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SUMMARY

A standard approach to the analysis of skewed response data with concomitant information is to use
a log-transformation to normalize the distribution of the response variable and then conduct a log-
regression analysis. However, the mean response at original scale is often of interest. El-Shaarawi and
Viveros developed an interval estimation of the mean response of a log-regression model based on
large sample theory. There is however very little information available in the literature on constructing
such estimates when the sample size is small. In this paper, we develop a small-sample corrected
interval by using the likelihood-based inference method developed by Barndor�-Nielson and Fraser
et al. Simulation results show that the proposed interval provides almost exact coverage probability,
even for small samples. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: con�dence interval; coverage probability; log-regression model; mean response;
r∗-formula

1. INTRODUCTION

Skewed response data with concomitant information, are often obtained in diverse forms of
medical, ecological, and econometrics research. For example, with patients having acute myel-
ogenous leukaemia (AML), a short period of survival is associated with over-proliferation of
white blood cells (WBC) [1]. Another example concerns contaminated concentration with
supplemented measurements on environmental factors in ecology [2]. A standard approach to
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the analysis of skewed data is to use a log-transformation to normalize the distribution of
the response variable and then conduct a log-regression analysis. Often however, the mean
response on the original scale is of interest. For example, the U.S. Environmental Protection
Agency requires that risks be characterized in terms of the mean concentration of the con-
taminant [3]. This requirement is partly responsible for the notable emphasis in environmental
literature on inferences about the mean concentration of the contaminant.
Finney [4] developed a minimum variance unbiased estimation of parameters for the log-

normal distribution, and Bradu and Mundlak [5] extended those results to the log-normal
regression model. El-Shaarawi and Viveros [2] developed a large-sample interval estimation
of the mean response of a log-regression model. There is however very little literature available
on how to construct the interval estimate for the mean response under a log-regression model
when such data arise from a small-sample; for example, a small number (n=17) of patients
with AML and high WBC count [1] or a small data set (n=10) on the annual production
and market prices of ground nuts and cotton in Israel from 1954 to 1963 [5].
The primary goal of this paper is to develop a small-sample corrected interval estimate of

the mean response at a speci�c value of the concomitant variates. The paper is organized
as follows: Section 2 describes the large-sample interval estimate developed by El-Shaarawi
and Viveros [2]. A small-sample corrected interval estimate is also developed in Section 2 by
using the likelihood-based inference method developed by Barndor�-Nielson [6, 7] and Fraser
et al. [8]. Simulation results are reported in Section 3. In Section 4, the proposed intervals
are applied using two small-sample examples and one moderate-sample example. Conclusions
are given in Section 5.

2. INTERVAL ESTIMATIONS

Let (Ti; z′i) be the given experimental data, where Ti is the response variable measured at the
ith set of p concomitant variates zi=(z1i ; : : : ; zpi)′. By taking a logarithmic transformation of
the response variable T , a general regression model of log(T ) on z is given of

yi= log(Ti)= �+ z′iR+ �i; i = 1; : : : ; n (1)

where � and R=(�1; : : : ; �p)′ are the regression coe�cients, and �i; i = 1; : : : ; n are i.i.d. from a
normal distribution with mean zero and variance �2. Note that (1) is gene-
rally referred to as the log-regression model. The mean response T at a speci�c value of
the concomitant variate z= z0 is given by

�=E(T | z= z0) = e�+z′0R+�2=2

2.1. Z-interval

Based on the large-sample normal approximation to the uniformly minimum variance unbiased
estimator, El-Shaarawi and Viveros [2] derived an 100(1−�) per cent con�dence interval for
 = log(�)= �+ z′0R+ �2

2

�̃+ z′0R̃+
�̃2

2
± z�=2�̃

{
�+

�̃2

2(n − p − 1)

}1=2
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In this interval, (�̃; R̃′)′=(X ′X )−1X ′y and �̃2 =y′[I − X (X ′X )−1X ′]y=(n − p − 1), where
y=(y1; : : : ; yn)′ is the n× 1 vector of the log responses, X = (1; Z) is the n× (p + 1) de-
sign matrix, and �=(1; z′0)(X

′X )−1(1; z′0)
′. This interval is referred to as the Z-interval. Our

simulation results (Section 3) show that this Z-interval is liberal in terms of low coverage
probability, especially in the small-sample size setting.

