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ABSTRACT

A charged test particle passing through an electron plasma is sub-
ject to a drag force. The calculation of the drag, when the test par-
ticle's velocity 1s maintained at a constant value, is referred to as
the plasma test particle problem. Several calculations of the drag have
been given, but all treatments have resulted in a logarithmically di-
verging drag expression. The purpose of this dissertation is to give
a convergent and consistent treatment of the plasma test particle prob-
lem.

In Chapters II-V we review the previous treatments of the plasma
test particle problem. These are the binary collision, linear hydro-
dynamic, dielectric constant, and linear Landau-Vlasov treatments. In
each case the source of the logarithmic divergence in the drag expres-
sion 1s fully discussed.

In Chapter III we also describe a modified linear solution of the
hydrodynamic equations. This solution leads to a convergent drag ex-
pression. The hydrodynamic description of the test particle problem is
basically a macroscopic description. In Chapter VI we obtain a more de-
tailed, microscopic, solution of the test particle problem in terms of
the Landau-Vlasov equation. The method of solution is similar to the
modified linear solution of the hydrodynamic equations used in Chapter
ITII. A convergent expression for the drag is given that is exact for a
slow moving test particle, and which retains the qualitative features
of an exact solution when the test particle speed is greater than the
mean thermal electron speed.

The remaining three chapters of the dissertation discuss the deriva-
tion of a spatially homogeneous electron plasma kinetic (transport) equa-
tion. The problem of deriving a kinetic equation that contains a col-
lision term giving an irreversible approach to equilibrium is closely
related to the test particle problem.

In Chapters VII and VIII we review, criticize, and clarify several
electron plasma kinetic equations that have been frequently used. These
kinetic equations contain the same logarithmic divergences encountered
in the test particle problem. The source of these divergences is clearly
shown.

In Chapter IX the convergent test particle theories of Chapters
IIT and VI are further developed to give a convergent electron plasma
kinetic equation.

vii






CHAPTER I

INTRODUCTTON

This dissertation is concerned with the theory of stopping power in
a fully ionized plasma. Specifically, the problem is to calculate the
drag force on a charged "test" particle which is constrained to move
with constant velocity through the plasma.

1 to treat

The first stopping power theory was developed by N. Bohr
the penetration of charged particles through .unionized matter. In the
Bohr theory the charged test particle is assumed to undergo successive
binary collisions with the atoms comprising the material. The momentum
transferred in a single collision is calculated in a first approxima-
tion by neglecting the recoill of the colliding particles. The Bohr

expression for the drag force, due to collisions with electrons with

density’?\ocme, has the form

2 2 b e
7= - S ()3
- v bwe | Vi (1.1)
4me* NNl ) ]
where OJPz e has the dimension of a frequency (later we

will see that OJP is the plasma frequency), - €+ is the test particle
—p
charge, - @ the electrcon charge, " the electron mass, V5 the test

particle velocity, bWu¢’ bwwm are appropriate maximum and minimum

impact parameters.*

*The impact parameter is the distance of closest approach between two
colliding particles when there is no interaction.



The limiting values of the impact parameter, EWW% and bhuw p
are chosen to satisfy the following requirements. For a collision with
an impact parameter k) and velocity Vs the time of collision C¢ is of
order of magnitude‘ﬁgr=b/vT . When the time of colliision fc, exceeds
the period of electron orbital motion in an atom {e it can be shown
that the momentum transfer 1s approximately zero. Therefore, collisions
with impact parameter larger than & (e, must not be included in (1.1).

A minimum impact parameter must be used to limit the momentum trans-
fer in a single collision. The calculation giving (1.1) assumes the
colliding particles move in straight trajectories, and this assumption
leads to an infinite momentum ftransfer as b—9>0 . For a heavy test
particle, M+>>M , the maximum possible momentum transfer occurs in
a head on collision, £5PNM¢=-2an% , and byNM‘nmst be chosen to sat-
isfy this requirement. The form of expression (1.1) for the drag force
is characteristic of all stopping power calculatiocns.

The binary collision picture presented above is a microscopic de-
scription of the stopping power probiem. A macroscopic description was
developed by E. Ferm12 in which the medium 1s thought of as a contin-
uous dielectric material described by a dielectric constant g(k7u3> .

In this way one can account for the polarization induced in the medium
by the test particle. As a consequence of the polarization the test
particle is shielded from interacting with distant regions of the medium.
The drag force has the form (1.1) except that b,kw% is automatically

specified by the polarization shielding. Unfortunately, the dielectric



description does not introduce a short range cutoff kwgm

More recently stopping power theories have been extended with re-
newed vigor into the domain of plasma physics where one is interested,
for example, in calculating the drag force on charged satellities in
the lonosphere or the thermalization of fast charged particles injected
into a trapping machine, In addition to these direct applications of
the plasma test particle problem interest has centered on the related
problem of deriving a kinetic equation with a collision term capable of
producing an lrreversible approach to thermodynamic equilibrium.

An extensive bibliography of stopping power calculations is con-
tained in the paper of Y. Klimontovich and V. P. Silin, Chapter IT of

the book Plasma Physics by J. E. Drummond, McGraw-Hill (1961).

The simplest stopping power theories for a plasma are based on a
classical and non-relativistic description. The non-relativistic limit
is permissible for the majority of plasmas encountered in practice.

On the other hand, a classical treatment of a system of interacting

ions and electrons poses difficulties, since a classical plasma is
unstable against collapse. To circumvent this difficulty in a class-
ical framework it is necessary to introduce short range repulsive

forces between the ions and electrons. A simpler method, used in this
dissertation, is to neglect terms of the order of the ratio of the elec-
tron mass to the ion mass. In this case the plasma is represented by

a model in which the electrons move in a uniform background of positive

charge, the so called "electron plasma," In addition to using an elec-



tron plasma the simpler stopping power theories assume that the plasma
is infinite in extent, and that no external electric or magnetic fields
are present.

The force on a test particle in an electron plasma has been calcu-
lated under the assumption of binary collisions by Spitzer,5 Rosenbluth,
et emla,LL Hubbard,5 and Aono,6 The result obtained by these authors for
an infinitely heavy test particle, when A, >> (average thermal velocity

of electrons), is

ng WV Mi
¥ = Jf\\{ , bw\} Vo (1.2)

In deriving this result the two body dynamics have been included exactly,
and a short range cutoff, BW@N , 1s not needed.

The divergence of (1.2) when bmW¥=-+w is the reason one refers
to the Coulomb potential as a "long range" potential. Actually, it
is not correct to speak of pure binary interactions when the impact
parameter b is greater than the average interparticle spacing ZEV3.
When a "many particle" or "collective" description of a plasma is
used it can be shown that the field of a charge is shielded exponen-
tially with a characteristic length RJ, , the Debye length, defined
as Ry = (Lﬂgl°>"/l . Here © is the kinetic temperature leB'T
Because of the shielding, collisions cannot occur beyond a Debye dis-
tance and so we should choose wam = R3 . In effect this is a com-
promise; choosing kawxz-Qix overestimates the momentum transfer

I/
for those collisions with 77,7 < &) { R, since these are not com-



plete binary collisions. The momentum transfer from collisions with
b‘)fib are underestimated since they are not included.
The electron plasma dielectric constant has been used for the force

6

calculation by Hubbard,5 Aono, Linhard,7 and Thompson.8 The dielectric
constant takes into account the "polarization" of the plasma by the test
particle, i.e., the shielding, and eliminates the large impact parameter

divergence encountered in the binary collision method. The theory, how-

ever, 1s not appropriate for close collisions. The result when V}>>d§%\

o
T erwy [_@ Vr Ez]lfl
F= - V2 I XYoL (1.3)

where €E=2.7118""" is the base of the natural logarithms and AmA=0517---
is Euler's constant. ‘§° is a minimum cutoff distance at which the di-
electric theory breaks down. It turns out that ‘Eo should be on the
order of ggf . The upper cutoff distance bww«ﬁ§$33 arises auto-
matically from the dielectric screening of the test particle.

Rosenbluth and Rostoker,9 Gasiorowicz et gio,lo and Vlasovll have
treated the plasma test particle problem from the standpoint of statis-
tical mechanics using the Landau-Vlasov equation (self consistent field
approximation). This method correctly treats both short and long range
collisions, but the non-linearity of the equation makes it necessary to
look for an approximate solution. The approximation made by these

authors consists of a linearization in which the test particle field is

assumed to be a small quantity which disturbs the plasma slightly from



a spatially uniform equilibrium distribution. This approximation is
equivalent to using the electron plasma dielectric constant and hence
still requires an arbitrary short range cutoff.

Several authors5’6’ll have discussed the result of combining the
binary collision method and the collective method into a single expres-

. , . pa) s
sion for the force., Their result for ’\/T5>\J fm  is

oWy Tade (Ve ¥Ry 1%
¥ = T\G; JA&[:?X—_(VQE;) 753}7ﬁ: (1.4)

where Rf %—T is referred to as the Landau length, €=2.78:-- is the

base of the natural logarithms, and Jm\=0.'5'1'7-~ is Euler's constant,.
This result, which depends on the joining of the binary collision picture
for the close collisions and the dielectric picture for the distant col-
lisions, does not give correctly the coefficient of ED/RL in the log-
arithm argument. Indeed, the use of a cutoff is still implicit in (1.L4).
We note that the general form of the drag expression will involve
a logarithm factor. The argument of the logarithm is a function of 'V.,. ,
generally with a small numerical value, times the ratio of lengths
RD/RL . Throughout this dissertation we assume the inverse ratio
RL/RD is an extremely small number; this makes it a useful expansion
parameter. The assumption that R"/R;b is small is not a serious re-
striction. 1In Table I values of PL/RD are tabulated for several in-

teresting plasmas.



TABLE T

TYPICAL VALUES OF Ri/p

. Mo T n;'® R =8%9 R Ry
Plasma Type em=3 og cm om cm /P$ ,
caseous Nebula 100 1ok 101 1.67 108 70 2.4 10710
Ionosphere—
F-layer 100 103 2.21072 1.67 1077 2.2 7.6 1079

Gas Discharge 1014 10% 2.2 105 1.67 108 2.2 10°% 7.6 1070

Hot Plasma 10% 105 2.2100 1.67 1079 7.0 10°% 2.l 1076

The purpose of this dissertation is to eliminate, in a consistent
manner, the divergences of the earlier work. Part I is devoted to the
test particle problem in which the drag force on a charged particle,
constrained to move uniformly through an electron plasma, 1s calculated.

The first chapter of Part I, Chapter II, describes the binary col-
lision calculation of the drag. Chapter III compares the binary collis-
ion treatment with a linearized hydrodynemic theory of the plasma. A
combination of these results giving (1.4) is discussed. In addition,
Chapter III contains a modified linearization of the hydrodynamic equa-
tions that leads to a convergent expression for the force without the
use of arbitrary cutoffs. This convergent solution of the test particle
problem (in the hydrodynamic limit) is used as a model for the solution
of the Landau-Vlasov equation presented in Chapter VI. In Chapter IV
we review the method of expressing the drag force in terms of a general

dielectric constant and magnetic permeability. In Chapter V the di-



electric constant for an electron plasma is used to compute the drag.
In Chapter VI, the last chapter of Part I, we present a new solution of
the Landau-Vlasov equation that gives the drag on a test particle with-
out the use of asuxiliary cutoffs.

Part II of the dissertation is concerned with the general transport
equations for a spatially homogeneous electron plasma. Chapters VII
and VIII review several approximate kinetic equations and discusses their
relationship to one another. These approximate kinetic equations in-
volve divergent integrals identical to those discussed in connection
with the test particle problem. In Chapter IX the convergent test par-
ticle results of Chapter VI are further developed, and are shown to

lead to a convergent kinetic equation.



PART I: TEST PARTICLE PROBLEM

CHAPTER II

BINARY COLLISION TREATMENT OF THE TEST PARTICLE PROBLEM

1. INTRODUCTION

The aim of the test particle problem is to calculate the drag
force on a charged particle, charge - €+, as it moves with constant
velocity &a- through a plasma. We shall assume the plasma is composed
of singly charged ions and electrons with equal densities. The exten-
sion to multiple ionizations and mixtures of different ion species is
straightforward.

A similar problem occurs in the kinetic theory of unionized gases
where one deals with low density gases and interparticle forces of short
range (i.e., range of interparticle force < (density)-l/5). In this
case the motion of an uncharged test particle will be influenced by
collisions with the gas atoms. The number of collisions with single
atoms per second is proportional to the gas density Yo . The number
of collisions simultaneously with two gas atoms is proportional to ‘n:‘,
and so on for the higher multiple collisions. When the density is low
multiple collisions with two or more gas atoms exert a negligible in-
fluence on the test particle. If collisions with two or more gas atoms
are neglected the force on the test particle arises from the accumula-

tion of momentum transfer in successive two body, or binary collisions.,

9
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In this chapter we discuss the simple binary collision picture and its
application to the plasma test particle problem.

On the one hand it is not clear that the assumption of binary col-
lisions is sensible for a test particle in a plasma, since it is the
"long range character" of the Coulomb potential which accounts for the
unique properties of the plasma state. On the other hand, it would
appear that the plasma particle closest to the test particle will be the
dominant source for the force felt by the test particle, and in this
sense a binary collision calculation for the close collisions should be,
at least qualitatively, correct. Actually we shall see later (Chapter
ITII), that the drag force resulting from the accumulation of many dis-
tant collisions is of the same order of magnitude as the drag resulting
from the close collisions. For the time being, however, we consider
only the close collisions for which we make the binary collision assump-
tion.,

In the next section the notion of a collision cross section is in-
troduced in terms of the momentum transfer in a binary collision. Ex-
pressing the cross section in terms of the momentum transfer vector in-
stead of the scattering angles, as is customary, proves convenient since
the momentum transfer is invariant in a Galilean transformation.

In the last section the drag force on a test particle is calculated
under the assumption of binary collisions. The expression for the force

diverges logarithmically when it is extended to include arbitrarily dis-
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tant collisions. Qualitative arguments are given for the introduction

of a cutoff to exclude the distant collisions.

2. KINEMATICS OF BINARY COLLISIONS
The Hamiltonian for two particles interacting through a potential

iﬁ(hﬁ:ﬁzl) can be written as

H = £ LR o (n) (2,1)

2 (m+ ) ar&

5> ~Cd

$
where)t=nQ3ﬂT, _E , 1s the momentum of the center of mass of particles

—> - o> . N
1 and 2 =u (v, -V and is the reduced mass = 472
’ 10 /i % ') ’ /ﬁ ’ Mt Mo
The Hamiltonian implies
=
P
(2.2)
= >
d h,x*) O

The first of Egs. (2.2) shows that the center of mass moves with con-

stant velocity. The second equation gives the angular momentum integral

—

b UG ) (B = X (2.3)

%
where JV is a constant vector. Equation (2.3) shows that the particles

-
move in a plane whose normal is in the direction A . This plane is

referred to as the orbital or scattering plane, Since we assume QZU1)

tends to zero as Ji—00 the Hamiltonian (2.1) together with a constant

é
value of P implies that the relative velocity magnitude before colli-

sion equals the relative velocity magnitude after collision,
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> -+
2

- _ >, ;
K LA (2.4)
where unprimed quantities refer to quantities before a collision and
primes refer to quantities after a collision. The effect of a collision
is to rotate the relative velocity vector in the orbital plane,

A collision of an Wz particle with an M, particle having velocity
— > >
4, 1s specified by the relative veloclty V,-V, and the angular

—_—

momentum L of Eq. {2.3). These quentities are not independent, for
> -
(2,%) implies L is perpendicular to Vo=V,

— -
ﬂ“’ (‘v?‘lv\ ): 0

_%
The two independent components of L are conveniently chosen as the

=3 = >
angle by which L is rotated about V-V, , call it 47, and the magnitude

N,
of l which can be written in terms of the impact parameter b as

[Tl = b 127 (2.5)

The physical interpretation of b is that it would be the distance of
closest approach between the particles if there were no interaction.

Now consider a beam of M, particles with velocity ’\}: and uniform
density to be incident on an ‘M, particle with velocity ’T/T . Each
particle undergoes a binary collision with the m, particle, The param-

—
eters specifying a given binary collision are YV, |, A s ¢ . The dif-

ferentlal scattering cross section is defined as the number of collisions

per second with impact parameter between b and Zﬂ-(ﬂ) and ¢ between
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¢ and d%kd¢ divided by the incident flux of W), particles, This is

clearly

b db d¢ (2.6)

As we have seen, the affect of a collision 1s to rotate the rela-
s S
tive velocity vector, (},: Vo-V, , in the orbital plane. Denoting

the angle of rotation by © the differential scattering cross section

can also be written as

bdbd¢ = T(6,9) da (2.7)

where o= §&a9<19‘4¢ is an element of solid angle. The quant-
ity I:(Q,%) d()_ 1is interpreted as the number of m), particles per
second, whose relative velocilty %?'is rotated through an angle © into
the solid angle dlﬂ~, divided by the incident flux of (TWz,;i) particles.
Another form of the differential cross section, and for our pur-
poses the most useful form, is obtained by expressing the differential
cross section in terms of the momentum transferred in a collision. Let
@r'denote the momentum given to particle 1 after a collision with par-
ticle 2. According to the conservation of momentum, the momentum given

%
to particle 2 by particle 1 is - q_ . The collision can be represented

by
/Vl — IV'I = ’\/l ¥ Q./m‘
N (2.8)
S —> —
v, — V5 = V] - Jwy,



1k

Conservation of energy in an elastic collision requires

el P

4% - AR < © (2.9)

Subtracting the first of Egs. (2.8) from the second gives

Taking the magnitude of each side relates the amount of momentum trans-
ferred to the angle through which the relative velocity vector 1s rotated

in a collision
q = Q’A%S@Q/l , 040 <t (2.10)

The angle Ct) specifies the rotation of the orbital plane (T) about
. . -5 3 . . .
the direction (} with respect to an arbitrary reference direction ¢:O .

> g
Since gr is in the orbital plane ¢ is also the azimuthal angle of gr

= —>

—>
about % as polar axis. The polar angle '\rwhich Qr makes with % is

given by the conservation of energy relation (2.9),

_ 4
CW\J(‘E{M’, ’Oégf{;[“?f

With the delta function identity

|
& =
RIS AP

and relation (2.10) the differential cross section (2.7) can be written

as
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(2.11)

where ng_?: q_lé«m)rd'\rd(bdg_ is a three dimensional volume element in
(i? space. The second equality defines the function (/O(gz(‘i’\ . Since
(A)(gr.)CSP)contains a delta function its physical interpretation is sen-
. . . . > > S
sible only upon integration. When integrated between 9r and & +A(_}r
> >
W >
the quantity —(—q"—%l is the number of ('Yh,”v;_) particles per sec-
> = >

ond, that lose momentum between q and q_+15q_ upon collision with par-

ticle (MMWB , divided by the incident flux of ‘W), particles. Al-

ternatively,
»

§+A§?
dg 0 (¢, @)
¢ 94 4

is the number of (VV\17\}':) particles per second per unit density, that

> >
lose momentum between Q?and &*A(l when colliding with particle

(m, V)

> >

The function (A)(&)%)O\g: is called the collision volume. Two im-

portant identities can be established for the collision volume. Before
doing this, however, we will find it convenient, when we come to the

Boltzmann equation in Chapter VIII, to indicate in (A)((f,%) the specific
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binary collision under consideration. For the colision (2.8)

= > O
Voo— A+ /M
| ! |
(2.12)
,\/L'——‘——%//V\L‘_ \“\")L
the collision volume will be denoted by
ALY
W (V. | o, s~ Y, ) I (2.13)

The manner in which the arguments of (O specify the collision (2.12)
is evident.
The first identity satisfied by the collision volume results from

the invariance of the momentum transfer under a Galilean transformation,

W0 W Y, ) = 6| % Tl (2.14

4

-
where V. represents a uniform translation. In other words, W depends
—>

= . =
on V,, Vv, only through the difference V.-,

The second identity involves the notion of an inverse collision.

