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                                                           Abstract 

This paper presents a simple version of the application of option based pricing models to 

mortgage credit risk. The approach is based on the notion that default can be viewed as 

exercising a put option, and that the place to look in modelling default is the extent to 

which the option is in the money (the extent to which the borrower has negative equity in 

the property) and, given that, the incentive, e.g., a trigger event and inability to withstand 

it, to exercise the option.  The main focus is on how the probability of default can be 

estimated and how the default risk can be priced. The analysis considers both “first 

principles” and specific analysis about U. S. default experience.  

 

 
 

 

 

 

 

 

 



 
 
I. INTRODUCTION 

This paper presents a simple version of the now standard approach to modelling and 

pricing mortgage credit risk. The approach is based on the notion that default can be 

viewed as exercising a put option, and that the place to look in modelling default is the 

extent to which the option is in the money (the extent to which the borrower has negative 

equity in the property) and, given that, the incentive, e.g., a trigger event and inability to 

withstand it, to exercise the option.  The main focus is on how the probability of default 

can be estimated and how the default risk can be priced. The analysis considers both 

“first principles” and specific analysis about U. S. default experience.  

 

There are three themes regarding credit risk: 

1. Borrower default can be compared to exercising an option to exchange the house 

for the mortgage. It is of course a “sloppy” option; it is costly to borrowers who 

exercise it. Nonetheless, the option approach does appear to be useful. It suggests, 

for instance, that borrower equity, or lack of it, is an important predictor of default 

It also suggests an asymmetry present in all option models: when property values 

go up the lender benefits very little, but when they go down the lender is at risk 

for large losses. 

2. Recent ability to collect large amounts of data has shown that other factors, 

especially credit history, are important determinants of mortgage default and that 

the effects of these factors on default can be estimated. These factors can be 

interpreted as proxies for “trigger events” that make giving up a negative equity 

house an optimal (or unavoidable) decision  

3. Geographic diversification is an important tool for managing the credit risk of a 

portfolio of mortgages. 

 

 

II. CREDIT RISK: SOME THEORY  

It is not possible to predict default very accurately at the level of the individual loan, but 

it is possible to analyze it, understand its determinants and attach probabilities to it, so 



that it can be priced and to some extent controlled. For instance, we can understand how a 

decline in property value can be a factor in causing default even if we cannot predict 

which properties will decline in value, and we can estimate probabilities of property 

value decline. We can, then, view the problem in probabilistic terms; that is, we can 

estimate the probability of default. The option framework helps with this. 

 

Understanding the Determinants of Default 

The option-based approach leads to a relationship between homeowner equity and default 

cost, which comes from two notions:  

1. Borrowers are unlikely to default if they have equity in the property. They will do 

what they can to raise money to protect their investment, and they will sell the 

property and keep the equity rather than turn it over to the lender.  

2. Even if they do default with positive equity, the lender is likely to recover cost 

after selling the property. 

 

Hence, focusing on negative equity and thinking of default behaviour as akin to 

exercising an option is a good way to begin, because it is only in states of the world with 

negative equity (states where a “rational” borrower might choose to exercise the option) 

that default is a serious problem to the lender. Of course, there is more to default than just 

negative equity. Most analysts and researchers believe that a good first approximation to 

default behaviour is that default comes from the intersection of three events: 

 

         1. Negative equity.  

         2. A “trigger event” such as illness or job loss. 

         3. Lack of resources to get over the trigger event.   

 

Detailed analysis of how these interact (e.g., there are probably occasions where equity is 

so far negative that borrowers default without a trigger event and/or they choose not to 

survive a trigger event even if they have the resources) is generally not possible with 

most data sets. So analysts generally must be satisfied with proxies for these factors and 

ad hoc empirical models. 



 

Recent research suggests that a reasonable predictor of trigger events is the borrower’s 

credit history.  It appears to be the case from this research that credit history and equity 

are both very strong predictors of the probability of default, but there is no good way of 

predicting which borrowers will default. 

