the case n = 1 require some
special consideration. The condition of "simple" support requires
that the lateral deflection as well as the radial bending moment at
the outside edge be zero. To complete the boundary conditions, some
requirements must be imposed on the membrane displacements or the
membrane stresses (indirectly, through the stress function) or a combi-
nation of both. In general, two more boundary conditions are required,
but due to the obvious symmetry in the case n = 0, only one is required
beyond the implications of symmetry.
Consider now the details of the case n = 1. For simplicity,
the superscripts are omitted inasmuch as this discussion is for a
specific case.
The stress function for n = 1 is of the form
¢ = Y(x) cos @
while the lateral displacement is
w = w(x) cos @

From the strain displacement equation it follows that

ov  _ -

'a—g = Xegg u
and

du - o _dW ow

= wx = — —

ov dx Ox

=43



~lh

The stress strain equations, utilizing the expression of the stresses

in terms of the stress function imply that

1 1l n
ey = ['}?\lf’-}—{ZIII-V‘L]f]COSO
and
= n 1. _1
eg = [y" - v(; ¥ > ¥] cos ©

= [y" - V(g)'] cos ©

where primes mean differentiation with respect to x.

Hence
du _ () = vy - Ww'] cos © (A.1)
N X
and upon integration
u = [Z¥-w' - [ Wwdx] cos 0+ Fy(6)  (A.2)
Further
é‘l = x[y" - v(}}%)‘] cos @ - [-J-'-Ilr - vy’
30 x
(a.3)
- [ W'wdx] cos 6 = Fl(Q)
and thus
v o= x[y -y Tsino - 2y -wy
(A L)
- [ W'w'dx] sin @ - F5(0) + G(x)
where
Fo o= ¥ (A.5)
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However,

Pe :.];.B_E+x.a._(y_)+.1‘..dj’_\f§1¢.=,(l+v).a__}.ég)
%0 x 00 ox x x dx 06 ox x Ox

Upon substitution of the appropriate quantities in the above expression

and simplifying the following is obtained:

{
(ig +oxy - ég;. + W' - % W'w) sin ©

1 <A6)
1 (dF G
+= (= +F,) +x(2) = 0

Equation (A.6) must hold for all x and © and it can be shown that the

required necessary and sufficient conditions are

SR T .7
X X X
aF
== . F, = 3D; + 2C sin 6 (A.8)
de
G\l
x2(§9 = ~5Dl (a.9)

Equation (A.7) is satisfied if 1 satisfies the compatibility equation
associated with the von Kermsn system of equations. Equation (A.8) will

be satisfied if F2 satisfiles

2
%2 + F, = 3D, +2Csin 0 (A.10)
6>

The solution of Equation (A.10) is

Fp = =~ Cp cos 0+ Cpsin @+ 3D; - 00 cos © (A.11)
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from which it follows, by Equation (A.5), that

F. = C, sin 0+ C, cos © + C(6 sin 6 - cos O) (A.12)

1 1 2

The solution of Equation (A.9) is

¢ = 21 + Dx (A.13)
x2

Consequently the displacement components become

u(l) = (£ -/ W'w'dx+ Cp) cos © = C; sin 6 + C(6 sin © - cos ©)

(A, 14)
v(1) = (g+ [ W'w'dx - Cp) 8in @ = Cy cos @ = 3D; + CO cos ©
D
1
+ = + Dx
X2

where

1
£ R (Fv-w) o= ¥(1) - w'(1)

w

v = (1) L1 o=y (1) = (1v)w(1)

& x

and f+g==.1‘.[1}f" -‘V(I)']
X X x=1

Consistent with Equation (2.19) (and hence without any signifi-
cant loss of generality) let
Cl = 0
Single valued displacements and regularity conditions at the origin, re-
quire that C =0 and Dl = 0
For n = 1, from Equation‘(2.225
w(l) = Ay cos @

v(l) = By sin O + B*

(A.15)
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Consequently D = B¥

and
f - [Wwidx+ Co = Ay (A.16)
g + [Wwdx -Cy, = By (A.17)

In addition to the conditions imposed by the simple support at the edge

it is sufficient to require that

f + g = 0 (A.18)
which by the use of (A.16) and (A.17) implies that

Ay = -Bp (A.19)
and it must also be noted that

egg(l) = f+g
and hence Equation (A.18) implies

egg(l) = 0 (A.20)
which is the boundary condition used in the main text.

