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ABSTRACT

Part I. General Analysis of Discontinuities in Wave Guides and
Cavities.

The transmission and reflection of electro-magnetic waves at
the boundary surface between two systems of different geometry is studied
by means of harmonic analysis. Attention is at first focused on such
configurations that two-dimensional rather than three-dimensional analysis
is possible. An equivalent network is given and a comprehensive expres-
sion derived for the wave admittance of the discontinuity in terms of the
wave admittances of the normal anodes in the two systems and the coeffi-
cients of coupling between them. A coefficient of coupling is defined as
a normalized non-orthogonality integral of the wave functions over the
boumdary surface between the two systems. The result is directly appli-
cable to wave-guide junctions and is extended to symmetrical obstacles in
wave guides by combination of symmetrical and antisymmetrical illumination
of the two discontinuities. Equivalent open-circuit and short-circuit
impedances, T and n networks are given. The more general problem of three-
dimensional harnomic analysis is considered in connection with a specific
example: the junction between a rectangular wave guide and a cylindrical
resonator. The general solution as well as an explicit approximate formula
for the admittance of the junction are derived.

Part II. Solution of the Specific Problem.

This part of the paper considers the problem of designing a
wave-gulde-output system for an interdigital magnetron so as to realize
a specified slot conductance for the electronic operation of the magne-
tron. First the electromagnetic field at resonance is calculated in all
parts of the system. Then the impedance transformation between the anode
and the output wave gulde is designed to meet the specifications. To
facilitate experimental verification of the results, expressions are de-
rived for the external and the intermal Q of the resonator. Test results
on & scale model are given and compared with computed values.
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CALCULATION OF A WAVE-GUIDE-LOADED RESONATOR

FOR INTERDIGITAIL MAGNETRONS

PART I GENERAL ANALYSIS OF DISCONTINUITIES

IN WAVE GUIDES AND CAVITIES

INTRODUCT ION

The application of harmonic analysis to electromagnetic fields in
wave guides and cavities, as well as to Junctions between or discontinuities

1-10 14 is also well known that

within such systems, is well established.
the usefulness of harmonic analysis for numerical calculation is somewhat
restricted by the slow convergence of the series obtained in many problems.
Nontheless it is Ffelt that the formulas and equivalent networks developed
in this paper may be of appreciable interest.

The electromagnetic waves propagated in wave guides, along wires,
or radiated from antennas are conventionally expressed as a sum of a number
of components which have the form of the normal modes of the system. Each
normal mode is one of the orthogonal solutions of the vector wave equation
consistent with the boundary conditions; the wave equation being referred
to such a coordinate system x;, x5, X3, that each boundary surface charac-
teristic of the geometry satisfies one equation %F = constant. These
boundaries are assumed to have infinite conductivity. The normal modes of
a system form a complete set of orthogonal functions, so that any field
configuration that is solenoidal and satisfies Mexwell's equations and the

boundary conditions can be expressed as a Fourier series in terms of the

orthogonal modes.



when two such systems of different geometry are joined together,

so that waves travel from one system into the other, it is theoretically
possible to solve any wave propegation problem in terms of the normal modes
of one system alone by application of the appropriate boundary conditions.
After the field configuration in the second system is obtained in this way
it can be translated in terms of the normal modes of the second systenm by
harmonic analysis. A considerable simplification of the computations re-
sults if the translation can take place right at the boundary surface where
the waves leave one system and enter the other, that is, if the harmonic eana-
lysis can be performed in two dimensions rather than in three. This is
possible if the common boundery between the two systems is contained in a
surface %/‘ = const. in both coordinate systems. We shall begin by

considering problems of this character.

A. TWO-DIMENSIONAL HARMONIC ARALYSIS

Fig. 1 is a schematic representation of a junction of two wave
guides or cavities. The natural modes of the system to the left of the
boundery are most simply described in terms of the orthogonal coordinates
X1, Xp, X3; those of the system to the right in terms of yj, yo, ¥z The
common boundary S is included in a surface x3 = 0 which is also y3 = 0.

