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THE ELASTICITY LAW FOR COMPOSITE RUBBER-TEXTILE BODIES

W. Hofferberth

The composite rubber-textile body finds application in place of rubber
wherever the tensile strength of the rubber is too small or its deformation
is too large. To give rubber structural elements the capacity to withstand
large tensile stresses with small deformations, suitable textile reinforce-
ments are inserted. The resultant composite rubber-textile bodies then share
the loads in a manner depending on the relative strains of the components.

Examples of composite bodies of this kind are conveyer belts, pneumatic
tires and the textile-reinforced "rubber bellows" used in air springs. The
elastic properties of these composite bodies arise from the elastic properties
of rubber and textile and their interaction as determined by their particular
structural geometry. Further development of these interesting physical proper-
ties of the composite rubber-textile body depends on finding accurate analyti-
cal solutions in order to calculate the static stresses and to allow the larg-
est number of fatigue stress cycles.

The conditions for determining the magnitudes of stress and strain are ex-
tremely complex because of the complexity of the various influences. Still,
the relative sizes of the components for a composite body of known geometry may
be determined approximately if certain idealizations are assumed in the solu-
tion. Under such an idealization, a simplified expression for the determina-
tion of stress and strain under static load can be obtained by assuming a lin-
early elastic composite body.

I. INTRODUCTION

The stresses and deformations of a typical elastic element, and therefore
also of the whole composite body of rubber and textile, may be determined for
a Tixed load and an assumed set of edge conditions. The following assumptions
are made: the conditions of equilibrium for the elastic body must be fulfilled,
and the relagtion between the stress and strain must be known. Then, with the
ald of classical elasticity theory, the geometric and stress states may be math-
ematically determined as a function of the external forces. That is, the stresses
and strains of the elastic body, at a known load and known edge conditions, may
be determined.

In carrying out this analysis, the elastic constants which describe the
stress state of the elastic materials are assumed to be known. Similarly the



geometry is assumed given. Then the relations between the elastic and geometric
dimensions can be determined. The basic equations are to be solved by consider-
ing the boundary conditions. These equations are derived from mathematical
statements. The solution is simplified, or even made possible, if, in estab-
lishing the basic equations, certain idealizations are anticipated which con-
cern the kind and size of stresses, the kind and size of deformations, and the
relation between stresses and deformations. The elasticity law for many materi-
als is taken as linear, while for other materials, such as rubber and textile,

a nonlinear relation exists between the stress and strain. This, however, may
be linearized under certain assumptions.

In the classical elasticity theory, we have, in this respect, a much more
simplified case since we limit ourselves to homogeneous and isotropic materials
and to the consideration of very small deformations. We omit the nonlinear
products of the elastic displacements and thelr derivatives to get a linear ex-
pression in these values. We fulfill the equilibrium conditions on the unde-
formed body instead of on the deformed one and assume the deformgtions propor-
tional to the resultant forces. Under these assumptions the superposition law
of mechanics is wvalid.

The superposition law is no longer valid for a more common case in the the-
ory of elasticity. For example, whenever a linearization of the elasticity law
or the assumption of small deformations can no longer be assumed, or if the ho-
mogeneity and the isotropy can no longer be approximately assumed as valid, then
superposition no longer holds. How much of a generalization of the elasticity
theory is required depends on the actual elasticity problem.

We do not wish to occupy ourselves here with general formulations of the
elasticity theory for the composite rubber-textile body; that will be reported
elsewhere. The classical theory of elasticity permits the creation of a set of
equations sufficient for an approximate determination of the static rigidity of
the composite rubber-textile body. Since investigations of the possibility of
determining equations of equilibrium for certain problems such as pneumatic
tires have already been made, then the assumptions necessary to the determina-
tion of stress and strain will be taken up here, as well as the essential rela-
tionship between stress and deformation, under the assumption of linear elas-
ticity.

II. BASIS OF SIMPLIFIED CALCULATION

Composite bodies made of rubber and textile are mostly thin-walled, regarded
from the point of view of their construction. Their sizes are indicated by the
geometry of their middle surface, that is, the surface which passes through the
mid-point of the wall thickness at every point. The middle surface can be simple
or doubly curved, or it can be a combination of plane and curved surfaces.



