THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY

THE USAGE DEPENDENCY MODEL
FOR LOGICAL DATABASE DESIGN

E. Hevia
T.J. Teorey

CRL-TR-19-84

MARCH 1984

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

The University of Michigan

Computing Research Laboratory

The Usage Dependency Model

for Logical Database Design

E. Hevia
T. J. Teorey

March 1984

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109-1109

USA

Tel: (313)763-8000

ABSTRACT

The usage dependency model is an extension to the traditional
functional dependency model of relational database theory, that
specifies the frequency of joint data element usage, based on
process and data correspondence identified in the user
requirements.

The combined application of usage dependency, which is a
process-oriented view of data correspondence, and functional
dependency, which is a nonprocessing or natural view of data
correspondence, can produce a normalized database design that is
efficient for current processing requirements as well as one which
is adaptable to future requirements.

The usage dependency model is defined and an example is
developed to show its applicability to real database
environments.

Categories and Subject descriptions: H.2.1
[Database Management]: Logical Design - Normal Forms, Schema and
Subschema.
General Terms: Algorithms, Design, Performance, heory.
Additional keywords and phrases: Relational database, functional
dependencies.

TABLE OF CONTENTS

Introduction. . « + &+ ¢ ¢ & & o & &
Current methodologies
The usage dependency model (UDM). .
A design example. . ¢« . . + o« o . .
Conclusions .« « & & o o o o o o o

References. ¢ o« o « o o o o o

11

12

1. INTRODUCTION

Logical database design involves the derivation of a database
schema from a set of end-user database system requirements.
Traditionally, it has been divided into two phases: conceptual
design, which derives a process-independent conceptual schema that
represents the real-world organization of information to be
computerized, and database schema design, which derives a process-
dependent database management system (DBMS) - processible schema
that minimizes access cost. The schema is further refined during
physical design, where cost can be absolutely defined in terms of
real time or monetary value.

Techniques to assist the traditional logical database
designer have been limited by their inability to evolve from a
human-intensive process to a computer-automated process.
Consequently, although good designs have been attained by this
methodology, the individual decision steps have not been made
reproducible, so that the expertise is not easily transferable
from one designer to the next. In other words, two designers
using current logical design methodologies today are very likely
to produce widely different designs because of human variability
and the open-endedness of known techniques.

A well-known exception to these limited techniques is
associated with the functional dependency model for database
normalization [1]. Once semantic assertions can be made about
data element relationships based on stated user requirements,

functional dependencies can be defined and normalized relations

can be derived that capture the natural data relationships in the
organization under investigation. This approach satisfies the
real-world representation requirement for logical database design,
but does not address the efficiency issue.

We define an extension to the functional dependency concept,
a complementary approach named "usage dependency”". Both human and
computer processing requirements are defined so that the
correspondence between processes and the data they manipulate can
be quantified in matrix form, and data usage frequencies can be
derived. Usage dependency is the combined application of
functional dependency, based on data-data relationships, and joint
data usage frequency, based on data-process relationships. Their
intersection produces a DBMS-independent schema that has short-
term efficiency properties. Their union produces a DBMS-
independent schema that has long term flexibility for future
changes in processing requirements. The objective of usage
dependency is to guarantee a logical database design that is
accurate, efficient and flexible. It is succinctly defined such
that the basic process is algorithmic and deterministic. The
mathematical properties of the usage dependency model, as well as
those of the functional dependency model, provide for its
potential use as a canonical form for algorithmic (and therefore
automated) transformation to existing data models defined in

currently known DBMS software.

2. CURRENT METHODOLOGIES

Most of the existing methodologies for logical database
design take the semantic approach, where database design is
considered as a process of picturing the real world as it "exists"
by means of informal semantic views of data and the relationships
between the data elements of each semantic view. Synthesis
algorithms have been developed, and some are now utilized to
produce normalized database schemas [2,3,4].

