Eng.
Life,
Sci.

Sediment Bioremediation

Reviews

Scaling Methods of Sediment Bioremediation Processes and
Applications

By P. Adriaens*, M.-Y. Li, and A. M. Michalak
DOI: 10.1002/elsc.200520127

Bioremediation has been argued to be one of the most cost-effective remediation technologies available to reduce soil,
sediment, or groundwater contamination, particularly because this approach may allow for the implementation of in-place
strategies. Recent trends have advocated the application of innovative sediment stabilization strategies through placement of
(reactive) capping material to allow long-term biodegradation of contaminants in these complex biogeochemical environ-
ments. The potential long-term risk reduction associated with this approach requires a demonstration of causal relationships
between sediment or contaminant stability on the one hand, and microbial reactivity on the other. The spatial analysis needed
to fully understand and quantify these correlations requires sensitive probabilistic techniques. Geostatistics has been used for
the characterization of multi-scale spatial patterns for the last few decades, and the analysis of microbial attributes has shown
significant spatial structures on microbial abundance and activity. However, there is a dearth of information on the applicabil-
ity of geostatistics to quantitatively describe the interaction between the microorganisms and their environment. Using the
Passaic River (NJ) dioxin data as a model dataset, multiple scaling models were applied to scale and interpolate sampled diox-
in data and derive dechlorination signatures in sediments. Unlike conventional geostatistic tools that are based on the point-
to-point spatial structures, the new multi-scale model (M-Scale) introduces a new framework for spatial analysis in which
regional values at different scales are anchored by the correlations to each other. Spatial dioxin distributions and microbial
dechlorination signatures were used as benchmarks for comparison of M-Scale to ordinary kriging. The results from cross-va-
lidation and jackknifing approaches applied to these datasets were analyzed and compared using Quantile-Quantile (Q-Q)
plots and reproduction coefficients. These plots indicated that the M-Scale better preserves the local features of hotspots
during data interpolation to a basin-wide scale. Current efforts focus on mapping microbial abundance and respiratory compe-
tence in the Anacostia River, based on measurements at three different scales. The outcomes of this work will be used to
develop an uncertainty-based spatial decision tool for site remediation in this watershed using various capping strategies.

facilities (CFDs), in situ capping approaches using either in-
ert or reactive barriers, contained aquatic disposal (CAD),
or natural recovery (see Fig. 1). The first approach has be-

1 Introduction

Sediment remediation is a challenging problem from a site

characterization, remedial design implementation and reme-
dial endpoint assessment perspective, due to the complexity
inherent in aquatic environments. Remediation strategies
are often developed on the basis of insufficient understand-
ing of fundamental processes and site-specific empirical
models, which have to be recreated at each site. High uncer-
tainties can lead to estimates of risks that are too conserva-
tive, adding to remediation costs, or they can lead to insuffi-
cient protection, resulting in unanticipated impacts on
human health and ecology.

The current available in-place sediment remediation
strategies are limited to dredging followed by disposal in
submerged or partially saturated (60 %) confined disposal
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come unsustainable, for political and social reasons, as well
due to the problems associated with difficult-to-quantify
contaminant transport pathways. Moreover, in situ CAD is
less attractive as it still requires dredging prior to disposal.
The alternative approaches have received increased atten-
tion as contaminated site management options. Their appli-
cation has been limited due to the uncertainties about
long-term stability and exposure pathways under various en-
vironmental conditions.

The critical processes affecting contaminants in sediments
are bioturbation, erosion/resuspension, diffusion, advection,
biogeochemical interactions and biotic or abiotic trans-
formation reactions [1], as illustrated in Fig. 2. This figure
represents an abstraction of a characteristic sediment model,
incorporating the sediment bed, a sediment cap (either sand
or a reactive matrix) and the overlaying water column. The
arrows indicate the direction in which the processes impact
the contaminants or contaminant-associated sediments
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Figure 1. In-place sediment remediation strategies (from NRC, 1997 [1]).
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in the laboratory as well as in the
field, especially since groundwater
fluxes may have effects on biogeo-
chemical processes and redox condi-
tions over time [4].

