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INTRODUCTION

Projector type automobile headlamps have gained substantial popularity during the past few

years.  Some reasons for their popularity are the smaller size and better ability to create sharper

vertical cutoffs.  On the other hand, projector headlamps are subject to color aberrations near the

cutoff.  These aberrations are caused by dispersion of white light when passing through the lens

(Vozenilek, Purma, and Stefka, 2000).  The color changes are especially of concern with high-

intensity discharge (HID) headlamps, because their color composition (even without color

aberrations) is known to lead to more discomfort-glare complaints (Flannagan, Sivak, Battle, Sato,

and Traube, 1993), and the aberrations are likely to exacerbate the problem.

The purpose of this study was to evaluate the extent and magnitude of color aberrations in

HID and tungsten-halogen projector low beams.  Specifically, we made colorimetric measurements

near the cutoffs of 8 projector HIDs and 4 projector tungsten-halogens.  As a control, we also

evaluated 9 nonprojector HIDs and 5 nonprojector tungsten-halogens.
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METHOD

Lamp sample

The sample consisted of 17 HID and 9 tungsten-halogen low beams, for a total of 26

beams.  The optical constructions of the lamps are listed in Table 1.

 The HID lamps were 17 of the 19 lamps that we used in a previous study on the luminous

output of HID lamps (Sivak, Flannagan, Schoettle, and Nakata, 2002).  All of them were made for

use in the U.S. for model year 2000 vehicles.  The 9 tungsten-halogen lamps included 3 lamps for

use in Europe and 6 lamps for use in the U.S., with 7 for model year 2000 and 2 for model year

1997.  Information about the light sources in the tested lamps is presented in Table 2.

Table 3 lists the numbers of companies that produced the different types of lamps that were

included in this study.

Table 1
Optical constructions of the tested lamps.

Lamp type Optics Number

Projector 8

Lens 5HID

Reflector 4

Projector 4

Reflector 3
Tungsten-
halogen

Lens 2

Table 2
Specific light sources of the tested lamps.

Lamp type Light source Number

D2R 9
HID

D2S 8

HB2 5

H7 2

H1 1

Tungsten-
halogen

HB3 1
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Table 3
Number of different manufacturers represented by the lamps

included in the samples for each of the four major types of lamps.

Lamp type Projector Nonprojector

HID 3 4

Tungsten-halogen 2 4

Colorimetry

Colorimetry was performed using a Photo Research PR-650 SpectraScan

SpectraColorimeter.  This colorimeter has a spectral measuring range of 380 to 780 nm (± 2 nm).

The color measurement accuracy (Illuminant A, CIE 1931 chromaticity system) is x ± 0.0015 and

y ± 0.001.

The measurements were made in a darkened laboratory.  The data were collected by

measuring each lamp’s reflectance from the Photo Research RC-3 Reflectance Standard.  The

reflectance standard is a white, diffuse reflecting surface, with an absolute reflectance of 99%

(± 1%) from 370 to 780 nm.  The reflectance standard was positioned (and data were recorded) at

12 different measurement points constituting a vertical pass through the left-side cutoff of each

lamp.

Each headlamp was positioned 15 m from, and perpendicular to, the aiming screen.

Figure 1 presents a schematic diagram of the setup.  The aiming of all lamps was done visually.

The lamp was aimed to align the left-side cutoff with a predetermined horizontal line (H-H), and the

vertical axis of the lamp remained aligned with the vertical axis of the aiming screen (V-V).  This

assured that all measurements were performed at the same relative locations in the beam pattern.

Figure 2 schematically illustrates the aiming method and the locations of the 12

measurement points.  The lateral angular offset of these measurement points was 3.4° left of the

vertical axis (V-V).  This position was chosen because it corresponds to B50L, a European glare

test point (ECE, 1992).  Vertically, the test points ranged from +0.6° to –0.5° (relative to the

horizontal cutoff line, H-H), at 0.1° increments.  The measurements were recorded at 12.8 V, with

only the low beam energized.
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Figure 1.  A schematic of the laboratory setup.
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Figure 2.  Aiming method and test point locations.
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RESULTS

Figures 3 and 4 present the CIE x, y chromaticity coordinates (1931 color space) for the

HID and tungsten-halogen projector lamps, respectively.  Figures 5 and 6 contain the analogous

data for nonprojector lamps.  For reference, these figures include the blackbody curve with points

marked for selected correlated color temperatures (CCTs), and the SAE and ECE white limits (SAE,

1995; ECE, 2001).