Another approach suggests a "usage" structure of data. In
this approach, the database design process is based on anticipated
information demands that the database must satisfy. Synthesis
procedures have been developed to produce a database schema from
the relations between processes and data, either weighted by its
frequency of usage or not [5,6,7,8]. Since this design approach
uses as input a set of anticipated queries (or primitive
processes) along with the data elements used in each query, the
output (database schema) is a "usage" design rather than an
"existential” design.

In the usage approach, associations among attributes are
obtained based on the frequency of joint usage by different
processes. Even though it is realistic to assume that a strong
relation exits between two attributes whenever their frequency of
joint usage is high, it is not possible to conclude from this fact
that either attribute uniquely determines the other one, or vice
versa. However, attributes that are used together very often can

be viewed as part of the same entity.

On the other hand, the existential approach is based on a
given set of relations known as functional dependencies. 1In this
approach, any two attributes with a functional dependency relation
are represented in the database as such, even though they may
never be used together. However, these functional dependencies
are synthesized into a smaller set of relations of assorted
degrees, based only on their given associations.

Since both approaches, existential and usage, have advantages
of their own, it may be desirable to combine both in order to
maximize their advantages, while at the same time reducing their
limitations. The usage dependency model represents this combined

approach.

3. THE USAGE DEPENDENCY MODEL

We now define the components of a Usage Dependency Model
(UDM) for logical database design based on the combined
existential and usage views of data. The main ideal behind UDM is
to perform a partition of all the data elements (attributes) to be
represented in the schema, by the use Qf an optimality criterion
based on both functional dependencies and usage dependencies, the
latter being obtained by frequency of joint data usage. The
result is a partition of the set of attributes such that those
attributes with functional dependency relations, which are used
together very ofﬁen, are clustered together in the same partition

(relation).

Let V be a given universe of discourse where
v=1{A P, R, F, FP }
Every member of V is a class of objects from the universe of
discourse under consideration, and
A={a; agreeeeney a, }
is a set of attributes such that A ¢ V.

P = { Ppr Poreceseer P }
is a set of processes and P € V.
Every process in P is assumed to be independent, in the sense that
the set of attributes used by every p € P to perform its function
does not depend on the outputs of any other process.

R={r|r= (Psy aj), p; € P, a; €A }

J
Every ¥ = (p., aj) € R is a binary relation between processes and

i
attributes. This relation is defined as the "uses" relation,
e.g., if r = (p1, a3) then process 1 uses attribute 3.
Let X, Y be any two sets of attributes, then
F=1{€f|f= (X,Y), X,Y €A, X#¢, X>Y }

Every £ = (X,Y) € F is a functional dependency from X to Y. The
first coordinate of f is the determinant of f, denoted LHS(f).
The second coordinate of £, denoted RHS(f), is the determinacy of

f.

Let FP be the mXm frequency matrix, where

FP(i,1) frequency of process i

0 for i#j
Thus, FP is a diagonal matrix whose entries are not necessarily

distinct.

Let |X| denote the cardinality of the set X. The set L =
{all determinants of F} can be partitioned into two subsets:

LHS(f), XcL, £ ¢ F, |X| =1}

S

{ x|x
C = { X|X = LHS(f), XcL, £ ¢ F, |X| > 1}
then S is the set of all single determinants of L, and C is the
set of all composite determinants of L.
Let FD be the kxk functional dependency matrix over the field
of the binary numbers, where kX = |A| + |C| and let H = AUC; then
if i € H, i has an associated vector which is a row in FD. If j ¢

H, then j has an associated vector which is a column of FD. Then

FD(i,3) 1 iff i+j.

= 0 otherwise.
FD is a functional dependency matrix with potential anomalies. It
will be assumed that relations represented in FD are in INF. Let
FD* be the transitive closure of FD and subject to the same
anomalies as FD.