If we cut an element out of such a composite body in such a way that the
cut faces are vertical to the mid-plane and parallel to the co-ordinate axes x
and y (see Fig. 1), then components of stress have an effect on the cut surface
which we can consider per unit of cutting length, in regard to forces and mo-

ments on the cut surface.

For the cut surface, x = const., the forces are: Ny (longitudinal force),
Nycyr (shearing force), and Qy (transverse force); the moments are: My (bending

moment ), and Myy (torsion moment).

Correspondingly for the cut surface, y = const., the forces on the cut face
are: Ny, Nyx’ and Qy; and the moments are: My and Myx'

///fy
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X

(a) Element of the composite body. (b) Composite element.

Fig. 1. The forces and moments acting on the cut surface.

To determine exactly the stress components, or alternately, the cutting
forces and moments acting on the cut surface, the application of the general
theory of elasticity to this problem would be necessary. If we avoid a rigor-
ous method of solution and carry out a simplified calculation for the compound
rubber-textile body by means of a classical elasticity theory, then the ideal-
ized assumptions previously discussed must be used.



The assumption of a linear strain law and the assumptions for the homoge-
neity and the isotropy of the materials are unrealistic for the compound rubber-
textile body, for these imply the use of an ideal material, which we do not have.
However, the stress-strain law may be linearized for each of the materials to be
used in our compound body. This may be done within certain strain limitations
which will be determined and stated. However, the conditions of homogeneity
and especiallyisotropy may be fulfilled only approximately because of the con-
struction of the compound body. The gpplicability of the assumption of iso-
tropy for the compound body may be judged from the results of experiments re-
ported below. It can then be decided whether the analysis using the classical the-
ory of elasticity adequately approximates real conditions, and whether the re-
sults of this analysis permit sufficiently accurate determination of the stresses
in the composite rubber-textile body.

The fundamentals of elasticity theory will be briefly reviewed, especially
those aspects necessary for the approximate calculation of stress and strain.

1. THE STATE OF STRESS

If we imagine an element in the form of a square cut out of an e¢lastic com-
posite body (see Fig. 2), whose edges run parallel to the axes of a rectangular
co-ordinate system, X,y,z, then we may establish the following stress components
according to the theory of elasticity:

Normal stress components: Oxs Oys Oz, and
Shearing stress components: Txys Tyxs Tyzs Tzys Tzxs Txz

Nine components of stress are present on each square element. As & result of
equilibrium in rotation, that 1s to say Txy = Tyx, Tyz = Tzy, Tzx = Txz, these
nine are reduced to six stress components: 0y, Oy» ) Txy» Tyz, T,x5 these
we can call parameters of the stress at every point.

If we set up equilibrium for the square element, then equilibrium must ex-
ist for each coordinate direction, that is, the sum of the forces due to the nor-
mal and shearing stresses in each direction must be set equal to the exterior
forces acting in the same direction. This is the effect of the normal stresses
Ox and 0x + doy and the shearing stresses Tyx and Tyx + dTyx, Tyx and T,y +
dT,x in x-direction.

Since in general the state of stress is a function of the coordinates
X,y¥,z, similar forces acting on opposite cut faces change only by differentials,
for whose calculation Taylor series can be applied.

For example, this may be written:

do

Oy +doy = Oy + ?;E dx + +-+ (terms of a higher order)
O x

X

*Note: © signifies O throughout.
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Fig. 2. Stresses on the square-shaped element.

If the terms of higher order are omitted, the result is

8oy
+ dcx = Oy + —= dx
dx

Ox
We find similar developments for the remaining stress components in x-, y-,
and z-direction. If the stress components operating on the element as a result
of external forces are Py, Py and p,, then the conditions for the equilibrium
in x-, y-, and z-directions are as follows:

oo o) o}
X L Tyx + Tzx

+ = 0

0x Oy Oz Px
oT o1y oT

oy 24 E o = 0 1
ox Oy Oz Py (1)
oT oT o0

Xz yz. . % b, = O

ox oy Oz



2. THE STATE OF DISPLACEMENT AND STRAIN

We indicate the displacement components with u,v,w and postulate a rectan-
gular cartesian coordinate system. Since the displacement components are func-
tions of the coordinates x,y,z, displacements only change by differentials at
adjoining points. If, for the point with coordinates x,y,z the displacements
are u,v,w, and for the neighboring point with the coordinates x + dx, y + dy,