Figure 3.  Changes in the CIE 1931 chromaticity coordinates for HID projector low beams when
moving through the vertical cutoff.  Colors represent different lamps.
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Figure 4.  Changes in the CIE 1931 chromaticity coordinates for tungsten-halogen projector low
beams when moving through the vertical cutoff.  Colors represent different lamps.
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Figure 5.  Changes in the CIE 1931 chromaticity coordinates for HID nonprojector low beams
when moving through the vertical cutoff.  Colors represent different lamps.
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Figure 6.  Changes in the CIE 1931 chromaticity coordinates for tungsten-halogen nonprojector
low beams when moving through the vertical cutoff.  Colors represent different lamps.
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The CIE 1931 color space (used to display the data in Figures 3 through 6) is not

perceptually uniform (Wyszecki and Stiles, 1982).   In other words, in different regions of the

space a given two-dimensional distance will not necessarily, or even usually, correspond to a fixed

difference in perceived color.  To better portray the perceptual magnitude of the range of colors

measured near the cutoffs, Figures 7 and 8 show the data for the projector lamps (from Figures 3

and 4) in the more perceptually uniform CIE 1976 color space (u’, v’).  For reference, Figures 7

and 8 also include the traditional Kelly color boundaries (Keller, 1983).  Comparison of Figures 7

and 8 shows that the range of colors caused by color aberrations is considerably larger than the

typical color difference between tungsten-halogen and HID sources.

Figure 7.  Changes in the chromatic coordinates for the HID projector low beams, plotted in the
CIE 1976 uniform color space.  The arrows indicate the directions of the changes when moving
upwards through the vertical cutoff.
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Figure 8.  Changes in the chromatic coordinates for the tungsten-halogen projector low beams,
plotted in the CIE 1976 uniform color space.  The arrows indicate the directions of the changes
when moving upwards through the vertical cutoff.
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DISCUSSION

Table 4 provides a classification of the obtained magnitudes of color separations (as major

or minor) by lamp optics and lamp light source.  Separations were classified as minor if the

resultant colors were either entirely within the white boxes or only slightly outside them.  As

expected, major color separations were confined to projector lamps, be they HIDs or tungsten-

halogens.  All nonprojector lamps exhibited only minor color separations, with tungsten-halogens

showing smaller separations than HIDs.

Table 4
The magnitudes of the obtained color separations by lamp optics and light source.

Optics Light source Major color
separation

Minor color
separation

HID 3 5

Projector
Tungsten-
Halogen 2 2

HID 0 9

Nonprojector
Tungsten-
halogen 0 5

For all lamps that showed major color separations, the general pattern is the same: Below

the cutoff, the color is within the white boxes and near the blackbody curve; as one moves upwards

through the cutoff, color deviations increase toward the middle of the cutoff and then decrease when

moving above the cutoff.  At the same time, as one moves upwards through the cutoff, the luminous

intensity decreases.  Figure 9 provides a sample relationship between correlated color temperature

and photopic luminous intensity for one of the lamps (the lamp that exhibited the largest color

separation in Figure 3).  
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Figure 9.  The relationship between correlated color temperature and photopic luminous intensity
near the cutoff for a sample low beam showing a major color separation.

As illustrated in Figure 9, high correlated color temperatures and high intensities can occur

together.  Two reference lines are included in Figure 9.  One is at 1,000 cd—the intensity limit for

glare light at 0.5U, 1.5L for U.S. low beams (FMVSS, 2003), and a reasonable criterion for when

intensity is high enough for glare to be a concern.  The other line is at 4,200 K—a typical value for

the correlated color temperature of an HID headlamp.   Together, the two reference lines indicate

that some of the combinations of color and intensity produced by chromatic aberrations in projector

lamps are likely to be quite noticeable to oncoming drivers if they are exposed to light near the

cutoff, as they may be because of headlamp misaim, changes in vehicle pitch, or roadway vertical

curvature.