Erosion rates of fine-grained cohe-
sive sediments are often modeled as
a linear function of the applied shear
stress above some threshold or criti-
cal value [5]. The constant of propor-
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Figure 2. Components of contaminant transport/transformation in sediment beds.

across these compartments, and shows that active mixing in
sediments due to biological activity occurs in the top
5-10 cm. Attempts have been made to quantify the order of
magnitude of these processes and how they are impacting
the overall contaminant fluxes in sediment systems, resulting
in rates that range over up to three orders of magnitude.

In addition to the knowledge gaps in the understanding of
fundamental principles and information applicable to con-
taminated sediments in general, there is also a deficit of site-
specific information for characterization of sediment resus-
pension and biogeochemistry/sediment microbiology. It is
thus imperative to develop a better understanding of funda-
mental processes and to incorporate the uncertainties there-
with to assess their impact on remedial technologies, in or-
der to achieve higher cost efficiency and reliable protection.
The following sections will provide a brief overview of some
of the predominant processes impacting in-place sediment
remediation, and the approaches used to evaluate spatial un-
certainty of their impact.

2 Groundwater Advection in Sediments

The interaction of groundwater with streams and lakes has
been extensively studied, yet little is known about the con-
straints such interaction may impose upon in-situ contami-
nated sediment remediation. This phenomenon can affect
sediments physically by favoring or suppressing resuspen-
sion, depending on the direction of water exchange and
grain-size. The extent to which groundwater advection af-
fects the chemical and physical stability of contaminants in
sediment and under caps is an important factor for sediment
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that the strength of these sediments
is controlled by the physical-chemi-
cal bonds between the surface-
charged particles. A vertically up-
ward flow of pore fluid, associated
with groundwater discharge will induce a mechanical stress
that could result in resuspension of fine material [11]. This
process would be expected to affect the displacement of
fine-grained sediments through a cap material. An addi-
tional mechanism of importance in the marine environment
is that a fresh groundwater discharge could reduce the ionic
concentration of the pore fluids and reduce the strength of
the interparticle forces. Pore water seepage could also re-
duce the consolidation rates in the sediment, decreasing the
bulk density as well as the erosion resistance.

3 Sediment Biogeochemistry

Microbial activities can impact contaminant mobility in
both positive and negative ways [12], by influencing chemical
sorption, by causing ebullition of gases [13], and by chemical-
ly altering the contaminants themselves [14,15]. Chemical
transformations can lead to less toxic or more toxic com-
pounds, depending on the contaminant and on the predomi-
nant pathways. Ebullition of biogenic gases resulting from mi-
crobial metabolism (e.g., methane, hydrogen sulfide, carbon
dioxide) can destabilize the sediment or cap matrix, and in-
duce desorption of organic contaminants from the sediment
particles into the (organic) gas, thus facilitating convective
and diffusive transport [16]. Biogeochemical cycling is thus an
important component to be considered for the long-term per-
formance of in-situ sediment remediation technologies.

Because of the high sulfate concentrations in saline envi-
ronments, sulfate-reduction is often the dominant process in
carbon metabolism in marine sediments [17], although fer-
mentation [18], denitrification [19,20], iron reduction [21],
and methanogenesis [18] have been demonstrated. These
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conditions are conducive to reduction reactions such as de-
chlorination of PCBs and dioxins [14], and aromatic ring de-
stabilization of PAHs. Natural dechlorination rates for these
compounds range from one chlorine removed every seven to
ten years, depending on the rates of carbon turnover in the
sediments [22]. Lesser chlorinated compounds have been hy-
pothesized to migrate out of the sediments into the water
column or upper sediment layers [23-25].