Option-Based Models 

It is clear that mortgage borrowers do not exercise their options in the same “ruthless” 

way that owners of financial options exercise their options. In part this is because the 

exercise of the option, defaulting on the loan, has extra costs for mortgage borrowers. In 

particular, it usually involves moving out of the house and finding a new one, and it 

affects borrowers' credit rating. What the option-based model does suggest is that 

borrower equity is important.  If a borrower has sufficient equity (enough to cover selling 

costs), then selling the house is likely to be better for the borrower than is defaulting on 

the loan. In terms of option jargon, we should not expect people to exercise options when 

they are "out of the money". While we can say that out of the money options will not be 

exercised, we cannot say very precisely when an in-the-money option will be exercised 

because of the problem of not being able to observe the detailed calculations that 

borrowers make about the benefits and costs of default.  

Hence, the option-based model is really quite flexible. A simple version of the model is 

that the probability of default is the probability of negative equity times the probability of 

a trigger event times the probability of not having sufficient resources to fall back on. It 

says that equity should matter and should be included as a key explanatory variable in 

every model (and it enters in the asymmetric option exercise manner), but it is also 

consistent with a wide variety of other factors, if they are plausible proxies for the trigger 

events. To a very large extent trigger events actually used in estimating default models 

depend on the data available. 

 

Formally, we can estimate 

  



(1)  d(t) = p • f(x,t) 

 

where d(t) is the probability (during some small time period at time t) that the loan will 

default, p the probability of negative equity, and f(x) is some function of a wide range of 

trigger variables measured by the vector x and t is the time expired since origination. 

Most research uses historical data to fit equations of this form, and many important 

developments in default research have been achieved from this line of research.1  

 

A particular variant, which is commonly used, is the “hazard” model, which takes the 

form: 

 
(2)  d(t) = a(t)exp(bx) 
 

where a(t) is a baseline time trend, x is a vector of explanatory variables including the 

probability of negative equity and b is the vector of coefficients giving the effects of the x 

variables on d(t). This is a particularly useful way of setting up the model because of its 

multiplicative. For each item in x the corresponding exp(b) gives a “multiplier” for the 

effect of  change in x on d(t). This is, for instance, useful in the sample models presented 

below where the elements of x are “categorical” variables, meaning they indicate whether 

a variable is in some group, for instance if the loan to value ratio is less than 80%. In that 

case the exp(b) gives the multiplier relative to some baseline for being in that category (as 

opposed to, say, having LTV less than 80%. A multiplier of 4 (exp(b)=4) would mean 

that loans with LTVs above 90% were, other things equal, 4 times as likely to default as 

those with LTVs less than 80%. Two versions of models like this are given below. 

 

A Framework 

We begin with the initial value of the property and the loan balance, which for simplicity 

is taken to be constant over time. The ratio of the initial loan balance to the initial value is 

called the Loan to Value Ratio or LTV. It is related to the down-payment ratio, DP, by 

                                            
1 There are of course lots of complications. For instance, the likely extent of negative equity, if it is 
negative, should matter as well as simply the probability. For instance, there should probably a series of 
probabilities: for equity close to zero, slightly negative, strongly negative etc.  



 

DP = 1 – LTV 

 

where DP is the ratio of the down payment to initial property value. It is common to 

speak in terms of LTV rather than DP, but both ratios can be used to convey the same 

information, how much equity the borrower has in the house at the time the loan is 

originated. 

 

A simple depiction of the process of property value’s evolution over time is contained in 

the follow diagram. The assumption that prices go either up or down with some 

probability.  

   

 

 

 

 

 

 

 

 

 

 

           

 FIGURE 1: THE UPS AND DOWNS OF PROPERTY PRICES 
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Lenders do not know whether values will go up or down, but they can use data from the 

past to estimate the probability of ups or downs and the likely strength of the moves. 

Arrows in the figure depict possible price trends. The solid arrows are modest moves, and 

the dashed ones represent strong moves. The lender needs to know the steepness of the 

arrows and the probabilities of increases or decreases. These will vary by location. For 

instance, in the U.S. it is generally the case that California has stronger moves both up 

and down than does Michigan, but in California the probability of an increase has 

generally been higher, albeit more volatile.  

                                                   

In Figure one, in neither of the upward sloping arrow cases are default losses likely 

because house price increases in either case. It is the downward sloping arrows that raise 

problems. The less steep of the two arrows is less likely to be associated with default 

because while value (or price) did fall it did not fall be enough to make equity negative. 

In the steep arrow case default is more likely. Note that given the trend (in this case flat), 

the more volatile are price moves (the steeper are the arrows) the more likely is default. 