The possible effects of color on glare have been the subject of a considerable amount of

research in recent years, primarily because of the introduction of HID headlamps (for a review, see

Sivak, Flannagan, Schoettle, and Adachi, 2003).  The consensus of that work appears to be that

color does influence subjective aspects of glare (discomfort), but not objective aspects (reductions

in a driver’s ability to see).  The relatively blue/white color of HID headlamps appears to make
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them more prone to causing discomfort than the relatively yellow color of tungsten-halogen lamps.

Although correlated color temperature is not a perfect predictor of the effects of color on glare, it

appears to be a reasonably good rough predictor within the range of colors that have been used for

headlamps.  Lamps with higher values of correlated color temperature (relatively blue) are usually

experienced as more discomforting than lamps with lower values (relatively yellow).  Research on

unconventional headlamps that are deeply colored—well beyond the range that would typically be

considered “white”—indicates that this pattern can be extrapolated reasonably well, and that deeply

blue headlamps are experienced as even more discomforting than HIDs (Flannagan et al., 1993).  

As one might expect from the formal research on color and glare, the complaints about

headlamp glare that the U.S. National Highway Traffic Safety Administration (NHTSA) has

received from the driving public have included mention of lamp color, including descriptions of

“blue” and “whiter/bluer” headlamps (Van Iderstine, 2002).  Many people have assumed that

complaints from the public about the color of headlamps were attributable to HID lamps, and that

may be true in many cases.  However, given the relative frequency and magnitude of color shifts

due to chromatic aberrations in projector lamps–both HID and tungsten-halogen—it may be that a

significant part of the public perception of headlamp color is attributable to chromatic aberrations

rather than HID sources themselves.  It is often difficult to determine the exact reason for

complaints from the general public, given that many drivers may not know how to precisely identify

the lamps that they are encountering on the road.  The possibility that people are misattributing

colors from chromatic aberrations to HID lamps is increased by the fact that, at least among the first

generation of HID lamps introduced in the U.S., about half of the HID lamps use projector optics

(Sivak et al., 2002).  

Because glare light with high correlated color temperature (and/or “bluish” color) produces

more complaints about subjective discomfort, it would be desirable to control chromatic aberrations

from projector lamps in order to reduce the exposure of oncoming drivers to strongly colored glare

light, especially bluish light.  However, considering the overall perception of headlamp glare by the

driving public, the most important benefit of controlling chromatic aberrations may be in reducing

the extent to which the public may misattribute the resulting colors to HID headlamps, thereby

reducing public acceptance of HID lamps.  Although HID headlamps have the potential to improve

roadway illumination (Sivak et al., 2003), and although in photometric terms they normally produce

about half of the glare levels of tungsten-halogen lamps (Sivak et al., 2002), they have provoked a

substantial number of complaints about glare (Van Iderstine, 2002).  Given the potential benefits of

HID lamps, it would be unfortunate if chromatic aberrations from projector lamps contributed to a

public perception that HID lamps produce higher glare levels.

Our data suggest that color aberrations near the cutoff of low beams are not rare with

projector lamps.  We obtained major color changes in 38% of the HIDs and 50% of the tungsten-

halogens.  However, color aberrations are a manageable problem with projector lamps.  For
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example, Vozenilek et al. (2000) discuss the importance of the shape and positioning of the shield

in eliminating this problem.  The manageability of color aberrations is attested to by classifying our

data by different lamp manufacturers.  The 12 projector lamps in our sample were produced by 3

different lamp manufacturers.  Major color separations were present for 3 out of 3 lamps for the

first manufacturer, 2 out of 5 lamps for the second manufacturer, and 0 out of 4 lamps for the third

manufacturer.   
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