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1. INTRODUCTION AND SUMMARY

In this report exact and approximate Bayesian smiutions are derived
for the problem of inference about the ratio of variance components in the
one-way balanced random model analysis of variance, and for the closely
related problem of obtaining admissible Bayes estimators for the mean of
a multivariate normal distribution, using a class of prior distributions
which allows reasonably realistic forms of prior knowledge to be incorporated.
In the usual balanced one-way random model analysis of variance, with

U+ o, + ¢ i=1,...,I, j=1,...,J (see Section 2 for notation and

i ° i i
assumptions), and with T2 the ratio of between to within variance components,
it was shown by Hill [1965] that inference about all other parameters in the
model is quite simple, given 12. However, the posterior distribution of r2
is of a complicated form, and the posterior moments of 12 had to be evaluated
numerically. It was then shown by Lindley and Smith [1972] that, given T2,
the posterior expectation of Wy = u ot oo is simply 6&%. +(1-6)y.., and
hence the Bayes estimate of M for squared error 1loss is

(1.1) &}. E{6|data} + y.. (1 - E{6|data}),

where 8§ = JTZ/(l + JTZ). See also Hill [1975]. Since the one-way balanced ran
model can be regarded as consisting of a sample of J independent observations
from an I dimensional multivariate normal distribution, where the usual random
model distribution of the o, is incorporated into the prior distribution for
the mean vector u = (u],...,ulf, it follows that (1.1) will yield admissible
estimators for y if the prior distributions employed are not too bizarre.

However, just as with Tz, the posterior distribution of 6 is quite complicated,

and the required posterior expectation of 6 had to be calculated either



numerically, or alternatively modal estimatesemployed, as, for example, by
Lind]ey and‘Smith [1972]. Thus previous work in this area had stopped short
of a full Bayesian analysis due to intrinsic mathematical difficulties.

In the present report some new results concerning the Appell hypergeometric
function are obtained which Tead to both exact and approximate evaluations

2 and 9, and thus to Bayes estimates for these

of the posterior moments of T
parameters under various ]655 functions, as well as for y.

Section 2 sets forth the basic model and form of prior and posterior dis-
tributions. In Section 3 the relationship to the Appell hypergeometric function
is explored, while Sections 4, 5, and 6, provide probabilistic representations
for this function, upon which are based simple formulas for the exact evaluation
of the posterior moments of T2 and 6. In Section 7 a limit theorem is proved
which yields simple approximations to these moments, while in Section 8 upper
and Tower bounds are derived for the posterior moments. Section 9 then studies
the behavior of certain roots of a quadratic equation, which are of central

importance in the formulas for the posterior moments. Finally, in Section 10

some examples illustrate the application of the results of this report,

and in Section 11, some general comments are made concerning these results.



2. MODEL AND FORM OF PRIOR AND POSTERIOR DISTRIBUTIONS

The model considered in this report is the balanced one-way

random model

(2.1) Yij = M tog ¥ €50 for i=1,...,1I, j=1,...,J,

2
where o, N(O,cu), €4 N(0,o

mutually independent. As derived by Hill [1967], the 1ikelihood

2), and these random variables are

function for (u,cz,cz), is

L(,02,0%) « (o8) /2 eppssitjao?

X (02 + Jci)_I/Z exp[-SSB/Z(O2 + Joi)]

< expl-13(Y,, - w2(e® + 32)1,

where - © <y <o, 02 > 0, 02 > 0, and
_ J _ I _
Yi. = L Y. /dsy,.= I y.. /I,
oY i=1
S - - 2 - o - 2
SW=3% (y..-y:),andSSB=J7z (y. -y ).
. 1] 1 ; ie oo

i,d

We consider the implications, for Bayesian inference and design,

of the family of prior distributions with densities

-x /2 -1
(2.2) olusoty0?) = (6 5) ™ expl-C_f20°]

20902 <1t o2
x (o©) exp[-C_/20°], Ay» Coo A C > 0,

d’



i.e., with oi and 02

independent a priori, each having an inverted
gamma distribution, and with p having the Jeffreys improper uniform
distribution. This family of prior distributions was introduced

and studied by Hi11 [1965] for inference in the one-way random

model, and that study is continued here both for inference and

design purposes. It is believed that Bayesian analysis is particularly
appropriate in the one-way random model because there is typically
substantial prior}knowledge about the variance components oi and 02,
and that knowledge can be very effectively used either in inference or
in design. The above family of prior distributions is, of course,
not the only one of interest. However, the inverted gamma family

is rich and flexible, and there is often réason to view the variance
components as approximately independent a priori. In regard to u,

our use of the Jeffreys prior distribution is motivated by the fact
that neither inference nor design is very sensitive to the choice of
prior distribution for u, and the flat prior may typically be

regarded as a reasonable approximation via the stable estimation
argument of L.J. Savage. Alternatively, it is easy to verify that

use of the Jeffreys prior for p is tantamount to basing inference

about the variance components solely upon SSW and SSB, ignoring y, .,

and thus obtaining the posterior density

p"(Gigﬁz) o« (02)-[1(‘]'])“‘]/2 - 1 exp[-(SSN+CO)/202]
-(1-1)/2
(2.3) x (0" + Jo 7) .
/2 -1

X (oaz)

exp[-SSB/2(a? + Jci)]

exp[-Ca/Zcij.