The inverse collision corresponding to the direct collision (2.12) is
- N >
44 +'Q4n\ —= YV,

- (ii - (2.15)

For a spherically symmetric potential, @(\f[?-)]?}) , the collision

volume 1s the same for a direct and inverse collision; the second ident-

ity satisfied by the collision volume is
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\%QM7QWML> (2.16)

(U('\;T’\E l (IZV‘\"_@M)) =W (I\?':r Cz;ml’\?i—g—;mz

This completes our survey of the basic kinematics of binary colli-
sions with spherically symmetric potentials. Of particular importance

to us 1s the special case of a Coulomb potential

¢ (2 = \Q:—; (2.17)

n-rr |
This is the interaction potential of an electron with charge - @ at
position rC and a test particle of charge - €4 at position )i:’o The

differential cross section is the well known Rutherford cross section*

T(og) = — =0t (2.18)
® 4,11%+g;f@/1

W
*

> - >
where %f:VZV; and tL= Yrvs e Together with (2.10) and (2.11) we

immediately obtain for the collision volume

- |05 ,—» > Z}ele%’ > 3 2 - 51
0 (5 7\ Yoo, G ) dT= 3¢ §(67-5)4 (2.19)
3. BINARY COLLISION CALCULATION OF THE DRAG ON A TEST PARTICLE

Consider an infinite plasma with an average constant electron dens-

ity N, and a velocity distribution ~g(§?) that 1s normalized to unity,

;Ebldstein, H., Classical Mechanics, Addison-Wesley (1957).
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The electron charge is - €, and the electron mass is M . We wish to
calculate the force on a test particle with charge - €+ , mass W, and
—r

moving with constant velocity Vi through the electron plasma. It is
further supposed that the test particle undergoes only binary collisions
with the plasma electrons. The average force on the test particle is
the time rate of change of momentum, i.e., the average momentum change
in a single binary collision times the number of collisions per second,

>

ga.c.: Mo gd\?wc(\ﬁ §dg?§’{,\) (\E ?li/?,ﬁjgj}w,> (2.20)

)

Introducing the collision volume for Coulomb interactions (2.19)

%QB.Q,: 482&%“"&)‘?‘@(\?)&@?% g(—)—b‘ng}AB (2.21)

% P> S>>

where C&:’\f~\f-r and M = Y-.'.)LV\L_
~p
The integration over Q‘. 1s performed by using polar coordinates
. > . . >
(gr » N=09 (k)) with q as polar axis (i.e., gr%: Q%_VL ). The com-
=

ponents of \f perpendicular to (gr involve S»w(b or ('m,(i) and integrate

...>
to zero. The remaining component parallel to QJ is

T G868 = oy 1 Sl

The delta function gives a contribution only when (}Lé Zl}k% s

- T,
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The one remaining integral diverges logarithmically at the lower limit.

To secure convergence the lower limit must be replaced by a lower cutoff

Goi
g

Inserting this result in (2.21),

"i-c.: 4Teth& my ig v5 Q/\/\<—§%§:) (2.22)

The divergence as qm@vf”o corresponds to a large impact param-
eter divergence, EMMA(D . To find the connection between Q(WM
and bvvxw)( consider a binary collision with an extremely small momentum
transfer. By "small" one means that the momentum transfer is much less
than the initial momentum, ‘_\LLTA% . In the limiting case qr LLL r“k the
colliding particles move along stra’ght trajectories with constant

speeds. The calculation of (f in this so called straight path 1limit is

quite simple. The component of gr along the direction of motion (?
e
averages to zero. The perpendicular component of } 1is (see Fig. 1),
X F
0 2 g

{0

=~

Fig. 1. Straight path collision
in rest frame of particle T.
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Making use of

€
Finy = 5%

dn

It

2_&%
-b*

TIQ

'

where by is the impact parameter, the momentum transfer is given by

3. [7(’%1]3'7-

Therefore, in the limit QLLL?A%f , We can replace Q¥WuﬂJ by a max-
1

imum impact parameter according to the relation

2€¢+

tmn = g (2.29

Inserting (2.23) for quw in (2.22) the force integral becomes

03—?_ - 4‘-]T€2€'\' Mo (;av?g(?)_%gij\( f/‘%lkw\o\«) (2.2L)

B.C. t,l_ Qe

I

- a5 - >
where S&::\/~V* » The integration over v does not diverge at %:‘O

>
provided we agree to perform the integration over the direction of %.
first.

-
The most interesting situation is when S(V')is the Maxwell-Boltz-

mann distribution

LY = 877y = ()% e

h’U‘
Ze

(2.25)
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where @=&iT is the kinetic temperature. In this case there are two

limiting forms of (2.24) that are easily discussed. For a fast test

5 g
particle, VT>>\FY:‘: , the quantity \’\[_VT\ in the argument of the

logarithm can be approximated by ’\le , and the force (2.24) becomes

—> A2 A >
%m - TS Y\OJM (M Do g -E(O) h (2.26)
,C. > -
& e bt
~=>
The remaining integral has the form of an "electric field" at VT due
g T

(o) >

(©) 5
to a charge distribution with density - N\f) . Since Sf B 1s spher-
ically symmetric this "electric field" is equivalent to the field pro-

duced when all the "charge" within a sphere of radius V; is concentrated

at the origin,

- %
-7» IV' VT \j\r-\- 0
gd j} \) ks = ? &\O&[}{C(\)’F) (2.27)
Thus,
= 9 '\f‘ R
T - TIOEEN (15 ) § 2P (e

where we have introduced RL:Q—%—V , which has the dimensions of a length,
The second limiting case occurs for a slow test particle, ’\/T L Q/m o

In this case "\?—\7’ S vE . If we replace A in the logarithm argu-
T

ment by its average value, 39/""\ , expression (2 24) reduces to,

> _ _ AwereiN., [ 3i bra “y
Y JLFC‘JM(T% ‘E[)w YM (2.29)

with R,_zegj. Approximating the last integral for M £ UQ/VY\ gives
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a?‘[’  dweter g ,a (m)”lifs (iii Broee )~ (2.20)
X - V"T o _/t’h wmooR

K

There still remains the problem of specifying the maximum impact
parameter En“m« . If we are to include the momentum transfer with each
plasma electron then &)mm4::+a) . However, the assumption of binary
collisions is not appropriate when the impact parameter is on the order

| -1
/s When E>>W“c/3 a many

of the interparticle separation, b > N,
particle description of the plasma must be used. The collective response

of the plasma screens the test charge field beyond a Debye length,

/ el ,—1'/,
RD:: (¢W§§Yhﬁ % . For this reason the maximum impact parameter is

often identified with the Debye lengthﬁ’u’lg’l3

Expression (2.24) gives the drag force due to binary collisions with
plasma electrons. To include the effects of collisions with ions it is
necessary to add terms similar to (2.24) with the appropriate reduced
mass, ion charge, and ion distribution function. These terms are of
order (electron mass) & (ion mass) smaller than (2.24) and are neglected
in this dissertation.

The main objection to the binary collision picture is its inability
to supply bvnax . That it is at all necessary to introduce an upper
cutoff is a peculiarity associated with the ﬁ@k potential, The real
difficulty, however, lies in the assumption of binary collisions. A
correct treatment of the plasma-test particle interaction must allow
for the test particle to interact with many plasma particles at one

time. The result of many simultaneous interactions is a redistribution
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of positive and negative plasma charge around the test particle which
screens the test particle field at distances greater than the Debye
length, ]ZD~:_(4I%%59§Jh_’ and this effectively limits the maximum impact
parameter,

We conclude, then, that a consistent expression for the drag force
that does not require an external cutoff can only be obtained through a

many particle description of the plasma.



CHAPTER IIT

HYDRODYNAMIC TREATMENT OF THE TEST PARTICLE PROBLEM

1. INTRODUCTION

We have seen that the binary collision treatment of the test par-
ticle problem cannot give a consistent result for the drag without using
a long range cutoff. It was necessary to insert a cutoff because the
assumption of binary collisions does not allow for the simultaneous in-
teraction of many particles. If we are to give a consistent derivation
of the drag force we must use a description of the plasma that can ac-
count for its collective behavior. The simplest way to accomplish this
is to treat the electrons and ions as simple fluids subject to body
forces arising from their "self consistent"” electric fields. We do this
in Section 2 by adopting the Euler hydrodynamic equations modified to
include the self consistent fields and the frictional forces arising
from the relative streaming of the electron and ion fluids.

The modified Buler equations are non-linear and quite complicated.
For the test particle problem we linearize these equations by treating
the disturbance caused by the test particle as a small perturbation.
When the test particle speed is greater than the average electron thermal
speed the drag is due primarily to the electrons; the ions contribute
small corrections of the order of the electron mass divided by the ion
mass., This leads to use of the "electron plasma" model in which the ion
motion is neglected and the electrons are assumed to move in a uniform

ol
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background of positive charge.

The solution of the linearized equations describing the test par-
ticle motion in an electron plasma is straightforward. An expression
for the drag 1s derived which does not diverge at large impact param-
eters. Ocreening effects introduce the Debye length as an effective
maximum impact parameter, However, a new difficulty appears in the prob-
lem, The expression for the drag force still diverges logarithmically;
this time at short distances due to an incorrect treatment of the plasma
in the neighborhood of the test particle. The short range breakdown of
the theory is traced to the linearization of the Buler equations. The
linearization was based on the assumption that the test particle in-
troduced only a small perturbation in the plasma, but this is not cor-
rect in regions sufficiently close to the test particle,

In Section 3 the results obtained from the linearized FEuler equa-
tions are discussed and compared with the results of the binary colli-
sion treatment of Chapter II. A combination of the two treatments that

6

has been discussed by Vlasov,il thbard,5 and Aono~ is reviewed.

In Section 4 we consider a modified linearization of the Euler equa-
tions which leads to an expression for the drag that does not require
the use of cutoffs. The modified linearization uses as a zeroth approx-
imation for the density the solution to the Euler equations when iz;<3,

call it 7700ﬁtfﬁ1) . If one assumes that the density about a moving

test particle differs only slightly from 7706m?ﬁ:/) the correction may
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be treated as a perturbation,

n(RR) =N, (7)) {1 +fk(mﬁ:>§

In the zeroth approximation the density;‘ﬂo(ﬁﬁfa)) , vanishes at

the test particle (proportional to a Boltzmann-Gibbs type factor
ee. L ° e N N o

~m¢pi- ?frﬁiﬁiT}o The next approximation, {H(H\MT\ , 1s determined by
linearizing the Euler equations. Althéugh the modified linearization
breaks down near the test particle the effect is unimportant, since
MNo(IZRY]) vanishes in that region. The results are exact asVyi—=o0 .

The solution of the modified linearization is used to calculate the
drag force on the test particle. The drag is expressed in terms of an
integral which is evaluated to lowest order in an expansion in powers
of “\/p, . That the ratio of the Landau lemgth, R, = SX , to

ATerhy 2

the Debye length, ]QD = ( ———g;—£> , 1s an approprilate expansion pa-
rameter 1s seen from Table I.

We present the modified linearization calculation in detall since

it clarifies the more refined treatment of the test particle problem

in Chapter VI,

2, LINEARIZATION OF THE HYDRODYNAMIC EQUATIONS

In a simple hydrodynamic treatment of the test particle problem we
assume the test particle (charge - €t , mass M+) is moving with uniform
velocity‘iz; through an infinite plasma. Both the ions (charge € , mass

M ) and electrons (charge -e , mass ) are assumed to satisfy a set of
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Euler equations.* For electrons with density N(F t) , velocity Me(n 1),

scalar pressure “PQ(I?/JC\ , and constant kinetic temperature Q:IQBT s

mﬂigmwucvml::'V&fan_+&f

IN

S+ v (Mig) =0 (3.1)

pe: on

-
For ions with density N ().Ct) , velocity '\/\:( (r?)t] , scalar pres-

sure )Pi (){ft) , and constant kinetic temperature Q:/EBT s
IU; = o7 =
N[ 79 ] = -, venE s
Jd N >\ (3.2)
*3-{ + VO (M .‘}\LX =0
;= 6N
%

In Egs. (3.1)-(3.2) E is the electric field due to the charge
densities QN , -, and the test charge "density" ’QTS(I?](: ))fHZt,
These quantities are related by Polsson's equation

—>>

VE = 4me (N-N) — dwer SOTTL) (3.3)

—
The vector quantity [%i is the force per unit volume exerted on the

-
electrons by collisions with the ions. More specifically, )%i arises

from those collisions not already included in the macroscopic electric

*For a discussion of these equations as applied to a plasma see Ref. 3.
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-~

>
P
field E; . The corresponding gquantity for the ions is lie . The con-

-
servation of momentum assures us that F%L%W%Q =U . A simple collision

picture gives

N : BECAEE NN ~N
i = 2pMder (W-ug) = ~Fe (3.1)
mM

where ;1: and ‘Dti 1s an effective colllsion frequency.

™M
The conservation of energy equation, the last equation of (3.1) and
(3.2), has been replaced by the simple ideal gas equation of state]o:@??o
The kinetic temperature €%=kéj— is assumed to be a constant, the same
for both ions and electrons.*
Throughout this dissertation terms proportional to the ratio of

4

electron mass to ion mass, W“/$4 , are neglected, {The largest value

of Wﬁ4q occurs in a hydrogen plasma,!%%== 1836 .) To terms of order
VW/%Q the ion motion can be neglected, and the electrons are treated
as moving in a uniform background of positive charge.

We can now proceed with the linearization of Egs. (3.1)-(3.3). For

the undisturbed values of the fluid wvariables we have

M= N =n,

Pe =100 (3.5)
Mo = O

=7

*If adiabatic changes are assumed,j37q is a constant along a stream-
line where %' is the ratio of specific heats. In the linearized theory
the only modifications introduced by this refinement are (1) the "sound
velocity," 46%;‘ , is replaced bY‘VTQAM , and (2) the Debye length
Ry is replaced byt Ry
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The test particle is assumed to introduce a small deviation from the un-

disturbed values,

N=Ye+n'
“Pe:'ﬂoQ+T% (3.6)
Ue = Ue

Neglecting second and higher order quantities the linearized form of Egs.

(3.1)-(3.4) is

;§;> ’ > o
‘h]ﬂo 31_}(:6 = ‘VPQ —CNeE - QIK?)'HO MC
m >
7t tTeVelle =0 (3.7)
‘Pel = ONn
VB = —4ren — 4mes § (= HL) (3.8)
PJei =Die =D (3-9)

It should be noted that in the neighborhood of the test particle
> €T =
=8 TE;E:FE' , and the assumption that E is small is no longer wvalid.
TART
We return to this point in Section L.

Taeking the divergence of the first of Eas. (3.7), and using the

continunity equation together with Poisson's equation (3.8) one obtains

{2 @yt aan Frgfn = —E S S0 (50
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(ﬂc no)‘fﬂ-

where (Uf’ is the plasma frequency and (= ’q ®%n is the

(& /
speed of sound in the electron fluid, G}: % \
ALy
We now make an approximation concerning the collision frequency?) .
To obtalin an estimate of the magnitude of +) we must first decide on
what constitutes a collision. If we suppose ’tgr is the time necessary
-
for the average force on an electron, § , to produce a momentum change
comparable to its initial momentum, i.e., l?‘to = MU then a pos-

IF{

sible choice for the collision frequency 1is 7) tqr— Equation
(2.30) gives an estimate for the force when W is small. With the sub-

stitutions V=W , i\bm , <=6, , and bmw:Q-}) in (2.3%0) we find

D= W, R \Ji{j A (L‘@ ) (3.11)

4 e\ T2
RE M is the Debye

y3
where R,_f» C/Q is the Landau length and R}: (

length. For most plasmas RL/RD is on the order of 107° +o 10-12 (see

Table I), and D L LOP . In Eg. (3.10) the coliision frequency occurs
i
through the term RD”“ . The dominant frequency in D“/i;t is near
gt

the natural frequency of the plasma, (}/P . Hence, 9\9%“\29(&)\) 2 ¢ a)?; s
' 7 e

and to a good first approximation we set /=0 in Egq. (3.10),

{%%1 —alvl-(.(}@;'} n' = ~_U)§ T g(rﬁﬁt) (3.12)

S
I
The solution of (3.12) is straightforward and is sufficiently sim-
ple that an explicit expression for the test particle drag can be ob-
tained. To proceed with the solution we first note that the time de-

pendence of ’J/L/ must occur in the form ’)’L’z n’(/i’iv?t) . The operator
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=
/34, is replaced by ~V;*V .  Introducing £=1-t Ba. (3.12) be-

{ - a\g*) —o> ag,»,_wﬂ Wg)-.— 1€T§(*§3 (3.13)

—
Taking the \%% axis along V5 and using the boundary condition that
there be no disturbance in the fluid as ‘% >+ there are two cases de-

pending on whether V5 1is greater than or less than the sound velocity.

When VY.< Q,

wp $3
é& ? i |~ o2
- Cet No
o
() = - —— (3.1h)
moyar-ve 2 5
§L+ | — Vaz

> >
£

where g‘t TS and \gi: §1“ T
When V=0 the disturbed density 7 is spherically symmetric
about the test particle, and decays exponentially with a characteristic
length QL Rp - If 0¢V7 <O the density is squashed, symmetric-
e
ally in ‘t‘gz , along the direction of motion of the test particle.
When V4 > Quthe situation is quite different. The electron dens-

ity W' 1is different from zero only in a conical region behind the test

particle
W@ = [ &M Cﬁv{ \j‘/w/az—l '&} §%‘°
*“‘LW = gw m > 15|
V-‘r"l/a" -1 L ¢ (5°15)

O sleechuru
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—_
The electric field [—;(%b) induced in the electron plasma 1s deter-
mined by the density deviation "YL’ . The force on the test particle
~—>
"\eﬁ,ﬁk , where the index ”t{ " means hydrodynamic or fluid approximation,
) -
is given in terms of this field evaluated at the test particle \gzg s
Y= - er B (o)
€> (3.16)
> 1=
= —eer WS (@)
5
——
Inspection of (3.14) shows %ﬁ’QZO when V.40, ; there is no
force on the test particle when it moves slower than the sound velocity.*
When the speed of the test charge exceeds the sound velocity the
charge density induced in the fluid is confined to a cone behind the
test particle. In this case there is a net force on the test particle

given by

3 (3.17)

where W’(?) is given by (3.15) and polar coordinates (¥ ,%=Gw® , ?5)
> ~

have been used for E with V5 as polar axis. The lower limit of the

‘§ integration is %0 instead of zero., This is necessgary since the

force diverges logarithmically as §O—>O . Physically the introduc-

*That the force is exactly zero is a consequence of the simple fluild
model which does not allow for a distribution of plasma particle
velocities, Equations (2.28) and (2.29) show the force to depend on
those particles whose speed is less than i . In the fluld case the
speed of a plasma particle is characterized by the sound wvelocity o .
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tion of ‘§° means the force calculated in (3.17) is due to the induced
charge density outisde of a sphere of radius Eo centered at the test
particle,
. . I o % .
Substituting (3.15) for Wl(ﬁ‘)the components of f}H‘perpendlcular
- . . . . 2
to V4 go out with the 4) integration. Introducing S::V1‘&/“3 the com-

- —>
ponent of *}H_ parallel to N, reduces to

- - %

where |

$ b
a}{&: (Lv Ss\g Xh’(ﬂ &Q}Ey/l‘i{ [ S}

© " (3.18)
2, 2 , __&__
= w Sd\g &l’v“{\g ’V\TS‘&
V% PR
) §
The integral can be performed* and the result is
® £w 24
S I )& 0P ]
A}t#“ N M[ L l Z( Vve-a (3.19)
T Awp = 2L (2e+0)!
where lw)\:»0.577-—- is the Euler constant. If only the dominant

. 00p

VVT'Z_az

= - e[ ST R 5 o)

terms are retained in the limit < the drag force is given

by

(3.20)

*See e.g., Grobner, Integraltaflen, I 129 (5a,6e).
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dwern,Y 2
o

where Rﬁb: ( is the Debye length and €=2.7)§ - is the base
of the natural logarithms.

Tt is interesting to compare (3.20) with a similar result obtained
by Vlasov.™ To evaluate the force Vlasov used the induced electric

-
field evaluated at a distance *§1 in front of the test particle <‘§_L=O) .