 

It is easy to see that the average trend also matters. If for instance increases happen 60% 

of the time, then the frequency with which negative equity situations occur will be 

smaller. We should not be surprised that most of the time California has had low default 

rates (relative to Michigan), because of its strong average level of house price 

appreciation, but because of its volatility every once in a while (like the early 1990s) it 

has quite high default rates. 

 

Next we consider a more formal model that includes both default behaviour and pricing. 

We continue with the simple model, assuming that prices are as likely to go up as down, 



but we extend it over several periods. We start out with house prices equal to 100, and 

then trace possible levels and their probabilities over three periods. 

 

FIGURE 3 
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FIGURE 4 
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FIGURE 5 

AND AFTER THREE YEARS
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Version 1: Ruthless Case: Default as a Frictionless Put Option2 

 

Now let us consider default losses and pricing for a simple mortgage that that lasts three 

periods and pays interest only, with a coupon payment of $5 per period and a “balloon” 

payment of 95 at the end of the period. Then the down payment is 5%, and LTV=.95. For 

simplicity of calculation we ignore the time value of money (no discounting) and assume 

that all traders are risk neutral, so that they all discount expected values at the risk free 

rate, which is zero. Hence, we can calculate expected losses over time and the value of 

the mortgage as the expected present value of its cash flows. We begin with a benchmark 

model where borrowers are utterly ruthless wealth-maximizers with no transaction or 

other cost (other than losing the property) to defaulting. 

 

Borrowers are ruthless in the sense that at every occasion when they have a choice (in 

this case at each payment date) they make the choice (either make the payment or default 

and give up the property) that maximizes their wealth, and there are no costs to defaulting 

other than losing the property.3 So the borrower can be treated as having a put option, and 

standard option pricing techniques can be used to value this option. 

 

Then at each point in time the borrower will decide on which is greater: the value of the 

property or the value of the mortgage, and the borrower will default if the latter exceeds 

the former. Note that this requires knowing the value, as opposed to the balance, of the 

mortgage. And value will have to take account of future strategy; the borrower might 

postpone defaulting now in order to keep the option to default later. This complicates the 

problem. As is often the case with other formal option models it requires looking first at 

the last strategy, where there is no future strategy to worry about, and working back to the 

present in order to calculate the expected present value of the mortgage’s cash flow.  

 

The decision process is depicted in Figure 6. In the last period the choice is whether to 

make a payment of 100 (the 95 balance plus the $5 interest) or turn over the property. In 

                                            
2 For a much more developed survey of these sorts of models see Kau et al (1995) and hendershott and Van 
Order (1987). 
3 It is straightforward to introduce simple types of default costs into the model. 



the two top cases where the property value is greater than 100 the answer is to make the 

payment, but in the other two it is to default.  

 

One period earlier the borrower will have the choice of turning over the property at the 

then known value or making the $5 payment and accepting ensuing liability, which will 

have value equal to the expected value of the two possibilities in the final period. For 

instance, with property value at 80, it will pay to default because the liability incurred by 

making the payment is $5 plus the value (80) of the incurred liability next period is 

bigger. The borrower will default now rather than waiting until next period because of the 

coupon payment. 

 

Figure 6 traces all these decisions back to the present. Values in parenthesis are the 

values of the property and values outside parenthesis are the present values of the 

payment. The chosen value is in bold face, and the default choice is denoted by an 

asterisk. Solving backward, we see that the value of the loan at origination is 98.75. This 

is equal to the expected present value of cash flows, assuming borrowers are ruthless in 

their strategies. It is higher than the par value (because of the coupon payment) but lower 

than what the value would be, 110, if all the payments were sure to be made. Hence, the 

present value of the default option is 11.25 (110-98.75). It is possible, with repeated 

solving of the above, to find a (lower) coupon that makes the value of the mortgage 95, or 

par. That coupon rate would be the default premium in the mortgage rate. 

