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A Appendix

This appendix should be read in conjunction with the articleby Resnick and Sami [1]. Here, we include the
proofs that were omitted from the main article due to shortage of space.

A.1 Lemma 5

Lemma 5: For the quadratic scoring rule (MSE) loss, for all q,u∈ [0,1], GF(q||u) ≥ D(q||u)
2 .

Proof of Lemma 5: Because bothD(q||u) = D(1−q||1−u) andGF(q||u) = GF(1−q||1−u), we can
assumeu ≥ q without loss of generality. Keepingq fixed, we want to show that the result holds for all
u. Note thatD(q||q) = GF(q||q) = 0. Thus, differentiating with respect tou, it is sufficient to prove that
GF′(q||u) ≥ D′(q||u)/2 for all u≥ q,u≤ 1.

We change variables by settingy= u−q. We use the notationD′(y) to denoteD′(q||u)|u=q+y, treatingq
as fixed and implicit. Likewise, we use the notationGF′(y). For brevity, we useq to denote(1−q).

D(q||u) = q[(q−y)2−q2]+q[(q+y)2−q2]

= q[y2−2yq]+q[y2 +2qy]

= y2

⇒ D′(y) = 2y

1



GF(q||u) = qlog(1+y2−2qy)+qlog(1+y2 +2qy)

⇒ GF′(y) = q
2y−2q

1+y2−2qy
+q

2y+2q
1+y2+2qy

= 2y

[

q
1+y2−2qy

+
q

1+y2+2qy

]

−2qq

[

1
1+y2−2qy

−
1

1+y2 +2qy

]

= 2y
1+y2

(1+y2−2qy)(1+y2 +2qy)
−2qq

2y
(1+y2−2qy)(1+y2 +2qy)

= 2y

[

1+y2−2qq
(1+y2−2qy)(1+y2 +2qy)

]

To complete the proof, we show that the term within the brackets is at least 1/2, by showing that
2*numerator− denominator≥ 0:

2(1+y2−2qq) − (1+y2−2qy)(1+y2 +2qy)

= 2+2y2−4qq− (1+y2)2 +4qqy2

= 1−y4−4qq(1−y2)

= (1+y2−4qq)(1−y2) ≥ 0

The last inequality follows becausey2 ≤ 1 and 4qq ≤ 1. This shows thatGF′(y) ≥ 0.5D′(y), and thus,
GF(y) ≥ D(y)/2 for all y. �

Theorem 7 also requires a slightly different version of Lemma 5, in order to show that logRj does not
decrease in expectation even whenRj = t > 1. For this, we define

GFt(q||u)
de f
= [qlog(t +L(HI ,u)−L(HI ,q))+

(1−q) log(t +L(LO,u)−L(LO,q))]− logt

Note thatGF(q||u) = GF1(q||u).

Lemma 5b: For the quadratic loss function, for all q,u∈ [0,1], and for any t≥ 1, GFt(q||u) ≥ 0.

Proof of Lemma 5b: The proof follows the proof of Lemma 5, witht > 1 instead of 1; it is easy to see
thatGF′

t (y) ≥ 0, which is sufficient to show thatGFt(q||u) is nonnegative, becauseGFt(q,q) = 0. �

A.2 Lemma 6

Lemma 6: Supposêπ j and π̂ j−1 are two partitions such that̂π j is a refinement of̂π j−1. For each stateω,
let q j(ω) = E(l(ω)|π̂ j) be the optimal prediction function given partitionπ̂ j .

Proof of Lemma 6: Letu(ω) beanyfunction that is constant on each component ofπ̂ j−1. Then,EGF(q j ||u)≥

I(π̂ j ||π̂ j−1)/2 in the quadratic loss model.
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Proof of Lemma 6: For simplicity, we prove the result assuming for a single componentsj−1 of π̂ j−1;
the stated result follows easily by averaging over all such components. Letu = u(sj−1) be the value of the
functionu on sj−1. Let q j−1 = E(l |π̂ j−1 be the optimal value ofu on sj−1.