Then as €30 be obtained*

— >
> 2 M€ Voo Ry | Wy e
a}vn,w: '“GTWFL-«QN‘\{W{" wo¥plve rO(50%) (3.21)

3, DISCUSSION OF THE RESULTS

There is no reason to prefer either (3.20) or (3.21), since both
involve an unspecified short range cutoff, fo or §% . The reason
these expressions diverge is directly related to a failure of the lin-
earization approximation for the Euler equations. In the neighborhood
of the test particle the electric field can no longer be considered as
a small perturbation. In fact, when ¥, 6 £ :(‘;(:T/Ia Eq. (%.18) shows
that /2 N, , and the linearized theory is definitely not correct.
A modified linearization that eliminates the divergence in d%/:@ is dis-
cussed in Section k.

If we must make a choice for the value of the lower cutoff, %O
or ¥5 , it would be best to choose the Landau distance, R, = 6679
since (1) R_ is the minimum impact parameter that occurs in the binary
collision theory, and (2) the linearized theory breaks down when ‘goésa._ KX
*In Vlasov's expression the factor ¥ ¢ was incorrectly omitted from the

logarithm argument.
**¥The use of R as a lower cutoff is adopted by the authors of Ref. 9,10.
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The important feature of expression (3.20) or (3.21) is the demon-
stration that a collective description of the plasma, which 1s capable
of describing Debye shielding, will automatically introduce an upper
limit on the impact parameter of the order 123 , the Debye length.

To understand clearly the relatlionship between the hydrodynamic
drag dg:z and the binary collision drag ﬁf:c,it is helpful to think of
the neighborhood of the test charge as divided into three domains (Fig.
2). Domain I consists of the spherical region about the test particle
with radius ]QL_, the Tandau length., Domain III consists of the region
exterior to a sphere of radius RD;* the Debye length, and domain II
is the intermediate region extending from ]}L to )33

The binary collision hypothesis assumes one plasma particle collides
with the test particle at a given time and the momentum transferred in
a given collision is that which results when the colliding particles
approach one another from infinity and after colliding receed to in-
finity. This is clearly a gross approximation in a plasma, but is nearly
satisfied in domain I. At distances on the order of 770-//3 inaccuracies
can be expected, and at distances on the order of '23 the situation is
unfavorable for the binary collision assumption. Correspondingly, the
fluid description applies to regions of plasma containing many particles,
therefore, to domain ITII. Tt cannot be accepted at distances on the

order of 713”% . Neither description of the plasma is appropriate for

the intermediate region of domain II.

-~/
*For most plasmas of interest in inequality R, < 75/% < Rp is satisfied
(see Table I).
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Fig. 2. Domains of interaction about a test particle.

Now it is evident that (2.28) with way: Ry is the force expression

when the binary collision treatment includes domain II as well as do-

main T,
—> 5 -~
= e [ Rl v .
%B.C." ~er (OFJQM[‘&'L R R‘E V> (3.22)

where ML>3W, for a test particle with constant velocity. If, instead,
the fluid description is used in domain II the force expression is

(3.20) with ¥, =R_,

> 5 € Ve R v
d}{l_ = ‘C‘ZwPJZN\[—’): —C_L ...,R_L]/\'LY '; VOIS (5-23)

Since neither method can be extended to include all domains the
obvious step is to try a combination of the two results., If the binary
collision hypothesis is assumed correct in a spherical region about the
test particle of radius L. , ([2L< L < be , and if the fluid approx-
imation is assumed correct in the region exterior to LJ , then the

force is given by a sum of (2.28) and (3.20) with &)me=:§o::lg
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e (3.24)
] ha Vo O

—»___11 é,v_"sBP
ERE T

The interesting feature of this formula 1s that the arbitrary length

3 5
V”T

does not appear explicitly. This result was first emphasized by Viasov.tl
If Vlasov's drag expression (3.21) is used in place of (3.20) this gives

the slightly different result

-
ves v Ryl v
T= G E R v oo

The last result has also been discussed by Hubbard’ and A.ono.,6

In do-
main IIT the last two authors describe the plasma by a one particle dis-
tribution function satisfying a linearized Landau-Vlasov equation, but
in the limit V5 >> O their results agree with those of the simple fluid
theory. It is clear from (3.24) and (3.25) that an ambiguity is still
present in the drag force even though a cutoff does not appear explic=-
itly.

To summarize, the binary collision calculation (2.28) diverges at
large impact parameters, because of the peculiar character of the
Coulomb potential and the neglect of collective interactions. The con-
tinuous fluid result (3.20) diverges at small impact parameters, be-
cause of an improper linearization of the Euler equations (3.1)-(3.3).

A combination of these two results that includes contributions to the
drag force from plasma in all reglons about the test charge 1s given by
(3.24) or by (3.25). The difference between these expressions results

from the ambiguous definition of the drag in the fluid model; the cut-
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offs in (3.20) and (3.21) are necessary because we have not properly

solved the test particle problem.

L. MODIFIED LINEARIZATION OF THE EULER EQUATIONS
We continue to treat the electron plasma by neglecting terms of
™y R . . .
order M . The Euler equations for a fluid of electrons moving in a

uniform background of positive charge density o are

| ag +\favﬁ>§ = ~Vp e E

%% V.l =0 (5.26)
p=on

where the energy equation has been simplified to the ideal gas equa-
tion of state,‘¥L:@YL . The electric field is determined from Poisson'’s

equation

VE = 4re (nen) - 4rer § (A7) (5.27)

where )ff‘: Q:{;

The electron density ir the neighborhood of the test particle must
vanish because of the repulsive Coulomb forces. The assumption that the
test particle introduces only a small perturbation from a uniform elec-
tron density 7 s 1is obviously not correct near the test particle., It
is this failure of the linearization in Section 2 that led to a diver-

gent drag expression (3.20).
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—_—

When the test particle velocity is zero, V=0 , one expects a
time independent solution of (3.26) in the form of a Boltzmann-Gibbs

factor

(3.28)

If the test particle is moving the density (3.28) is distorted along
the direction of motion. ILet us suppose that this distortion can be de-
scribed as a small perturbation

~R Q)
N =, € ok

FH)% (5.29)

where Fi -§£§'and Jie = @?t The assumption that 4A(ﬁ?t) and E;(R})

are small leads to a linear equation for {A(ij) which is readily
solved.,
To obtain an equation for gz(lﬁiﬂ?W) the density (3.28) is inserted

into (3.26) with \}’T’:VC:O ,

Vo (zmn) = if} =

The divergence of this equation can be reduced, using (3.27), to an
equation for Qi alone,
-QL@()O
L [} N
Vo) = Aﬂy‘@ndb—e ]—41«5()1) (3.30)
This equation is highly non-linear. An approximate solution, obtained

in Appendix A, 1s the familiar Debye-Hickel result
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_n

dy = ,‘;e "> (3.31)

AT, -
where Rb =\ "5 is the Debye length.

The linearized equation for WUt} is obtained from (3.26) by
using the definition (3.29) and neglecting quantities of second and

- >
higher order in ¢ , E , U, ﬂ, . The result is

VO? = — ZFWQ’}I]G[&—QL@] - AFTQTS(T\(?T(:}

Since we are looking for a solution of the form Ja\(ﬁ\,ﬂ:ﬂ(i)f?)
d/ > .
the operator /Jt can be replaced by —V,*Y . The divergence of the
first equation can be reduced with the help of the remaining two equa-

tions to yield a single equation for E\&L-RL.&’K 5

{(ﬁiv} - (lelvuoﬁ [hRo@ | = - Ameer ¢ i (3.33)

2_6 _ 0 _ dwetNo -\
where (= /YN7 Rp= UJ?—'('_’@—_' :
This equation is identical to {3%.13) except for a constant factor

of Y, which is missing from the right hand side. We can immediately

write down the solution for J&\ (M%) - When Vo < QU R Jﬁ\, is given Dby

i 2 %%
R S+ 1= /g >

o= B,
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- >
and t; 1is the component of ¥ in the direc-

When N3>0L Q’b is given by

Sl g0
ﬂk?\ _ IZL@(?B_ D;LR_L“_‘ a%[% V- | ‘ 1 & -

Ve ®
— -1 2 _t2 VV? .
62 —_—
Ve =1 S (3.35)

Ry @@ 5 laccstune
“@\ -
The validity of the linearized approximation for (‘i ) is readily
ascertained. When N+ <4 (L we have a good approximation for 8\4 , even
~>
in the neighborhood of the test particle ( €X0 ). This is evident
—_
from (3.31) and (3.34), the two terms in J&\(‘i) tend to cancel one an-
other. As A% increases the cancellation is less effective. When V3> QU
we run into two difficulties. First, the density correction ‘E\(gb)

. i < . . .
diverges on the cone \§1<O ; jgg:ﬁ‘%_, I%i[ . This arises from an in-
adequacy of the continuous fluid model. In Chapter VI this difficulty
is eliminated by describing the plasma in terms of a one particle dis-
tribution function,

—>
Second, even if ‘f/\(%) is not evaluated on the cone, say ¥,-o ,
it is large if evaluated near the origin, \\g}_\ £ RL . This behavior is
a fallure of the linearization approximation used to calculate 4)/\4 . The
breakdown of the linearization is unimportant, however, because of the
o ) 03 $ $
exponential factor, Jp i—RLﬁ_)(g’}g , in the demsity W (¥) . 1f I¥] 2R,

then R, @2} S f](?) A O#) , and “M}P{‘RL@@\&‘S\ é1 . Thus, when
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!

WG, ‘J/

\ < R , the exponential factor overwhelms the misbehavior of J?\(?)

The force on the test particle is — €+ +times the electric field

-
evaluated at ‘f’g =0

J

X‘@Sg( ) \($)

_ _QTCY\ogﬁk Tl RL@@%J\(?)% o

-~ N ) : 3=
When V<O o V\(g’) is given by (3.34), and =0 since the in-

- >
tegrand in (3.36) is an odd function of ¥

When Vi SO. | %(g”) is given by (3.35). That part of Ji\(gb)

given by | QL@ g\ cannot contribute to the force, because of its spherical

symmetry about the test charge. To evaluste the remaining part use

. —~> b 8
spherical polar coordinates ( ¥ WERC=I (t‘) ) for ¥ with Vot as

the polar axis,

g - 2 Gy § 090 bl 7]
IVT/OJ Sw]“ o §1 V"z‘g*;_—\ (3.37)
72 —

where S= \}%a/\ff

$
The components of 63 that are perpendicular to

_b
5 involve Sm(b C,«@Cf) , and vanish when integrated over (l)

The resultant force is a drag,

EIEIRC S
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where

O R By | Q—
d}: AreLem, RLSA‘%Q g g(hl ’qCﬂQJ[SR» (
Vel o % 4{“(1‘”’”

(3.38)

In Appendix A the integral in (3.38) is evaluated to lowest order in

RL/RJ) . The magnitude of the drag force to lowest order in /eL/,eD is
= ud Ry L/ Re
1o ST R oth) e

where € =2."718.-- 1s the base of the natural logarithms and LA=0577~-
is Buler's constant.*

This result would be identical to that obtained from the simple
linearization method of Section 2, Eq. (3.20), if the cutoff is chosen
as %, = \R_ . The significant feature of the modified lineariza-
tion is that it i1s no longer necessary to introduce a cutoff.

Tt was indicated in the discussion following equation (3.35) that
the continuous fluid model leads to a divergent solution on the surface
of a conical wake behind the test particle (/\fT> O ). For this reason
the drag expression (3.39) is only a preliminary result. The point to
keep in mind is that a linearization, similar to that used in this sec-

tion, will also work for the test particle problem described in Chapter

*The order relation (9(X) has the meaning Ef:;w %(5’/‘7{ ) = constant.
=0
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VI. In Chapter VI the electron plasma is described by a one particle
distribution function satisfying the Iandau-Vlasov equation. The drag
expression obtained is nearly identical to (3.39); the logarithm argu-

ment is a more complicated function of Vi,



CHAPTER IV

TEST PARTICLE PROBLEM—CONTINUUM DESCRIPTION

1. INTRODUCTION

In the preceding chapter an attempt was made to calculate the re-
sponse of a plasma to a test charge by considering the plasma as a con-
tinuous fluid. It was discovered that the plasma responded to a slow

"screening cloud" about the

moving test charge by forming a charged
test particle, Eq. (3.14), while a fast moving test charge had this
"screening cloud" distorted into a trailing wake, Eq. (3.15). This be-
havior is similar to that observed when a charged particle traverses a
dielectric medium (i.e., polarization of the medium and Qerenkov radia-
tion). On the basis of this similarity we are led to an investigation
of the passage of a charged test particle through a continuous dielec-
tric medium,

The force on a test particle was first calculated in fterms of a
dielectric constant & (w) by E. Fer.mi.2 We extend the Fermi calcula-
tion to include spatial dispersion, that is, to include a dependence of
the dielectric constant on the wave vector E% as well as the frequency
V)

In Section 2 the necessary formalism, relating the electric and
magnetic fields to arbitrary charge and current densities, is developed
in the framework of the initial value problem. In Section 3 expres-

sions for the drag force on a test particle are given in terms of an

L5
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arbitrary dielectric constant. In Section 4 a simple example is inves-
tigated. In the following chapter the dielectric constant for an elec-
tron plasma is used in an explicit calculation of the plasma test par-

ticle drag.

2. THE MAXWELL EQUATIONS

The phenomenological Maxwell equation in Gaussian units are

> - 19-—b
V~]}‘—‘4~'W9M VXE=—“‘63—%
| 9T Vg (4-1)
— = T
v.T =0 Vol = o5t T i

>
where QUJ ’\ibﬁﬁ are the "external" charge and current densities.
The charge density and its corresponding current must satisfy a con-

tinuity equation,

9 Paiy Ys
'é—jt‘—’ + V‘ém'\;‘:o ()-1-92)

To these equations must be added the so called constitutive relations

- — S o
connecting D with E and B with 3

In this chapter linear constitutive equations connecting the Fourier
amplitudes of the field vectors are used. In the initial value problem

all fields are zero for negative times ("t<<O ). 'The Fourier time trans-

-

form of EGY) is

) ..t
= 1 > i 63
E(Tw) = 4 )dt EOTe

[}
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X
The Fourier space-time transform of [ (%) 1is

“ 0 - (B t)
TREER Y. P (e

7

which exlists for k?>real and dam (O sufficiently large and positive.*
Using similar transforms for the remaining functions, the constitutive
equations are

N —>

D) = Elew) BE(w)

“ - (4.k)

B(Fw) = wlew)H(Ew)

In this way the personality of a medium is cast into the functions

fi(kﬂLu) , the dielectric constant, and ﬁi(k,u), the magnetic permeabil-
i

ity. In general, t and fb will be complex functions, It is the pur-

pose of the next chapter to determine these functions for an electron

plasma.

Note that the constitutive functions fl(k,wﬁ and /A(E,m) are as-
sumed to depend only on the magnitude of k?’and not on its direction.
This assumption is appropriate for an isotropic medium. In the next
chapter we deal with a plasma that has an isotropic equilibrium velocity
distribution, the Maxwell-Boltzmann distribution. In that case the
plasma behaves as an isotropic dielectric material, hence the assump-

tion that & , V\ depend on \E>%, W is sufficient for our purposes.

*Complex Fourler transforms are discussed in Morse and Feshbach,
Methods of Mathematical Physics, p. 468, McGraw-Hill (1958).




L8

Actually, the calculations described are easily performed when 3 ,Tb
depend on E>. The results, however, are more complicated and will not
be given.

The customary derivations of 8,, PJ for a plasma start with the
Landau-Vlasov equation (see next chapter). In this case transverse and
longitudinal electromagnetic fields have the same propagation character-
istics, and only one scalar function is necessary to describe the plasma,
i.e., only t is necessary and r&(kAuﬁ = 1 . 1If electron-electron cor-
relations are included two scalar constitutive functions are necessary
to describe the plasma. Both & and PV are retained in this chapter.

In terms of Fourier amplitudes the phenomenological Maxwell equa-

tions (L4.1) become

A VS q,g’ (A)%
e E = —4mi oy XE - TH
- L$Q_ W %W_TI_;:VT\B (LFDS)
}Z@:O ’,L‘KXB*“‘DEE L?M

The transformation of the continuity Eq. (4.2) is, remembering that in
the initial value problem the external charge density is established at

t:O )
T4 — 10 Pur — 5 P() =0 (1.6)

where

R

Pl = Sr}ﬁb PMK(FC{_:O)Q (&.7)
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is the Fourier space transform of the initial external charge density.
It is convenient to decompose the fleld vectors into components

parallel and transverse to E?. The parallel, or longitudinal compon-

"

ents, are denoted by a superscript " f," and transverse components by

n

a superscript "#} ." The phenomenological Maxwell equations reduce to

E“{,UU) El: - 4Tl'i gv)\m-x % %’Q': Q]
o sy . ) ) (4.8)
[‘S(h)lu) } E T 3 "glﬂij“ ‘%h: (%) >)\£ by

P(k

These equations express the fields in terms of the external sources and
the constitutive functions of the medium.

A word should be said concerning the Fourier inversion of (L4.8).
Let us fix our attention on determining the temporal dependence of Ey ,

for fixed real E%,

roNy “
. avi PrEwy B> it
dw Ig(k:u)) 8 ()4—-9)

B et) =
-—0+Y
where the path of integration in the complex (W -plane must lie above
all singularities of the integrand. To evaluate the integral for tl<(3,
close the path with an infinite semicircle in the upper half & -plane.
Since, by definition of the path, there are no poles within the contour
Eig is zero as required for the initial value problem. To evaluate

the integral for 1> O the path of integration can be extended* along

*This extension of the integration path requires Jjustification for
each choice of functions occurring in the integrand. We shall assume
the procedure is generally valid.
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an infinite semicircle in the lower half (O-plane. Contributions to
E* come from poles of the integrand. Poles in the upper half (W -plane
give exponentially increasing fields while those poles on the real )
axis give harmonic contributions and poles in the lower half « -plane
give exponentially damped terms.

Poles of §&4K arise for special choices of the external sources.
The poles from zeros of the denominator govern the behavior of the me-
dium as it is characterized by ¥ (k,w) . Since the condition
%,(k,u)) =(Q 1is just the condition necessary in order to have a non-
zero field, E , when the external charge density §%4X is zero we
see that

E(k)wB =0

is the "dispersion relation" for longitudinal fields. Correspondingly,

the "dispersion relation" for transverse fields is

. 2k _
%(h)uo\ - wlf*“‘;m = 0

5. TFORCE ON A TEXT PARTICLE

We now calculate the drag force on a test charge moving through
the medium with constant velocity ‘Qi . Although we have hitherto con-
sidered the test particle as a point charge, in this section it is more
perspicuous to ascribe to it an arbitrary spherically symmetric charge
density §A_Uﬁj). If the test charge is located at the origin of the

coordinate system at t=0
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(i), t>o

P (r) =
O ; t<o0
(Lk.10)
> pTQ\n—th\\ ’\z , t>0
ok (1) =
0 , t 40
The Fourier space-time transforms are
Pot (Bw) = : - Iww>0
wh awi (10 127) (h11)
X k) A _
’&,@(Eﬁw) = - PT( )V , >0

2w (W-K)

where pT(h) is the Fourier space transform of the charge density,

_ile
PT(D: S & e () e, (k.12)

“ %
The charge density is a real quantity which implies PTHQ\: f)\T(M
for real ¥Z>, where a "star" means complex conjugate.