2.2. r-interval and r∗-interval

Suppose the joint log-likelihood function based on sample data is ‘(X)= ‘( ; [), where  is
a scalar parameter of interest, and [ is a nuisance vector parameter. One can construct an
approximate con�dence interval for  based on the signed log-likelihood ratio

r ≡ r( )= sgn( ̂ −  ){2[‘( ̂ ; [̂)− ‘( ; [̂ )]}1=2 (2)

where ( ̂ ; [̂′)′ denotes the maximum likelihood estimator of ( ; [′)′, and [̂ denotes the
maximum likelihood estimator of [ for a �xed  . The approximate 100(1 − �) per cent
con�dence interval for  can be obtained as

{ ; | r( )|¡z�=2}
which is referred to as the r-interval. However, the signed log-likelihood ratio r is asymptoti-
cally distributed as a standard normal variate with �rst-order accuracy [9]. We will show that
neither the Z-interval nor the r-interval have good coverage probabilities in the small-sample
setting.
The asymptotic normality of r can be improved by certain adjustments. In this paper, we

consider the modi�ed signed log-likelihood ratio r∗ introduced by Barndor�-Nielsen [6, 7] and
Barndor�-Nielsen and Cox [10]. This ratio is generally known as the r∗-formula

r∗ ≡ r∗( )= r( ) + r( )−1 log
{
u( )
r( )

}
(3)

The general form of u( ) is given in Appendix. Barndor�-Nielsen [6, 7] showed that r∗ is
asymptotically distributed as a standard normal variate with third-order accuracy. Therefore,
an approximate 100(1− �) per cent con�dence interval for  based on r∗ is given by

{ ; | r∗( )|¡z�=2}
which is referred to as the r∗-interval. This r∗-interval, unlike the Z-interval or the r-
interval, calculates the con�dence limits from the observed asymmetric likelihood-based
function r∗( ) and achieves a more accurate coverage probability and symmetric upper- and
lower-error probabilities, in a small-sample size setting.
For the log-regression model (1), the log-likelihood function of X=( ; [′)′=( ; R′; �)′ is

given by

‘(�)= − n log � − 1
2�2

sp+1 +
1
�2

(
 − �2

2

)
s0 − 1

�2
s′R− 1

2�2
∑(

 − �2

2
− d′

iR
)2

where  = � + z0′R + �2

2 ; di = zi − z0 = (z1i − z10; : : : ; zpi − zp0)′. The minimal su�cient
statistic t = (s0; s′; sp+1)′ is given by the variables s0 =

∑
yi; sp+1 =

∑
y2i and s=(s1; : : : ; sp)′=

(
∑

d1iyi; : : : ;
∑

dpiyi)′.
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The maximum likelihood estimators are

(�̂; R̂′)′ = (X ′X )−1X ′y

�̂2 =
1
n
y′[I − X (X ′X )−1X ′]y and

 ̂ = �̂+ z′0R̂+
�̂2

2

The constrained maximum likelihood estimators of R and �2 are the solutions of the following
recursive equations:

R̂ =
(∑

did′
i

)−1{s −
(
 − �̂2 

2

)∑
di

}
and

�̂2 =2
{
1 +

1
n
(sp+1 + 2 

∑
d′
i R̂ +

∑
(d′

i R̂ )2 + n 2 − 2 s0 − 2s′R̂ )
}1=2

− 2

The signed log-likelihood ratio r( ) can be calculated from (2), and r∗( ) can be
calculated from (3). We can therefore construct a con�dence interval for  based on r( )
or r∗( ). Let ( L;  U ) be a 100(1 − �) per cent con�dence interval for  , then (e L ; e U ) is
the corresponding 100(1− �) per cent con�dence interval for the mean response �.
In general, there is no explicit analytic interval available based on r and r∗, but a simple

numerical iterative procedure is developed to obtain the upper- and lower-bound limits [11].