We are particularly interested in the implications of (2.3) with

respect to the parameter T2 = oi/cz, or equivalently, 0 = JTZ/(]+JT2)

since, as shown by Hi11 [1965] and by Lindley and Smith [1972], conditional
upon either of these parameters, the analysis of the model is extremely
simple. Thus the complexity and difficulty in the analysis of the one-
way random model is really contained in the nature and quantity of

2 or 6. It turns out that ©

information that the data provide about t
is a somewhat more convenient parameter, and it is easy to verify that

the posterior density for 0, from (2.3), is

N,/2-1 N,/2-1
0 1 (1-0) 2

N_/? ,0<0<1,
{q(e)y 3

(2.4) p"(0) =

where N, = Id+ X -1, N, =1+ 2 -1,N,=1J+Xx+Xx -1, and
1 2 o 3 o
Q(e) = (SSW+ C&O + JCa(1-O) + SSB 0(1-0). This density was obtained
by Culver [1971] in his University of Michigan doctoral dissertation.
Much of the remainder of this article is concerned with the exact

and approximate mathematical analysis of distributions of the form
(2.4). Since Q(0) = Jc, >0, Q(1) = SSW-+CO,and the coefficient of o?
is negative, it follows that the quadratic Q(©) always has two real roots,
say x; and x,, with x, > 1 and x,< 0. With gy = 1/%, q, = 1/(1-X2),
the posterior density for © can be written as

N./2-1 N,/2-1

0 (1-0) 2
(2-5) p"(@) &« N3/2

[(1-6,0) (1-a,(1-0))]




If we define

1 )B

do,

A
F(A,B,C30,q,) = /U1
P 0 {(1-9,0) (1-9,(1-0)) 1

2

the posterior moments of © and t© are then

72 =T, N7z - T, Ngjzs a75 a)

E(e¥|data) =

(2.6) |
o TON/2 + k=1, No/2 = k= T, Noyf23 64, )

FiN /2 =T, N2 - 1, Ny/25 qq5 q,)

3

E(TZkldata) =J

for all k such that the integrals are finite.

Thus the posterior moments of © and T2, which are crucial for
inference and design purposes, are all expressible in terms of the
functions f(A,B,C;q1,q2). The study of such integrals is the primary
aim of this report. In the next section such integrals are represented
in terms of Appell hypergeometric functions, of which the hypergeometric

function is a special case.



3. HYPERGEOMETRIC REPRESENTATIONS

We first observe that f(A,B,C;q],qZ) is a generalization of

ab a(a+1)b(b+1) .2
Txc - ¥ Tx2xcx(c+1) z t ..

For ¢ > b > 0, then [Whittaker and Watson, p. 293],

the hypergeometric function F(a,b,c3z) = 1 +

T(C) ] Xb-](1'X)C_b-]

F(a,b,C;Z) = F(b)T(c-b) I dx ,

0 {1-xz}°

where T(+) is the usual gammavfunction. Hence, if for example 9y = 0,

then

: _ D(A+1)r(B+1) q.)
f(A,B,C3qy,9,) = NI F(C,A+1,A+B+23q,) ;

while if q; = 0, then

. _ T(A+1)r(B+1) .
f(A.B,C3q7,9,) = TAFB12) F(C,B+1,A+B+23q,) .

Here, as is true in almost all of our applications, it is assumed that
A+1>0adB+1>0.

The condition q; = 0 is equivalent to the root lxil = o, 50 that
when one or more of the roots is sufficiently extreme, then the integrals
we require can be approximated by multiples of the hypergeometric function.

In fact, if both q; = 0, then
f(A,B,C3q,5q,) = T(A+1)r(B+1)/r(A+B+2) ,

and the posterior distribution of © is simply the beta distribution

with parameters N]/Z and N2/2. Needless to say this situation rarely



arises in applications, although having one extreme root is quite
common, as will be discussed later.

In the general case, where neither q; can be approximated by 0,
the function f(A,B,C;q],qz) is a generalization of the hypergeometric
function studied by Appell [Bailey, p. 77]. Even in the case where
one of the roots is extreme, however, so that we are dealing with the
ordinary hypergeometric function, little is known about many of the
situations that are pertinent for the analysis of the one-way model.
For example, if X3 is very large but Xo is near 0, i.e. qq = 0, Gy = 1,
we must evaluate F(C,B+1,A+B+2;q2) for A nearly 1. This, however,
cannot be approximated by setting qp = 1, since the parameters of the
hypergeometric function here are such that the series is divergent
when 9y = 1.

In the next sections we proceed to develop new methods for the

exact and approximate analysis of f(A,B,C;q],qz).



4. "(6) AS MIXTURE OF BETA DISTRIBUTIONS

For a Bernoulli sequence with probability of success p, let
Sr be the number of failures preceding the rth success. Then
prs_ = 1} = ("171) p"(1-p)!, i=0,1,2,..., defines the Pascal
distribution with parameters p and r. In fact this formula defines
a distribution (negative binomial) even when r > 0 is not integral,

and we shall use the above notation Sr whether or not r is integral.