The force on the test charge is*

d} gdﬂ,? \yL_th3§ nt)+%x$(ftt)§ (k.13)

Representing the functions in the integrand by their Fourier transforms

pHT, 0l 3 (R R-1 (o)t

I}: (:m)kg Sﬁﬁgdm &‘“‘ SA‘” (Me l?mycxélz:@% (.18

-0MY, @, PN S (&)‘ 3

*¥It is not necessary to subtract the self field of the test particle
provided we agree to define 1ntegrat10ns over infinite ranges in the
sense of Cauchy de - S’ d')L

—-@

L
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Changing orders of integration, using the identity

dde

@m SATL 8 = g(ﬁb)

==
and preforming the E| , W, integrations, which are straightforward

013 ( )t o
@T33 gdk g duo p‘r > { (ET&U) + :\g- X@( \Zm) (Lk.15)
-OhY

The transforms of the field vectors are given by (4.8), (4.11), and (L4.12).
Both the longitudinal and transverse electric fields contribute to the

—
force. Denoting these contributions by 3‘;}

$
i and &}n respectively, and

—y
the magnetic field term by &}PB we have

g > >
1= o oy VY

where
- X . oy ‘l((’o Ebfv—r)t
%JL: z%; Scufgdbo By b~ €
—@WY am (UO-»L ﬁ) EL E(\Z,U,))
07 \)‘( _?»)t\-k ( )\Lx
- (B |
@m S&\z‘gdw SIDIN b (1.16)
( )3 L 8! | o >
I - B
00t -1 (w*\?m)t
Tl 0 SJ gdw S 2 N
B )>

-Ow

S L
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The assumptions of an isotropic medium and a spherically symmetric
test charge are responsible for the vanishing of the magnetic force,
— .
"\5}%:0 , since the integrand is then an odd function of the component
> —> >
of h perpendicular to '\Ti . For the same reason the forces ‘LS}Q and '51,%
— -
are parallel to Vi . The force dé,L is the dominant drag force on a
slow test particle, since the transverse force ‘i}m is of order(T/CA
—> —
smaller than H& . When € =gw) , rv(,:'\ s "}Hi is the force result-
ing from the emission of 8erenkov radiation, when the speed of the test
particle exceeds the phase velocity of light in the medium.

In the test particle problem it is customary to assume the medium
is stable; i.e., there are no poles in the upper half (J -plane. There
may, however, be poles on the real axis, and these require special care,
One procedure 1s to extend the W integration along an infinite semi-
circle in the lower half (J-plane, and to retain only contributions
from poles on the real (J axis as representing the time asymptotic re-
sult. This procedure has the disadvantage that subsequent integration
on E> may alter the order of these poles, making it necessary to divide
the g integration into suitably restricted ranges. An alternative
procedure is to decompose \'? into E‘; s k—: (the parallel and perpen-

—> -
dicular components of \(L referring to N\, ), and to perform the \e“
integration by completing the integration path along an infinite semi-
circle in the upper half k.. -plane., We can assume Iv«w =1 is so small
that all poles of the integrands in (4.16), in the upper half lf“ -plane,

occur at ,VT_va\k“>VX\ . If this is the case the time asymptotic result
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comes from the pole at OO—\Z,{VT =Q , all other poles containing expo-

nentially decreasing factorsﬂle{—lemk“;W)tg

%
For example, the time asymptotic force J\é& will be

, w VA
6;? __Amb 0. (k) = -l
* ap S é) \1 o) Jh=hy (2

Changing integration variables from (J to lZ“VT

Ny N
—> >

‘\}k: ol 21y givg\cnlu pT o 1({ (4.18)

( ™ -QWY \l’l E(\() E»\z;)

In this fashion (4.16) may be simplified to

_ (k) k=
a} (? \\)3 g AE} b2 8(\2 &)

(L.19)

o~ (e ) (28 - ()
@xﬁ Ak e +» o

where P means the path of integration for ku passes above poles on

the real axis,

L., EXAMPLE
To 1llustrate these results we work the problem considered by
Tamm®® in his explanation of Cerenkov radiation. Temm calculated JEHX

for a medium whose constitutive functions are

&=tw) -1
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where ¢{w) is a real function of real L)

Using our formalism it is
- —r
easy to calculate both *3Q and *}r

If ¢{w)=0 for some O the prescription given for treating the
-1

poles in €(w) 1is to add to W a small positive imaginary part, say

198 .

This corresponds to adding a small conductivity to the medium:
e d
Elwnb) = E(w) ¥i§ mEw) v

however, C(w) = ¥(-w)

, and in the limit 8—>d¥ this is equiva-
lent to

Clwsis) = Elw) +1 X

{
W
where §—>0" is the conductivity.

Applying (L4.19), and retaining 0 as the integration variable in
place of kuN} s

O @

> T 42: >
T = - 2611 gdwgkﬁh o A

e e [E}%} [E(w)fbf;gl

(4.20)
, — 2 kz.
3> 2,631 A ‘z Ny wem Ry
d}x\: P w ;C’ L C1 A - w-,_ S - CleZ S
-0 o s vz | [ e ok
Using the relation

O
y — §i
(ii—:ﬁg“ [9{(70]1 e T é [ A

Egs. (L4.20) reduce to
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N > ki
d}L: _Q‘Q Shlc“l

X(D 0 5[‘6(0))1
4o A
(4.21)
*:}:\: B %} /VTT % do [1 [m)l
i%:wX

where it is necessary to insert an upper limit ( kwl) in the kiyinte-
gration, since the assumption of a dielectric constant that depends
only on (LW = k“ '+ 1s an approximation to a real medium that cannot
produce a natural cutoff in kL

The force %}1 receives contributions from those values of W satis-
fying the "dispersion relation” ¥{w) = ; that is, the force results
from the emission of longitudinal waves (polarization waves). The force
*EZi is Tamm's result for a particle emitting transverse waves (ékrenkov
radiation). Note that l*i;j is of order éé: ‘ﬁ;;\ , and can be neg-

lected in a non-relativistic treatment of the test particle problem.



CHAPTER V

PLASMA DIELECTRIC CONSTANT AND FORCE ON A TEST PARTICLE

1. ZINTRODUCTION

The purpose of this chapter is to apply the drag formulae (L4.19),
which were obtained for an unspecified dielectric constant, to an elec-
tron plasma.*

The electron plasma dielectric constant is determined from the re-
sponse of a plasma to an arbitrary external electric field.** If G(k}u)

is the conductivity,

“}WQ (w) = Slkw) =4 (5.1)
then
4 @7_ e Y
Blw) = 1+ 75 G lhw) (5.2)

To determine G(kﬂm) the plasma ig described by a distribution function
S;Uf{ﬁt) where

N .

7) 0 3’ I\ rf}\;,t ) C&}:CBU\U\

is the number of electrons within behof ft , and a7 of ﬂ? , at time

1, . The distribution function satisfies the Landau-Vlasov equation

*As in the hydrodynamic calculation we confine our attention to an
electron plasma, and assume the lons are distributed with a uniform
density M.

**For a derivation of the electron plasma dielectric constant see
Ref. 8.
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YWagn - S
) e ‘_6__ Y o
ot Ve m(p—w\‘* : '\ S+ © (5.3)

> -
E;Lﬁ is an external electric field, and Eﬁxwg is the induced (self

consistent) electric field,

o o L D S GORRN Dy
St = enld b LT F ey (5.4
<A
1/ . .
where @(n§= /n . The induced current is
-~ (5.5)
e : > >\ O o
Jud TR = -¢ mgd.\[ VHT ¢ )
Let
(0}\) \gx o >
Wewr) = Loy aheed) (5.6)
where
" .
{0} i \ ‘[: ':‘i:“‘é
Formy - ( :} ©
! 2TmE

is the Maxwell-Boltzmann distribution function. Equation (5.3) is lin-
earized by using (5.6) and neglecting products of the small quantities
:% R .

LL&AX and‘£w(rfﬂf;t\) . Using the linearized solution for‘%k and Egs.

(5.1)-(5.5) the electron plasma dielectric constant is

PR
> E»"

()\)“L. g a =
P ; v __
E(k/e@ =1+ b = Jc\\f O — P (5.7)
, quetno\le
where (A)Pt»( v is the plasma frequency.

In Section 2 the dielectric constant (5.7) is used to calculate
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the drag, $§z , associated with longitudinal fields. The expression for
the force diverges logarithmically, and it is necessary to employ a
short range cutoff to obtain a finite result. In Section 3 the source
of this divergence 1s discussed.

Although the dielectric constant calculation emphasizes the rela-
tionship between the test particle problem in a plasma and the stopping
power problem of wunionized matter, it is an indirect approach to the
plasma problem. We might as well solve (5.3) using the test particle

as the external field

QQ(TL,\I‘ +,\“‘Fa_£ \@&\-D (\TLTLT\ ;\} g"” D_a.j_?_ 8)
L YV 3T W o op mokd oW (5.
where _fE?::Tﬁt . The drag on a test particle is given by the elec-

tric field induced in the plasma evaluated at = s

g = ﬁTCmg DCPUMLTD gd hﬁ) (5.9)

b

f (5.6) is used in (5.8), and the result is linearized by neglecting
—
products of the small quantities Eiidx s 1%J(f;{7;t3 , the drag expres-
sion obtained from (5.9) is equivalent to the drag expression obtained
from the dielectric constant. This treatment of the plasma test par-
ticle problem has been given by several authors.9’10’1h°
The connection between the dielectric plasma test particle problem

and the hydrodynamic test particle problem of Chapter IIT should be

clear. The hydrodynamic equations (3.1l) represent the first three veloc-
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ity moments of the ILandau-Vlasov equation (5.8).* It follows thata solw
tion of the ILandau-Vlasov equation (5.8) contains more information than
the corresponding solution of the hydrodynamic equations (3.1). The
linearization of (5.8), described above, is analogous to the first
linearization of the hydrodynamic equations in Chapter III, Section 2.
In the next chapter a modified linearization of the Landau-Vlasov equa-
tion 1s given that is analogous to the modified linearization of the
hydrodynemic equations in Chapter III, Section 4. The modified linea-
rization of the Landau-Vlasov equation gives a convergent expression

for the drag on a test particle,

2. DRAG ON A TEST PARTICLE
For a non-relativistic test particle we need only calculate the

drag (4.19) associated with longitudinal fields,

- _ 4T 671 > 2 E>
‘)%JL'_ (1T\3 3 dk l?lté(k ) (5.10)

where € (k,w) is given by (5.7). Recall that | means the path of
integration, for the component of parallel to A; , passes above any
singularities on the real axis. Furthermore, the derivation of (5.10)
assumed that ‘E(kvmﬂ was analytically continued from lanlk) >0 to all
parts of the finite (O -plane.

The analytic continuation of (5.7) has been put in a succinct form

16

by Landau. First the 3-fold integral in (5.7) is reduced to a single

*One must also assume a scalar pressure tensor, a zero heat flux vec-
tor, and a ratio of specific heats '=1 ; see Ref. 3.
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integral,
®
2 JQ\(UV
Ui&gd LY Tan WO
— { .
Eluw) =1+ 5 jon e r o (5.11)
where
( (6) > >
Q) = \c\wﬂ(«?)g(wkﬁ)
_ 2 (5.12)
_ (MmN Te
= (%) €
For the analytic continuation of (5.11) Landau writes
RS d('(\“ :
(v . (.
Tlhw) =1+ —xyf—lgc\m mﬁ /i (5.13)
’ V;

%W

where the contour O is the real axis if Jdaw (,>0O and is shown in

Flg. 3 when L@-\\ 28] & 0]

AU

!
® wlk

Fig. 3. Path of integration in complex W -plane.

Landau has also shown that the dispersion relation for longitudinal
plasma waves, $(%,,) =0 , has no solutions when lanw 20 ., 1In

other words, we are dealing with a stable plasma.
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Since the plasma is stable, expression (5.10) can be used with the

Ebintegration on the real axis,

N
1

I E( o)

- B
(8 , 4 ) for > with Vo as

(5.14)

v 4o S
(rmy? ‘

Introducing polar coordinates ( k. , M=

\A‘ o .
V¢ vanish when inte-

|

~Sn
polar axis, the components of %\ perpendicular to

grated over #; leaving only the parallel component,

B R
[ S
where
.-L d, o : y
} o) v ' 2
L?}}\ = j"t' g ab ko \') (;\"f( lmp._
v o’ i ”k?E(hﬁwu{} (5.15)

Replacing the dielectric constant with (5.13)

® Lz ‘& S
N lL"’_'—‘_"
f e *’L U (5.16)

%L: ey g SAWL ey — }le\ L

t

k!
Yo by -
A

The first term is an odd function of WL and vanishes; this term accounts

for the self field of the test particle. To reduce the remaining term

it is convenient to define a new function |/ ,

. ) da W/
W 35 ) Wp % {3 _/ML (5.17)

Jid , (5.12), and using dimensionless

Employing the definition of

variables we see that



or

t 2

2 -t
Sémé‘ + 4y te

WY = {-ate” (5.18)

The function W&D is equal to—-%\%;czed where Z(Jc) is the plasma dis-
persion function tabulated by Fried and Conte.* Graphs of the real and
imaginary parts of W) are shown in Figs. 4 and 5. The magnitude of

W1t) is never greater than unity, \W(ﬂ\ <1

Inserting (5.17) in the force expression (5.16), and making the
t

change of variables = we obtain
A ™ 2
T Y20

i O

o 2wyt c\tt\/\ilﬂgkc\\ﬁ
* LGS o RRy AW

|

Ry

(5.19)

The k’\ integration diverges logarithmically at large k , and it is
necessary to terminate the integration at some maximum value of k , de-

noted by k[v\ s

v\re
e2wr Y, (RnRy) =+ W)
= T v gk Enfo) TWIO
% v SC\t ) Jp. W) (5.20)

1%

*Fried, B. D., Conte, S. D., The Plasma Dispersion Function, Academic
Press, Inc., New York (1961).
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A complete discussion of this divergence is given in Section 3. For the
time being we note that large }Z corresponds to short distances from the
test particle, The binary collision treatment of the test particle

problem in Chapter II indicated that the proper cutoff at short distances

€
is the Landau length, RL: ‘%r . Thus kM should be on the order of
, R
R\_‘ and from Table I we see that kM Rl)w —R%L >> 1 . Correspond-
2
ingly, the logarithm in (5.20) can be approximated by J/V\(kMRQ . The

magnitude of the drag force is approximately
Wi
T,
6\3&: - %} &%ih(knkﬂ Sdt LW (5.21)
e
The real part of '\/\/Lﬂ is an even function of t and does not con-
tribute to the integral in (5.21). The imaginary part of W(t) is ob-

tained from (5.18) and yields

%o
e g 2 -
Ty = ﬁh(m})ﬁ detre (5.22)
m
e PT

(0)
Using the definitions of %Uﬂ and y—(_’\?) we have
Vf@ N
2z ‘tl >
dtre = A’\r
. 0
-VAEE

where the three dimensional integration on the right hand side is over

(0}

2
= L& (5.23)

/ﬁ"

a sphere of radius V. . Combining (5.23%) with expression (5.22) the



expression for the drag force is

’\fT
5 N {? o)
d\j‘i = - ff\’ W i;hj()/\/\ ( \(MRDX '\?TT?) J(}'\? g ("\F) ( 5. 21})
T O

This result has been obtained by Rostoker and Rosenbluth,9

10 a ;u

Gasiorowicz, Neuman, and Riddel, and Ran

3. DISCUSSION OF THE LOGARITHMIC DIVERGENCE
Tt is clear that the linearization of (5.8) is not applicable for
- ->
all . , since Eijgx is unbounded in the neighborhood of the test par-
ticle. It is this weakness of the linear solution which accounts for
the divergence of the drag expression., To see this, consider the solu-
Q«)** . —= ~>
tion for (R,V)tA in the neighborhood of /1ty . For J1 sufficiently
- —>
close to N; the induced field is negligible compared to EQWX' , and

Eg. (5.8) is approximately

(5.25)

This equation describes the motion of non-interacting electrons in the
external field of the test particle.* This is nothing more than the
binary collision description, and a force calculated from the solution
of (5.25) must be identical to the binary collision expression (2.26).
In (2.26) no divergence is associated with short distances; the long
range divergence results from the neglect of collective interactions.

-3
When jU is near Jf; , the equation used to obtain the divergent

¥Ron and Kalmanl3 give an explicit solution of (5.25).
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drag expression is the linearized version of (5.25),

=k ee Doy 287
QJ(, BTL wn P n> 3—'_:\;} (5.26)

The solution of (5.26) in terms of E::ﬁ?—ﬂ; as {;f>d) is

> oy _ eer (20Ut 28t (5.27)
W& = §a~c T

The time asymptotic distribution function in the linearized theory is

then given by

(5.28)

o 0 e, WUTEm) 2%
\Q(‘g,v) :Q 3 Eﬁg > . I

V) + 2 7

207

(o]

The interpretation of this result is clear. The linearized theory de-
velops the distribution function, through the first term of a Taylor
~
series, about the Maxwell-Boltzmann distribution at §'=-+d) . The mo-
= >
mentum given to a particle coming from E:uLd) to E , according to the

linear theory, is

AT = ees Sd,\ a( lSE(V—VT)L‘)

This is a "straight path" approximation, the particles move with con-
e

stant velocities along a stralght path parallel to V-V . As EtA»O

the momentum change in the straight path calculation is infinite, and

this accounts for the apparent divergence of the drag.



CHAPTER VI

A CONVERGENT TEST PARTICLE PROBLEM

1. INTRODUCTION
The aim of this chapter is to present a consistent solution of the
test particle problem in an electron plasma from the viewpoint of ki-
netic theory. The kinetic theory description begins with the Landau-
Vlasov equation (5.8),
WHEFD | =Y e 2007w 2
1t o " 9T AT

(6.1)

where (bﬁi): an. We already know (Chapter V) that a straightforward
linearization of (6.1), in which the test particle is assumed to in-
troduce only a small perturbation from a uniform Maxwell-Boltzmann dis-
tribution, will not work. The situation is quite similar to the hydro-
dynamic treatment of the test particle problem in Cheapter III. In that
case a simple linearization of the Euler equations was not correct and
led to a divergent drag expression., Further investigation of the hydro-
dynamic model suggested a modified linearization that eliminated the
difficulties.

The modified linearization method can also be applied to the kinetic

theory treatment. The method is based on the observation that it is

69
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better to start a perturbation solution not with a uniform density o ,
but with the density that would be prescribed by the Vlasov equation

—> —
(6.1) if V+=0 . In particular, when Vi=o we shall assume the elec-
tron velocity distribution is Maxwell-Boltzmann and that the spatial

distribution has the form of a Boltzmann-Gibbs factor,

(0)

NESE («7’3%{~ RL@(\R’—R‘:\)& (6.2)

),3/ -5
(0) Rad) 2 2
where Ry = e% and Qr(\?): (11:6 C . The "generalized

potential”™ Q(|R”>A\) is determined from the Vlasov equation (6.1)
—
with N3=0 . This @ turns out to be identical to the generalized
potential found in Chapter III.
When V& is small we expect the distribution function to differ

only slightly from (6.2). Therefore, we write

Hewe) = ap T-roBlzmf L Yeey thimen S (6.3)

where fL(Tt \? ,\3\ is a small perturbation. The Vlasov equation, when
linearized in ‘9\) , can be solved, and leads to a drag expression that
does not require a cutoff. In fact, this result is exact as 1,—=0 ,
and is a good approximation even when v significantly exceeds the mean
electron speed m

In Sections 2 and 3 the equations for @ and% are derived, and
in Section 4 the solution for ‘Y’\, 1s obtained and used in a calculation
of the drag. Section 5 completes our work on the test particle problem

with a discussion of the drag expression, and its relationship to the
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approximate drag expressions given in Chapters ITI and V.

2. THE GENERALIZED POTENTTAL

To obtain the function 4@\}{iﬁ§{} we look for the time independent
solution of Eq. (6.1) in which the distribution function has the form
(6.2). Dividing the equation obtained from (6.1) and (6.2) by the dis-

tribution function (6.2) yields

E)¢MVFW:“ QJTDS-»JQ@ [t 4 Rtihg 6.1

—
Since Eq. (6.4) must hold for all A the quantity in brackets is identi-
cally zero. Taking the divergence of the vector in brackets, and using

the identity
Vi) = —4m o () (6.5)

we find

SRRl EE 2 (o B

1
I
=l

7
St
z

The -1 in the first term on the right hand side of (6.6) accounts for
the uniform background of positive charge. Equation (6.6) is identical
to Eq. (A.1l) of Appendix A. We found there that a good approximation
to §§ig\ is the Debye-Hickel result

, -%
Gyy= € ® (6.0
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1T et -l
where Kb—‘- QL—L-%-—;O is the Debye length.