3. SIMULATION STUDIES

In this section, we carry out simulation studies to compare the performance of the Z-interval,
r-interval, and r∗-interval for constructing 90 and 95 per cent two-sided con�dence inter-
vals for  in small- or moderate-sample size settings. The performance of a method is
judged using the criteria addressed in Reference [11], such as the coverage probability,
coverage error, upper- and lower-error probabilities, average bias, and average length. The
desired values of these criteria for the con�dence intervals (90 per cent, 95 per cent) are
as follows: coverage probability (0.9, 0.95), coverage error (0, 0), upper- and lower-error
probabilities (0.05, 0.025), and average bias (0, 0). These values re�ect the desired prop-
erties of the coverage probability, accuracy, and symmetry of the upper- and lower-error
probabilities. It is recommended that the average length not be used as a major judgment
criterion.
The �rst simulation involves a log-regression model with a single concomitant variate. The

sample size considered is n=11. The parameter con�gurations are �=6 and �= − 1, and �
ranges from 0.1 to 2. The concomitant variate z= log(3; 5; 10; 30; 40; 50; 60; 80; 100; 120; 160)′,
and z0 = log(70). For each parameter con�guration, we generated 10 000 random samples (as
the log responses) from the normal distribution with the mean equal to �+�z and variance �2

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:2125–2135
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Table I. Evaluation of performance criteria for Z−, r−, and r∗-intervals for constructing a two-sided
90 per cent con�dence interval in a small-sample (n=11) setting with one concomitant variate.

Performance criteria

Coverage Coverage Upper error Lower error Average Average
� Interval probability error probability probability length bias

0.1 Z 0.8643 0.0357 0.0723 0.0634 0.1108 0.0178
r 0.8477 0.0523 0.0804 0.0719 0.1065 0.0262
r∗ 0.8966 0.0034 0.0515 0.0519 0.1223 0.0017

0.5 Z 0.8686 0.0314 0.0861 0.0453 0.5866 0.0204
r 0.8506 0.0494 0.0923 0.0571 0.5615 0.0247
r∗ 0.8980 0.0020 0.0520 0.0500 0.6652 0.0010

1.0 Z 0.8656 0.0344 0.1083 0.0261 1.3556 0.0411
r 0.8509 0.0491 0.1098 0.0393 1.2756 0.0352
r∗ 0.8998 0.0002 0.0562 0.0440 1.6185 0.0061

1.5 Z 0.8657 0.0343 0.1232 0.0111 2.4170 0.0560
r 0.8406 0.0594 0.1251 0.0343 2.2494 0.0454
r∗ 0.8957 0.0043 0.0547 0.0496 3.0316 0.0026

2.0 Z 0.8599 0.0401 0.1351 0.0050 3.8213 0.0650
r 0.8407 0.0593 0.1339 0.0254 3.5090 0.0542
r∗ 0.8985 0.0015 0.0550 0.0465 4.9245 0.0042

to construct the 90 per cent con�dence intervals. The simulated coverage probabilities, upper-
and lower-error probabilities, and average biases and lengths for each interval are given in
Table I.
From Table I, we observe that the performance of the Z-interval is slightly better than that

of the r-interval. However, the coverage probability is low, the coverage errors and average
biases are large, and the error probabilities are quite asymmetric, particularly for cases in
which the variance is large. In contrast, the coverage probability of the small-sample corr-
ected r∗-interval is comparable in all cases; its coverage errors are near zero; and it has the
smallest average bias for the three intervals in all the cases studied. In addition, the upper-
and lower-error probabilities of the r∗-interval are much more symmetric and accurate than
those of the Z- or r-intervals. Overall, the small-sample corrected r∗-interval performs much
better than the large-sample based Z-interval or r-interval.
The second simulation involves a log-regression model with two concomitant variates. The

sample size considered is n=10. The parameter con�gurations are �=3:5901; �1 = 2:8405;
�2 = − 0:3553, and �=0:311155. The two concomitant variates z1 and z2 are de�ned as in
Example 2, Section 4 and z0 = (−0:443; 10)′. For each parameter con�guration, we generated
10 000 random samples from the normal distribution with the mean equal to �+ �1z1 + �2z2
and variance �2. The simulated coverage probabilities, upper- and lower-error probabilities,
and average biases and lengths for each interval are given in Table II.
This simulation also showed that the r∗-interval performs much better than the Z-interval

or r-interval, in terms of coverage probability and symmetry of the error probabilities.
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Table II. Evaluation of performance criteria for Z−, r−, and r∗-intervals for constructing a two-sided
95 per cent con�dence interval in a small-sample (n=10) setting with two concomitant variate.