Expanding the denominator in (2.5) yields

N]/2-1 N2/2—1

p"(8) « 6 (1-6)

(4.1)

Np/2-1  Np/2-1 s M s (@)

Y (1-6) 2 E{6 " (1-8) " 3,

for q]B <1 and q2(1-6) < 1, where Sr(i) has the negative binomial
distribution with parameters P; = 1-q1 and r = N3/2, i=1,2, and
Sr(]) is independent of Sr(z). Thus p"(8) can be viewed as a mixture
of beta distributions. Note that when both p; = 1 the mixture again
reduces to a beta distribution with parameters N]/Z and N2/2.

From (4.1) it follows that evaluation of f(A,B,C;q],qZ) is

equivalent to evaluation of a sum of the form

T =1y i -1y g D(AFT+H)T(B+1+3)
120 im0 37 9 (53 ) % “Tamseieg)

and



1 N2+ Sr(1) N,/2 + sr(z) -1

1

(1-8) de}

E{8|data} =

(1) 2
Ny/2 +s - N,/2 + Sr( )

E{fg 8 (1-8) }

(4.2)

er(ny/2 + 1+ s Moz +s @yrsz vz +s Mes @y

ez + s, Iroyz + s ez ez +s Mes @y

Although we have developed direct methods for evaluating such sums
and expectations, we shall not pursue them in this report, since the methods
of Section 5 based upon integrated generating functions are generally more
useful for our purposes. The representation of the posterior distribution
as an infinite mixture of beta distributions is, however, of interest in
its own right, and aids in developing intuition into the mathematical nature

of the problem.

10



5. INTEGRATED GENERATING FUNCTIONS

A great deal of insight into the nature of f(A,B,C;q1,q2) and
the equivalent summation is gained by a probabilistic interpretation
as an integrated generating function.

Let X be any random variable taking on only non-negative integral
values. The generating function for X is the function M(t) = E{tx}

for 0 <t < 1. Clearly

fé M(t) dt = fg EitX) dt = B{Oe1) 1y,

where the interchanging of the order of expectation and integration
is justified by Fubini's Theorem. More generally, for any a > 0 and

integral b > 0,

(5.1) f(]) ta‘](1-t)ID M(t) dt = I'(b+1) E{(x+a)(x+a+1)><...x(x+a+b)}'1.

It will now be shown that f(A,B,C;q1,q2) can be represented as such
an integrated generating function.

If, as in Section 4, Sr has the negative binomial distribution with
parameters p and r, then it is easily verified that the generating function
of Sr is (T%af)r. Now Tet Sr(]) have a negative binomial distribution
with parameters Py and r, and let Z have a negative binomial distribution
with parameters Po and Sr(])’ so that Z can be viewed as the number of
failures preceding the Sr(1) th success in a Bernoulli sequence with

probability Py of success on each trial. By the well-known formula for

compound distributions (see Feller [1950, p. 223]), the generating

11



Py
P2

function for Z is then (
T

\r
) . Now let H = A+B-C+2. Making

the substitution t = 6/(P2 + q26) in the integral defining f(A,B,C;q1,q2)

then yields

- - 1 P, H p C
(5.2)  £(AB,Cs090)) = by pz(B+]) j’ P00 g ( | ) dt.

0 R, . Pt
1 T-qg,t q2
By the previous results for Sr(]) and Z, the generating function of
), < (2) o b st
X =17+ Sr + SH is M(t) = E{t"} = {] q2 } E(t " }
(1) 2 )
= {1 = t} E{t E[t |Sr 1}
o # s (1 s ()
_ r r
p, H p,t S (1)
- =23 B[] "
o Py }H Py C
1-q2t ] a5 p2t
1—q2t

From (5.1) and (5.2) it follows that when B is integral,

-1
f(A,B C,q1,q2) = p1C p2(8+]) (B+1) E{(X+A+1)x...%(X+A+1+B)}

(5.3) and

E{(X]+A+2)x...x(x]+A+2+B)}—]
E(6|data) = "

E{(X+A+T)x. .. x(X+A+1+B)}

, wWhere X] is defined

Tike X but with H replaced by H + 1.
12



By symmetry of (2.5), f(A,B C,q],qz) f(B,A C,qz,q]), o)

that if A is an integer, then also

f(A,B,C3q7,9,) = f(B,A,C50,,q;)
-1
(5.4) = p’ p;(A+1)r(A+1) EL(X"+B+1)x. .. x(X +A+B+1)} , and
E{(XT+B+2)X..wX(X:+A+B+2)}']
E(8|data) = Nk
*

EL(X+B+T) % . (X +A+B+1)}

* ¥ (2) (1) * . .
where X =171 + Sr + SH , and Z is defined Tike Z except that

Py and p, are interchanged.