Corresponding tosj−1, there is some setS of components of̂π j , such that∪s∈S s = sj−1. Let qs be
the value of functionq j on components∈ S. Further, letps be the probability of components, so that

∑s∈Sps = 1. Now,

EGF(π̂||u) = ∑
s∈S

psGF(qs||u)

≥ (1/2)∑
s

psD(qs||u) (from Lemma 5)

≥ (1/2)∑
s

psD(qs||q j−1)

The last inequality follows from the fact thatq j−1 is the optimal prediction given information̂π j−1, i.e., it
minimizes expected loss among all functionsu that are constant on components ofπ̂ j−1. In other words, the
expected improvement is smallest when the best prior prediction is made. Ifu is not optimal,D(qs||u) can
only go up in expectation (over componentss). �

A.3 Theorem 7

Theorem 7: Suppose rater j has rated m items, and suppose the informativeness of rater j is I(q j ||q j−1) = h.
Then, for all m≥ (2λ+1)/h, rater i’s expected reputation (with the quadratic scoring rule) is bounded below
by

E(Rj) ≥ mh−2λ−2log(mh−2λ)

Proof of Theorem 7: The reputation of an informative raterj grows in two phases: While the reputation
is low, it tends to grow exponentially asj ’s influenceβ j also grows. Onceβ j = 1 is reached,j ’s reputation
grows linearly. The intuition provided in the main paper is that it takes 2λ/h rounds to reach full credibility,
after whichh bits are gained in each round. Unfortunately, the proof getsmessy because, after reaching a
reputation of 1, it is possible to temporarily lose sufficient reputation that the influence limits apply again.

An alternative approach is to work with a transformed reputation in which the two phases are balanced.
To this end, we define a functionG : ℜ+ → ℜ:

G(x) = x+2logx

We observe thatG(x) is increasing, invertible, and concave. Also, note thatG(e−λ) = −2λ + e−λ, and
G(1) = 1.

Now, letG
(i)

denote the expected value ofG(Rj) after items 1,2, · · · , i. G
(0)

= G(e−λ) > −2λ.

Claim: G
(i+1)

≥ G
(i)

+h
Proof of claim: Consider the distribution ofG(Rj) after i rounds. Further, consider any possible valueg
in this distribution. We show that, conditioning onG(Rj) = g after roundi, the expected value ofG after
round i + 1 is at leastg+ h. Note thatE(G(Rj)) = E(Rj)+ 2E(logRj). WhenRj > 1, we will show that
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E(Rj) increases byh in expectation. WhenRj ≤ 1, we will show that 2logRj increases byh in expectation.
In either case, the other term does not decrease in expectation. Case (i): g< 1. In this case,Rj < 1 after
the ith round, soj is influence limited. Consider the logarithmic term 2logx in G(x). The raters beforej
have combined information represented by the partitionπ̂ j−1; thus, none of them could have distinguished
between two states in the same component ofπ̂ j−1. Thus, the rating on itemi just before j ’s is a function
that is constant on components ofπ̂ j−1. The influence-limited rating ˜q j−1 is therefore also a function that is
constant on̂π j−1. Thus, by Lemma 6, the expected value of the logRj term after thei +1st round is at least
h/2 higher than it was at the start of thei +1st round. The linear term also increases in expectation (possibly
by a very small amount), and so the expectation ofG after i +1 rounds must be at leastg+h.

Case (ii): g≥ 1 In this case,j has full credibilityβ j = 1, and we show that the linear term inG increases
by at leasth in expectation. By the same argument as in case (i), the previous rating ˜q j−1 is a function that
is constant on̂π j−1. Thus, by definition of the informativenessI(π̂ j ||π̂ j−1), the expected value of the linear
term increases by at leasth. By lemma 5b, witht = Rj ≥ 1, the expected value of the logarithmic term does
not reduce. Thus, in this case too, the expected value ofG after i +1 rounds must be at leastg+h.

As this is true conditioned on any value ofg, it must be true in expectation. Thus,G
(i+1)

≥ G
(i)

+h, and
hence,G

(m)
≥G

(0)
+mh> mh−2λ. Because of the concavity of the functionG, Jensen’s inequality implies

that
G(E(Rj)) ≥ E(G(Rj)) = G

m
> mh−2λ

For m≥ (2λ+1)/h, mh−2λ ≥ 1. Thus, log(mh−2λ) ≥ 0. Settingr = mh−2λ−2log(mh−2λ), we
see thatG(r) = r +2logr ≤ r +2log(mh−2λ). Thus,G(r)≤mh−2λ, which means thatG(E(Rj)) > G(r).
As G is an increasing function, it follows thatE(Rj) ≥ r = mh−2λ−2log(mh−2λ). �

Remark:The last term in the bound,−2log(mh−2λ), appears to be loose; it should be possible to tighten
it to a small constant.
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