Performance criteria

Coverage Coverage Upper error Lower error Average Average
Interval probability error probability probability length bias

Z 0.9063 0.0437 0.0562 0.0375 0.7954 0.0218
r 0.8827 0.0673 0.0680 0.0493 0.7330 0.0336
r∗ 0.9442 0.0058 0.0291 0.0267 0.9388 0.0029

Table III. Evaluation of performance criteria for Z−, r−, and r∗-intervals for constructing a two-sided
95 per cent con�dence interval in a moderate-sample (n=31) setting with two concomitant variate.

Performance criteria

Coverage Coverage Upper error Lower error Average Average
Interval probability error probability probability length bias

Z 0.9424 0.0076 0.0305 0.0271 0.1281 0.0038
r 0.9375 0.0125 0.0331 0.0294 0.1256 0.0062
r∗ 0.9523 0.0023 0.0246 0.0231 0.1337 0.0012

The third simulation is also a log-regression model with two concomitant variates but with
a moderate sample size n=31. The parameter con�gurations are �= − 6:620; �1 = 1:976;
�2 = 1:119, and �=0:077667. The two concomitant variates z1 and z2 are de�ned as in Ex-
ample 3, Section 4 and z0 = log(20:6; 87)′. For each parameter con�guration, we generated
10 000 random samples from the normal distribution with the mean equal to �+ �1z1 + �2z2
and variance �2. The simulated coverage probabilities, upper- and lower-error probabilities,
average biases, and average lengths for each method are given in Table III.
With a moderate sample size, all three methods showed similar coverage probability and

upper- and lower-error probabilities. However, the r∗-interval still outperformed the Z-interval
or the r-interval.

4. EXAMPLES

The �rst real data that we will use as an example is the survival time (T , weeks) from
diagnosis of 17 patients with AML [1]. Leukaemia is characterized by an over-proliferation
of white blood cells; the higher the WBC count, the more severe the disease, and the lower
the probability of survival.
Figure 1(a) is the scatter plot of the survival time and WBC count. The linear trend of the

scatter plot between logarithm of survival time (y) and log WBC count (z)
(Figure 1(b)) suggests a log-regression model between survival time and log(WBC count).
The maximum likelihood estimators of � and � are �̂=11:07456 and �̂= −0:8178, and these
give the predicted model

ŷ=11:07456− 0:8178z

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:2125–2135
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Figure 1. (a) Scatter plot of the survival time and WBC count; (b) scatter plot between logarithm of
survival time and log WBC count; and (c) scatter plot of the observed values versus their �tted values.

As a partial check of the adequacy of the �tted model, a Shapiro–Wilk test of normality
of the residuals (y − ŷ) gives a p-value of 0.52, which supports the log-normal distribu-
tion assumption. The scatter plot of the observed y values versus their �tted values (ŷ)
(Figure 1(c)) lies along the identity line and suggests a reasonable model �t. The predicted
value of y at the median value of z is 4.213, which gives a predicted mean survival time of
67.55 weeks at a median WBC count. The 95 per cent con�dence intervals for  and e at
the median WBC count are given in Table IV.
All three intervals yield similar lower bounds but quite di�erent upper bounds. This is due

to the fact that r∗ corrects the skewness of the distribution, whereas Z and r do not.
The second example is a small data set on the annual production and market price of

ground nuts and cotton in Israel from 1952 to 1963 [5]. Speci�cally, response variable (T )

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:2125–2135
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Table IV. 95 per cent con�dence intervals of Example 1.

Interval  �=e 

Z 3.497 5.107 33.03 165.17
r 3.611 5.206 36.99 182.29
r∗ 3.642 5.539 38.17 254.54

Table V. 95 per cent con�dence intervals for Example 2.