Now let q = q,+0,-9;q, and p = 1-q = PyP,. From (5.2),

f(A,BsCQQ] qu) pzx /Zf (1- t) 'q2t)C-H(]"qt)-C

(5.5)

o . . rl .
p;/2 5 (0T CMal [ 008 01-0)C g,
=0 0

where the summation terminates at C-H if C-H is integral. Alternatively,

-qt .- tq.p, -C
expanding (1:93—0 C. (1 -T:i}ié) in (5.5) yields
2

J=

Both of the expansions will prove useful in studying f(A,B,C;q1,q2)-
First suppose that one qi.is 0. As was noted earlier, in this case

f(A,B,C;q],qZ) reduces to an ordinary hypergeometric function. Suppose

13



q; = 0. From (5.2), expansion of (1-t)B yields

1
, _-(B+1) 2, .\i /B A+i p, H

where the summation terminates at B if B is an integer. From (5.1)

P H

and the fact that {T:agf} is the generating function of the negative
2

binomial distribution with parameters Py and H, we have

1

(5.8)  (AB,C:0,q,) = py 1) §0(-1)1 (B) (s, Blearisn) T,

i

which is a representation for the ordinary hypergeometric function
in terms of reciprocal moments of a translated negative binomial

q ~r-1
random variable. Now define ¥(q:k,r) = S xk(l-x) dx, where
0
0<qg<1, k>-1, and r is arbitrary. Then if S, has a negative

binomial distribution with parameters p and r,

1 r
-1 kK . p
E(S #kt1) ™ = j; t {1~qt} dt

!
o
0
o

>
—
—
x
~
1
-
o
x

n
©
Nal

e
—
Nal
we

-~
-

-

1

—
~

Applying this result in (5.8) yields

() N —'i ]
RAGINGLARTCRTERR )

(5.9)  f(A,B,C;0,q,) = péxa/z q£(A+1) :

i=0

Note also, from (5.7), that, when B is an integer,

14



H
£(A,B,Ci0,q,) = p2(d+l)f (1-t) Bt {--—} dt

Gt
TR,
_ ' B
- pzf”‘” qz(A‘“B*l) 1B ¢ (i D p2 ¥(q,i2H-1-1),
i=0

with
B iB, ~-i .
X (-1) (i) d, ‘P(qz;A-i-l,H-l)

i=0

B . .
= (-1%(p,70,)° T (-1 (hp, ¥(ah, HA1-1)
1=0

Now retum to the general case. From (5.6) and (5.10), if B
is an integer

£(A,B,C; ql’qz) - pI;I B-1 5 (A+1+]+l)

j=0

“Ihg) pé z 0 q

¥ (q2 ;A+i+], H4j-1)
(5.11)

- sz-l qE(A+B+1)(°])B 5 (c+§-1)

: . B ” .
z a0/ %) 2 (1) 03 Mwlagaes, Heg-1-1),
J: ":

On the other hand, from (5.5) with Band C-H integers, we abtain

(5.12) £(a,B,Ciqy,q,) = pg B-1 z ( 1)3(‘:]”‘) q2 z -1yt ( y ¢ B v Ay, o).
i=0

=0

These formulas reduce f(A,B,C;ql,qz) to a (sometimes finite) sum
of terms involving the finction ¥(g;s,t) for various s and t. In the

next section we study properties of the function ¥(g;s,t).

15



6. THE FUNCTION y(g;s,t)

The results of the previous section show that the study of
f(A,B,C;ql,qz) can be reduced to that of the function

g 4o
Y(gis,t) = f y° (1-y) el dy,
0

where s > -1, 0 < g <1, and t is any real number. When t is negative
clearly Y (g;s,t) is a multiple of the incomplete beta function; while
for t > 0 we have an interpretation in terms of the expectation of

the reciprocal of a translated negative binomial random variable,

as given by (5.9). We now derive further properties of this function
which will be useful either for insight or for gomputational purposes.

Expanding ys = (1+y—l)S by the binomial formula yields

q
-1)* (j) f -9t gy

Y(g;is,t) = 0

I ™~ 8

(6.1)

where p = 1-q, and (l—po)/O is defined as 4£n(l/p), if it should
occur in the sum. When t is positive it follows from (6.1) that
U(g;s,t) ~ £t P—t as q * 1, where, here and throughout, the symbol
"~" means that the ratio tends to one. When t = 0, Y(g;s,t) ~ £n(1/p)
as q *1; while for negative t, Y(qg;s,t) tends to I'(s+1)T'(-t)/T (s+l-t),
as follows immediately from its relationship with the incomplete

beta function. We note that the summation in(6.1) is finite if s is

16



an integer; while, if w = t-s-1 is a non-negative integer,

s+i+l 1

=7 w _
Y(g;s,t) =’[‘ y~ (l+y) " dy = (s+i+1)

) [a/pl
0 i 1

0

™ =

is again a finite sum. In these cases computation of Y(g;s,t)
is particularly easy.
The function Y(g;s,t) also satisfies certain recursion formulas

which are of use either for computation or for insight. Integration by

parts yields

(6.2)  Vlais,t) =t = [¢° p ¥ - s Plqis-1,6-1)] if t # O.

Also
(6.3) W qgis+l,t) - Y(gis,t) = -P(g;s,t-1),

from which

[s1-1 .
(6.4) Y(qg;s,0) = ¥(g;s-[s],0) - L q “/(s-1i),
i=0

where [s] denotes the largest integer less than or equal to s.