3, MODIFIED LINEARIZATION OF VLASOV EQUATION
-
When the test particle is moving with a constant velocity Vi we as-

sume the distribution function can be written in the form (6.3),

U

—RLQ(\R*TFD
T\ ﬁ>\r 1) = {

vnﬁm,\,t\g (6.

where ff: = \?\t and \\U' v T) 1is a small perturbation. Inserting
(6.8) in the Vlasov equation (6.1), and neglecting products of the quan-
titiles @ s Jﬁb , and € a(\)/ai’> which are assumed small for purposes

of linearization we obtain a linear equation for Jﬁ(rﬁf; f)

M(Z 7D +~>D‘j/i/ _eer 280N F

D't I\fe 9R~> —Y’V\—) 9)\(\)) a/\[—
() (6.9)
— e ol > > QT - QAP —a@(\ﬂ /\TD
T,,\"gchrg(\n’-@g%@ﬁ,&v{) — ;}(Y\) (V—T"’a‘;"zo

Equation (6.4) has been used in the derivation of (6.9).

Although the linearization assumes that Q\@%WTTD is a small
quentity, this is violated when JU is sufficiently close to ny . To

see what effect this has on the distribution function we first inspect

the terms in Eq. (6.9). The third and last terms of (6.9) combine to

give

9§ (e

(0} —>
v 6.1
RL‘Q (V‘) /\fT 90 ( 0)
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~—>
The time dependence of the function %(Fﬁ\}»fﬂ must be of the form FL,—VTJC
[ 3
or JI-ny , and so %ﬂ~ = Ve V‘?m .  PFurthermore, when U is close
o N5 the integral term in ( .9) is unimportant compared to an

Thus, the dominate behavior of %Uﬁf{:)\?—) is governed by the equation

(V2) 5 De‘ Ve Y *g”%@(\rm:\\ =0

or

J

—_ >

Tl YR + RAR 87 -ng =0 (6.11)

The order of magnitude of %,(F?—]?\F\ can be obtained by comparison of

the two terms in (6.11). If N5 1s much less than the average value of
(0

v, dlel, NG <L‘\l$—w , then“?/\/ will be on the order of -Q(\?f') ,

and hence the linearization will breakdown, when FC satisfies

e
/\IQ

o
However, the distribution function goes exponentially to zero as
EL@(VT—’\:\) increases, (6.8), which means the failure of the lin-
earized solution for J{’\_] is negligible as Vi decreases.

If /\ﬁ.— is on the order of or greater than ’\J@/yvu the function

k ‘~)L V) is of order QH()\‘:) when
Re OO 2

This defines the limit of wvalidity of the modified linearization; the

exponential factor in the distribution function is reduced to € when
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the perturbationb%J has attained a value comparable to the zeroth order
term gﬁﬁ . In other words, the distribution function has started
rapidly toward zero at the same value of ﬁ? that the linearization
breaks down. It can be concluded that the modified linearization is an
excellent approximation to the electron distribution function when W%
is less than Wj: ; 1t becomes exact as Vi=>o . When VI exceeds the

mean electron speed q%;) the modified linearization still yields the

qualitative features of the distribution function.

k. DRAG ON A TEST PARTICLE
Once %L )V~t3 has been determined the force on the test particle

can be calculated as -C times the electric field evaluated at ﬁ? 5

>
QTR \ @
'+ = eem, gd»@__* { ﬁﬂ\?ﬂ% (6.12)
The first term does not contribute to the force, and we are left with

eV -0 g ,
T = et gc\n -@W o Sawmm o)

The integral in (6.13) can also be expressed as an integral over
the Fourier space transforms of the functions in the integrand by using

Parseval's relation. The result is

> AV
s SJ\?Q ®)e : gdvjﬁ(‘rﬁﬁ) (6.14)

(2m)*

where
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and we have used 7y = V.t

To calculate the drag we must determine S&:?ft(givit) . The
function‘%jﬁii?ﬁﬁ is a solution of (6.9). To be specific let us con-
sider the initial value problem JﬁL: QO for ¥ €0 . Equation (6.9) is
a linear equation for ﬁb and 1s easily handled if we introduce the Fourier

space and time transform
-3 — —_— 3> >
L e = & e e (6.16)
0
where't is integrated only over positive values for the initial value
problem. The inverse transform is given by
0+ )
= - —_— —
(Tare) = s Saﬂdm foezw) e (6.17)
-
where ﬁf is chosen such that the (0 integration path lies above all
singularities of the integrand in the complex (V-plane.

The Fourier transformation of (6.9) is

BQ(O)

w T ¥z>‘-—*
. . elr £ ov
( qv_wyﬁk(k,\r,m) ™ 54 2T (@ -V)

.+—

(6.18)
_ 2 k> BQM) N woo e e
P o Sc\v’w"jv;m) + RGO ) (‘J_‘Er&. = 0
23 (-1
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—» .
Rearranging and integrating over \r gives

~>D i (o)

& deh RLS(\ i‘l)—'&_@

*m s ) = .____L(B .
(deh e o 1 +9§:SC\-»E‘* =

b N S
(6.19)
}?)‘T\w)
> [d< > 3T
IR IO T A e ==
AT (B R N s T
[ +5 Scl’\r o

for 1am W >0 . This expression 1s more compactly written in terms of

the function W defined in (5.17) and (5.18),

b () = - RERkRTE FWEE) 6o
R )

This also gives the analytic continuation of (6.19).

The inverse Fourier time transform of this function is

oy .
rheen = lwe” ke 6o
-y

Since (\{Rﬂl -FW(%‘{_%) is, aside from a factor (lZR))L , the
function (5.13) it is never zero for 1atw=0 . There is no pole at
{v =0 . Therefore, the only pole of (6.20) for laww 20O is at

Lo :k?;\?i . As we are only interested in the time asymptotic results
the poles for Tav 0 <0 are of no concern. The time asymptotic value

f (6.21) is therefore
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w ~ ‘I‘Z\fr)(, ‘l'\l;
Xa ﬂ( t m) Re (\im dk)e ( ‘dl:) (6.22)
(\amw (55E)

Substitution of (6.22) in (6.14) yields the force on a test par-

ticle,

(6.23)

- QQ"“"RLgAk > GHR) (7 B 2

(2x)3 SV %TE)

$
where (Q(E?5 is given by (6.15) and iﬁ(h\ is given approximately by
the Debye-Hickel potential (6.7). The Fourier transform of the Debye-

Hiickel potential is

2 477 Ry
— X 6.2k
® (k) R (6.2L)

$
In Appendix B the function QZ is evaluated to lowest order in the

small quantity R*/%ib s

Q) = ~m k’ﬁ‘“ (ark) + @( ) (6.25)

where the function f@ﬁg)(x\ is related to a Hankel function of imagi-

nary argumentl8

() +1—1
Ji\%('x)ﬂ%%m:“ <7(€ ) (6.26)

Using (6.24) and (6.25) in the force expression (6.23) gives
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T ey, g L iﬂ’@§

t (R0)" | (- (T2
(6.27)

_eil b W(E%{%) %
Sdk £ f (r)§ 1k} (hEDYJrW(%?"@)

The first term of (6.27) is an odd function of %% and gives no con-
tribution. The remaining term is simplified with the use of polar co-
ordinates ( k s “VL: (=0 | JP ) for \?with '\7: as polar axis. Only the

-5 >
component of'k, parallel to A remains after the ¢) integration, and

one obtains the drag
i

T- 3%

where

3= e%iglmg edicfu (fhrce - Ll

(kYW fy r> (6.28)

Changing variables to t=”lv-r‘l;m’5' and ’JL:}ZE) gives

e ©
wi)
4 Qﬁwwgtgtc\tgﬂ(cﬂfpf\% (\,4 )m (6.29)

_\A ié

This drag is identical to (5.19) except for the additional factor

- “‘Te\u}z(\j;r%ﬂ 5 . Tt is this factor which produces a convergent

result since (Ref. 18, p. 333)
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'l_
fw‘«, ‘\l (x &T> e
Y 7
Recalling that the real part of WH‘,\ is an even function of t
and the imaginary part is an odd function of t, , see Eq. (5.18) ], Eq

(6.29) reduces to

o 3\
= - —&—lgcﬁgd%ﬁu(\l e (6.50

[’X W \A +\1\l;f
5

where W = ’V\/R-ﬁ;'WI
The X integration in (6.30) has not been obtained in closed form.
In Appendix B we obtain the lowest order term in an expanslion in powers

of RL/’Q) . The result is

® R
i ) o 2 - R Lifupo(®)

where Jm\= 0.577- is Fuler's constant, €=2.718" - is the base of the
natural logarithms and "l1m " means the imaginary part.
Thus, to lowest order in R"/RD the magnitude of the drag (6.30)

is
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1 'Le
g ey )
Al Nt

= 4 gt k)

(6.32)
7

we can rewrite (6.32) in a more familiar form by taking the second term

of (6.32) inside the logarithm. The drag on a test particle is

~ Sy 4= o
Tl fe 2% laile (59
%
L gtdth(WM/\A
@) = V% (6.3h)

[\fT {0}
K gt
o)
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A numerical integration of the numerator of (6.34) results in

\bf3{f§0mﬁg as shown in Fig. 6. The limiting values of this function

are

S0v) My

© = = 06065 | V=0
and

$0v7) ™

m -
e =VNwe , V5 26 >3

As one would expect the logarithm argument increases as V, increases;
that is, the average distance of closest approach in a collision should
be smaller thanAiaL_while a decrease in the shielding efficiency, as V%

increases, leads to a long range cutoff greater than)ep .

5. DISCUSSION OF THE RESULTS

The discussion in Section 3 showed that the modified linearization
gives exact results as V4+—>O ., When 4ﬁr??qu one still expects the
present method to retain the qualitative features of an exact solution;
an exact solution would alter the velocity dependence of the logafithm
argument at large N+ .

It is interesting to compare the convergent force expression cal-
culated in this chapter, Eq. (6.33), with the results of Chapter II,
Eq. (2.28), and Chapter V, Eq. (5.22). In Chapter V we started with the
Vlasov equation linearized about a spatially homogeneous equilibrium

(e}
state, gl(ﬂ?ﬁ . Comparison of (5.19) with (6.29) shows that the only
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Fig. 6. Graph of € as a function of «= Vw{g
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change introduced by the modified linearization is the introduction of
the factor \’W’B\lﬁuz(\ll}-ﬁ;l) into the force integral. If this factor

is developed in powers of %’){ s

the assumption that only the first term is needed when RL/R) is small
would give the divergent drag expression (5.24). It is evident that
%}X is not small for all values of X , and the expansion of the
Ji\,UL-L function is not correct.

To compare (6.33) with the binary collision treatment of Chapter

IT it is necessary to consider a solution of the Vlasov equation with

the self consistent field term omitted (5.25),

Qp{}y\—f»)_ el MQS =0 (6.36)

As we saw in Chapter V a solution of this equation would give the bi-
nary collision force (2.26). On the other hand, suppose we look for a

solution of the form

—RLésc \R—f‘rrh
f{ms=¢ H(V oo (7 L) (6.37)

Following the same procedure used for the full Vlasov equation we find

1

@Bc(\ﬁb‘lﬁm = \ R

ueq
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and

e
C (6.38)

kﬁd skt
)

by E7p0)= HM B+54 a&h,

The force on the test particle is given by

df;c.: ﬁC-\Y\og »Bi‘lg_“"*f‘\ ‘n )\*l gd\’ BPHJAME (6.39)

I

The first term integrates to zero. Using the Fourier representations

(6.25) and (6.38) the force becomes

(6.40)

Q,D&"’) %

Joc= “;_‘.Y};’ SAE’QB LR %(k)gd s

where we have used ﬁ;r=vat . The second term can be expressed in terms

of WN(iﬂ (5.17), and we have
Fo= C—QZT'Z—L—T&)RL SAE”@-@ 43(‘13% —W(}%Z\E)g (6.41)

This should be compared with (6.23) which is the corresponding result
when the self consistent field is included. We see that the inclusion
of interactions between plasma electrons has two consequences; (l)'it
replaces the pure Coulomb potential ¢(H> by the shielded potential

éi(r1) , and (2) the plasma dielectric constant
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EE) = 1+ W (2NE)

V) (keyy k \£;:

appears in the denominator of the integrand in (6.23). Both changes re-
flect the effects of shielding and are responsible for the low k\ con-
vergence of the force.

The remainder of this thesis 1s concerned with the development of
general kinetic equations (i.e., equations describing the time evolution
of the one particle distribution function). The customary approximations
applied to the Liouville equation lead to the same apparent divergences
which occur in the test particle problem. A generalization of the con-
vergent test particle problem, as presented in this chapter, will lead

to a convergent kinetic- equation.



PART II: KINETIC EQUATION

CHAPTER VIT

APPROXIMATE KINETIC EQUATIONS FOR AN ELECTRON PLASMA

1. INTRODUCTION

In Part II of this dissertation we concentrate on the problem of
describing the time evolution of an electron plasma* which is not in
equilibrium. Beginning with Section 3 we restrict our attention to the
spatially homogeneous case owing to its greater tractability.

A complete description of a system of [N electrons in a uniform
background of positive charge and in a volume V is given by the N-
particle distribution function DN(%.,-"JLN,-t) where X stands for the

six variables (iU,V ) and

DN('KU"','X“,‘W c}?(\w("xu (7.1)
represents the probability that electron 1 is within cl’)é\ of X, , etc.
Since DN is a probability we assume it to be normalized to unity.

Furthermore, ])N must satisfy the Liouville equation

N N
a_)__‘:‘ > I _e? adh ERN
v LS RO SRSy =0 (1.2
(i#9)

*We continue to use the electron plasma model in which the ions are re-
placed by a uniform distribution of positive charge. It was shown in
Chapter IIT that this is equivalent to neglecting terms of order "/M
the ratio of electron mass to ilon mass.

86
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Note that we have replaced the momenta “E by M’\’[T . The pair poten-
tial cb% is
Bpe —
TR
Instead of working with the N -particle distribution function, Dy ,

one usually introduces the reduced S -particle distribution functions

i,

A
\S Ls (/Xu'”,ysﬂ = g B SAIXSJf\"’C\XN DN ('X“'“)'XN}JV) (7.3)

The differential equations governing these functions are obtained by
successive integrations of the Liouville equation (7.2) .19 The result-
ing set of equations (S=1, 2,0 N—{) is known as the B-B-G-K-Y hierarchy
after its founders Bogoliubov, Born, Green, Kirkwood, and Yvon. We
shall always assume the limit N ,V—>® but ng N/V finite. The first

two members of the hierarchy (S= 1,2 ) are

AT | - of %'Sd W

a‘b ! arx 23)1 a‘b"@ IXI\J’Y/‘)_ = O (7")4')

EANCR S JVV;%%JrT _%_2» er Jon ﬂ _ ey o
TR R0 TR SRor T n o i

(7.5)

an:?,’ a,\7> &/1? ' a_'\/:: il ‘i'\g (y!)‘l?_/ X}}—t) =
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The basic problem of non-equilibrium statistical mechanics is the
development of a kinetic equation which describes the time evolution of

the one particle distribution function

PRICTY _

where A depends functionally on #(y,-t) » The initial value of i(’x)t)
would then be sufficient to determine its value at any other time. If
¥1 were a known function of 4(X;t) Eq. (7.4) would be the desired ki-
netic equation. The equation determining ‘£2’ however, involves Qz s
and so on for the higher distribution functions which means we must
ultimately solve the full Liouville equation for :DN . The point of in-
troducing the reduced distribution functions is that it facilitates an
approximation in which, for some S , the $ -particle distribution func-
tion can be expressed in terms of the lower order distribution functions.
As we will see this "truncation" of the hierarchy does not lead di-
rectly to a kinetic equation of the form (7.6). The remainder of this
chapter is devoted to a review of the assumptions which do lead from
the B-B-G-K-Y hierarchy to a kinetic equation.

The outline used in Part II is similar to the outline used in Part
I. In Section 4 of this chapter we discuss a kinetic equation that
emphasizes binary collisions. In Section 5 we discuss a kinetic equa-
tion that emphasizes distant collective interactions. In Section 6 a
brief discussion is given of two recent "derivations" of electron plasma

kinetic equations.
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In the following chapter we show the relationship between equations
of Sections 4 and 5. These electron plasma kinetic equations suffer
from convergence difficulties identical to those encountered in the test
particle problem. In Chapter IX, the last chapter, we derive a conver-
gent kinetic equation by a method similar to the convergent test par-

ticle solution given in Chapter VI.

2. TRUNCATION OF THE B-B-G-K-Y HIERARCHY

One can always write the two particle distribution function as

't2(/X“IY-7_/t\) = g‘('\(';t>~¥(’){l;t3 + P(’X()X,L)-t} (7.7)

where Y>Oxuxl;h) is the pailr correlation function. If we truncate the
hierarchy by neglecting pair correlations, i.e., P=o0 , the B-B-G-K-Y

hierarchy reduces to the landau-Vlasov equation

Had =30 el 0y Pl
Tir~+m9ﬁg-7Z&W2§%£Wﬂ)6&,=o (7.8)

)
This equation is satisfied by any time independent spatially uni-
form function Q[ﬁ?) , consequently it does not lead to an "H -theorem.
To have an H -theorem we must truncate the hierarchy at some other
point.,
The three particle distribution function can be written as
£ (0% v k) = wc(%,t) f (v x5t ) + ﬁ(yzjc) £, 3t

(7.9)
+£(/)(§)t) LZ (’k,)')(z}"llj> - Z‘p(’){//‘(f‘) f(%z/{‘) ﬁ(jﬁ/{) + T(}‘;l)’;j%;t)
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where wr(yi}X1}Xgit) is the three particle correlation function. If
closure of the hierarchy is accomplished by neglecting three particle

correlations, that is, by setting 1 =O then (7.4) and (7.5) become

{’9_, > %Q 1) “@WSM 3@2 J L

x et Loy alihg) =0 (10

and

(7.11)

S A]-:J? Lk)

_eno 2t (10 de}aﬂz { S (1) - “y% av;‘

* L gc\x?% Q (05 ) — e""f t)ydxg 2S00

9‘*’3\‘7

The neglect of three particle correlations is an uncontrolled approxi-

mation.

3. SPATTALLY HOMOGENEOUS PROBLEM
L—»
In the spatially homogeneous case ﬁLYﬁ) = (Vth , and the
spatial dependence of £2<Y”th) is through the difference ){T.Bi . In

the spatially homogeneous case (7.10) and (7.11) become
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(7.12)
1f§%; a-%ilkxnx t) = 0

PR B I AL L P B/ Y M
ij{“‘ VO T T oy v Ty Mo o 6, %t)

w6 o 2
~en D [y oop e INg Saxﬁ‘bﬂ Ll wey (7D
AT )

P =3 U,
B o ) t) %Jg gﬂ”‘s ds D‘:J H060=0

Noting that the last two terms of (7.13) are proportional to the

integral term in (7.12) we introduce the pair correlation function,

(7.7)
Loy = S M) + Pl t) (7.14)

Inserting this into (7.13), F> must be a solution of

2 >3 > ) Clar 3 1\(5
VSV, S - £ 9 ePdba d
{at LONT R OM W oy v gn av Pt
290, 0 L N D
RS R T 2 b (7.25

o, D | SAX;E% Pl 1, 4) - e:V}Z" 9‘;(1;1.) S‘Cl'xs'% Pl xt) =0
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The Eq. (7.12) for the one particle distribution is then

PR CZ”"S 20
- ST L Pt - (7.26)
ot 2y La)r?, V) JC\
Approximate solutions for P(n .V, Va,t)  can be established in

two cases. In Section 4 the small separation solution '\3&0_ , for

| T-nn| ¢ Rl_:el/g , is shown to lead to the Boltzmann kinetic equation.
In Section 5 we find that the large separation solution Pg,r{ , for
\ﬁ?—ﬁ\ >R])=(4I§eiﬁ°)_’b‘ leads to a kinetic equation that has recently

attracted a great deal of attention.c0-22

L. SMALL SEPARATION SOLUTION
When \rﬁ N\ SR, we expect the last two terms of (7.15) to play
a negligible role compared to the terms containing the binary interac-

tion d?l?. . In this case we approximate the solution of (7.15) by /z.c.