Year z10 z20 Z-interval r-interval r∗-interval

1963 −0:443 10 (0.193, 0.518) (0.201, 0.500) (0.185, 0.595)
1964 −0:250 11 (0.175, 0.838) (0.187, 0.790) (0.160, 1.008)
1965 −0:308 12 (0.106, 0.492) (0.112, 0.465) (0.097, 0.591)
1966 0.003 13 (0.109, 1.368) (0.121, 1.244) (0.092, 1.788)

and concomitant variates z=(z1; z2)′ are

T =
output of ground nuts
output of cotton

in year t

z1 = log
(
price of ground nuts
price of cotton

)
in year t − 2

z2 = time trend; 1954=1

The observed values of T can be readily calculated from the raw data, and following the
author’s methods, we �tted a log-regression model to their 10 observations for the period
1954–1963:

yi= �+ �1z1 + �2z2 + �i; i=1; : : : ; 10

and developed the prediction model

ŷ=0:35901 + 2:8405z1 − 0:3553z2
The con�dence intervals for the average value of T for each year of the 4-year period
1963–1966 are reported in Table V.
Again, all three intervals yielded a similar lower bound, but a quite di�erent upper bound,

seemingly because the r∗ corrects the skewness of the distribution. Furthermore, both the Z-
and r-intervals are too short to provide 95 per cent coverage probability. This �nding is
con�rmed by the simulation results in the previous section.
The �nal example of real data is a set of measurements taken on 31 black cherry trees [12,

p. 287]. For each sample unit, three measurements are given:

D is the diameter (inches) of the tree measured at a given height from the ground;

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:2125–2135
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Table VI. 95 per cent con�dence intervals for Example 3.

Interval  �=e 

Z 4.2885 4.4244 72.859 83.464
r 4.2899 4.4232 72.961 83.360
r∗ 4.2856 4.4278 72.649 83.750

H is the height (feet) of the tree; and
V is the volume (cubic feet) of timber.

The scatter plots of the (D;V ) and (H;V ) pairs suggest that a plausible relationship among
the variables is

V =�0D�1H�2

After taking logarithms of all variables, we formulated the linear-regression model

y= �+ �1z1 + �2z2 + �

where y= log(V ); �= log(�0); z1 = log(D), and z2 = log(H). The following �tted model was
derived from the data:

ŷ= − 6:620 + 1:976z1 + 1:119z2
The 95 per cent con�dence intervals of the mean volume at Diameter =20:6 and Height =87

are shown in Table VI.
Because of the moderate sample size, all three intervals are almost identical, which is

consistent with the simulation in the previous section.

5. CONCLUSIONS

In this paper, we have proposed a small-sample corrected r∗-interval for the mean response
of a log-regression model. The simulation studies showed that the proposed r∗-interval is
uniformly better than that proposed by El-Shaarawi and Viveros [2] and it displays the almost
exact coverage probability, even for small samples.

APPENDIX

Suppose that the log-likelihood function ‘(X; y) can be rewritten as ‘(X; t), where t is a
minimum su�cient statistic with the same dimension as X. Then the u( ) in the r∗-formula
has the following form [8]:

u( )=
| ‘;t( ̂ ; [̂)− ‘;t( ; [̂ ) ‘[;t( ; [̂ )|

| ‘X;t( ̂ ; [̂)|

{
| j( ̂ ; [̂)|

| j[[( ; [̂ )|

}1=2

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:2125–2135
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where the sample space derivatives are de�ned as

‘;t(X)=
@
@t

‘(X; t) and ‘X;t(X)=
@
@X ‘;t(X; t)

j(X) denotes the observed information matrices for the full parameter X, and j[[(X) denotes
that of the nuisance parameter [. For the log-regression model (1), we have

‘;t(X) =

⎧⎪⎪⎨
⎪⎪⎩

(
 − �2

2

)
�2

;
1
�2
R′;− 1

(2�2)

⎫⎪⎪⎬
⎪⎪⎭

′

‘X;t(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
�2

0′
p×1 −2 

�3

0p×1
1
�2

Ip − 2
�3
R

0 0′
p×1

1
�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

j(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n
�2

1
�2
∑
d′
i

2
�3

s0 − 2
�3
∑
( + d′

iR)

1
�2
∑
di

1
�2
∑
did′

i
2
�3
s+

2
�3
∑
( di + did′

iR)

2
�3

s0 − 2
�3
∑
( + d′

iR)
2
�3
s′ +

2
�3
∑
( d′

i + R′did′
i) j��(X)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where

j��(X) =− n
�2
+
3
� 4

sp+1 − 6 
� 4

s0 − 6
� 4
s′R+ 3

� 4
∑(

 − �2

2
− d′

iR
)2

+
3
�2
∑(

 − �2

2
− d′

iR
)
+ n

Accordingly, the u( ) can be calculated.
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