Other formulas of use are

+ -1
(6.5) VY(g;s,~-1) = qs ! (s+1) for all s > -1,

1
1 -1 1 s 2
(6.6) WUl(qg;s,- 5) = (1+2s) [2sY(g;s-1,~ 5) -2q p1l,
1
for s # Y and
(o0}
t+i +i+ -
(6.7 Ylais,t) = I () g b sti+1)™t, for t > 0.
i=0
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Some special values that can be used to start off the

recursions are

1
¥(a:0,0) = L (1/p), B(g;0,- ) = 2[p° - 11,
1
(6.8) Y(q;- %, - —;-) = 2 arcsin (q2),
o 3k 11
Vlai- £,0) = 21 2 @2t = i re®) /1-gD)1.

In most applications it will suffice to choose A and Aa
so that the requisite s and t are either integral or half of an
odd integer, in which case the starting values given by (6.8) are

particularly useful.
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7. E(@Idata) for Small p]:pz

For applications to the random model the most interesting,
and also the most difficult, cases are those in which one or both
of the p; are small. We have already seen in Section 4 that when
both’pi are nearly 1, the mixture of beta distributions representing
the posterior density of © can be approximated by a single beta
distribution, since the Sii) will then be 0 with high probability.
However, when one or both of the p; are small, one or both
of the Sﬁi) will be large with high probability, and the mixture

cannot be adequately approximated by a single beta distribution.

Since N3 > N] and N3 > NZ’ it is.apparent from (2.5) that the
posterior distribqtion of © becomes degenerate at 1 if e 0 with Py
fixed, and becomes degenerate at 0 if Py > 0 with p] fixed. Since

0 <0 <1, also E(0|data) goes to 1 or O, respectively, in these cases.

If both p; tend to 0, however, it is not clear from (2.5) how the post-
erior distribution of © will behave. We now obtain asymptotic expressions
for E(0]|data) when one or both of the P, tend to 0. These expressions
lead to simple approximations that will be suitable in most applications

to the random model analysis of variance.

Let D =C-H=2C - A -B ~ 2, and define the functions

D

(7.1) 6(AB,CD5a1,0,) = [ 1 * (1-08 (1-0)C (1-q,0)° at.

0

19



From (5.5) and (6.1),

o . o . 1 .
G(A,B,C,Diq ,q,) = I I (-1 (?)(?) qg'f; & 1-g ™ at
i=0 =0
(7.2)
» 0o £+1—C
£=0

where V(A,B,D,£;x,y) is formally defined as the series

13 (-pttd <§> ) <A+z+3) Xy,
i=0 j=0 J

with £ a non-negative integer.

It is straightforward, however, to show that in fact

B Dz—j L
(7.3)  Vv(a,B,D,L;x,y) =(1-x) " (l-y) I I (-1)
i=0 =0

i+3 B

D,, A i, 03
() (s y) (/17007 (3/1y)

which is a finite sum and always convergent for x # 1, y # 1.

From (2.6), we have

G(A+l,B,C,D—l;ql,q2)

E(O|data) =
©| ) = p, G(A,B,C,Diq,,q,)

(7.4)
G(A,B+l,c,D—l;q1,q2)
G(AIBICID;ql'q2)

E(1-0|data) =

The asymptotic behavior of these posterior expectations as one
or both pi tend to 0 is now given by Theorem 1. In the theorem we

write E(Q) for E(O|data).
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Theorem 1. If p? B2 ~(C-A-1) | 4, then E(1-0) ~ py (B+1)/(C-8-2);

Py

if pg -A-2 p{(C'B -1, 0, then E(0) ~ pZ(A+1)/(C-A-2).

Proof. First note that by symmetry the assertion regarding
E(0) follows from that for E(1-0), so we consider only the latter.
There are a number of special cases to consider in proving the
Theorem, depending upon which, if any, of A,B,C,D, are integers, and
whether one or both P; tend to 0. However, the proofs for other cases
are minor variants of the proof for the case in which A, B and D are

integers and both P; tend to 0. This case will now be proved.

From (7.2) and (7.3),

B B

: -(A+
G(A,B,C,D;q],qz) = (<1)° p (q1p2)D q (A+14B+D)

S e B s eI A e
c-2-1 =0 j= 0 LA M B

Now for 2< B, the dominant term in the sum on the right-hand side is

obtained by taking i = £ and j = 0, so that

B #+1-C_7} B D . . :
e —{] _11J¢By(D A =i J
A (-1) [H_] A jEO (TG 50p (ap/ap,)

B
<z (G (et p!C

as Pysp, > 0.
=0 L 1°72

On the other hand, for % > B + D, the corresponding dominant term

is obtained by taking i = B and j = D, and

A+B+D 2+1-C B D . . .
r (-0 [P————‘—]z r (03 YO A or T ayrap,)]

2=B+D C-2-1° kil =0 i ]
L MBI 4D D

p [CFTY A ) e e,

2=B+D [ C-2-T

21



- -B - -B- - (C-A-
Since pC ! p p2D = Pi 1 pz(c A-1) goes to 0 by assumption,

it follows that the terms for £ < B dominate those for £ > B + D;
and similarly, it can be shown that they dominate the terms with

B < £ <B+ D. Hence

B
Bl s (-1)¢ () c-£-D7,
£=

G(AIBICID;q e 0 Blad (-1)
172 ‘ 0

if Plrpz - 0 in such a way that pi-B-l p;(c~Arl) ->

0. Applying
the same argument to G(A,B+l,C,D—l;ql,q2), G(A,B+l,C,D—l;ql,q2)

0.