The cross section of the left wave guide, as measured along this coordinate
surface, is A, the cross section of the right one B. The tangential elec-

tric field in S can be expanded in terms of the natural modes of both wave

guides. Since the tangential electric field is zero over those parts of

A and B not belonging to S, each expansion is uniquely determined by the

field configuration over S.
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By (xp%p) = Epy epy (XppXp) + Epp pp (XpaXp) + . o o (1)

By (yp2¥p) = Epy ey (9ps0p) + Epy epp (a¥p) + o v 0 (2)

Here the two-dimensional orthogonal functions e, and g, are

normalized to unity so that

2 =
J‘ e A, dxl dx2 = 1 , (3)
A
2 dy. dy, = 1 (%)
B, Y1 V2 ‘
B
We shall in this section limit the scope of the analysis to
systems that are symmetrical and permit us to choose the coordinates so
and Yo = xp0n the boundary surface.

1
Equating the right members of (1) and (2), multiplying by one

thet y, = -x

orthogonal function at a- time and integrating, we obtain the following

relations between the coefficients in the two expansions

EBl = all EAl + 0521 EA2 + e & o o o & o o ¢ & o

EBE = ale EAl + a22 EA2 + * L] [ d L d * . * L L . e ? , (5)

EAl = all SBl + alE EB2 S S

PtIJ
no
]

Cﬂzl EB1+0622 EBE+ ¢ 6 o 6 e o & o o o o F » (6)

. . o o L] * . o e . e o . . o » . . ¢ o . . . . .J



where the coefficients of coupling & are defined by the nonorthogonality

integrals:

Gy = J\gﬁ% ep, dx, dx, . (7)
S

The tangential magnetic field components in S associated with
each normal mode in the two guides are related to the tangential electric

field components by the wave admittances according to the equations

EAV = EAV YAV (8)
HBV = EB\/ ti (9)

With the coordinate systems chosen, all wave admittances are
positive for waves propagated away from the junction and negative for
waves traveling towards the junction.

The continuity of the tangential magnetic field over the area
S requires that the sum of all the B-components equals the sum of all
the A-components. Since the tangential magnetic field is not zero over the
areas of A and B not included in S, this condition allows many different
expansions of the magnetic field in terms of the normal modes of guides
A and B. The correct expansions have to be compatible with the expansions
of the transverse electric field and the wave admittances of the individual

modes as well as with the continuity relations over S.

Hy = Epy Ygyp ey *EgoTgpegp v - o 0 0 - . (11)



Since Hy and Hp are not zero outside S the procedure leading from
(1) and (2) to (5) and (6) can not be duplicated for the magnetic field.
This difficulty can be overcome by introduction of a third set of ortho-
gonal functions over S and use of this set as an intermediate step between
the sets e and g, * We shall do this later on but first solve the

problem for a simple case where this is not necessary.

Special Case: S = A

When all the area A is included in the common boundary S, we can
apply to Hs all orthogonality relations that involve integration over A
only. Then multiplying the right members of (10) and (11) in turn by each

one of the functions e

Ay and integrating over A we get

"HAl = allﬂBl+a12H132+ e o e o e o o o)

-HA2 = ael E_Bl + a22 HB2 + e o o o o o o '?. . (12)

e o e o ¢ e ¢ o o ¢« o o o o 0 e @ & o & o o o

It is important to note that in this system of equations we must
always include a considerably larger number of terms that the number of
equations, since the HB-components determine the HA-components buy not
vice versa.

Between (5), (8), (9), and (12) it is now possible to eliminate
all field components but one set, for instance EAv' The result is a com-
plete system of homogeneous linear equations between those components. Its
golution is either EAV = 0, or the determinant of the coefficients must
varish, The former is the case if all the admittances are passive (no

waves approaching the junction); on the other hand, if "illumination”



reaches the jumction through one of the modes, say EAl’ we obtain the in-
put admittance of the junction S to this wave by setting the determinant

of the coefficients equal to zero and solving for - fAlz

o

:E:: Oy Op Yo ooew

S 5
a, Q, Y ho o} .| = 0 (13)
cg 1% p: o 2,4 T, -
Alternately we can obtain the following equation:

Z >

a a a _Z. . . ° .