Zz + dz the displacements are u + du, v + dv, w + dw, then these displacements
may be expressed using the Taylor series in terms of variables at x,y,z. We
then obtain, omitting the terms of higher order,

du du ou
+du = +—dx + =dy + —= d
LA s u T T T
and therefore -
du = ou dx + Su dy + Su dz
ox oy oz
Correspondingly,
g (2)
dv = v dx + v dy + v dz
ox oy oz
dw = ow dx + ow dy + §E dz .
Ox oy oz N,

Changes of the length of its diagonal and of the angle enclosed by the elements
are related to the deformation of the elastic body. For two neighboring points
with coordinates x, y, z and x + dx, y + dy, z + dz, the length of diagonal be-
fore deformation is

ds = Ndx* + dyz + dz=

and after deformation is

ds' = N (dx+du)® + (dy+av)= + (dz+dw)®

If the relationships (2) are inserted for the differentials of the dig-
placements, the result after some manipulations is:

ds' = J(1+2ex)dx2+(1+2ey)dy2+(1+2ez)dz2+27Xydxdy+2yyzdydz+zyzxdzdx

where €y, €y €z = strains in the direction of the coordinate axes, and Txy?
Yyzs Yzx. = changes of the right angles formed by the sides (dx, dy, dz) of the
element.

For infinitesimal strains, the squares and products of the derivatives
of displacements can be omitted and we obtain the following linear relationships
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for the strain components:

_ ou _ v _ dw
€ = £ ey = 5y ’ € = & (3)
and
_ du ov _ oy ow oW ou
Tsy < &y 55 Tyz2 = &z T By 7zx T 5%t 5, (&)

The geometric conditions (3) and (4) give the relationship between the
strain components and the derivatives of displacements.

3. RELATIONSHIP BETWEEN STATE OF STRESS AND STATE OF STRAIN

The relationship between stress and strain is established from a law de-
termined experimentally. The simplest elasticity law is Hooke's Law, which
states that the strain is proportional to the force causing it.

According to Hooke's Law the longitudinal strain for the uniaxial state of
stress—for example, the elongation of a rod in the direction of its axis—is
€ = G/E, where E = modulus of elasticity. In the presence of transverse elonga-
tion, this becomes €y = - V(G/E), where v = coefficient of transverse expansion
of Poisson's Ratio. E and v are constant for all directions in isotropic ma-
terials.

For the j-dimensional state of stress, as a result of the linearity of
Hooke's Law for the x-, y-, and z-direction, the following relationships be-

tween the normal stresses and the strains exist:

ex = 1/B [ox - v (oy+0,)]
Gy = l/E [Uy -V (0X+OZ)] (5)
€z = 1/E [0y - v (0x+°y)]

as well as those between the shearing stress and the shearing strain:

Xy Txy
7xy = 2 (w) g = G
T T
- gz o Jz
7yZ - 2 (l+v) i - G (6)
Tzx Tzx
Tax = 20 5 =

whereby the modulus of shear G = E[2(1+v)].

With the help of the conditions of equilibrium (1), of the geometric con-
ditions (3) and (4), and of the relationships (5) and (6) of the elasticity
law, the magnitudes of stress and strain of a loaded composite substance can be
calculated. Residual stresses and strains are present in the unloaded state
and these are superimposed on those stresses due to external loads. Some other,
more suitable coordinate system can be chosen in place of the rectangular co-
ordinates, for certain specific problems where this is convenient. Equations
(1) through (6) must then be rewritten.

We once again point out that these relationships have only a limited scope
of validity.



ITTI. LINEARIZED ELASTICITY LAW FOR THE COMPOSITE RUBBER-TEXTILE BODY

The rubber-textile system is understood to be rubber with textile inserts
especially suited to absorb the tensile stresses present in the loaded struc-
ture. Indeed, the rubber has the properties of being essentially incompressi-
ble and also of producing shearing stresses with shear deformations. Still,
its tensile strength is either very small or else associated with large defor-
mations. To avoid these disadvantages of rubber, some kind of rigid reinforce-
ments made of textile are arranged in the tensile area of the rubber body so
that the composite body can carry the stresses in a definite way.