B+1 B+1 -1 . C-B-2 -(C-n-1)
B+ +2- - ) (C-L-
~ (1Bt BY2-C pg 1o (_1)2( g )c-t-1) 7, if p; P, >
£=0
Since
B 1 B
B - - -
r (-nt () (c-£-n~* =f a-tTh 57 ae
£=0 0
B
= (-1) T(B+1)T'(C-B-1)/T'(C),
(7.4) then yields E(1-0) ~ pl(B+l)/(C—B—2), as claimed.
_B_
It may be noted that in applications the case in which pi 2 X
- (C-A-1) . . . . .
P, -+ 0 is typically the most relevant, since B is typically

much smaller than A. In texms of the parameters of the prior
distribution, the asymptotic values in the two cases covered by

the Theorem are
E(Q) ~ P, (IJ+K—1)/(XQ—2) '

E(1-0) ~p (I—1+Aa)/[I(J—1)+X-2].

1
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An approximation to E(6) which combines both of these asymptotic
values, and is appropriate when one P; is small and the other large, is

A+]+(C—B-2)q] /p'l
(7.5)  E(8) = A+B+2+(C-B-2)q,/p; +(C-A-2)q,/p,

N +[1(3-1)+r-2]q, /p,
N, #N,+IT(3-T)+X-2]q, /py 1A 219,/

This approximation yields the exact value N]/(N]+N2) when p]=p2=1, and

has the same asymptotic values given by Theorem 1 when one of the P; goes

to 0 and the other to 1. Of course (7.5) only applies when Aa >2. In

general it yields a good approximation whenever Po is not extremely small.
Finally, we note that when A, B, C, and D are integers, from

(7.2), (7.3), and (7.4) we obtain the exact formula

(7.6) A*g*” N [:2+1 Bt o (IETHON A

E(1-0) = (- )p]/q1 A+B+D C-2- ]‘JBO JDO

R :
A S ] A G KT VI
2=0 C-2-1J4=0 j=0 J

where 6 = (Q,/p,qy).

This formula makes computation very simple in many applications. Using

Tinear interpolation, we can also employ (7.6) for non-integral values

of A,B,C, and D.
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8. BOUNDS FOR E(O]|data)

It is possible to obtain simple and useful bounds for the
posterior expectation of O. These bounds are in fact closely
related to the asymptotic values of Theorem 1. Throughout this
section we write E(Q) for E(Gldata)-

Consider first the case Py = 1. From (2.6) and (5.2),

E©)/p, = W(g,) [1 - q, W(g,)]F , where
2 2 2 2

Iy a0 (1-g,0 ™ a
W(g,) = —— .
2 fé A (1-t)° 1-q,) ™" Lae

Since H = A+B+2-C = (I-1)/2 > 0, it is easily seen that W(qz) is a
non—-decreasing function of 4y for 0 < q2-5 1. But W(0) = (A+l)/(A+B+2),

and if B-H = C-A-2>0, then W(1) = (A+l)/(C-1). Thus for Py = 1 and Aa > 2,

(8.1)  p,(A+l)/ (a+B+2) < E(O) < p,(at+1)/(C-A-2).

f(A,B+l,C;ql,q2) f(B+1,AsC§q29ql) ' b 5 4
Si E(1- = = the above bounds
ince E(1-6) f(A,B,C;ql,qz) f(B,A,C;qz,ql) ’

in terms of can be converted into bounds in terms of p,, yielding,
Py 1

for Py, = 1,

(8.2) l—pl(B+l)/(C-B—2).§ E(0) < l-pl(B+l)/(A+B+2).

Clearly E(O) is an increasing function of dqs for any qys and

is a decreasing function of ys for any q,» SO we have proved
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Theorem 2. For any ql and q2 satisfying 0 < ql <1, 0< q2 <1,
pZ(A+l)/(A+B+2)_§ E(O) <1l- pl(B+l)/(A+B+2).

It is worth noting that the upper bound for E(1-0) given by (8.2),
and the upper bound for E(O) given by (8.1), are precisely the asymptotic
values given in Theorem 1.

Sometimes the universal upper and lower bounds given in Theorem 2
are very nearly equal, in which case E(O) is very nearly determined.