 



Figure 6. A RUTHLESS MODEL
Discount Rate=0; Coupon Rate =5%
Loan =95. At each node you chose the strategy that maximizes value 
(property value minus value of debt)
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This is a neat model because everything is endogenous; the probability of default, loss 

severity and the value of the default option all come from wealth maximization and the 

process for property value, and nothing else. It is also a complicated model, primarily 

because of the backward solving technique, which becomes computationally tedious as 

the number of “state” variables increases.4 Note, however, that the market can help the 

borrower make choices, by pricing new mortgages. Suppose there is a complete market in 

the sense that the borrower can take out a new loan without fear of adverse credit rating if 

he/she has defaulted, and the borrower knows the rate, in this case a coupon of $5. Given 

the information that borrowers are ruthless and will default whenever market value 

exceeds property value, traders will solve the pricing problem in the same way as 

depicted in the figure. If the borrower just looks at the market value of the loan vs 

property value, then it won’t be necessary to go through the above computations; the 

traders in the market will do it!  

 

Version 2: Option-Based Case 

                                            
4 Here the only state variable is property value, but interest rates could also enter, as could “trigger” type 
variables that force the owner to move, etc. 



The Version 1 model probably overstates the degree of ruthlessness by borrowers. There 

are high transitions costs, such as a ruined credit rating, of defaulting and other reasons 

why borrowers won’t default in the manner depicted in the figure, and putting these into 

an explicitly wealth-maximizing, backward solving model like the above is likely to be 

very complicated.. So while it is a good benchmark the ruthless model is unlikely to be 

very predictive. In the real world we should expect default to be less frequent than the 

ruthless model suggests. On the other hand there are costs of selling property (foreclosure 

costs, fees to realtors etc.) that make the cost given default higher than is depicted in the 

model. Here a simple option-based version that takes account of this is developed. 

 

New assumptions are: 

• Ignore the coupon payment and measure “equity” as property value vs mortgage 

book value (in this case it is fixed at 100). 

• Borrowers never default when they have positive equity 

• When equity is negative they default 25% (probability of a “trigger event”) of the 

time and losses per loan are negative equity + 10 (for selling costs) 

 

We begin by using Figure five and the information that the loan is for 95, and there is no 

amortization to calculate the movement of equity over time. This is depicted in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 



FIGURE 7 

EQUITY OVER TIME
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The places where equity is negative are the candidates for default. The assumption is that 

default has a 25% chance of happening in those states. This along with the assumption 

about loss per default allows us to calculate expected losses at each node and expected 

loss at point of origination. This is depicted in Figure 88. 

 

 

 

 

 

 

 

 

 

 

 



FIGURE 8 

EXPECTED LOSSES OVER TIME (Including a 
$10 selling cost)
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Then: 

• Expected loss (undiscounted and rounded)= 

– 15x.125 + 25x.05+ 15x.07 + 35x.01 = 4.4 

• The value of the mortgage is 110 (total promised payments (95 plus 15 in coupon) 

minus 4.4 or 105.6. This is less than in the ruthless case. 

• The probability of ever defaulting is .228 (.125+.05+.07+.01). 

• Both would be smaller if: 

– Lower LTV 

– Smaller dispersion of prices 

– Upward trend in prices   

 

The asymmetry of the situation needs to be noted; it is where the “optionness” of the 

model comes in to play. Strong property value increases do not help lenders much 

(borrowers just continue making payments), but strong decreases hurt because they can 

are a factor in default. The probability (.25 in this case) of defaulting, given negative 

equity is typically estimated from historical data, and where possible will vary with 

measurable variables such as credit history, income etc.  



 

Default Factors 

The model suggests four important factors in predicting default: 

 

1. The initial LTV 

2. Price volatility 

3. Price trend 

4. Vulnerability to trigger events. 

 

 

III. TWO SAMPLE EMPIRICAL MODELS` 

This section provides two examples of empirical models using the hazard framework in 

equation. In both cases the model estimates the hazard, which is the probability of 

defaulting in the current period conditional on having survived to this period, as a 

function of explanatory variables. The first uses a data sample that is narrow in terms of 

available explanatory variables (it does not for instance have borrower credit history) but 

which covers a long time period during which the economy went through several cycles. 

The focus in that model is on borrower equity: the initial loan to value ratio and the 

strength of the economy. The second has a broader range of data (it does have credit 

history) but is more recent and covers only one part of a cycle, which was largely 

expansionary. It shows the role of both equity and “trigger events,” as proxied by 

borrower credit history, and vulnerability to a shock, as proxied by wealth and credit 

burden. 