Let PDU be the mxk process~data usage matrix over the field

. Then if i

of the binary numbers, where m = |P| and k = |A]| + |C
e P, i is a process and has an associated row vector in PDU. If j
€ H then j has an associated column vector in PDU and j is either

an attribute or a composite determinant. Then

1 if process i uses attribute j

PDU(1i,])

0 otherwise.
Let WPD be the mxk matrix over the field of the real numbers
such that WPD = FP x PDU. Then WPD is the weighted process-data

matrix, weighted by the frequency of each process during a fixed

period of time. Every entry in WPD indicates the number of times
attribute j, or composite determinant j, is used by process i in a
given period of time.

Let JDU be the kxk matrix over the field of the real numbers
such that JDU = PDU' x WPD where PDU' is the transpose of PDU.
Thus JDU is a matrix such that every entry indicates the frequency
of usage of determinant i jointly with attribute j. Hence, JDU is
the (symmetric) joint data usage matrix.

Finally, let UD be the kxk matrix over the field of the real
numbers such that

UD(i,j) = FD*(i,j) -IJDU(i,]) Vi, j
thus, matrix UD is the usage dependency matrix. Matrix UD has the
following properties:
(1) If UD(i,j)#0 then UD(i,j) is the frequency of usage
of i+j by known processes.
(2) 1If UD(i,j)=0 Vj,i fixed, then i € A, but i is not
a key attribute.
(3) If UD(i,j)#*0 for some j,i fixed, then i is a key
attribute.

Matrix UD still contains anomalies in the sense that if a set
of relations were to be derived from matrix UD, they must be
subject to the same rules of normalization as the functional

dependency matrix, FD.

4, A DESIGN EXAMPLE
The following database example illustrates the computation of
usage dependency and its application to both short term efficiency
and long term flexibility in relational database design. The
example concerns a database to keep track of personnel assigned to
projects at different locations. Each employee has a specific
job-title and job-level. Employees may be assigned to several
projects, each of which is conducted in several different
locations. Projects and locations may each accommodate a large
number of employees at one time.
There are three currently known processing requirements,
although others may be added at a later date:
P1) For a particular employee, display job-level and
projects assigned (frequency = 5).

P2) Display employee names for employees with a particular
job-level (frequency = 10)

P3) For a given project, display all employee names and
their locations (frequency = 3).

An analysis of this problem produces the functional
dependencies (FD's) shown in Figure 1. Note that each value of
EMPL-NAME is assumed to be unique.

Figure 2 represents the transitive closure of FD (FD*).
Figure 3 shows the process-data usage correspondence in the PDU
matrix, while Figure 4 shows process frequency in executions per
day in the WPD matrix. The joint data usage matrix is derived as

JDU=PDU' * WPD and shown in Figure 5, where each element is the

frequency of joint usage of the two data elements specified by row
and column numbher. Finally, the usage dependency matrix, UD, is
given in Figure 6.

Based on these computations we have three potential
solutions (Figures 7-9). In general there could be more solutions
because the normalization process does not necessarily produce a
unique result. Normalized relation names are given by R1, R2,
etc.

Solutions 1 and 2 are obtained directly from the FD and UD
computations, respectively. Solution 2 replaces R1 and R2 with R4
because of the lack of usage of JOB-TITLE in any process and the
transitive dependency of JOB-LEVEL on EMPL-NAME. This, of course,
increases the short term processing efficiency by reducing access
cost and storage space, all at the expense of future flexibility,
and the potential loss of data inteqrity inherent in the
relationship between JOB-TITLE and JOB-LEVEL.

Solution 3 provides the retention of the JOB-TITLE and JOB-
LEVEL relationship, reduction of access cost, and future
flexibility, at the expense of data redundancy. Normally this
trade-off is well worth the additional storage space unless there
is an extraordinarily large update activity associated with the
database.

The functional dependencies in Solution 3 were derived by
first incorporating all the FDs in Solutions 1 and 2, and then by
searching the joint data usage (JDU) matrix for data usage
relationships not already included in the existing FDs. This

search reveals that D2 (JOB-LEVEL) and D5 (PROJ-NAME) have usage

10

but no natural relationship. Therefore they are defined as a
composite key in R5. Again, this assignment is not necessarily
unique, but a logical consequence of determining where data
attribute clustering could increase efficiency and not violate
normalization criteria.