The case in which the universal upper and lower bounds provide the
least information is when both p; are nearly O, since the bounds
then become 0 and 1. However, in this case the asymptotic values

given in Theorem 2 will typically be appropriate.
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9. THE ROOTS AND PRIOR PARAMETERS

According to (2.5), for fixed I, J, A, Aa’ the posterior distribution
of 6 is completely determined by the q;s Or equivalently, by the roots X; of
the quadratic equation Q(6) = 0. These roots are functions of the data SSW
and SSB, and of the parameters Coand Ca of the prior distribution, and are
explicitly given as

1

SSW + SSB + C - JC_ + (4JC SSB + [SSW + SSB + C - JC ]2)2
(9.1) X. = 0 o o 0 o
1 2(SSB)

where always Xy > 1 and Xy < 0. Since 9y = x{], q, = (1 - xz)'], the interesting
and delicate cases in which the p; are small occur when X1 is nearly 1 or when

X, is nearly 0.

2
Noting that the sum of roots is Xp t X, = 1+ (SSW + Co- JCa)/SSB, and that

the product of roots is X%y = —JCa/SSB, we have

(9.2) P/, = Py/Gy - (SSW + C - JC_)/SSB,

p,/, = 4,JC_/SSB, and

py/p, = (SSW + C_)/JC, .
From (9.2) it follows that both P; will be small if and only if both JCa/SSB
and (SSW + CO)/SSB are small. Since Q(0) = JC@, Q(1) = SSW + CO, and
Q(1/2) = [Q(0) + Q(1)]/2 + SSB/4, when SSB is small Q(8) becomes nearly
linear, with Py nearly 1 if Q(1) > Q(0), and P, nearly 1 if Q(0) > Q(1).
It is important here to note the sensitivity of Po to the choice of Ca’ Thus,

Py > 0 as Ca + 0, and Py > 1 as Ca + o,
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Let us now consider ways in which values of the parameters A, CO, xu,
and Ca, of the prior distribution of the variance components, can be chosen.
Clearly all these parameters must be positive in order that the prior dis-
tribution be proper. When A > 2 the prior expectatibn of 02 is CO/(A -2),

when X > 4 the prior variance of 02

is 2C02/(A - Z)Z(X - 4), and in any
case the mode of the prior distribution of 02 is CO/(X + 2). The same
relationships hold for the prior distribution of oaz also, and since 02

2

and g, are independent a priori, it follows that the prior distribution

of caz/c2 is that of [ACa/(quO)]FX,Aa, where FA,A@ denotes a random variable
having the (generalized) F distribution with ) and Aa degrees of freedom
(X and Au are not necessarily integral). Hence the prior expectation of
0,2/0% is [XC/ (A, - 2)C,1, and the prior mode is [C (A - 2)/(x, + 2)C,] if rs2.
These relationships can be used to choose values for A, CO, ku and Ca, which
are in accord with one's prior knowledge about 02 and ouz.

An important difference between the prior parameters X and CO for 02,
and the parameters Aa and Ca for oaz, is that ordinarily the posterior distribu-
tion of 6 has only a slight dependence upon the choice of A and Co, but is very
dependent upon the choice of xa and Ca. Thus there is usually substantial robust-
ness in regard to the choice of XA and CO, but not in regard to the choice of
Aa and Ca. The insensitivity to X and CO may be seen from the fact that they
affect the posterior distribution of 6 only by virtue of the equations Q(1) =

SSW + CO, N, =Id+Xx -1, and N3 = IJ +) + xa - 1. Since the prior mode of SSW is =

1
[(d - NC/(x+ 2), it follows that whenever X is small compared to I(J - 1), we
anticipate that Q(1) = SSW, N] =~ I1J -1, N3 =~ IJ + Aa - 1, and it is very nearly

as though A = CO = 0.
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On the other hand there is a great deal of sensitivity to the choice of
Ay and Ca, since, as observed earlier, p, and hence also E{6|data} go to O
as Ca > 0, while in the equation N2 =1+ Aa - 1 often xa is not small compared
to-I. In particular, it would be absurd to take Aa = Ca = 0, since this would
imply E{6|data} = 0. Thus in applications it is necessary to exercise great

care in the choice of ka and Ca‘
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10. EXAMPLES

Some examples illustrating how the previous results can be applied

are now given.

Example 1. I =3,d=3, A = Co =0, = 2, C, = 4, MSB = 5, and MSW = 1.
Then Py = .2387, Py = .4774, and using (7.6) we easily obtain E(0|data) =
.84. The universal Tower and upper bounds given in Theorem 2 are .32 and
.92, respectively, while the pertinent asymptotic value is 1 - Py X
B+1)/(C-B-2)=1- p; = .76. Note, however, that pg'B'zpé(c'A'])

= p]2/p2 = .12, which is not particularly small, so that the asymptotic
value could not be expected to yield a very good approximation. Formula

(7.5) does not apply in this example because Ay = 2.

1]
(]
]

Example 2. I =20, J =10, A 0, A =8, Ca = 10, MSB = 10, and

0 o
MSW = 1. Then Py = .4206, Py = .2337, and by numerical integration we
obtain E(0|data) = .91. The universal lower and upper bounds are .21 and
.95, respectively. In this example pg'B'zpé(C-A'1) = p189/p24 is
negligible, so we anticipate that the asymptotic value 1 - p1(B+])/(C—B—2)
will yield a good approximation, which it does, namely, .94. Formula
(7.5) does even better, giving .90.