 

 

Model I. Equity and Property Appreciation 

Before turning to the formal models, it is useful to look at the following picture, Figure 9, 

which depicts default experience by state (and nationally) for a fixed (.79-.81) initial loan 

to value ratio, by state house price appreciation (the grey diamonds) and for the nation as 

a whole (the black squares). The data come from loans purchased by Freddie Mac from 



1985 through 1995 and followed for their first seven years. The horizontal axis depicts 

cumulative house price changes over the seven years and the vertical axis depicts 

cumulative foreclosure rates. The grey diamonds represent experience of a particular 

state-origination year. For instance, the AK diamond represents the experience of loans 

originated in Alaska in 1986. 

FIGURE 9: Default Probability vs. House-Price Appreciation
State/Origination Year and National/Origination Year Cohorts (1985-1995)
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The scatter looks as we would expect it to look. States with rapid property appreciation 

had low foreclosure rates, and those with price declines had big ones. As the option 

model predicts, the results are asymmetric: when property values fall default accelerates 

and lenders lose money, but when they go up they simply cluster at zero. An important 

thing to note is the large differences in experience across states. The U.S. experience in 

general has been one of small national recessions but occasionally large regional 

recessions. Bad times, with low house price growth, have a strong effect on default, and 

there has been a great deal of regional variation in house price growth, but much less 

nationally. Now we turn to more rigorous statistical analysis. 

 

The first empirical model (see Van Order (1990)) is a simple variant of models that focus 

on the role of equity and downpayment in predicting default.  It uses Freddie Mac data on 



750,000 loans originated from 1976 through 1983, which is a particularly interesting time 

because the economy went through both a major expansion (especially in terms of house 

price growth) in the late 1970s and a major contraction in the early 1980s. So it should be 

a reasonable test of the role of equity and option-based factors. The model estimates a 

hazard model like (2) above, with the probability of defaulting on the left hand side and: 

a(t) time expired since origination, original loan to value ratio (LTV) and the year of 

origination, which is a simple proxy for the state of the economy (1976 was a very good 

year, but 1981 was a bad (recession) one) all on the right hand side.5 Next to each 

coefficient for origination year is the average house price growth over the subsequent two 

years. The variables are categorical and their coefficients have the multiplier 

characteristics discussed above. 

 

The following table gives basic results of the estimates in the form of the multipliers (the 

level of exp(bx))relative to a “baseline” mortgage, which in this case is a loan with an 

LTV at .80 or below originated in 1979 (about an average year during the sample). The 

model shows both how default moves with LTV and economic conditions. For instance, a 

loan with an LTV greater than or equal to (mostly equal to) .95 will default about 8 times 

as often as one with an LTV at .80 or below. Furthermore, one originated in 1981, a 

recession year, will, given LTV default about 2.5 times more frequently than one 

originated in 1979 and about 25 times more frequently than one originated in 1976, 

which was a boom year in the middle of sharply rising property values.6   

 

  

 

 

 

 

                                            
5 In this and in the next model default means that the borrower actually lost the property and Freddie took it 
over. In other contexts default can mean in violation of the contract, which could simply mean that the 
borrower is “delinquent” i.e., is behind on payments. 
6 The model assumes that the multipliers are independent, so that a 95 LTV originated in 1981 is about 72 
times more likely to default than is a below 80 in 1976, but that assumption may not be accurate for big 
differences. 



TABLE 1 

EFFECTS OF LTV AND ORIGINATION YEAR ON ANNUAL DEFAULT RATES 
(Subsequent two years average house price growth in parenthesis. 1979 
and LTV of 0.80 Scaled to Unity) 
LTV CLASS EFFECT (MULTIPLIER) 
≤80  1.0 
81-90  3.9 
91-94  5.7 
≥ 95 8.1 
ORIGINATION YEAR  
1976   (12%)  0.1 
1977   (10%) 0.2 
1978   (4%) 0.5 
1979    (0.6%)  1.0 
1980    (-0.4%)  1.9 
1981    (1.4%)  2.5 
1982    (2.5%)  2.1 
1983     (4%)  1.4 
See Van Order (1990). Source for house price growth is Freddie Mac Conventional 
Mortgage House Price Index. 
 

 

 

 

 

Hence, the evidence here and in other analysis (e.g. see Stegman et al. for a survey) 

suggests that default does indeed vary strongly with LTV and economic fluctuations. 