The formation and migration of biogenic gas in marine
sediments, its effect on sediment bed morphology and stabil-
ity, and emissions into the water column and atmosphere
have been well documented [26-28]. It is generally observed
that the generation of biochemical gases depends on the
amount of organic matter in sediment and on the sediment
cover thickness, decreasing seaward [29]. However, limited
direct measurements of gas diffusion in porous matrices have
been reported, and the available information is generally re-
stricted to methane, carbon dioxide, and oxygen [30,31]. In
addition, gases can be transported to the sediments through
groundwater and dominate in-situ production [32].

Very little is known about the potential of gases to
physically and chemically destabilize either caps or natural
sediments. It is known that gas generation is dependent on
temperature [33], and that the effects of temperature can be
attenuated using thicker and thus more insulating caps, but
thorough scientific investigation of the phenomenon is lack-
ing, in particular with respect to contaminated sediment
management. The significant uncertainties hinder the devel-
opment of models that account for sediment/cap stability as
a function of outgassing [16].

Deterministic models, derived based on physics laws that
are generally accepted, are applied for the simplicity of their
formulation or for the ease of explanation to a broader audi-
ence. Stochastic models, on the other hand, are often used
to measure the uncertainty accompanied with restriction of
sample size due to the cost of taking samples even if no
physics laws may apply. In addition to the basic use of a
stochastic model, the applications may also include the fore-
casting or estimation of a certain attribute based on previous
measurements, or simplification of input/output relation-
ships. Fig. 3 illustrates the uncertainty associated with sam-
ple collection, and indicates that, considering the limited
number of samples collected, any observation is only known
within the context of a probability distribution - i.e., there
are many equally-probable realities capturing the observa-
tion.

A mixed deterministic and stochastic approach may pro-
vide an alternative that evaluates the parameters of a deter-
ministic model from the specific site measurements and
leaves out the residuals for stochastic analysis. The mixed
approach, however, is usually categorized as a stochastic ap-
proach based on the fact the models are taking statistic com-
ponents into consideration. For example, kriging with a
trend model deals with a varying local trend within a certain
neighborhood expressed by a deterministic function of the
coordinates [35]. The deterministic components of the model
require interdisciplinary knowledge from experts in flow
modeling and lab experiments, who should be involved in
the stochastic estimation in the cases where physical models
are available for attribute quantification, and when propor-

4 Uncertainty Modeling and
Decision Making:
Deterministic and Stochastic
Models for Sediment
Remediation

To assess the dependence of con-
taminant reduction as a function of
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tive transport and biogeochemistry, rf'mr PR
model estimations are usually re- eif = n ."

Information loss

Error
r a ) e 4

= Reality

During sampling and analysis:
+ information is lost,

100 % = error is introduced

. . xl
quired, due to the limited number o i “_‘ 1 —> Reality is only known
of samples collected. The choice of Ll A-H * = f within a range with
methods or models to be used, to this 9N =S¥, 03 50.3 500 ppm a certain probability

end, is the first step in estimation. Un-
fortunately, the choice is often made
on a largely subjective and intuitive
basis [34]. While some subjectivity
may always be involved, the choice of
an estimation method usually depends
on consideration of deterministic or
stochastic approaches, and whether a

Any prediction
within this range s
is "correct"!

Roadblock to
negotiations
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Figure 3. Principles of uncertainty imparted by information loss during point sampling, and the need for
probability distribution functions to make uncertainty-based predictions (according to Barabas, 2003 [77]).
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tional effects are identified (i.e., the residual is related to the
trend of attributes).

Until now, most of the mathematical models used in pre-
dictive microbiology are deterministic, i.e., their outcome is
an estimate for the microbial attribute at a certain time in-
stant [36]. For a more advanced analysis of predictive micro-
biology in the context of hazard analysis and critical control
point and risk analysis studies, stochastic models should be
developed. Such models predict a probability distribution
for the microbial attribute within proper temporal and spa-
tial constraints.