For the power series approach

v o= 525(1) = 04X + Qo Z 8 5 (a.21)

m=1

where, for convenience of this discussion, a and. O, are the arbitrary
constants and d is chosen as unity. It is easily shown that (f +g)
does not depend upon . }furﬁhen none of the stresses depend upon .
Indeed, none of the stresses depend upon O, and further it can be
shown that @ and Co, can be combined as a single constant C;. To
demonstrate this, substitute the expression for ¥ into f and g and

the associated equations. Thus from Equation (A.16)

Cp + (1-v)op + 0 Z [1 - v(2m+3)] Qp - [ W'w'dx = A (A.22)



ull»8_

is obtained and by the use of Equation (A.17) and

- Cy = (Lv)oy + 0, Z[(2m+3)(2m+2) - (1)l a + Jwwrax = B, (A.23)

Let

*
C, = Cp+ (L-v)oy

In terms of the power series solution
f + g=ap ;(2m+5~V)(2m+2)dm

Consequently (f + g) is independent of 0. Further, it can be seen that

*
Equation (A.23) then serves to determine Co.



APPENDIX B
THE VIBRATIONS OF THE SIMPLY SUPPORTED CIRCUILAR
PIATE WITH EDGE COMPRESSION
(Linear Theory)

During the course of the present investigation, the linear
problem of plate vibration in the presence of radial edge compression
was solved. The same problem for a clamped edge plate was treated by
Federhofer.(B) The boundary condition here is that of simple support.
The relevant equations arose In connection with the perturbation solu-
tion and are repeated here for convenience,

The differential equation, after separation of variables,

is similar to Equation (3.31),

2.2 2 nn
(¥ - =) WP+ AI(V - 2_2) VB = 0 (B.1)
and the associated boundary conditions are
B,(wvg) = 0 (3.32)
Bp(wy) = O (3.33)
The solution to this equation is
m) nm
wrol = y a,((D )Wo (3.3h)
m=0
where
Ta(En )
nm nm
Vo= J(epx) - B2 1(py x) (3.35)
I,(67")

which immediately satisfies Bl' This eigenvalue problem is governed by

the characteristic equations obtained in the usual fashion from the

=49



boundary conditions,‘

L, (BT [ (2me 1y )8R (B5™) - (BE™) 7, 0(85™)]
nm nm nm nm,2 nm (3.36)
+ I By )[(2ntl+v)e T (B ) + (B )T (87 )] = 0
where B?m and ﬁgm are related to A T(i.e., o) and Hnm by
2
(827 - (617 = «a -
= (BPME (g

Since only the linear problem is considered here subscripts on N and ¢
are omitted (which in Chapter III had meaning in connection with the
perturbation solution). For the linear buckling problem

o = 0 (B.3)

and it may be shown this is equivalent to

L =0
(B. 4)
nm
= O
Po

and Equation (3.36) becomes

(en+1+v)a 1 (B™) - B7 T (™) = O (B.5)

where n designates the number of nodal diameters and m the number
of nodal circles.

The roots of the characteristic equations were obtained for
several values of n and m by a high speed digital computer using
a step-by-step searching method followed by an interval halving method

until the roots were reproduced within specified limits In Tabie 1.



and IIT roots of Equation (3.3%6) are tabulated for several values of
n, m and Q. For the axially symmetric mode the case of free vibration
and of buckling was solved for a number of roots. These results are

presented in Table IV.
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TABIE I

VARIOUS VALUES COF X, g

FREQUENCY PARAMETERS p FOR n = O, n = 1 FOR

A

100001
100009
100017
100034
100067
1400101
1600402
1.00887
101574
102462
103552
1048406
1e06343
1.08029
109886
le41138
198215
2091311
4415896
4442706
631125
Tell236
9457456
1125514
13486542
1960922
29417450
33.88582
42429802
50015607
6101744
7096683

A

H

S n=0
=
10000V U000
leUUOUL 0004
1s00U03 Qe009
1.00005 O0eU17
1.00010 UeU33
100015 0050
100059 Dei98
1.00129 Oet37
1ls00229 0a775
140035y le213
14U0517 1.750
1.00705 20387
100923 3.124
101168 36954
1e4U1437 44869
1405927 204258
l1¢13931 486371
1426498 944298
1e42499 1556952
145835 1694243
168353 2624640
le 77494 302177
2004258 421501
2021547 4996317
2e47114 6104406
299070 794910
36476396 948097
4¢11459 988.571
4470397 1035067
5¢22U66 10616999
5689279 10914762
647418 1122.798

n=|

131410
131.412
131414
1316419
131e4c7
1314435
1314511
1316632
131.804
1324040
13242399
1326643
132,998
133.420
133.886
1414735
1560161
179920
2120109
219.088
2684598
2894862
3554833
4014278
4726235
6294174
8864156
10084043
1213¢347
13884049
1603.025
17744656