( R.C. = binary collision) where

2,22 =79 _edn
bt“"a“’*vl o 2'?“%%’;@%{ b t)={(7, )¥(~7’;ﬂg= O (7.17)

The solution to this equation is obtained by integrating along the

characteristics,

X’l)'y’l;b

Rebnp Semlgnf| =0

Xix; 10
where X: X, are the coordinates at time #-C that are equal to Y, X

at time T , I‘ ,)X'.L are determined from the equations of motion



>
(\Tflﬁ:l\? d’(‘l% = —gy\‘ig_é)_‘l
\ ) >~
t ’ (7.18)
iz o7 AV et ot
T T T T wmony
with the initial-value conditions %, =X, , %A,=X, at time t-T . We
have then
B ot =T x40 HEDNIG Kﬁmﬂ(ﬁm) (7.19)

Up to this point we have carefully avoided the problem of boundary
conditions. Now, however, we are confronted with precisely this prob-
lem; what value do we assign to FEtAQXUTEzﬁ:T)? Let us assume that there

is no correlation between particles before they collide:

Pra‘c‘(X.,Xl,t—“LB —= 0 , {(—=+0 (7.20)

Note that through the boundary condition (7.20) a direction has been
ascribed to time; it i1s this assumption which changes our previously
reversible equation to an irreversible one. If ‘{ is sufficiently large
and positive the boundary condition (7.20) can be used to eliminate the
first term on the right hand side of (7.19). The second term does not

contribute to the integral in (7.16), and so the kinetic equation re-

duces to
WD __ 5 N 2 Pz, o\l
Dt - lXZDTDV{ (’\/.‘)Jc—bﬂ("\/z'ﬁ-ﬁ (7.21)
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This does not have the required form of the kinetic equation (7.6) since
the integral term is evaluated at time £-T . If L&t)is sufficiently
slowly varying, however, we can develop-¥Q§:tit) in a Taylor series.

Keeping only the first term we obtain

MY ene (), e 2
jﬂﬂ'—'—ﬁ'wnaﬁg ﬂ& (7.22)

The next term in the Taylor series 1s proportional to the ratio
T/Tg where [ is the duration of a collision, and Ylp is the character-
istic time for changes in l{ﬁﬁ&;\ . Therefore (7.22) is valid if the
distribution function X(CZt\ remains essentially constant during a
time interval necessary for a collision to be completed.

Equation (7.22) can be cast into a more familiar form by employing
a trick due to Bogoliubov.l9 The transformation is given in Appendix C;

the result is

F(TH - -
—_—t = 7 J > 7>
% No dvzgg })34 |V~ vz{ U{)l(vzi)_ﬁ(mﬂwﬂ)% (7.23)
> ~>
where Wﬁ' ) ﬁgf are the velocities two particles would have before a
>
Coulomb collision if they have the velocities 7V, , iﬁ' afterwards. The
right hand side of (7.23) is the Boltzmann collision integral.
We have shown that the small separation solution, f%_c. of (7.15)
J
with the boundary condition (7.20) and the assumption that Pty s
y D y
a slowly varying function of {, reproduces the Boltzmann kinetic equa-
tion. Since the Boltzmann collision integral is based on the mechanism

of binary collisions we know from Chapter II that divergences must occur
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at large impact parameters. This will be shown explicitly in the fol-
lowing chapter. For large separation, however, collective interactions

are important and we must seek a new solution of (7.15).

5. LARGE SEPARATION SOLUTION

£ \-n5 | >Ry the direct interaction terms containing d,, are
negligible, but the integral terms in (7.15) must be retained. Denot-
ing the solution in this "straight path" ( S.P, ) approximation by |%p.

the limiting form of (7.15) is

>3 et dPr 2 D \
%th\ ()R,Jrvl T \%RE("(U}(I—{;) mi a?\'i, ﬁ» 9@2 ]{{( )-E‘('v 1)

(7.24)

_€e YD {1 s €N, 9
g \Sa —»pSP(z 5*4 —_W_\; &\ 3D,g)2i gp(xh')(f)‘i): O

It should be noted that this equation can be obtained formally

from the B-B-G-K-Y hierarchy of equations by developing the S -particle

ki s . : a4 Ry
distribution functions in powers of a small parameter, C%(‘ R = 4w -E:b
proportional to the reciprocal of the number of particles in a "Debye
sphere.” An expansion in powers of O( automatically truncates the hi-
erarchy. To zeroth order in Ca, the Lendau-Vlasov equation (7.8) is ob-
tained. To first order in % Egs. (7.16) and (7.24) are reproduced,?

If in addition, one assumes that for times of interest the pair

correlation function depends on time only through a functional depend-
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ence on Q—(—\’F)t , that is

p.= Vo, (005 1)

then

o K. SP (v \
) 159 Jou O ey ) VW )
At - \% Swn ot (7.25)

2
is of order O« since both Pg,p, and ax/gt are of order % . There-
fore, to order % , alP"”/()’b can be dropped from (7.24), and we are

left with

'>3 Diz 9 2 :\ AR Y T
Elv P )“VL > SPSP, (le y) [b(f\. 5\;' K %‘; ;}‘,\7——:]&’\/})&%;)

(7.26)

_en, VWD ) s

s SAXB ng(xzxg,i) CTJD%’ S:i?@

X}Q*PSP(’XI)’X? ‘Y) -

As a boundary condition for R‘p we assume there are no correlations

before a collision, in agreement with (7.20),

PQ.P. ('X“')Cl ,Sr‘) —= O

when
o l—=wo , (F-2).(F-v) <o (7.27)

This 1s the equation considered by Guernsey,2o Balescu,21 and Lenard<,

The solution has been treated in detail by these authors (the solution
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of a similar equation will be carried through in Chapter IX).
The solution of (7.26) with the boundary conditions (7.27) yields

the kinetic equation

o
R (7.28)
anatd ogd g N g[gvﬂ Ay el ey DQ(H
WV }5\8(‘2 \EP (%0 gfv 5

where ﬁi(E:ub is the plasma dielectric constant (5.13) for the distri-

bution X(ﬂ?f) s
ok g E?;QQCV%Q

LRw) =1+75 AV—W (7.29)

Equation (7.28) can also be case into the form of a Fokker-Planck equa-

tion

iy 2 { 4y = %

C T T *‘?%\iﬁc
It o [ i)+ 25 Vtﬂ & (7.30)
. 12%%;\&-{ Eb(\?.’jﬂ?(vit)%

where
. 4 > Cl s o o .
L = E
%D(«T.’)t): Amoe g g(ﬂ? E"?SU?VJHJ; (7.32)

e (e
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The similarity of (7.30) with the Fokker-Planck equation extends
only to its form of writing, since the coefficients (7.31) and (7.32)
depend on &(Qﬁt\ . We shall refer to (7.30) as the Balescu, Guernsey,
and Lenard equation (B-G-L equation).

The integrals (7.31) and (7.32) have a logarithmic divergence at
large k\ which corresponds to the inappropriateness of ¥2J; for small
separations, Uﬁihf\ < RL . In the next chapter we derive the kinetic
equation (7.30)-(7.32) from another viewpoint which clearly demonstrates
the nature of the divergence at short distances.

Tt will also be shown in the next chapter that when Ei(?:uﬂ is re-
placed by 1 the kinetic equation (7.30) is identical to the limiting
form of the Boltzmann equation (7.23) for large impact parameters (or
small k.)- The appearance of E(Eitu> is due to the inclusion of col-
lective interactions, and modifies the simple binary collision result
to eliminate the logarithmic divergence for large impact parameters
(small k\).

To summarize, the small separation solution of (7.15) leads to the
Boltzmann kinetic equation which is based on the mechanism of binary
collisions. This kinetic equation has a logarithmic divergence at
large impact parameters. The large separation solution, or straight
vrath spproximation, of (7.15) includes collective effects, and leads to
a kinetic equation which diverges when extended to small impact param-
eters. Clearly, a complete solution of (7.15) that includes terms dom-

inant for both large and small separations would give a convergent
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kinetic equation. This observation has been made by Tchen®) who formally
integrated the pair correlation equation (7.15), and estimated the order

of the various terms contributing to the kinetic equation (7.16).

6. ADDITIONAL KINETIC EQUATIONS

There recently have appeared two papers concerned with the elimina-
tion of the divergences occurring in the electron plasma kinetic equa-
tion. The first of these, due to Willis,glL attempts to obtain a solu-
tion for QQCXHYLﬁf) by employing an expansion about equilibrium.
Willis consilders the deviation from equilibrium to be an additive cor-

rection to the equilibrium state,

QQ\:: Qz +-§ /
ek
and proceeds to calculate ﬁzf (to first order in the plasma parameter
6%: 4ﬁ2ﬁ/&>) for the spatially homogeneous electron plasma. The en-
tire analysis presented by Willis contains a number of errors, the most
significant 1s the assertion that his term [3d'] is zero for the spa-
tially homogeneous case. Indeed, his term [3d'] is not the Fourier
transform of [3d] as stated. In fact, the term [3d] is proportional to
the right hand side of his kinetic equation [2a], it cannot be zero if
he is to have a non-trivial kinetic equation. When the appropriate cor-
rections are made one discovers that this term gives the dominant con-
tribution to ~$; . The kinetic equation determined from the correct

/
ﬁz_ does not converge.
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The second paper due to Baldwin®? exhibits a kinetic equation that
contains both the large and small separation features of (7.17) and
(7.24). Baldwin proposes to solve the 5;7__ equation (7.5) by a modified
expansion in the plasma parameter. The essence of this method is to add
and subtract a shielded potential (P,\.,_ s N denoting the shielding dis-

tance, to the pure Coulomb potential (i)n_ ,

/\hl: @3 + (4)11 h_)

The first term in '\\fn_ is assumed to be of zeroth order in C} while the
C o . A

second term is first order. The requirement that dP\z reduces to ¢)7_

for small separations between particles 1 and 2 means that (d),z~d),2\)

vanishes at small separations, and can therefore be treated as first

order in Ca, for all values of \TIT—T\‘{’\ . The remaining pair potentials

¢!i ’ ®l’i (7#%1,2 ) are cutoff below a small separation distance

bo » €68,
1
CPl"l. = S ’ r\ T\ll >lo
| -5 |
(7.33)
T Il ¢,

Baldwin develops a solution for lzz_ in powers of % , and obtains
a convergent kinetic equation with two collision terms. The first term
is a Boltzmann collision integral for the shielded potential Cﬁ,z , and
the second term is a B-G-L like term (7.28) in which \‘c’\'—l is replaced

b ¥
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1 [hwp
lE\® RN

the latter going to zero as k‘ﬁql . The specification of ¢gi is quite

arbitrary, one could choose for example

1 X
s N&
dpﬁm -

o 4, A>A

The Baldwin procedure for obtaining the kinetic equation is analo-
gous to the Vlasov method of combining the binary collision and con-
tinuous fluld plctures to obtain a solution of the test particle prob-
lem (Chapter III). In the test particle problem the short and long
range solutions were Jjoined at a distance intermediate between EL_and

‘E) from the test particle; Fig., 2, region IT., In the Baldwin method
the analogous procedure assumes that “Kz_can be separated into two
parts, (blz‘_ of zeroth order in ¢ and ( 30“_—@?{ ) of order % - The
reason that the potentials (7.33) must be introduced with a cutoff bo
is that certain integrals arise in the Baldwin method which logarith-
mically diverge as ko‘ﬁ>C) . In deriving his final kinetic equation
Baldwin finds that these divergent integrals have cancelled one another.

The asymmetric treatment given the potentials ¢y1>and (hi ,(1#12),
and the cancelling of divergent integrals leaves this method with an
artifical flavor. A consistent derivation of the spatially homogeneous

electron plasma kinetic equation is not given by any of the methods

reported in this chapter.



CHAPTER VIII

FURTHER DISCUSSION OF THE APPROXIMATE KINETIC EQUATIONS

1. INTRODUCTION

In this chapter we show more clearly the relationship between the
Boltzmann equation, the Fokker-Planck equation, and the B-G-L equation
(7.30) .

In Section 2 the Boltzmann equation (7.23) is cast into the form
of a generalized Fokker-Planck equation. The first two Fokker-Planck
coefficients, the friction and diffusion coefficients, are calculated
for the case of Coulomb interactions. In Section 3 an expansion of the
coefficlents is made in powers of the momentum transfer per binary col-~
lision. This expansion gives a generalization of a kinetic equation
developed by Lendau.=T

Section L4 discusses in detail a straight path approximation of the
Fokker-Planck coefficients. This gives an alternative, and perhaps
more "physical," derivation of the B-G-L equation. The connection be-
tween the B-G-L equation and the Landau equation is immediately obvious.
Furthermore, we will see that all of these kinetic equations suffer
from the same logarithmic divergences encountered in the test particle

calculations of Chapters II and V.

\

2. REDUCTION OF BOLTZMANN'S EQUATION TO A GENFRALIZED FOKKER-PLANCK
EQUATION

The Boltzmann equation (7.23) is

102
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ARED s '
LB, v L v {%?f,{) i - S0 4 o

where dG’ is the differential cross section for the binary collision

/ >
/v
-

2y <¥

—_
/
1 ,\/|

It is more convenient to express the collision in terms of the momentum

=

transfer Q% s

(8.2)

where we are assuming the particles have equal masses, Furthermore, we

can use the collision volume of Chapter II,

0 (V-G 550 | B ) 4 (8.3)

where it will be recalled that the arguments of (J indicate the binary

collision (8.2), to rewrite the Boltzmann equation as

¥ (¥ . >

B =7'°SAWS<@:@(@Mﬁ@w‘%%)%‘?(F—}c\fr(ﬁ/mﬁ)-¥(¢rﬁt}§(ﬁ3& (8-4)

AL

= >
as a function of WI-QZ; , about the point v , we find

Sy ey
If in (8.4) we formally expand O)(%%&OV;%MJ
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where (2.16) has been used to rewrite the last term. The X=0 term
cancels with the last term when one makes the change of variables
Q?~_¢.§?-QJWU and q#—4>~ﬁt‘. Making the change of variables

N \ﬂf_izgd in the remaining terms yields

!

PRV (-“Sz >
St = /0 e n[(wmm @E (8.6)

=)

where the coefficients are given by
T 3‘3 n. gd'vi( el E D) kb (8.7)
—_——
L

Equation (8.6) has the form of a generalized Fokker-Planck equa-
tion.20 This is a "generalization" of the ordinary Fokker-Plank equa-
tion because it includes velocity derivatives of all orders. In addi-
tion the Fokker-Planck coefficients are not constants but functionals
of T(ﬁ%t\ . In other words, the non-linear character of the Boltzmann
equation (8.4) is retained in the Fokker-Planck equation through the

)
coefficients (8.7) which are linear integral functions of L{yi%)
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The generalized Fokker-Planck equation is most useful when the friction
coefficient —<(@f> and the diffusion coefficient - <}1<1 > are so
small that higher order coefficients can be neglected. That is, when
the average force on a particle, <i§f> , 1s small the Boltzmann equa-

tion can be approximated by

Di(f& g*\:; ﬁ (V) m@)& 13\?9\, {X(V‘t)mz<%§f>§ (8.8)

To apply (8.8) to an electron plasma we use the Coulomb collision

volume (2.19). In that case

@)dgf: % 8[9?(«7’—%@3/@@” (8.9)

v

WV

EHQ

Vv |

The Fokker-Planck coefficients are

MLC‘ @ w gc\vlv‘d;)gdqr g[g e %] (8.10)

The friction coefficient has already been encountered in the binary
collision treatment of the test particle problem. In that case we cal-
culated <@z§, the average force on a particle moving with a velocity
AT, (2.24). The integration has a logarithmic divergence that can be
approximated by cutting the integration off at a maximum impact param-
eter \h“ (or minimum Q») yielding
_:{_Y\<61>> - 8“@ Y\ag ->£ ﬁ't) \?, QAN[MBM\V \a»lll

™ TV |3 202

——
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Approximating \QEV?\Q' in the logarithm argument by C,@/WV , which
has little effect on the integral because of the insensitivity of the

logarithm;

:_“@9 - _ Awe nﬁjm[thgl g g *fs\s (8.11)

A similar approximation can be made for the diffusion coefficient
which also diverges logarithmically. The dominant portion of this ap-

1
proximation when BN{$>€/Q is

hay - T gy LT

NV
~ -
where 1 is the unit tensor, €= = ;W.
V-,

The Fokker-Planck equation (8.8) with the coefficients (8.11) and

L

(8.12) has been investigated by Rosenbluth, MacDonald, and Judd. These

authors assume a maximum impact parameter equal to the Debye length,

== (1252

5. EXPANSION FOR SMALL MOMENTUM TRANSFER

If the average momentum transfer,<<§f>, is small then one expects
the Boltzmann equation to be adequately approximated by the Fokker-
Planck equation. DNote, however, that only the average momentum transfer
in a collision must be small and not that all collisions involve small

momentum transfers,
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Another approximation of the Boltzmann equation has been carried
out by L. Landau.27 Landau expands the Boltzmann collision integral in
powers of Et , and retains only the lowest order non-vanishing terms
which he writes in the Fokker-Planck form. This expansion is not
equivalent to (8.6) as it involves an expansion of the collision cross
section as well as the distribution functions. To obtain Landau's re-
sult it is necessary to introduce his expression for the "collision

1"

volume," which we denote by (M),

T2y =07

Since the "collision volume" i1s invariant under a uniform translation

s’/

Ty

(A)L(“’Hi ) gli) (8.13)

; [

$
» =

I
Y

of the center of mass of the colliding particles, (2.16), we have
->‘§C>‘>1§:Q_?A *B—>_’>q>_.—(§
('OLQVJ‘EW)&V) i\m\i«'\,’ %) (’\rJ’VI—Qr/M\ M \m) (8.14)
Using (8.13) and (8.14) the Fokker-Planck coefficients (8.7) are

W(@u@ Y\ogdv qur(ﬂ( -G\ % %%@i ;1;
)

Changing variables ’\/l —> V\ + QUM) ,

Expanding Q—('\'}Tﬁ—}w)t) in a Taylor series, and integrating by parts with

the relation am%ﬁ’ = —Bml’/a\‘,’?, which follows from (2.16), Eq. (8.15)
i



108
reduces to
mx@ = Zk\ T §Avi<~m§&grwh< lﬁ}j%}%% (8.16)

NS,
f+k

However, from (8.13) and (2.16) we observe that
: xg > S > O
W E % %) = W0 v - k)

> =y
Thus, b\)\_(\?)vf\ QM‘%) is an even function of ﬁ_ ; hence, only those

terms with L4k even will remain in (8.16),

® 1 7_\< -
> 2
Yv\k<%' Jf> = % (’L\e‘, > Lok if L is even
=0
ot (8.17)
(X 2 ¥ -
{Z_(.) (l\'t-»\)‘ > i B,hz\m\ if is odd
where
=> —r — vl
By = mgdﬂ(ﬁ,ﬂgdq A2 [&,%)%/% (8.18)

X

This is the extension of Landau's Fokker-Planck coefficients to arbi-
trary jl . Landau retains only the lowest order coefficient B'—: S0

that his kinetic equation is written

o¥Fn _ o {

5 A ‘al . £ > el 8
>t o LB 5E 2§*E am«;:’i (7t Bj (8.19)
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For Coulomb interactions the Iandau coefficients can be obtained

from expressions (8.9), (8.13), and (8.18)

= - <5
JY;K@D = %'Bz 72<dq Y= R (8.20)

(8.21)

-
The q_ integration in (8.21) diverges at both large and small values of

q . To obtain a finite result the range of integration must be limited

to the finite interval ( Y » Gy )

$7 _ AveNop (G (e o A A
| [T I SR

G W=7
ANV
where 4l is the unit tensor and Q\::YESjéir . The divergence at small

q_corresponds to the large impact parameter divergence encountered in
(8.12) and is a consequence of the long range tGL potential. This is
the same divergence that arose in connection with the binary collision
treatment of the test particle problem in Chapter II. In the next sec-
tion this low @ divergence will be eliminated when we allow for collec-
tive plasma interactions. The large q_ divergence is not surprising
since the expansion that led to (8.21) was an expansion in powers of

q_. In the next section it is shown that the Landau Fokker-Planck co-
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efficients (8.20) are equivalent to straight path approximations of the
Coulomb Fokker-Planck coefficients (8.11) and (8.12). 1In the straight
path calculation colliding particles are assumed to move along straight
trajectories with constant velocities. Under this assumption close col-
lisions have unbounded momentum transfers, and the result is the large i

divergence of (8.22).