Risk assessment is an integral component of decision-
making in contaminated sediment management, and an
important driving force is the presence of uncertainty. Un-
certainties accumulate at all stages of site assessment and
modeling, and are magnified during scaling of cause-and-ef-
fect relationships from laboratory to field scale, from site
scale to regional scale, and during extrapolation of relation-
ships beyond their range of input measurements or beyond
the site where the relationships/models were established.
Even when preventive measures are based on sound plan-
ning, sampling [37] and analytical methods [38] aimed at
eliminating and minimizing some sources of error and bias,
uncertainties always remain. Nevertheless, the element of
uncertainty in the management of contaminated sediments
is often treated inadequately [39], or not addressed at all.
For example, unquantified uncertainties can force extremely
conservative estimates [40], which can lead to high ineffi-
ciencies in the allocation of sparse resources for remedia-
tion. Most frequently, uncertainty is expressed in the form of
confidence intervals, or by incorporation of safety factors
based on best “professional judgment.” But these measures
and strategies incorporate assumptions about the nature
(such as normal distributions) and magnitude of uncertainty,
which are rarely tested and which vary along with sampling
and measurement methods, models, and site variability and
other site characteristics.

Several approaches are available for system modeling and
decision-making under uncertainty, depending on the data,
the magnitude and the acceptable level of uncertainty.
Weight-of-evidence (WOE) approaches deal with large un-
certainties by integrating multiple lines of evidence into a
decision measure using methods ranging from best profes-
sional judgment to weighted scoring and statistical summa-
ries/comparisons to reference situations [41]. WOE is most
often applied in risk assessment, but its methods are valu-
able in any situation where uncertainties are large and/or
multiple lines of evidence for the same decision requirement
are available.

When systems are better understood and mechanistic
models available, the inputs can be treated as random vari-
ables. Uncertainties of these inputs (parameters/coefficients
and variables) can be expressed in the form of probability
distributions (using regression, analytical error parameters,
or best professional judgment in the context of Bayesian
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prior and posterior probabilities). These uncertainties are
then propagated to the model output via mathematical anal-
ysis for simple models and via stochastic simulation using
Monte Carlo analysis, Latin hypercube sampling, or boot-
strap analysis [42]. The uncertainty evaluation of input
parameters for the deterministic models must often rely on
professional judgment, in particular, when values of parame-
ters are scattered in the literature and were derived in differ-
ent experiments (or sites), by different investigators, under
different experimental (or site) conditions [40,43]. When ex-
periments are repeated, the regression of a functional rela-
tionship will yield estimates and standard errors that are
used as parameter estimators in appropriate distributions,
e.g., the Gaussian distribution [44].

In the case of variables (i.e., sampled data), probability
distributions can be generated using, for example, the
known precision of the instrument. If the sampling is spa-
tially distributed, local distributions at all sampled and un-
sampled locations can be derived using kriging approaches
or stochastic simulation. Once input distributions are quanti-
fied, values for each input variable and model parameter are
randomly drawn from their probability distributions using,
for example, a Monte Carlo approach, preserving correla-
tions among the inputs if applicable. The resulting combina-
tion of input values is used in the model (e.g., sediment
fate and transport, contaminant flux) to generate a realiza-
tion [45-47]. The process is repeated, while the nature of
the sampling ensures that the realizations are equally prob-
able, allowing a statistical summary of the model outputs.
Uncertainties associated with scaling (e.g., laboratory de-
rived contaminant degradation used in site models) or
aggregation can be assessed in the context of validation,
weight-of-evidence approaches [43], and by gathering addi-
tional data that represent the larger-scale patterns of vari-
ability [48-50].