Fundamentally, the following essential parts may be established for a com-
posite rubber-textile body:

(a) The carcass of the structure consists of one or several rubberized
fabric layers which are arranged in a suitable way to attain the de-
sired properties. The important task of the fabric foundation is to
withstand the tensile stresses of the composite body.

(b) To protect the carcass of the structure against outside influences
of an abrasive or chemical nature, it is provided with a rubber cover-
ing layer which is formed in a manner depending on the application.

(c) For the purpose of a proper support, or, as the case may be, orienta-
tion of the composite body, its edges must be built so that a good
structural connection is made with the support.

In the case of the edges or supporting parts, it is important to make these
more or less rigid according to the particular application of the composite body.

Individually, these main parts of the composite body can be made very dif-
Terently according to what stresses are to be carried and which optimum proper-
tles are desired.

1. THE STATE OF STRESS OF THE COMPOSITE BODY

As already detailed above, the composite bodies of interest here are shell
structures whose middle surfaces are plain or doubly curved. Under static load,
these shell structures are essentially loaded so that the load is absorbed main-
ly by the extensional forces; thus, for an approximation, we may speak of a
state of stress free from bending. In the case of small wall thicknesses in
comparison to the other dimensions of the composite body, we may take as a basis
for further derivations the assumptions of the membrane theory. That means,
among other things, that the stresses are uniformly distributed over the wall
thicknesses. No moments or transverse forces appear, and the longitudinal forces
affect the middle surface of the structure in such a way that the middle surface
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undergoes tension only. The bending stresses which eventually occur due to the
changes in the curvature of the membrane are only secondary stresses and there-
fore may be omitted.

By omitting the moments and transverse forces we obtain a simplified state
of stress, so that according to Fig. 1 for the cut face, x = constant, the
forces acting on the surface of the cut are Ny and ny, and for the cutting sur-
face, y = constant, the forces are Ny and Nyyx. Forces on the cut faces are to
be summed up for a fixed orientation of the composite body from the equilibrium
conditions.

The state of stress can often be simplified still further if, for example,
for a composite body, the middle surface and the load are axially symmetrical.
It then becomes ny = Nyx = 0, so that out of the equilibrium conditions only
the forces Ny and Ny are to be determined.

2. SIMPLIFIED ELASTICITY FOR THE COMPOSITE BODY

The elastic behavior of the composite rubber-textile body cannot be given
without further explanation; it 1s first of all dependent on the known elastic-
1ty law of the rubber and textile. It also depends on the geometry of con-
struction. A simplified relationship between the magnitude of stress and strain
of the composite body for small deformations will now be given in the following
derivations.

If we regard a composite element (see Fig. 3) that is stressed and strained
in the x and y direction, simple linear relationship is valid between the
stresses and strains under the assumption of Hooke's Law corresponding to Eq.
(5). We base the further examination of the elastic properties of the compos-
ite body on the stress-strain laws of individual materials, for which Hooke's
TLaw is valid in certain stress areas whose limits are to be established. Then
the influence of geometrial factors on the stress-strain law may be established
for the compound body if it is deformed only in its plane and if the materials
used deform in the same way.

As is well known, the basic form of construction of the composite rubber-
textile body remains essentially unchanged, so that here it is sufficient to
treat the simple case when the wall of the composite body consists of two
crossed, rubberized textile layers and a protective layer of rubber. The tex-
tile reinforcement is symmetrical to the symmetry lines x, y of the composite
element with the intersecting angle w = 2-B. The results presented below are
also valid for a general construction of the composite body.
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Fig. 3. Composite element.

The following values are known, or may be determined:

Eé = Modulus of elasticity of the protective rubber
E& = Modulus of elasticity of the rubber coating

Vg = Coefficient of cross expansion for the rubber
Ey = Modulus of elasticity of the textile material
d = Wall thickness of the composite body

Thickness of all rubberized textile layers

—~~ &
Ta
=

o

] ]

Thickness of the rubber layer

=
1]

Relationship of the thickness of the textile foundation
to the wall thickness

l—¢ = Relationship of the thickness of the rubber layer to the
wall thickness
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v = Relationship of the textile cross section to the cross section
of the layer of fabric

Relationship of the textile cross section to the entire cross
section.