Let us now assume the following data volume statistics and
illustrate the numerical tradeoffs among these solutions:

(1) 100 employees

(2) 40 job-titles and job-levels

(3) 20 projects

(4) 10 locations

(5) Each employee works at an average of four locations.

(6) Each employee is assigned to an average of two

projects.

(7) Each project has an average of 20 employees and 10

job-titles.,

Let us simplify the numerical computation by assuming that
each attribute has one unit length (in bytes). We then
hypothesize that two additional processes will be added to the
system later, but this new process information is unknown at the
time of the original database design:

P4) For a given project, which job-levels are needed?

P5) List job-titles and their associated job-levels.

Storage space (Table 1) is given in attribute "unit" length,
and illustrates the reduction of storage due to usage dependency

and the increase due to the combined FD and UD Solution 3. Access

11

cost (Table 2) is computed in terms of estimated random and
sequential tuple accesses per execution of a process. The results
indicate that the UD Solution 2 and combined FD and UD Solution 3
provide the minimum access cost for the current applications. The
UD solution, however, becomes far less efficient, or even
infeasible for the future applications (unless the database can be
easily reorganized); while the combined solution provides
continued efficiency and a greater level of data integrity. In
general, the combined approach will provide greater robustness in

the design than either the existential or usage approach alone.

5. CONCLUSIONS

The usage dependency model is based on matrix representations
of attribute-attribute and process-attribute relationships; it
uses the concept of functional dependencies as well as usage of
attributes in order to derive a conceptual schema. The main
advantage of using matrix representation is to make the design
procedure easy to perform algorithmically.

Future research involves the use of the UDM to derive a
canonical schema for automatic transformation to both relational

and nonrelational database schemas.

ACKNOWLEDGEMENTS
This research was partially supported by the Rome Air
Development Center, U.S. Air Force, contract F30602-82-C-003. We
are also indebted to Robert Voigt and Rong Chuan Xie for their

helpful suggestions on the design example.

12
REFERENCES

Codd, E. F., "A Relational Model of Data for Large Shared Data
Banks," Comm. ACM,G (June 70), pp 377-387.

Bernstein, P. A., "Synthesizing 3NF Relations from functional
Dependencies," ACMTODS 1,4 Dec. 76, 272-298.

Database Design Inc., "Data Designer User's Guide," Ann Arbor,
MI., 1980.

Maier, David, The Theory of Relational Databases, Computer
Science Press, Rockville, MD., 1983.

Dyba, J. E., "Data Element Identification," Portfolio 13-04-
02, Auerbach Publisher, Inc., Pensanken, NJ, 1977.

Martin, J., Managing the Data-Base Environment, Prentice-Hall,
Englewood Cliffs, NJ, 1983. -

Rund, D. S., "Data Base Design Methodology," Parts I and II,
Portfolio 23-01-01 nd 23-01-02. Auerbach Publisher, Inc.,
Pensanken, NJ, 1976.

Teorey, T. J. and Fry, J. P., Design of Database Structures,
Prentice-Hall, Englewood Cliffs, N.J., 1982.

[EMPL-NAME i % JOB-TITLE ;:::::::} JOB-LEVEL |

D1 D3 D2

[[EMPL-NAME | {~—— PROJ-NAME]
D1 D5

[TOCATION |
D4

Figure 1. Functional dependencies in the personnel database
example.

13

14

D1 D2 D3 D4 D5 D1,D4

D1 0 1 1 0 0 0 D1=EMPL~NAME
D2 0 0 0 0 0 0 D2=JOB-LEVEL
D3 0 1 0 0 0 0 D3=J0OB-TITLE
D4 0 0 0 0 0 0 D4=LOCATION
D5 0 0 0 0 0 0 D5=PROJ-NAME
D1,D4 0 0 0 0 1 0 D1,D4=EMPL-NAME,
LOCATION

Figure 2. Functional dependency matrix (transitive closure), FD*.

