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A Appendix

This appendix should be read in conjunction with the artigidResnick and Sami [1]. Here, we include the
proofs that were omitted from the main article due to shertaigspace.

A.1l Lemmab

Lemma 5: For the quadratic scoring rule (MSE) loss, for allge [0,1], GF(q||u) > D(g““).
Proof of Lemma5: Because botiD(qg||u) = D(1—q||1—u) andGF(q||u) = GF(1—q||1— u), we can
assumeu > g without loss of generality. Keeping fixed, we want to show that the result holds for all
u. Note thatD(q||q) = GF(q||q) = 0. Thus, differentiating with respect tq it is sufficient to prove that
GF/(q||u) > D'(q||u)/2 for allu > g,u < 1.

We change variables by settigg= u—qg. We use the notatioD’(y) to denoteD’(q||u) |y—q-+y, treatingq
as fixed and implicit. Likewise, we use the notati®f’(y). For brevity, we usg to denote(1— q).
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To complete the proof, we show that the term within the brechke at least 12, by showing that
2*numerator— denominator> 0:

(1+y*—2qy)(1+y* + 2ay)

= 2+2 40— (1+Y?)* +4qay’

= 1-y'-4qu1-y)

= (1+y*—4qn)(1-y*) =0
The last inequality follows becaus@ < 1 and 4jg < 1. This shows thaGF'(y) > 0.5D’(y), and thus,
GF(y) > D(y)/2 for ally. O

Theorem 7 also requires a slightly different version of Leaninin order to show that |dg; does not
decrease in expectation even whgn=t > 1. For this, we define

2(1+y? —2q0)

GR(allu) =" [glog(t+L(HI,u)—L(HI,q))+
(1—q)log(t+L(LO,u) —L(LO,q))] — logt

Note thatGF(q||u) = GF(q||u).

Lemma 5b: For the quadratic loss function, for all,q € [0, 1], and for any t> 1, GR(q||u) > O.

Proof of Lemma 5b: The proof follows the proof of Lemma 5, with> 1 instead of 1; it is easy to see
thatGF/(y) > 0, which is sufficient to show th&F (q||u) is nonnegative, becau§ (q,q) = 0. O
A.2 Lemmab6

Lemma 6: SupposdTy; and fij_; are two partitions such thai; is a refinement oftj_;. For each statew,

let q;(w) = E(I(w)|TY) be the optimal prediction function given partitidy.

Proof of Lemma6: Letu(w) beanyfunction that is constant on each componeritjafi. Then EGF(qj||u) >
| (75 ]|Ty-1)/2 in the quadratic loss model.



Proof of Lemma 6: For simplicity, we prove the result assuming for a single porents;j_, of ij_1;
the stated result follows easily by averaging over all sumnmonents. Leti= u(s;_1) be the value of the
functionuonsj_1. Letq;_1 = E(l|T1j_1 be the optimal value afi ons;_.

Corresponding ta;_1, there is some se® of components off;, such thatUscss=sj_1. Letgs be
the value of functiong; on componens € S. Further, letps be the probability of componers| so that

Y sesPs = 1. Now,
EGF(Tiju) = ZpsGF(quU)

ES

(1/2) Z psD(gs||u) (from Lemma 5)

> (1/2)y pD(asldj1)
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The last inequality follows from the fact thgf_ is the optimal prediction given informatiom;_4, i.e., it
minimizes expected loss among all functianthat are constant on components®f;. In other words, the
expected improvement is smallest when the best prior pfedics made. Ifu is not optimal,D(qgs||u) can
only go up in expectation (over compones}s O

A.3 Theorem 7

Theorem 7: Suppose rater j has rated m items, and suppose the inforematbs of rater jis(iq;||g;—1) = h.
Then, for all m> (27 +1) /h, rater i's expected reputation (with the quadratic scorimle) is bounded below
by

E(R;j) > mh—2\ — 2log(mh—2))

Proof of Theorem 7. The reputation of an informative rat@mgrows in two phases: While the reputation
is low, it tends to grow exponentially g% influencef3; also grows. Onc@; = 1 is reachedj’s reputation
grows linearly. The intuition provided in the main paperhattit takes 2 /h rounds to reach full credibility,
after whichh bits are gained in each round. Unfortunately, the proof gedssy because, after reaching a
reputation of 1, it is possible to temporarily lose suffitiegputation that the influence limits apply again.

An alternative approach is to work with a transformed regioriain which the two phases are balanced.
To this end, we define a functidd : 0+ — :

G(x) =x+2logx

We observe thaG(x) is increasing, invertible, and concave. Also, note B& *) = —2\ +e*, and
G(1) =1.

Now, letG" denote the expected value®{R;) after items 12, --- ,i. c%= G(e™) > -2\
claim: G >G" +h
Proof of claim: Consider the distribution @G(R;) afteri rounds. Further, consider any possible vajue
in this distribution. We show that, conditioning @(R;) = g after roundi, the expected value @ after

roundi+ 1 is at leasg+ h. Note thatE(G(R;)) = E(R;) + 2E(logR;). WhenR; > 1, we will show that
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E(R;) increases by in expectation. WheR; < 1, we will show that 2lo@R; increases b in expectation.

In either case, the other term does not decrease in exgectélase (i): g< 1. In this caseR; < 1 after
theith round, soj is influence limited. Consider the logarithmic term 2joi@ G(x). The raters beforg
have combined information represented by the partifipn; thus, none of them could have distinguished
between two states in the same componeritjof. Thus, the rating on itemjust beforej’s is a function
that is constant on componentsigf 1. The influence-limited rating;” 1 is therefore also a function that is
constant orftj_1. Thus, by Lemma 6, the expected value of theRpgerm after the + 1st round is at least
h/2 higher than it was at the start of the 1st round. The linear term also increases in expectatioss(ply

by a very small amount), and so the expectatioG@lffteri + 1 rounds must be at leagt+ h.

Case (ii): g> 1 In this casej has full credibility; = 1, and we show that the linear term@increases
by at leash in expectation. By the same argument as in case (i), theqareviatinggj_1 is a function that
is constant orit;_1. Thus, by definition of the informativenesgT;||Tj—1), the expected value of the linear
term increases by at ledstBy lemma 5b, witht = R; > 1, the expected value of the logarithmic term does
not reduce. Thus, in this case too, the expected val@adferi + 1 rounds must be at leagtt h.

As this is true conditioned on any valuegfit must be true in expectation. Thu_é(,i“) > a4 h, and
henceG™ > G + mh> mh— 2\. Because of the concavity of the functi@Jensen’s inequality implies
that

G(E(R;)) > E(G(R;)) =G" > mh—2\

Form> (2\ +1)/h, mh—2A > 1. Thus, logmh—2A) > 0. Settingr = mh— 2\ — 2log(mh—2X), we
see thaG(r) =r+2logr <r+2log(mh—2A). Thus,G(r) < mh—2A, which means thaB(E(R;)) > G(r).
As G is an increasing function, it follows th&i(R;) > r = mh—2A — 2log(mh— 2A). O
Remark:The last term in the bound;2log(mh— 2)), appears to be loose; it should be possible to tighten
it to a small constant.
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