5 Spatial Patterns and Scaling

Spatial structures may be explained in various aspects by
the way data are collected and summarized. Dale et al. [51]
provide an overview of most of the mathematic tools used
for spatial data analysis, and quantitatively explain the dif-
ferences among the approaches including the use of vario-
grams and fractal dimensions among the 28 approaches. It
was concluded that, in spite of the diversity of the back-
grounds and motivation that give rise to the methods de-
scribed in their paper, there are some obvious conceptual
themes and mathematical similarities that tie them together.
While one may not expect that any single method can reveal
all the important features of any data set, it should be no-
ticed that the results of different analyses may not be fully
independent [51]. Depending on the specific questions to be
answered about spatial characteristics of a given dataset,
new approaches are yet to be developed.

Eng. Life Sci. 2006, 6, No. 3
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5.1 Geostatistical Approaches

The applications of geostatistical techniques to the spatial
analysis of sediments are recent and few. Barabas et al. [52]
modeled spatial uncertainty in dioxin contamination in three
dimensions using indicator kriging in Passaic River sedi-
ments; Murray et al. [53] mapped the extent of DDE con-
taminated sediment thickness on the Palos Verdes shelf
using sequential indicator simulation, while Fioole et al. [54]
developed the SURFIS computer program, to integrate
geostatistical methods in order to account for random error
in the optimization of dredging of contaminated sediments
with digital terrain models (DTMs). To further explore the
applicability of geostatistics-based spatial analysis, it is use-
ful to provide some background on the assumptions under-
pinning these techniques.

One of the central concepts of spatial analysis is the vario-
gram. A variogram is a mathematical expression of dissimi-
larity (e.g., of concentrations) as a function of separation dis-
tance between any two points in space [55]. A generic
variogram is shown in Fig. 4, where & is the distance be-
tween any two locations, range indicates the range of inter-
action between location pairs, sill and nugget effect indicate
the possible maximum and minimum variation, and the
curve in this graph explains the relative strength of interac-
tion in terms of the distance of the locations apart.

The variogram-based approach models an attribute z at
each unsampled location u as a random variable Z(u) with a
conditional cumulative distribution function (ccdf) F(u;
z|(n)), conditional to n neighboring data z(u,). The ccdf fully
captures the uncertainty at u since it gives the probability that
the unknown is no greater than any given threshold z [55]:

F(u; z|(n)) = Prob {Z(u) < z|(n)} 1)

Parametric and non-parametric methods exist to model
attribute ccdfs. Indicator kriging (IK) is a non-parametric
approach, with the advantages that
the shape of the ccdfs is derived -
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Figure 4. Variogram.

derestimated. To avoid these errors, stochastic simulation
is increasingly preferred to kriging for environmental as-
sessment applications such as delineation of contaminated
areas [55,57-59], or the modeling of groundwater flow in
heterogeneous aquifers [57,60-64]. The set of alternative
realizations generated provides a quantitative measure of
spatial uncertainty. Features that appear consistently on
most of the simulated maps are deemed certain, as ex-
pressed by a corresponding local ccdf summarizing the
probability distribution of the attribute at each simulated
grid point. The uncertainty can then be summarized into
probability maps, risk maps, or maps of false positives and
false negatives [65]. Such results can aid in a more scienti-
fically grounded assessment of safety factors and a more
realistic and comprehensive formulation of confidence in-
tervals. These maps are also well suited to the communica-
tion of uncertainties to non-scientific communities. An ex-
ample is illustrated in Fig. 5 for a dioxin dataset, where
geostatistics was used to generate a probability map, which
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000
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Figure 5. Site characterization and risk classification for remedial decision-making (adapted from Saito and
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can be translated into a risk classification map for reme-
dial decision-making when certain threshold values are
considered in the final analysis. Approaches such as these
are gaining momentum in the regulatory community in an
effort to optimize remedial costs and benefits.