Example 3. I =5,d=2,x=¢C_=0, Aa = 8, Ca =1, MSB = 10, and

0
MSW = 1. Then Py = .1069, P, = .0427, and E(0|data) = .08. The universal
lower and upper bounds are .02 and .94, respectively. Now pg'A'Zp;(C'B'])=
p23/p]2‘5 = ,02 is small, so we anticipate that the asymptotic value
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p2(A+1)/(C-A-2) will yield a good approximation, which it does, namely,

.06. Formula (7.5) gives .19.
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11. COMMENTS

We conclude with some general comments. First, it appears
that whenever either p?’B'z pé(C'A']) or pg'A'z p{(C'B'1) is very
small, then the appropriate asymptotic value as given by Theorem 1
yields a good approximation to E(©|data). However, except when Py
is very small, formula (7.5) often does as well as the asymptotic
value, and has in addition the virtue of being a good approximation
when both p; are large. (Of course, as both P; tend to 1, the universal
Tower and upper bounds both tend to (A+1)/(A+B+2), so that the case of
large P; is generally quite easy to deal with.) Although it is difficult
to give a completely general rule as to which.approximation to use,
ordinarily the asymptotic value 1 - pl(B+1)/(C-B-2)-wil1 be appropriate
whenever C-B-2 = [I(J-1)+A-2]/2 is much larger than C-A-2 = (AG-Z)/Z,
as is usually the case. Note in this connection that Example 3 was
unusual in so far as C-B-2 was 1.5, while C-A-2 was 3, and it was only in
this example that 1-p](B+1)/(C-B-2) = .57 did poorly. In general our
attitude is that since the exact formulas derived in this article allow
E(o|data) to be calculated with only modest effort, the primary purpose
of the approximations is first to provide insight into the nature and
behavior of the Bayes estimates, and secondly, to use such insight to
aid in the design of the experiment, i.e., the choice of I and J. Such
questions are being explored by E. Bangura in his doctoral dissertation
at the University of Michigan.

Our second general comment concerns the robustness of Bayesian

inference to the choice of Aa and Ca. Ordinarily one anticipates that
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small changes in prior parameters such as Aa and Ca will have only a
slight effect upon Bayesian inference, particularly, when there is
substantial data. But this is not the case here. For example, taking
Ca very small forces E(0|data) to be nearly 0, while the behavior of
the Bayes estimates depends sensitively upon whether Aa_i 2 or Aa > 2.
Indeed, as Py > 0 with Ay < 2, we find an entirely different form of
asymptotic behavior for E(0©|data) from that given by Theorem 1. We do
not include these results here because A, 2 implies that the prior
expectation of oaz is infinite, which is hardly realistic. Nonetheless,
the lack of robustness here is important in and of itself as a general
warning for those of us who take a Bayesian approach.

Our final comment is that the approximation E(0|data) = 1-p](B+1)/(C-B-2)
is closely related to Stein-type estimators [1966], so that our results
concerning when this approximation is not appropriate may be of some

value even for non-Bayesian approaches. This situation arises, in
particular, when MSW is substantially larger than MSB, in which case,
from the Bayesian viewpoint presented by Hill [1965, 1967, 1975],

the data carry negligible information about u, the Mis and Oaz.

This is clarified by the Theorem of Hi1l1 [1975, p.570], where it is
shown that essentially only two possible forms of 1imiting distribution
are possible for extreme data, and that ordinarily as SSW grows large
the posterior distribution of the above parameters converges to the
prior distribution, whereas when SSB grows large, the stable estimation

argument of L. J. Savage can be employed to yield (approximately) the

usual least squares estimates.

32



BIBLIOGRAPHY

Bailey, W. N. (1935). Generalized Hypergeometric Series. Cambridge

University Press, London.

Culver, D. H. (1971). A Bayesian Analysis of the Balanced One-way

Variance Components Model. University of Michigan, Ph.D. dissertation.

Feller, W. (1950). An Introduction to Probability Theory and its

Applications. Wiley, New York.

Hi11, B. M. (1965). Inference about variance components in the one-

way model. Journal of the American Statistical Association, 60, 806-825.

Hi1ll, B. M. (1967). Correlated errors in the random model. Journal

of the American Statistical Association, 62, 1387-1400.

Hi11, B. M. (1975). On coherence, inadmissibility and inference about
many parameters in the theory of least squares. In S. E. Fienberg and

A. Zellner, eds., Studies in Bayesian Econometrics and Statistics in

Honor of L. J. Savage, 555-584. North-Holland Publishing Co., Amsterdam.

Lindley, D. and Smith, A. (1972). Bayes estimates for the linear model.

Journal of the Royal Statistical Society B, 34, 1-41.

Stein, C. (1966). An approach to the recovery of inter-block informa-
tion in balanced incomplete block designs. In F. N. David, ed.,

Festchrift for J. Neyman, 351-366. Wiley, New York.

Whittaker, E. T., and Watson, G. N. (1973). A Course of Modern Analysis,

Fourth Edition. Cambridge University Press.

33

% U. S. GOVERNMENT PRINTING OFFICE: 1976 — 657-630/675



|||I|l|!|!lll|lIIIIIIIHIIIIIHHIIIHlllllNllllllllllllillllll

3 9015 03025 4430