¥

The stresses are absorbed by the individual elements of the composite body
and the partial stresses for the rubber layer in the x direction are:

E 1
= g .
Gxgt B 1 - v,2 (ex T Ve €y):
g
In the y direction
E !
= 8 +
GY%' 1 - Vg2 (€y Vg eX)

For a layer of fabric the stress components are to be determined next in the
case of a textile reinforcement in ¢ direction. TFor the textile part the
stress in ¢g-direction is:

th = E-t‘ Eg

By transformation we find the stress components for strain in the x and y direc-
tions (see Fig. 4):

. 5 e
ox, = Bt %(l + ios w) ey + 51nlL w €yj}
sin® o (1L - cos w)®
Et {_T €X+ L‘_ ey}

For protective rubber layer the stresses in the ¢ direction are:

nyt

E 1"
Gggn = —i—-l - (ee + Vg en)
g
In n direction
- )
Ongtt = €n t Vg €
Mg 1 - ng n g ct
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Fig. 4. Strain as a result of distortions.

By transformation we find the stress components for strain in x and y direc-
tions (see Fig. 4):

11 = __Egl._ 1 + cos® [\ c sin2 w
g
ine 2 B ‘
+ v sin2 w cu + 1l + cos2 w c
gl » X ) Y_}r
E " . 2 ) 2
Oy n = g 2 (ﬁ;n W e+ 1 + cos? W -
g l - Vg2 2 2
+ 2 12 1
+ Vg (l "2 ey + 2 eY-!
L 2 >

If we account for the stresses of both fabric layers, the relationship yields
< ox'dzoxg,'(l-¢)d+oxt'\lf'¢'d+oxg,,(l—\y)¢d

or the equation:
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E '(l- ¢) I nq o o )
ox = S 1+ = (1 + cos w)2 + nz(l + cos® w + vg sin® w| ey
1 - ve2 _ N
g L _
+ [%g + %% sin® ¢ + no(sin® w + Vg + Vg cos® éﬂ e%;}. (7)
and correspondingly
E 1l- Jﬁ 7]
oy = ( +—s1n2w+n2(81n (l>+vg+vg cos® w €x
1 - _
2 2
+ [} + %% (1 - cosw) +mno(l+cos w+ v sin® w{} E?_f (8)
where
E”l-
when n; = ___§EE9____ und n, = -2 ( V) ¢ (9)
By == b B, (L - ¢)
g T Vg

Equations (7), (8), and (9) give the linear relations for small deforma-
tions between the stresses and strains for the composite rubber textile body
as a function of the elastic constants of the individual materials and their
geometry. By transforming the above equations, the anisotropy of the compos-
ite body may be determined as a function of the directions of the textile ma-
terial. For this reason we rewrite Egs. (7) and (8) as follows:

G. C.

= X _X
x X gy
XX XX

GX Gy

5y By

Out of this the moduli of elasticity may be determined, and indeed we find for
the modulus of elasticity in the x direction:

1+ T—_-;—— (1 + cos® w - vg sin® w + bny, cos2 w) + 2ng(l + cos2 w + 2np cos2 w)
o = Eg'(1=9) vg® A

Exx = E

1 +_r12_1 (1 - cos @2 + np(l + cos® w + vg sin® w)

And in the y direction:

1+
B - pi(1- ) —

. 2 2
(1 + cos® o - Vg sin® @ + bnp cos? w) + 2ng(1 + cos® w + 2np cos® w)

l+521(1+cos <b)2+ng(l+cosew+vg sin® w) >.

Modulus of cross contraction: (10)

(1 +cos®w- vg sinZ o + hns cos? w) + 2no(l + cos2 w + 2np cos? w)

Ny

1 4+ —a

1 - vg2

= E;;; = - Eg'(l- ¢) g
+__r121 sin2m+n2(sin2m+v + v, cos® )

- J

Vg
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With the help of Egs. (10) the influence of the elastic constants of the
individual materials and the effect of the arrangement of the textile reinforcements
on the stiffness of the composite body may be determined.