L. STRAIGHT PATH APPROXIMATION

In a binary collision, in the limit of vanishing momentum transfer,
the colliding particles move along straight trajectories with constant
velocities. The use of the straight path, constant velocity, picture
is known as the "straight path approximation." It will now be shown
that (8.20) is the straight path approximation of the Fokker-Planck co-
efficients (8.11) and (8.12). However, instead of making the straight
path approximation directly for pure Coulomb potentials it is instruc-
tive to consider the following generalization. We know from Chapters
IV and V that the distant field of a test particle in a plasma is di-
electrically screened. Since the straight path approximation is good
for distant collisions, and since it assumes the colliding particles
maintain constant velocities (the test particle assumption), it is nat-
ural to attempt the straight path calculation using dielectrically
screened Coulomb potentials. It will be found that the Fokker-Planck
kinetic equation derived in this way is precisely the B-G-L equation

(7.30)-(7.32) . Replacement of the dielectric constant ﬁ(Eﬁw) by 1 cor-
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responds to pure Coulomb interactions, and results in the Fokker-Planck
kinetic equation (8.19)-(8.21).
To be explicit we consider the binary collision
—> - >
Vi— v+ q-/Wb
> > >
,VL - Ivz_ - Q‘/WU
between two particles of charge ~-¢ and mass W . The momentum trans-

~y
fer, q_ , 1s developed in powers of a small parameter* € ,

— - >
4 = €q, +€7G, +---
where the first order term is the momentum transfer calculated under the

assumption that the colliding particles move in straight paths with con-

stant velocities,

@
-

qﬂ = ‘Qgg’@ Ell[ff[’c)] (8.23)

Here the electric fleld at particle 1 due to particle 2 is denoted by

-3
E‘,L , and in the straight path limit the radius vector is (see Fig. 7)

Ri= B+ (70t (620

‘) . 3 » $
The impact parameter vector b is perpendicular to V,-V,;

*The parameter € is used to keep track of the order of the terms
and will eventually be set equal to 1; € is proportional to the
scattering angle in the relative coordinate system.
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Fig. 7. Picture of straight path collision
in rest system of particle 2.

—
It is convenient to introduce the Fourier representation of E(}T),
] ] o
=\ -  — >
E(0) = o WEEl) €
Putting this and (8.24) in (8.23) gives

>

gr\ = (7:;)3 g(“z') E () Q

e 1K@
Ve e
~& (8.25)
-§ > iE?\> 5> D>
(lT)l (“Z (ke )Q é[h-(m-ﬁﬂ
To obtain the second order contribution to the momentum ‘q\ we observe

that for energy to be conserved in the collision requires

>

LT+ (=)= v

or

A (T A 1 42
V)t w 4 =0 (8.26)
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To first order in € (8.26) is

wv
-

According to (8.25) this condition is satisfied since Ei(kf)d: E?‘for a

point charge. The second order terms in (8.26) are

= i_ 2
4 - W)« qr=o0
> -
which determines the component of qz_ parallel to V-V, . The com-
-, R - > N 3
ponent of (%lhperpendlcular tov,-v, is of order €~ . Therefore, to

order €~ , the momentum exchange in the straight path spproximation is

= T
T=4-Aq (827
e

The Fourier transform for the electric field of a point charge — @,
in a dielectric medium, and moving with constant velocity ’G: , is ob-
tained from (4.8)

_ATen &?’
K E(r) (8.28)

E) =

Putting (8.28) in (8.25) gives for the lowest order momentum transfer

g s
i - _Awg Se Shen] (8.29)
G e e e

PR
Using (8.29) in (8.27) will give the momentum transfer to order €~ .

The Fokker-Planck coefficients are
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N el T (8.30)

3=

=
The average <fbﬁ> of an arbitrary function of a., say TXQ?) , 1s over

the number of binary collisions per second,

<T@y =i fodblag wr1 Ly T (8.1

The two dimensional integral b A¢ is over the plane perpendicular to

> >
VY, , and can be written as an integral over all B

bdbdd = WA LB ()] b (8.52)

Combining (8.27) and (8.29) with (8.30) and (8.31) gives for the Fokker-
Planck coefficients to order €

T V50 YTZSO‘Vszc)hL, W0 (6 ~zﬂ{, 1‘71‘72 1 (8.2

h/l‘vz \

(8.34)

i- =g — Y

m1<§3 5P, y_VCS v e )gd?l"f-\fz\ Sl N

The subscript " S.p. " indicates the straight path approximation.
To calculate a representative term consider <:qjjf?> where qr'

given by (8.29)
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- U g e ST )

L B-(h k)
84‘?’34‘?M€ S (-8 - ().
L B ) £, )

%
The k and F> integrations are performed by separating the vectors into

(8.35)

components parallel and perpendicular to ’\7?\7{ 5 €.8., \2“ s Ef

Making use of the delta functions (8.35) reduces to

iB{R4e)
G- 2 (e e L o
b ) \v \T”\S g KAL = (h.,E[\Z)E(h?;EZ@

The two dimensional integral over ET_ yields @T\lg[[ojq&i] , so that

the \zz integration is trivial and results in

<9?\§:2,{' 4@"'7\0&&?;1[(«?2‘,) 1 X‘J > ki kT (8.57)

R e e IGaAlR

We have used the fact that E*(ET\,?\ZTS = E(‘E»,"R\E) . The result

~
(8.37) is more conveniently written with an integration over all l( s

T na= sen it fzplie B olEE)] (5.5
TR e e[

The remaining terms in (8.33) and (8.34) can be similarly reduced, and
one finds for the Fokker-Planck coefficients in the straight path approx-

imation,
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<Q:T§3.P.: O

)..a.

L '“':-> 4 Rl TS g[‘? V V
M e gc\'v}(\&)ﬂ A = - (8.39)
™ \V“V:»\i> m \ v ?—\ S(“'TEL \E ( ‘?) P _,D\

=

<9

s,

3
:VH

TP, = G = 5 b g EESED)

pit
e v 1 (850

To cast (8.39) into a more familiar form we need the following identity

T (sl (2 e i)
S R @ V) (8.11)
v, 1\71 SCHz ‘11\8?\?\7)\ (9’\/ gv) gJE m 1

The proof of this relation will be found in Appendix D. With (8.41) and

performing an integration by parts the friction coefficient (8.39) is

(TR Mo SWD_’E@ g s i)

I o T e
(8.42)
CIRPXS mg s> (1>
'F iy - 4»\2‘ g[h.«ﬁ;vﬁ]
o gd\l k“f\lm TR
Using the relations
i *a "> LQ =
me4? Zﬁn‘lB (8.43)
L3

3
/N
4oy
4+
~
i

*F
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P =S
Egs. (8.40) and (8.42) give for A, and IB&R

28 (= RGN (1 R STy (64
ot 250 oy 2 fpe LR GED)

o 4€‘n0 3>\ > *L%
o = o b g EEOLEG) (0.4
k™ e (e, )
When £ (k>w) is the electron plasma dielectric constant (5.13), then
(8.44), (8.45) are identical with the B-G-L results (7.31), (7.32). If
& (\& (g) 1s set equal to unity, corresponding to pure Coulomb interac-
<5

<>
tions, then [gp is the Landau coefficient B, , (8.21), and the Fokker-

Planck coefficients are given by (8.20).

5. CONCLUSIONS

Both the Landau approximation of the Boltzmann equation and the
B-G-L equation are straight path approximations. Collective interactions
included in the B-G-L equation are responsible for the dielectric screen-
ing of the colliding particles. The screening effectively cuts off the
Coulomb interaction beyond a Debye length, and eliminates the low k
divergence associated with a pure Coulomb potential.

Both methods lead to divergent results when extended to large k
(small impact parameters), since the straight path approximation neces-
sarily lacks a cutoff for large momentum transfers.

The Boltzmann equation is inappropriate for a plasma, since it
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does not include collective interactions which limit the effective range
of the Coulomb potential. On the other hand, expansion of the B-B-G-K-Y
hierarchy in powers of the plasma parameter, %:’ﬁ;§§==4ﬂ'%§ , leads to
the B-G-L equation which also possesses a logarithmic divergence. The
breakdown in the expansion in powers of (% occurs because terms propor-
tional to $£JB¢W/3§?' , are assumed to be of order C& , but these terms
can be arbitrarily large for sufficiently small \n,-x>| . As we have
seen the neglect of these "direct" interaction terms in the differential
equation governing the 2-particle distribution (or correlation) func-
tion 1s equivalent to a straight path approximation in which colliding
particles are assumed to be dielectrically screened.

In Chapters II and V of this dissertation we encountered the same
difficulties with the test particle problem. A convergent solution to
the test particle problem was obtained in Chapter VI by using a modified
linearization of the Iandau-Vlasov equation. The similarity of the
general kinetic equation problem with the test particle problem suggests
that a similar procedure be adopted for the solution of the 2-particle
distribution function equation (7.13). This program is the subject of
the next chapter where a convergent kinetic equation is derived and

discussed,



CHAPTER IX

A CONVERGENT KINETIC EQUATION

1. INTRODUCTION
We have seen that an expansion of the B-B-G-K-Y hierarchy equations

' 4
in powers of the plasma parameter, %;:fﬁkm = 4ﬂ-%;

, 1s not consistent
as it leads to a divergent kinetic equation. In this chapter we start
with the truncated B-B-G-K-Y hierarchy (i.e., three particle correlation
function equal to zero) for a spatially uniform electron plasma, and
introduce a modified pairvcorrelation function representing the devia-

tion of the plasma from equilibrium. In particular, in place of (7.7)

we write the 2-particle distribution function as

% (0% £ = CL(\YT’(—fﬁDH(ﬁ)g@ﬁ)+fx2(x.)x1;g)§ (9.1)

where Cl(\fﬂbof_\’:ﬂ is the equilibrium correlation function and J&\Z('x“let)
the modified correlation function describing the deviation of the plasma
from equilibrium. This is not a linearization; although we will find
that our results are best when the plasma is near equilibrium. In the
equilibrium state ., =0 and &(Gﬁ{) is the Maxwell-Boltzmenn dis-

tribution,

V’LA
(¢) W =)
fod = (5g) € (9.2)

3

-

|

N
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In Section 2 the equilibrium correlation function C,l(“f?R;\) is
determined. We will find that a good approximation to inﬂ) is
A {*WZLhY(RXE vhere YOU  is the Debye-Hickel potential, (6.7).

In Section 3 the modified correlation function ‘$L2ﬁ1“ yﬁ) is cal-
culated, to first order in the plasma parameter, Ck: 4TYEVRD , with the
so called "adiabatic hypothesis" in which the 2-particle distribution
function is assumed to depend on time only through a functional depen-
dence on £ (’\?;ﬂ

The approximate solution for fkl(x,gqj$) is used to obtain the
kinetic equation for #(Gﬁ} . This kinetic equation does not contain
diverging integrals. A discussion of the result is given in Section L4,
In Section 5 the kinetic equation is cast into the Fokker-Planck form.,
The Fokker-Planck coefficients are shown to converge, and are compared

with the B-G-L coefficients, (7.31) and (7.32).

2. EQUILIBRIUM CORRELATION FUNCTION
The truncated B-B-G-K-Y hierarchy, in which three particle correla-
tions are neglected
T %, 1) =0,
for the spatially homogeneous electron plasma is

IO gmly, by

J _ (9.3)
ot TR O, PACRBORE

and
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‘ € J _erad,, 2
Gt Sl ) etog 9
LI EAT W av{%y‘z(yﬂ?ﬁ)

e, oY@ g p et JHETH S Mz
o~ -5,—\;‘;-&)\ 9(?:3‘?(2,3%)- S Q X2t (9.1)

o gw’?t)&d \?S)‘i 3»»‘? ( \')(ZJQ3 S £(’V‘ ;t) 5‘413 6?23 “Qz@(zﬂ(;chO

The equilibrium solution is assumed to be

2
3/1 ~

™m
0) 206
fezn = e = (555) €77 (9:5)

and

(0) ,,,)
% (’K\ﬂczfc) n\«nl \\ f («rl) (9.6)

where the spatial part of the 2-particle equilibrium distribution func-
tion, (,(\nx ;\15 , is determined from (9.3)-(9.6), with the boundary

condition
CAy— L | 13m0 (9.7)

If we assume C(,(n) has the form

Colny = e_“wm (9.8)
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o
where F1L= 61/9 is the Landau length, then AY(W) must be a solution of

JC

ii@ hdi _i_(ﬁ.—%WMg

— : R Ylu) J
C\ )-L C\ e RLR—; C\T\/

g,lfnl{e -{l=0 (9.9)
o

An approximate solution for «VUU is obtained by expanding the last term
in powers of RLfVKHX . To lower order in the expansion, the solution

that vanishes at infinity is the Debye-Hickel potential,

Y
|, — 7Ro
AYTH) = A%/GL (9.10)

e\ .
where E%b:: ( ) ) is the Debye length. Therefore, (,(%) is
approximately

R R
_ RS R 11
C.00 = aypi- e g (9.11)

3. NON-EQUILIBRIUM SOLUTION
When the plasma is not in equilibrium, but still spatially homo-
geneous, we write the one and two particle distribution functions in

the form

fap = My (9.12)

and

L = COmRIEntEn s} (o

Using (9.13) in the kinetic equation (9.3) gives
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HE en ) . 1k
M, - —ﬁ\—, gc\X Di C/ (Y\ Ny \\{‘Y'(V” Q"‘J’ ) Jr‘\f\\l(’}(“)(lfc')i (9:18)

LD"D—)

Due to the symmetry of (2 the first term does not contribute to the

integral, and (9.14) reduces to

2HED  enely Mg 1o
2 e (e ) 2 ) (5.1

The equation for le_is obtained by inserting (9.13) in (9.L4)

PP eI 9 0 2
l\f ‘bl\/y_ _\F-—— 120——- — —
{})‘t+‘a INS. Y\/\,an‘\"g\?: m n> 3\?

ECZ 7} )\1\)% (k)

Ql \ P 3 = = 9
- R{[ (T\\ 7‘\83(2,\2; S({ %Cl(\nz’ni\\lbjfr

[ W2 )—d“:z m ogdﬂ;‘ Di@:i,cl(mﬁ.ﬁ}\)}?’% Q(ﬁ*ﬂ [h)

on
(9.16)

_ e Y@ e ool 3
YW Dv g 39 ~§>. nz’”3\\)ﬁ Xz XB) 7\’[— 3——"‘ l QI&CQ ’1 3\3\?\ Xi ;‘t)

2

Al X.r('Vl,JC Q (v, JC\X’?%% %ﬁl A7) +[Clw?}?;0“q%{ [Q(‘Zt)g(@i)]: 0
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where we have used (9.14) and the normalization S\&A‘,‘T?f(’\ﬂﬂ =1 .

The equation for ‘B\l(x‘,’h +) is quite complicated, nevertheless,

'
it is possible to obtain JC\,,_ to lowest order in the plasma parameter,
%=417 % . To carry out this expansion in (9.16) let (JP\ and RJ,
be units of time and length. The one particle distribution function

Q-(\?)t\ is of zero order in (&, while

0 er o 9 IV e
2 at) » Wy, LR ) T )

are all assumed first order in % . Furthermore, the exponent of

the equilibrium function Q1 is of order C& so that

GOy = 4 -RNY O + 092

If we make the additional assumption that ‘%\,L(x) X2, X) only depends on
time functionally through 1(\7”,&) , the "adiabatic hypothesis,"”" then
analogous to (7.25) we find that gf\’/gt o 0(‘}13 .

In view of the above remarks Eq. (9.16), to first order in the

plasma parameter, becomes

{ Vi ’3)~>+'V,_ 2 “’gﬁ\ (lel —W—l‘{ Y %;—b %j/ﬁ_: %bgg(/v'ﬂ Q Vl;h)

_emdYa) €, W, 2 oo (D (9.17)
S st - G %;..S %%( )

M2

*RLL(VT‘QQ({};M %/\[\ ~>*’V :3) ‘% (W-ro1) =
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-
where we have used the definition of Cz(\r\\~r\1\\ . The time argument
% i

of 2. has been omitted, since {/\Lnow depends on time functionally
through Q-(’\:?,Jc,) . Except for the last term Eq. (9.17) is similar to
the B-G-L equation (7.26), and is amenable to the same type solution.
In the spatially homogeneous case under consideration %1(7.)X1) is a
function of the relative coordinate M, -N3> so that (9.17) may be re-

> > o
written in terms of JL =N ,-n, ,

D) Spha (32) - & A0, (-3 Yt

wooy W

eZVLo 3$(Mfﬂ jdxg (b( =R D?\ (\> > -

W any Bh"’ M3.%2 Vs
(9.18)
ern, OV () .
T"\J _V:_, g 8¢(ln 7\3\)% (T\LV,{\—/Z)

~R g(’\l, ) &(’VL ,JC) (’V “'Vz 9 /\V

Observing that the integral terms in (9.18) are convolutions of

%
D(b/?)n with ‘E\g_ we are naturally led to the introduction of Fourier

space transforms
D = > ~w>—i k>ﬁ> >
J@Lg(h M%) = Sdft € ﬂa(n v (9.19)

and we note that
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Mo = we e

(9.20)
= 1‘3\ (‘\Z’V\ )
The Fourier transformation of (9.18) is
> o> e > 3 ) N
(V) - R J@L&(k V) il k”(gﬁfﬁ“@w(ﬁfﬂwﬁ(ﬁt)
_ »352(\/. DRI -
e 200D o (b (o
(9.21)

, O w@(%fﬂqmgd\?’% (&%)

- R Swn Yoo Vi) o ) = 6

Before continuing with the solution of (9.21) it is helpful to
look ahead and see what will be required for the evaluation of the

kinetic equation. The kinetic equation (9.15) together with (9.11) is

e J\r(\‘;‘,)t) —€M 9 > IO(|Z-721) ~K§V(lﬂ?fl§\} >
T REWAERST i e o

Introducing Fourier representations for the functions in the integrand,

- Yr(v vt _ e >
ot mmw e LG ARe 9

where

> RV sl
Q () = SW%‘%L:@ - eﬂw (9.2k)
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_.->
Since Q(k*) is an odd function of E) , only the Imaginary part of ja\l s

which according to (9.20) is also an odd function of Eb , will contribute

o (9.23)

PR _ el
Qt T (9\—“)3m 'a,\r‘Td SCHC Q(? SC\V g\l ) ‘) L) (9'25)

In other words, the kinetic equation does not require complete knowledge

of 'g'\g but only of 1"""\(\\739\,\9_(?\? )

) V) Y

Defining the function

/\‘H/\?T\ = IV]OSCl ", ;)\(Ei 1)\;:) . (9.26)

a solution of (9.21) for Im /\-\(’\_/?) is given in Appendix E. Using

this solution in the kinetic equation (9.25) yields

@D e 9 > >
R e TV S S‘lh Am[”g l \?(\:Z’SY: C)\ 3 (9.27)

' @‘ﬁ» ‘?ﬁ:) bar ﬂ@ )

—
where Q (\?’3 is given by (9.24).

If we use the Debye-Hiickel potential for Mﬂﬂ) , (9.10), then

" 4 Ry
Y= o

and the kinetic equation (9.27) is
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HTH_ et g (il Gy Sleem) |

AV T I 7
2 2 oM, K N2k (5.28)
Jian ey 24y

It is interesting to note that if the equilibrium correlation func-

—>
tion Qgﬂﬂ) 1s replaced by unity the function CZ(F?5 is simply

o \ >
Ci’=: 4JY1k_
kz
and the kinetic equation reduces exactly to the B-G-L equation (7.28).
It is important to retain the equilibrium correlation function, how-

ever, since it guarantees the convergence of the k_ integration.