TABLE II

ROOTS OF THE CHARACTERISTIC EQUATION FOR
VIBRATION OF THE CIRCULAR PIATE WITH EDGE
COMPRESSION-LINEAR PROBLEM, n = O,

B 5 ACHC
| 2 H =P P2

m=0
22274580 242274580 44961569
241656121 24222583 44813253
149663810 242060495 44337934
147594769 2.1876378 3.849098
165675703 241696259 34401041
14482550 241581109 3,125495
161342579 241275669 24413210
045716016 2.0800789 1188976
040 240600017 0e0

m=l|
504535042 54535042 29.740708
544302508 54532215 294612360
543598667 54523547 294223895
542942696 564515402 28,861924
542404103 544508624 284564755
542103511 54504824 284398927
51437857 5¢4496359 284031759
500683233 5¢4486605 274615572
445398584 504415361 244703803
3.6705019 5.4288658 194926662
240548660 544057816 11.108157
0e0 5.3928115 0e0

m:=2
8.6125308 846125308 744175687
8.5979338 86124599 744049359
845539953 846122693 73.669139
845133691 86120528 734317583
84802543 846118938 734031049
844618651 846118037 724871920
844213943 846116133 724521791
83759155 846113856 72.128238
8.0702978 846098611 694484143
7.6216586 8.6075363 65603703
7.0022717 Bo&iUl1760 604268764
641602463 845993392 52.974048
449827378 845923034 424813195
3.1059983 85817962 264655044
0.0 805739849 0.0
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TABLE III

ROOTS OF THE CHARACTERISTIC EQUATION FOR
VIBRATION OF THE CIRCULAR PILATE WITH EDGE

CMPRESSION-LINEAR PROBLEM, n = 1

Q B B BB

| > =R

=0
040 3,7310427 347310427 1349206793
0e5 3.6964372 3.7301003 13.788082
leU 345906497 347271555 134382351
1e3 3,4900374 3,7242934 12.997923
le5 344061925 347218474 124677329
leb 3,3588249 3.72044641 124496320
1e8 342523577 3.7172343 124089775
2.0 3.1288098 3.7134150 11.618569
3.0 2.1309236 3.6797875 74841346
3.6306551 040 3146306551 060
m=|
00 6¢9641241 669641241 484499024
0e5 649460158 649639885 484371974
140 648914081 69635843 47.988901
le3 6e8407772 6¢9632056 474653738
145 647994036 69628938 474363525
1¢6 607763914 69627209 474182122
1e8 607256276 649623320 46826052
2.0 666684310 669618944 460424912
3.0 662789499 649588226 43,694098
440 546882904 649538944 394555770
540 448217636 669461792 33,492834
640 3.4752368 649337776 2644096519
669151434 0e0 346306551 040
m=2

0.0 104138746 10138746 102794170
0e5 1041262940 | 1041386306 | 102.666754
140 100890692 |1041385068 | 102.288096
le3 100546935 | 1041383855 | 101.938358
1.5 1040267117 |[10.1382912 | 101.653723
leb 100111877 |10.1382384 | 101.495807
1.8 949770459 |10.1381185 [ 1014148473
240 9.9387485 |1041379842 | 100.758874
3.0 9.6829959 |10.1370810 984157313
440 903130618 |10.1357349 94,394726
5.0 8.8144723 | 1041338503 890324523
660 801635122 |10.1312850 82.706868
7.0 703193063 |1041277957 744128439
8,0 602028258 |10.1229961 67.791182
0.1054066 040 1041054066 040
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TAELE IV

VALUES OF BUCKLING AND FREQUENCY ASSOCIATED

PARAMETERS FCR n = O

1/2 ‘ﬁg [3
m a B:-B | £=B 5
0 20600017 22274580 449615690
1 503928115 54535041 29740707
2 845739849 8.6125307 74175685
3 11.733336 11.,761687 138033727
4 14.885062 14,907513 222623394
5 18.033223 184051816 32586805
6 214179422 21195296 449424056
7 2443264426 244338273 592435151
8 274468644 27480928 755620139
9 304612324 30,623355 937.78984%
10 33,755613 334765622 114001172
11 360898613 364507774 136c¢1837
12 40604139V 4U.uk9857 160349910
13 43,183997 43,191848 186565357
14 460326466 464333817 214648225
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