Becaguse of the anisotropy of the composite element, the following special
cases will now be studied:

(a) The influence of the protective rubber layer should be negligibly
small, so that if n, = 0, Egs.(10) becomes:

S R 2 ¢y - in2
xx 1+ 77 (1 + cos? ® - vg sin? w)

Exx Bg'(1 - 0)-

2
1+ %% (1 - cos w)

Il 2 + 02
+ 1l + cos= w - vg 8in© w
1 T a2 ( g )

BV = E'(1- ) .
1 +% (1 + cos w)?

nl .
, 1l +—=—= (1 + cos® w - vy, sin® w
By = By = - E'(1-4) DTl 5 !
%X oS n
vg + =L sin® o
2

These are the same relationships which F. Martin derived in his investiga~
tions into the state of stress of pneumatic aircraft tires.

(b) The textile reinforcement lies parallel to the x-axis, that is, w = 0
and therefore

en
1+ —2 (l + 21’12) + L!»l’lg(l + ].’12)
XX - 2
Bxx = Bg'(1-§) 1- vg
1l + 2no
2.'(11
1 +l—_—'—2 (l + 2Il2) + ll-l’lg(l + n2)
Y = Eg'(1=¢) - &
vy 1+ 2n; + 2np
1+ i——?i%—z (1 + 2no) + bno(l + np)
BY = B = - Eg'(l- ) g
XX
vy vg(l + 2no)

If the textile reinforcement lies parallel to the y-axis, that is, w = =,
then we obtain the same value for Ezz = E§§ while the E moduli are interchanged
in the x- and y-direction.

(c) The textile reinforcement is arranged orthogonally, making an angle of
45° with the x and y axes, that is, o = xn/2:

14



n A
1 +—2— +2n5
1 +Y
B = Bg'(1- 9 —— .
1+ T il + 2no
v
57 - - P e rW
Ny
1+ 3 + no(l + vg)
n
1 +=—7— + 2np
1+
Y = B = - B (L - §) - e
xx ¥y =1 .4 +
Vg + 5 ns(1 Vg{J
In this case E§§ = E%%- That means that the assumption of isotropy of the compound

body is best approximated with orthogonal textile reinforcements symmetrical
to the x and y axes. In this case, relationships derived using the classical
theory of elasticity yield exact results. The greater the anisotropy, the less
exact is the simplified calculation for the composite rubber-textile body.

The dependence of the anisotropy on the elastic properties and textile re-

inforcement is shown in two examples—with simple numerical values— and the moduli

of elasticity of the composite body is plotted against the included angle of
the textile reinforcement for:

E,' = 100 kg/em2; By = 50,000 kg/cm?; E," = 50 kg/cm?

and

vg = 0.5; § = 0.5; ¥ = 0.5 in Fig. 5.

In Fig. 6 the constants are chosen as

By’ = E" - 100 kg/cm?; By = 2,000,000 kg/cm2

and

Iv. SUMMARY

Based on linear elasticity, a simplified calculation is presented for the
magnitude of stress and strain in the composite rubber-textile body using the
theory of elasticity. Under the assumption that the state of stress is free
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Fig. 5. Dependence of the modulii of elasticity of the composite body on the
included angle w for Eg' = 100 kg/cm®; Ey = 50,000 kg/cm?; Eg" = 50 kg/cm2.
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Fig. 6. Dependence of the modulii of elasticity of the composite body on the
included angle  for Eg' = 100 kg/em®; Ey = 2,000,000 kg/cm?; By = 100 kg/cm®.
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from bending and that no shearing stresses are present, a linear relationship
between the stresses and strains may be derived for the simple composite body
whose walls consist of two crossed rubberized textile layers and a protective
layer of rubber. The simplified relationships which have been derived predict
the influence of elastic constants of the constituent materials and the con-
struction geometry on the overall stiffness of the composite body. As an indi-
cation of the anisotropy, the moduli of elasticity of the composite body are
determined and their dependence on the angle of the textile reinforcements is
investigated for special cases. Two examples of it are calculated.

It was found that the assumption of isotropy for the composite rubber tex-

tile body 1s best approximated with orthogonal textile reinforcements symmetrical
to the x and y axes.
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