It is shown in Appendix B, (B.6), that to order RL/R;b

QU = — (@i EMZ(M) (9.29)

The use of (9.29) in (9.28) gives the kinetic equation

PRACY . >\
o = e e (e e B

(9.30)

Sl 9% o 8@
W»},L{ﬁ( TS|

4, DISCUSSION

Equation (9.30) is the spatially homogeneous electron plasma ki-
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netic equation, in which the modified pair correlation functionJ;\Q(xi,xzf()
and —Qb( \”) have been calculated to first order.in the plasma parameter

q= ZL'\TRVED . We have also used the "adiabatic hypothesis," the time

dependence of %9\ appears through a functional dependence on Q‘(\T){)

The validity of (9.30) depends on the approximate solution for
&2(’1\)11 ;ﬂ . In obtaining Eq. (9.18) for fqﬂ_ it was assumed that quan-
tities like RL '\Y(TL) are small, but this is certainly not correct for
all values of JU . An order of magnitude estimate for “BL;;\_ , for small
1, is easily obtained from (9.18). When JI is small the integral
terms in (9.18) are unimportant and £k2~is governed primarily by the

equation

3 @ha - Y00 (325 ) dmatey

| (9.31)
— e V) ) b fergt =0

From (9.31) we see that the approximate solution for Bkl , which breaks

down when %1% g‘(’\_fT}t) -Q('\?Z)‘t) , fails for those values of /U where

R\_/\r(r\) >

However, the 2-particle distribution function (9.13) contains the fac-
tor JD}JP {—RL'\Y(F\)E . Therefore, the approximate solution for ‘8\9\ fails
at the same time that the distribution function is rapidly going to
zero. This case is marginal, and the kinetic equation (9.30) must be,
at least, qualitatively correct. Certainly the lack of divergent in-

tegrals in (9.30) recommends it as an improvement over the B-G-L
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equation.
The previous discussion assumed the plasma to be arbitrarily far
from. the equilibrium state. However, if the plasma is near equilibrium,

say
Yarn = Vom oo

©
where 5}8\?’) is the Maxwell-Boltzmann equilibrium distribution, (9.2),
and N\ is a measure of the deviation from equilibrium, then to zeroth
order in k. the last two terms in (9.31) cancel, and one finds that

(0)
ftlzz g-(VT)K(”(ﬁ:) for those values of J1 where

RV > YA (9.52)

Thus, the spproximate solution for Q\Q is valid except for those values

of rL satisfying (9.32), and in this region the distribution function

~l
-Qlequjt) is reduced by an exponential factor € A . We conclude

that the kinetic equation (9.30) becomes exact as the equilibrium state

is approached.

5. THE FOKKER-PLANCK COEFFICIENTS
With some rearrangement Eq. (9.30) may be cast into the Fokker-

Planck form

> ] - <
9___.._#&;(\4 D = - ﬂ?ig(\zﬂ [AC(\?\)H + ii%» B ni)}

ot (9.33)

9 . <>
+ % 3\7@\7"' {WC(\Q/:?Q BL(\Z},)%

\
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where

K@ m——m*“ 5\ B ) RE oL@ 1) (9.34)
S S %& )\a‘*\E(E" 29 e A

K@:ﬂ _ _Anet S‘ ZS 10D, (m:-‘) Pl WG@M

¢+ |e(e ) (9.55)

The Fokker-Planck coefficients can be identified from (9.33) as

| > = 1 J §
wédr = At 75
‘ (9.36)
| o
S TD= B
With the help of the identity (see Appendix D),
el (lea S
(5757 E el
(9.37)

Vi-Vs 1> Nto )i
2 e Wb \\ellemr‘)l

>
and the definitions of Ac s Be given by (9.34) and (9.35) the Fokker-

Planck coefficients may be written in the form

Lagy = N o _ (s
e W lanE e hs 41D ai{tal
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and

1 mas _ :u'em 8(*3?)

wFT) = ey AVZS}(WS( jgdfef’ﬂu «14&\5 (9.39)
v [ dCaTalk

where qu\—[‘tﬁ and ;ﬂ_ is the unit tensor. These Fokker-Planck coef=-

ficients differ from the B-G-L coefficients by the factor -W‘?u{,l(m) .

Since Ja\uq(')() decays exponentially for large X the coefficients (9.38)

and (9.39) do not diverge at large k .



APPENDIX A

APPROXIMATE SOLUTION FOR Q(r)
To obtain an approximate solution of Eg. (3.30),
VA = 4w,y _"QQL@”] ~ 48 () (4.1)
we introduce dimensionless variables

T=RyX , B = i%«)(m (A.2)

Equation (A.1l) becomes

= PE\;Y()O

VY = %[1—9, ]~4vé(v‘c”) (A.3)

The ratio R%/RD is less than 10-D for most plasmas (see Table I).

Suppose we develop th) in a power series in RL/RD ,

Y = Y00 « %‘)/\h('x) Y-

Using this expansion in (A.3), expanding the exponential term, and

equating like powers of P*fkw )
2 -~
VV-V, = 4w d() (A.L)

2
v, (4.5)

Il

vl, - Nyi —
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The solution for l\hb\) that vanishes at infinity is

1
Ym '5( (A.6)
Thus, @i(r\) is approximately the Debye-Hiickel result
- V.
Ty = ‘H » (A.7)
-R&

This expansion cannot be carried further, since the expansion of

for all M, , is not correct. Nevertheless (A.7) gives the asymptotic
behavior of ®(N) , and since § must approach 4/11 as >0 (A.7) is
an excellent approximation.

We now turn to evaluation of the integral

—RLQ )
Ja% e"—-;g(i Sine (5 5) (8.8

to lowest order in Rl—/ Ry - Inserting (A.7) for &(’@ , and changing

to a dimensionless variable A= §/RL, the integral (A.8) is

To lowest order in RL/R) it is permissible to replace the exponent

R
- %X
-Led w-§
-3
1 e wp R
RLSS" = F7 ) (4.9

) @ R
The coefficient 3 1is equal to 5y, R, - The integral (A.9) is

g
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LY () - L ba

Y= ;QSV& % (A.10)

where &uokx) is Kelvin's function,* and the notation, \%:Yo , signi-
fies that the function of ¥ is evaluated at X =¥Xo . For small values

of the argument
%‘fago(xy e - L0 LEET 4 o

where D/\,\')\: 0.S77-++ is Fuler's constant and €=2.7)8--- 1is the base
of the natural logarithms. The integral (A.8) to lowest order in RL/R];

is

(A.11)

*Watson, G. N., A Treatise on the Theory of Bessel Functions, p. 81,
Cambridge (1948).




APPENDIX B

-»
APPROXIMATION OF @ (&)

Our first task is to obtain (6.25),

Q(\?) = (@1 \zzm (\H.RL\Q) (B.1)

to lowest order in R'—/RD , when @E} is given by (6.15),

(i bt 8y i
q = -\Wwie e (5.2
The form of &(ﬂ) , to lowest order in RL/R} , is the Debye-Hickel re-
sult

n
Ro

dmy = Le®

but @) occurs in (B.2) only in the exponential, and to the first ap-

proximation in RL/RJ, we can replace &(n) by the Coulomb potential 1/;1 s

—>_) _ _>~7> "R“'l —>—>
(k\ - Sde ;L'g,
z\a (B.3)
.9 -
- S lEme

Using polar coordinates for JL with as polar axis

136
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70

- =L
N

g = | gdm &\Aﬂddy e

- RL/)-L

= -4y awg’&fb %——&wbb

Introducing the change of variable 'X,:krb (B.4) becomes

_Rk
F = 4miR E>§(\'X e’ &Moc (B.5)
4

'LkTL’V\‘

(B.4)

This integral is given in the Bateman tables* in terms of Hankel func-

tions of imaginary argument, or by virtue of (6.26) we find

—>>

= - i S, (D) (5.6)

The second task is to evaluate, to lowest order in R’-/Rb , the

i

integral (6.31),

deﬂu (2ot \ LA (5.7)

S e e

where ‘o‘—'\\E'E . The simplest procedure for obtaining the dominant
term as R"/{z O is to separate the range of integration into two
parts ( O ,”b ) and ( i/L, ,0 ). In the first range ( O ,VB ) the
argument of ?\ua(%ﬁ') satisfies the inequalities O <2byy’ <;mﬁ? L]

where the last inequality follows on the assumption that RL/K_’]) <]

*Bateman, Tables of Integral Transforms, I, p. 75, McGraw-Hill (1954).




138

Since the argument is always much less than unity we may expand

2
fu, ) e - L o %%me (3.8)

The contribution to (B.7) from the first range of integration is

U
) 1z R (B.9)
_ 1 = & /R
w %i’x ('XL-‘W\Q’I‘\'W_{L ( b

Wz R
id v e D) ¢ vt B +O(R)

LW ¢ T (i) £6(R%) (.10
B.10

where W=WexiWr

is given by (5.16), and we have used the fact that
lwiv) € 1<« b

In the second range of integration (Vlo
lw) <1 << Y/

,®0 ) we can again use

to expand the integrand of (B.7)

W | ks () T2

(XSwey“+wr~
w& dxﬁm (1\9\1”))[* - D i

Meking the variable change 2\\¥ =W, , the right hand side is

(B.11)

® 4
L 22bW
,W:K &Mng\&iz(\ﬁ){%— %LS R4H'}
b
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The second term can be neglected. The first term can be carried out as
an indefinite integral (Ref. 18, p. 319), and (B.ll) becomes

=

H\% () +hoi (uﬂ

U= ;1\)’“
where ?vu\,(u) , Q\L'\)(u) , are defined by (6.26). There is no contribution
)

from the upper limit U=0 , and we are left with

“-q 2\[@ H\m (231 ) + Pk, (1F)1 + 0(%)) (B.12)

Since M, <« we expand the "Ew\,‘(x) and e\,@t‘ (?(} functions for small X

to obtain (Ref. 18, p. 320),
‘P\M‘(x) +Pna\(x) A “\]:rl:r% {M‘%\ -1 +<9(>c")§

Therefore, (B.12) gives to lowest order in RL/123 ,

Lz b1 +0 (%) |
(B.13)
= Ly ¥ +0(%)
where /Q/v\\‘— O.Sﬁ'fa-— is PFuler's constant and €=2,7/8--- 1s the base
of the natural logarithms. Addition of (B.10) and (B.1l3) gives the
dominant term for the integral (B.T) when Nuf <<i

® W
XOM%1N4%3X>}-£~ PO %{%%}

fower ez 7 ~am (2.2

b T (WBW) + O(%R5)



APPENDIX C

TRANSFORMATTION OF THE COLLISION INTEGRAL

To transform the integral (7.22),
€W BQL/I 2
'ﬁgalai’am‘r"‘t TEY o

we note that the Hamiltonian for the characteristic equations (7.18) is

H = ng AP’-/ +814) IRP-n7 1) (c.2)

rere 7 =, e V) LT
where JP"' = wmV; . The quantities , s Vo are the "initial" wveloc-

ities of two particles before a collision when they have the values
rvd 5> - . - - .
N, V;_ at N1y, M3 . This means -?('V“)—t)-R—\/;)t) is a constant of

the motion for the collision orbit determined by H and passing through

the state (/7] , 3 f\—/T ,V, ). Therefore the Poisson bracket of

‘F(’VT:)‘Q ?(?ﬂ;\;) with H must be zero,

e*9bn,2_ 3y 2 Vi p
M[arrr 7 S ?Hﬁrﬂi = »*vlan oty ¢

or

LKS. = — (F=2)- W,Lvl O

-~
where we have used the fact that T ’ "\—/i must depend only on )1,5}71”2‘

Using this identity in the integral (C.l), and noting that the second

term on the left hand side of (C.3) vanishes when integrated by parts,
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we are left with

o\, 730 3—,;%@?&? (Vi t) (e-h

—5> > 5>
Introducing cylindrical coordinates (2 b ,4) ) for 1, with (V)

as the 2 axis we find

Z2=14

W40 § b ag ) {J}WW)H\W]E

~3 >
From the definition of \]; , Vo this is equal to

-

%"S‘ng b dp T {&(ﬁ'ﬁﬂ@,ﬂ ~¥(«2’})1(ﬁ,t)i (0:2)

- -
where ’\f" , Vo' are the velocities two particles would have before a

-
Coulomb collision if they have the velocities ’17,;) , ¥V, afterward.



APPENDIX D

A USEFUL IDENTITY

To prove the relation (8.41),

2 \.(,, RSl Vil [ Sl
(v W) gdk”k‘r\m " 2‘17,’\7'1 S‘“‘ e (S RV|™ o

2

we first observe that

LS, W s (B
Sdkma@m \2“(*1‘ %")lgdk e 8

where %_’:: \7"—\7: and ’ﬂ. is the unit tensor. Because of the delta func-

tion, the integrands in (D.2) can be symmetrized by replacing

I i[ 1 b —1 .
A0 delte by Z l{(}?)}:\?‘)[’- ‘E(}?’?zﬂl] . Operating on the left

hand side of (D.2) with ’5/9'\7: —3/2177 will give the left hand side of

—>
(D.1), call it T ,

. %Wg(@[ * ! }
;(
T= 72\% av)g& + IE(E‘?’W)IJIE(‘ZW@P

(D.3)

= %Q—zﬁgch?i?aé@[mz \EPX g‘l?g‘k—g@ [37/ ﬁl ?V'Jg'll

The last term is zero, because of the delta function. The first term

can be rewritten as

T S‘U’“ M[ et ggi] (D.4)
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where g (x) ~—d115 X) . Operating on the right hand side of (D.2)

-v
with ’g/a-\? ‘Bé\?" , results again in T ,

(G e G P L

-¥%< _%%J<szwjgmlg<yj{gﬁ+wik

In the last term the derivatives of the dielectric constants integrate

to zero, because of the delta function, and the remainder 1is

“%@fi;)f&'—'TT&;{mR\ai

- LWIE)T

where we have used (D.4). To reduce the first term of (D.5) we make

use of

Equation (D.5) is then

= 29 (1= S Ly T\ = (.6)
= 2% e+ 2 (RE)T



1Lk

Contracting both sides with C_( yields

o3 = o (8D (D.7)
t e ez T

Therefore, from (D.6) and (D.7) we find

T = z:%zd $(a (.8)
%gwwm@@mv

which is the desired relation, since "\2 is the left hand side of (D.1).



APPENDIX E

SOLUTION FOR T H (V)

To obtain the solution of (9.21) for Im RN(V) we use a method

employed by Lenard.® TIn terms of the HW) function Eq. (9.21) takes

the form,
n E%'Qxfwli)
Hw){ —Y%cb gclvz_?f_%_% ~
S T (29 Vil
vy C STk 0% 3 ) V)3Vt (E.1)

ceh > ﬂ (v z» 952 «?"«o A by

+ € L D L eV
The pole arising from division of (9.21) by k?}(Wziﬁi) has been

prescribed by writing W (V2V ) -ik? where the limit D—>¢ is implied.

This prescription corresponds to the boundary condition (7.27),

Jﬁ\;(x.,xz;m —> 0 (E.2)

when

TrZ|l—=o , (T7)-(%)<0

The time reversible character of our equations is destroyed by this
boundary condition.
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W
If we insert the transform of the Coulomb potential, ¢) =‘%}, in
the left hand side of (E.1l) we recognize the quantity in brackets as the

electron plasma dielectric constant (5.13) for the distribution func-

tion }H'\T)ﬂ ,

BT =1+ 3\ I v

2 S\ k. QQWLT)
& (T E)-1kw

or letting D—=>0"

b ‘E’bﬁ T(})
V)= —+ 43
(E.3)
where § means "principle value." Note that 8(?’,\23\7:) in general de-
pends on \(?as well as \?’\7{» . It is only when ﬁ(\?)-t) is symmetric in
v that E=E(® 27
The solution of (E.1) for Im W (V) is considerably simplified if

we define the following quantities
"‘\}I’>= ku.l Wv: = kML
Yy = VI HE Slu-

(E.k)

Hw = gd\?”H(\?’) STu- E{Qj

Using (E.3) and (E.4) expression (E.1l) reduces to
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. 1 ) 9
Wy E () = 2 o g G B

(E.5)

+EN B 9‘?‘“’8(\ W | Y Iz

’Mr\l\L R,

k>, va
Multiplying (E.5) by SEA\— Ta| and integrating with respect to V|, gives

N _ eNu Ay | 2 9 =
N TUR ) = S YT g&“zm@ ;gﬂbl;(u,fc) X(uzfﬂ

o, 4 BQ( ‘}D /]-\*(V\J %
L A Ol __a_‘_‘:_‘, gdul TR AR NNTR) i(ug;c)

X
The terms involving/u (\Aq_) can be eliminated by taking the following

combination of (E.5) and (E.6)

{ H "1 M M%E(E’ZM‘\:
——YVV\B “Yf k) D}}K\_\ﬂ g&ulm g{k\';@ }‘Yv(’\zﬁ)&(”zﬂ
I (v {

- Y au\ﬂgd oy QD\L M W‘A‘ HHh

+ Rony (m{ Yo 9‘%"?) —Ly @DW%T )E*
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After some rearrangement thils becomes

DS—UA‘MH ) )“‘E(V\) »:

n

YTk {M-e%‘ﬁdu aii(uzr)sum(d, oY u,fc) 6, >¥(Vt)] -
E.

E(7ku,) : TR M

() 1 Rud 2%
— ) AT { TR £V BMQ vﬂ AU, ~{w t)jﬂﬁl

From (E.8) we get the quantity':Lw<H(VT) needed for the kinetic equa-
tion., If we use the fact, proven in Appendix F, that W%(Ml\is a real

function we find

:[M,,ﬂh?,’)%i_bﬁ -
|
1 W@s[ . H 2 Dﬁcv?;ﬂ]
From the definition of E(Etkuh ,(E.3), we see that
1 oz 2N U
= ~ W Y M ]
T Bl T[% 7 (\Z”}f, )\‘z (E.10)

Equation (E.9) then reduces to

(E.11)

" \
sl EE] 7, ot >
T W)=~ i > 10U R
K * e )| TN ~Hud) U,

Inserting (E.11) in (9.25) and using (E.4) the kinetic equation is



T _
IS

e )
g oV,

—

o “J
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TSl
G2 .

where (E?S is given by (9.2k4).



APPENDIX F

PROOF OF THE REALITY oF “W(u)

In order to show that /HW\‘) is a real function we use the Wiener-

Hopf method ,28 and pass into the complex plane through the following

definitions
T
4 u
@ = A4 Sco n-2
0
IR O
P(Z} AT Sd) W=
4% s (F.1)
1@) = i R_m%{
> 0@y
_ We. j
B = A-08) Tgow

The function W(2), for example, will be an snalytic function of 2 ex-
cept on the real line, which is a branch cut, provided 4‘““) satisfies
a Holder condition on the real :l_ine.28 A superscript "+" or "-" will
denote the limiting values of the functions in (F.l) when 2 approaches
the real axis from above or below respectively. For a typical function,

say /le) , we have the Plemelj relations2

Y W) = Hw

W)
JH (W) *H(\M =1 WS(» Oy
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Equation (E.6) for ’%“M) can therefore be written as

Doy (e =

LNAC ‘ , _ W (F.3)
%%{LE&E&~[ﬁf¥1&§(ﬁ+&i81F’*RCNWWFtK\
The complex conjugate of Eq. (E.6) becomes
e Letr) =
(F.L)

i e eI sk 1]

Subtracting (F.4t) from (F.3) yields, after collection of terms

Tetnfute = T usrl (5.5

The left hand side is an analytic function in the upper half complex Z
plane while the right hand side is analytic in the lower half Z plane.
Equation (F.5) says they are equal at the cut along the real axis, and
therefore [Eff](]q_§>] must be an entire analytic function. Since
this function vanishes at |2\=@ , Liouville's theorem* asserts that

it is zero everywhere. In particular (since &F1 )
Ty = Py = H¥w)

and this shows L{U) to be a real function of W .

*Liouville's theorem asserts: A function that is analytic and bounded
in the whole plane must be a constant.
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