5.2 Multi-Scale Modeling (M-Scale Model)

Whereas geostatistical methods mostly implicitly incorpo-
rate the scale in the interpolation of known values, by evalu-
ating the point-to-point distances in the overall smoothing of
unknown values, multi-scale modeling explicitly integrate
measurements made at various scales. The “smoothing ef-
fect” of geostatistic models comes from the assumption that
either a fixed unknown value or a smooth function of trend
values applies within the search neighborhood of estimation.
A recently developed model, which will be expanded upon
here, is M-Scale [67-69]. The statistical premise of the
M-Scale model is that the variation of values at different
spatial scales is heuristically related. In other words, if sam-
ples are collected at the “point scale” (e.g., single cores se-
lected from large sites), the variation of parameters col-
lected within the core are propagated to higher scales by
taking into account the correlations of the local averages be-
tween scales. These correlations are informed by the varia-
tion of local averages at each scale. Taken together, the con-
tributions of variation at each scale are weighted and
aggregated into a best linear unbiased estimator, as shown in
Fig. 6.

The model not only serves as a tool to evaluate parameter
relationships over different scales by their covariances and
data uncertainty, but also makes further use of these covar-
iances and data uncertainty as the basis for a precision-opti-
mized estimator. Information from each scale is weighted by
the projected similarity to the scales of interest, with adjust-
ments incorporating the different precision they provide.

Unlike conventional geostatistical tools, which are based on
point-to-point spatial structures, the multi-scale model intro-
duces a new framework for spatial analysis in which regional
values at different scales are anchored by the correlations of
each other [67].

The estimation mechanism is conceptualized in Fig. 6, ex-
cept that the kriging estimate is now for the local average of
a target scale of interest, the trend on both sides of the equa-
tions are the local average calculated from the smallest scale
that contains data, and the true data includes every local
averages calculated from all different scales. Consequently,
the search neighborhood will be the largest scale of estima-
tion, while the trend will depend on the available size of
scale rather than a pre-defined smooth function over the
search neighborhood.

6 Spatial Pattern of Measurements for Microbial
Abundance and A ctivity

Scientists conceive microbial abundance and activities
using different metrics and endpoints. How the abundance
and activities should be sampled and measured, conse-
quently, varies widely dependent on the different objectives
for subsequent research or for decision-making purposes.
Moreover, microbial endpoints are rarely extrapolated in
space and across scales. Sampling strategies, among all the
factors that could alter the explanation of spatial patterns,
aim to capture the possible minimum and maximum distance
of interaction between locations that the scientists could
conclude as the range of spatial structures. Nunan et al. [70],
for example, collected 49 random samples within a topsoil
volume of a 300 cm by 300 cm cross-section area with a
depth of 30 cm. The bacterial abundance was measured by
slicing the soil sample and processing the cross-sections
using automatic image tools that allowed for differentiation
of images within a spatial support of 282 um?. It was con-
cluded, based on these results, that a
spatial structure of 100 um to 50 cm
adequately captures the microbial
abundance distribution in this system
[70].

In some research, sampling is con-
ducted to observe a larger interaction
range. Gaston et al. [71] used four
randomly selected samples along the
sides of a 2 m by 2 m square area at
grid nodes 60 by 60 meter square
grids. The local variation within the
2 m by 2 m square area can thus be

M-Scale estimation:
Have both coverage
and variation

Original data

Local average:
Need trade-off between
coverage and variation

detected, and the interaction range of
larger than 60 meter would also be
evaluated. This study indicates an in-
teraction range varying from no in-
teraction at all, to all distances in the
research area for attributes including

Figure 6. Schematic components of the M-Scale model: Calculate local averages at different scales, deter-
mine covariance between scales, and use covariance between scales at sampled locations to estimate varia-
tion at each scale.
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fluorescein diacetate activity, pH, organic carbon, and soil
composition (clay, sand). Another meter-scale sampling
scheme was reported by Writh [72] who measured soil
microbial biomass using a physiological, substrate-induced
respiration method. The sampling approach in this study in-
volves a local lag distance of 2 m, medium lag distance of
1.7 km and demonstrated a spatial structure within the range
of 75 m.