D1 D2 D3 D4 D5 D1,D4

P1 1 1 0 0 11 o
P2 1 1 0 0 0 0
P3 0 0 0 0 1 1

Figure 3. Process-data usage matrix, PDU.

D1 D2 D3 D4 D5 D1,D4

P1 5 5 0 0 5 0
P2 10 10 0 0 0 0
P3 0 0 0 0 3 3

Figure 4. Weighted process-data matrix, WPD, using process

frequency.

D1 D2 D3 D4 D5 D1,D4

D1 15 15 0 0 5 0
D2 0 15 0 0 5 0
D3 0 0 0 0 0 0
D4 0 0 0 0 3 3
D5 5 5 0 0 8 3
D1,D4 0 0 0 0 3 3

Figure 5. Joint data usage matrix, JDU.

DI D2 D3 D4 D5 DI1,D4

D1 0 15 0 0 0 0
D2 0 0 0 0 0 0
D3 0 0 0 0 0 0
D4 0 0 0 0 0 0
D5 0 0 0 0 0 0
D1,D4 | O 0 0 0 3 0

Figure 6. Usage dependency matrix, UD.

16

(R1) EMPL-NAME | > JOB-TITLE D1+D3

(R2) JOB-TITLE‘ ’IJOB—LEVEL D3+D2

(R3) EMPL-NAME D1,b4+D5

T hIPROJ—»NAM'E

LOCATION

Figure 7. Solution 1: 3NF based on functional dependencies only

(see Figure 1).

(R3) EMPL-NAME D1,D4+D5

»| PROJ-NAME

LOCATION

(R4) EMPL-NAME | 5 lJOB—LEVEL D1+D2

Figure 8. Solution 2: 3NF based on usage dependency only (see

Figure 6).

(R1)

(R2)

(R3)

(R4)

(R5)

Figure 9.

EMPL-NAME

| .IJOB-TITLE

JOB-TITLE

——"l JOB-LEVEL

EMPL~NAME

LOCATION

i’l PROJ-NAME |

EMPL-NAME

' A I JOB-LEVEL

PROJ-NAME

COMPOSITE KEY

JOB LEVEL

Solution 3:

and usage dependency

17

D1+D3

D3+D2

D1,D4+D5

D1+D2

D5,D2

3NF based on combined functional

(see Figures 2,5,6).

R1
R2
R3
R4

R5

TOTAL
STORAGE

UNITS

18

SOLUTION 1 SOLUTION 2 SOLUTION 3

(FD ONLY) (UD ONLY) (COMBINED FD AND UD)

100 x 2 = 200 100 x 2 = 200

40 x 2 = 80 40 x 2 = 80

400 x 3 = 1200 400 x 3 = 1200 400 x 3 = 1200

100 x 2 = 200 100 x 2 200

200 x 2 = 400

1480 1400 2080

TABLE 1. Comparative storage space requirements

19

SOLUTION 1 (FD) SOLUTION 2 (UD) SOLUTION 3 (FD/UD)

R1 ACCESS = 1R R4 SCAN = TR |R4 SCAN = 1R
P1|R2 ACCESS = IR R3 SCAN = 400s [R3 SCAN = 400s
CURRENT [R3 ACCESS = 400s
PROCESSES * *
R2 HALF SCAN = 20s [R4 SCAN = 100s |R4 SCAN = 100s
P2|R1 SCAN = 100s
* *
P3
R3 SCAN = 400s R3 SCAN = 400s [R3 SCAN = 400s
* * *
P4|R3 SCAN = 400s
FUTURE R1 SCAN = 100s R2 SCAN = 400s [R5 SCAN = 200s
PROCESSES|R2 SCAN = 40s R4 SCAN = 100s
*
R2 SCAN = 40s DATA NOT R2 SCAN = 40s
P5 AVAILABLE
* *

Table 2. Comparative access costs in random (R) and sequential
(S) tuple accesses. (*~-denotes minimum cost for a given
process) .