Because the data set does not include things like credit history of the borrowers it cannot 

tell us much about these rates vary across different borrower types.  

 

Model II 

This model (See Van Order and Zorn) uses a larger and more set of Freddie Mac Loans, 

over 2 million loans originated between 1993 and 1995 and followed through 1999. The 

data set lacks the sweep of the first set; in particular it lacks a national recession, although 

some of the regions did have recessions. The set is, however, richer in information about 



the borrower. For instance it has the borrower’s credit history, as measured by “FICO” 

score7  

 

Explanatory variables are: FICO (which is a proxy for a history of trigger events; higher 

FICO means a better credit history), initial LTV, the ratio of borrower debt payment to 

income (a proxy for the ability to survive a trigger event), loan amount (which given LTV 

is really a measure of house value and can be considered a proxy for borrower wealth), 

and loan purpose, purchase or refinance.  Results are depicted in Table two. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                            
7 FICO stands for Fair Isaac Corporation. They estimate credit scores from a range of data, primarily the 
borrower’s ability to make payments on credit cards and other consumer debt. Use in mortgages credit risk 
is rather recent, largely over the last ten to fifteen years.  As is the case in the model here it ahs turned out 
to be predictive for both mortgage default and foreclosure. 



TABLE 2: DEFAULT MODEL ii * 
(Controls for age, origination year and state not shown) 
 
Variable Coefficient Multiplier
FICO <620 2.35 

(..03) 
4.8 

FICO 620-
679 

1.69 
(.03) 

2.3 

FICO 680-
720 

0.84 
(.04) 

1.0 

FICO >720 0 
 

0.4 

LTV <70 -2.96 
(.06) 

0.2 

LTV 71-80 -1.40 
(.03) 

1.0 

LTV 81-90 -0.64 
(.03) 

2.3 

LTV 91-95 0 
 

4.1 

DEBT% 0-
30 

-0.37 
(.03) 

0.7 

DEBT% 31-
36 

-0.15 
(.03) 

0.9 

DEBT% >37 0 
 

1.0 

LOANAMT 
0-76K 

0.66 
(.03) 

1.9 

LOANAMT 
76-125K 

0.28 
(.03) 

1.3 

LOANAMT 
>125K 

0 1.0 

PURPOSE= 
PURCHASE 

-0.56 
(.03) 

1.8 

PURPOSE= 
REFI 

0 1.0 

 
*Standard errors are not depicted. All variables are statistically significant.. 
 
 
The model works as expected. Both equity (LTV) and trigger events (proxied by FICO) 

are important, as are loan amount and loan purpose (refinance loans are riskier). Debt 

burden is statistically significant (with such a large data set everything is statistically 



significant) but not very important. Note the element of “layering;” a loan with a high 

LTV and low FICO is 4.8 times 4.1 or almost 20 times as likely to default as a baseline 

loan.8  

 
 

IV. PRICING  

Models like these have great potential for use in estimating default probabilities and 

pricing and in analyzing “what if” situations, like what would happen in a particularly 

severe downturn (high LTV loans originated in a year like 1981 will have much higher 

default costs than low LTV loans originated in a good year like 1976).  

 

Models I and II can lead directly to a “pricing matrix.” For instance, in Model I we could 

assume that each of the eight origination years is equally likely, a very simple 

assumption, but absent a full data set (which, for instance, is likely to be the case in many 

emerging markets) perhaps the best that can be done. To get to expected costs we need 

more assumptions about default severity and about a baseline default profile. Here it is 

assumed that the baseline scenario in Model I is that a loan in the below 80% LTV 

category has a 1% chance of ever defaulting. It is also assumed that the loss per default I 

present value terms is (not very realistically) constant in present value at 25% of the loan 

balance. Then if we assume each year is equally likely to be repeated, price by LTV can 

be expressed by the very simple matrix given by the last row in Table 3. 

 

 

 

 

 

 

 

 
                                            
8 This is being forced into this particular model because of the multiplicative structure of the model. 
Whether or not the effects, of e.g., FICO and LTV, really are multiplicative can be tested by adding 
interactive terms (by FICO and LTV) and testing for the significance of the interactive terms. In general the 
multiplicative is a reasonable approximation. 