Beliaeff and Cochard [73] presented a sampling scheme
for an even coarser spatial resolution. Fecal coliforms were
measured in shellfish at a spatial distance of about 250 me-
ters apart at any convenient location in the study site of
6.5 km by 1.5 km. An interaction range of 920 meters up to
all distances is reported, varying from season to season.
Robertson et al. [74] measured the impact of chloroform fu-
migation on the soil microbial biomass, using the serial dilu-
tion method (most probable number, MPN) to evaluate the
microbial population counts. The biogeochemistry attributes
measured in their paper also included gravel content, bulk
density, sand content, silt content, clay content, gravimetric
moisture, different nitrogen content and organic phosphate.
The sampling scheme involved 796 random samples within
the study area of 48 ha. No variation of population size was
found over the site while for microbial biomass, some spatial
structure does exist within a distance of around 30 m [74].

Oline and Grant [75] used a nested sampling scheme in or-
der to attain a multi-scale variation for their biogeochemical
attributes. Water content, pH, organic matter and soil micro-
bial biomass were measured in different scales ranging
from 1 cm to 1 km by randomly selecting a subdivision from
a larger scale area, and divided into 10 subdivisions for
further selection. A varying interac-
tion range was reported from as
small as 10 m to as large as 1 km
[75].

No general rules for the range of
interaction among attribute values
are applicable so far in ecological
studies; neither is there for the over-
all variation over the mapped extent.
An exploratory data analysis is thus
required before further analysis and
decision can be made based on
screening-level sampling strategies,
in order to avoid any unnecessary
sampling over the site of interest.
Hydrogeology and biogeochemistry
are likely factors that affect the spa-
tial pattern of microbial attributes as
transfer functions that propagate the
uncertainties associated with point
measurements. The examples shown
below show the results of two differ- 0.0
ent datasets using both a geostatisti-
cal technique (ordinary kriging) and
the M-Scale model.

Eng. Life Sci. 2006, 6, No. 3
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6.1 Microbial Dechlorination Fingerprints in Passaic River
Sediments (NJ)

The Passaic River has been contaminated with dioxins from
a wide range of point and diffuse sources of industrial and ur-
ban (combined sewage overflows) origin. As dioxins are pres-
ent in the form of multiple compounds and distributions of
the individual compounds [76], chemometric data analysis
can be applied to unmix patterns into contributing sources.
Using polytopic vector analysis (PVA), a stable probabilistic
dechlorination fingerprint was isolated that explained up to
7 % of the patterns variance across 396 sediment data col-
lected in xyz direction [77]. The weighted contribution of the
(microbial) natural attenuation pattern is shown in Fig. 7on a
linearized plot of the Passaic River.

A comparison of Ordinary Kriging (OK) estimate (left)
with M-Scale estimation (right) for a selected cross-section
of the river (see Fig. 8) indicates that M-Scale appears to
preserve local features in the spatial distribution of the de-
chlorination fingerprint, and that OK smooths out the con-
centration distributions.

To evaluate the predictive capability of both models, each
of the 396 values was removed and re-estimated using both
models. The resulting plot of actual vs. estimated values is
shown on a Q-Q plot (see Fig. 9) representing graphically
how well the model estimates predict the actual values (de-
viation from the 45° line). These results further confirm that
the M-Scale estimation generally reflects the data across the
entire magnitude range, while Ordinary Kriging tends to un-
derestimate higher values and overestimate lower values.
We propose here to use a reproduction coefficient as an in-

Figure 7. Spatial distribution of dechlorination fingerprints (color-scale indicates percent contribution of
the fingerprint endmember to the overall sample variance) (according to Adriaens and Li, 2005 [67]).

1000.0 0.0

Flow Dir. 1000.0

Figure 8. Estimation maps by Ordinary Kriging (OK) and M-Scale Models.
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The Anacostia River microbial
data represent a spatially sparse
dataset of values ranging over two
orders of magnitude for microbial
abundance (10°-107) and for micro-
; bial activity (% of total 0.7-65 %).
Using a similar approach as demon-
strated for the Passaic River sam-
ples, the results for microbial abun-
dance are presented in Fig. 11.

The outcome shows similar obser-
vations as with the much larger dioxin

0.0 T
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Figure 9. Q-Q plots from Ordinary Kriging (OK) and M-Scale Models.

0.2

dex of the similarity between estimate and true values on
the basis of their correlation coefficient respective to the
true value:

o i (21 —7) (z — 2)
- n =\2
Yoin1 (i —2)

(2)

where z; is the true value, z; is the re-estimated z;, and n is the
total number of pairs of estimate and true values. The repro-
duction coefficient becomes unity when the paired values are
exactly the same or when all the differences average out. The
results for OK and M-Scale model are 0.382 and 0.414, respec-
tively, showing the advantage of using of M-Scale model on
the overall similarity between estimation pairs of all locations.

An alternative validation approach is the use of bootstrap-
ping methodology, which is based on random sub-sampling
of the dataset, followed by re-estimation of the entire data-
set removed. In this particular case, 20 datasets each con-
taining 100 datapoints were removed and re-estimated using
both methods. Substantially more data scatter is observed,
but the prediction (mean %1 s.d.) still captures the 45° line in
the case of M-Scale.

6.2 Microbial Abundance and Activity Data in the
Anacostia River (Washington, DC)

The Anacostia River is contaminated with heavy metals,
polycyclic aromatic hydrocarbons and polychlorinated bi-
phenyls. In situ capping strategies are explored to reduce risk
from contaminants to the ecosystem. Aside from conven-
tional sand caps, reactive caps including Aquablok® (expand-
ing clay coated granular material) and coke-embedded geo-
textiles (to increase contaminant sorption) have been
implemented (Fig. 10 shows uncapped, sand and Aquablok®
caps; covering approximately 1,012 m* each). Co-located
samples were collected based on sediment cores, and were
analyzed for microbial abundance (using PicoGreen DNA
stain) and metabolic competence (using CTC, 5-cyano-2,3-
ditolyl tetrazolium chloride).
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T dataset. M-Scale preserves local fea-
tures in the data, and flows the trend-
line for cross-validated samples with
greater fidelity than OK. It is not
clear what the deviations from the
trend line can be ascribed to at this time, except for that a
similar number of scales and weighting of the scales was used
as for the much larger dioxin dataset. We are currently ex-
ploring an optimization approach for these two variables. The
dataset for microbial activity (see Fig. 12) shows that despite
the fact that M-Scale preserves local variation, the cross-vali-
dation of the data does not improve over that for OK.
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438850 T Aquablok_1
438800 Actual from Yuewei
438750 {
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w wn [Te] wn wn wn
~ o I~ o~ N o~
>» o o ~— -~ o~
2 = z = = =
8 B g B 8 B85

Figure 10. Co-located sediment cores from the Anacostia River capping dem-
onstration site.

7 Conclusions

The scaling of microbial processes and applications con-
tinues to be challenging, both from the perspective of devel-
oping appropriate sampling designs for site characterization,
and for the appropriate scale of remedial designs. The latter is
of particular importance when in situ remediation strategies,
such as bioremediation, are envisioned, as these processes at-
tempt to capitalize on the confluence of in situ destructive
processes and engineered intervention. Based on the infor-
mation presented earlier, multi-scale data integration using
geostatistical models may afford an opportunity to align in-
formation for probabilistic optimization of technology siting.

The example (see Fig. 13) integrates information of ex-
tracted reactive patterns from contaminant concentrations
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Figure 11. Multi-scale estimation (right) and spatial interpolation (left) of microbial abundance.
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Figure 12. Multi-scale estimation (right) and spatial interpolation (left) of microbial activity data.
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Figure 13. Probabilistic optimization of remedial unit siting (according to Barabas, 2003 [77]).
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