Table 3: Default Cost Using Model I 

 

Default Cost (as 

per cent of 

mortgage 

balance) 

LTV<=80 81-90 91-94 >=95 

1976 0.025 0.10 0.14 0.20 

1977 0.05 0.20 0.29 0.41 

1978 0.13 0.49 0.71 1.01 

1979 0.25 0.98 1.43 2.02 

1980 0.48 1.85 2.71 3.85 

1981 0.63 2.44 3.56 5.06 

1982 0.53 2.05 2.99 4.25 

1983 0.35 1.36 2.00 2.83 

Average 0.30 1.18 1.73 2.46 
The bottom row gives breakeven prices by LTV. 
 
 
 
 

Modellers often have mere sophisticated models of property value, in the form of a 

probability distribution of house prices over time. In that case the main pricing tool is 

“Monte Carlo” pricing models, which involve repeated simulation from the distribution 

of property values to calculate expected values. That is, we can draw randomly, one 

period at a time, from the distribution and get a particular pattern of default over time. 

We can calculate present value of losses along this particular path. We can then draw 

repeatedly from the distribution, calculating present values for each draw.  We then take 

an average across these samples and use that as an estimate of expected present value of 

loss. This is an “up front,” breakeven” premium (that might be charged by a mortgage 

insurer), which corresponds to the 4.4% in Figure 8. This is a much easier problem to 

solve than the backward solving approach, especially when there are several variables 

driving default. 

 

Model II can also be used to generate a pricing matrix with FICO and LTV. Assume that 

the base case is a loan with LTV between 71 and 80 and FICO between 680 and 720, and 



those loans have a 1% chance of ever defaulting and a 25% severity rate. This generates 

the following matrix: 

 

Table 4: Default Cost Using Model II 
 

Default Cost (as per cent 

of mortgage balance) 

LTV <70 LTV 71-80 LTV 81-90 LTV 91-95

FICO <620 0.24 1.20 2.76 4.92

FICO 620-679 0.12 0.58 1.32 2.36

FICO 680-720 0.05 0.25 0.58 1.02

FICO >720 0.02 0.10 0.23 0.41
 

Note the very wide range of prices, which reflects the layering referred to above. This 

model assumes that an average year is the base case, an assumption that should be 

improved upon by modelling house price and FICO processes and developing a 

corresponding Monte Carlo model. 

 

V. MANAGING THE RISKS OF A PORTFOLIO OF MORTGAGES 

The above discussed the risks and pricing of individual mortgages. This is not the same 

as the risk facing a mortgage lender with a portfolio of mortgages. In particular, the risk 

to a lender refers to the risk of the lender’s overall portfolio, not of the individual loans in 

it. A portfolio of assets that are individually risky but uncorrelated with one another could 

be quite safe if the portfolio is large. That is, a diversified portfolio of mortgages might 

have quite different behaviour from that of individual loans or a pool of loans that are 

highly correlated (e.g., concentrated in a particular region). 

  

To illustrate this point take another look at Figure 9. Again, it presents results from loans 

purchased by Freddie Mac from 1985 through 1995 and followed through seven years. In 

particular, note the black squares, which depict the same things as the grey diamonds, 

cumulative default vs. price appreciation for the same origination years, but by the 

country as whole rather than individual states. Note again the large differences in 

experience across states. The U.S. experience in general has been one of small national 

recessions but occasionally large regional recessions. The picture tells the story of 



diversification. The nationally diversified portfolio has a much smaller dispersion and 

much less risk.  

 

VI. COMMENTS 

The above presented a sketch of the basics of mortgage default modelling and pricing, 

using very simple option-based techniques. Properly understood they can take us a long 

way in understanding credit risk. The second statistical model is a simplified version of 

what current credit scoring models look like. The more complicated models are mainly 

extended versions of that model with more data and explanatory variables as well as more 

careful attention to the “buckets” into which the variables are put. The pricing models are 

primarily generalizations of the Monte Carlo models sketched out above. In the U.S. the 

diversification benefits discussed above come naturally in our current national system of 

markets. That was not always the case in the past, for instance when Savings and Loans 

were, by regulation, largely forced to be local. It is not the case in most emerging 

markets, where lenders will have to work hard to attain a reasonable amount of 

diversification.   
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