(o - - (=) 2 -

Q, o, Z Zpp + > Op Zp, + .| = O (1k)
,Z:i In 75 A =

Approximate solutions based on these two optional equations
are equivalent only if consistently a larger number of modes is taken into
account in system B than in system A. This means that (13) gives a lower-
order determinant than (1&), but that the former requires a larger number
of terms in the summations than the latter. The former is obviously easier
to handle algebraically.

If (13) and (14) are written with the following shorter nota-

tion



Y1t711 N RS SRR
N12 Yo e N3 e e e e e e = 0 (15)
113 25 Y3 *N3Z e oc e e
the first approximation to the solution for - Yl is
. '711 (16)
The second approximation is
2
Yz [
_Y = YZ - ......];é__._ . 17
1 1Y, + Moy an
The third approximation is
Yy =N %2 nfis |, Zhe s Ty (18)
1 11 Y'a + "]22 Y5 +’733 YQ\% )

where in the denominators of the second and third term 7223 has been
neglected in camparison with (Y5 + "oo) ¥ + *}33) and in the fourth

term only Yg }(5 has been retained of this product. Higher-order approxi-
mations can easily be constructed in a similar way. In terms of the wave
admittances the last equation can be written:

2= _ 12
- - =1
Y i ZaplYBl.A -

Y, + IR A
A2 /u=1’*2 Bps

= = 2
W1 i3 o
! -

A3 %3" B

peL



2 a.o .1 E a.0., X . X

Z_ 1 "p2 "Bu' £ 1°u3 = 2 u3

+ #._ M Iu /"Ll,(..]_mlu _I" HTJJ_]_C?A Iu (e ) (19)
Tho 3

In case of illumination from system B the desired input admittance
eppears in every element of the determinant (13). The choice is then be-
tween using (13) with a procedure of successive approximations or (1) with
& higher-order determinant.

The mode numbers used above are quite arbitrary. The desired
wave admittance can alweys be made to appear in the upper left-hand corner
of the determinant. The formulas given here are therefore quite general,
within the restrictions imposed by convergence and computational labor.

The junction can be represented by an equivalent network showing
all the various wave-guide modes involved. Fig. 2 gives such a representa-
tion. The coupling elements between the modes in one guide and those in
the other are ideal transformers, connected in parallel on the side corres-
ponding to the wave guide of smaller cross section and in series on the
other side, in accord with (5) and (13).

Because of the normalizing procedure the mode coefficients,

EA,u ) HAf ) E.Bv ’ HBv" do not assume the dimensions of electric or magnetic
field strength. Actually, if X7 end xp have the dimension length, these
coefficients have the dimension voltage and current and, therefore, fit
dimensionally into the equivalent network. In any circuit containing a
source the wave impedance shown in the diagram will be negative and can be
replaced by a voltage generator and a T or a n network.

The simplest example of a Jjunction of the kind described here is

formed by two wave guides extended along the xj—a.xis with a width 24 along
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Xy, one of them with a height 2a and the other with a height 2b along x».
For TE-waves with the electric field vector parallel to the x2-axis the
following normalized wave functions at the boundary surface exist of the
lowest-order x;-districution

X

1
= 08 ——— 20
%0 = JZaa 2 23 (20)
X T
1 2 =l
e = —— COBU —— CO8 —— form= 2%k> 0 21
Ap Vad F 28, 2d P (21)
L giny = i 2k -1> 0 (22)
Ap Vad F o 24 r

The coefficients a/uv are then

% = \ (23)
a/io = Oforlu>0 (k)
___sinv wa
28, Zb
Oﬁo\/= B———-—-—\-/——-ﬂ-‘g—-—— for v= 2k >0 (25)
2b
@, = 0 for V= 2ka-1>0 (26)
v = |2 for 2 = 2k-1>0 7)
b pa
Ouv = 0 for p-v = 2k-12>0 (28)

If ;4 and v are not related according to (27) or (28)

o’

o - F{s;n (/"‘+ vg).g+sin (/.‘-vg)g—) for,u= 2k >0 (29)
F (/u+v1;-).;’fr (/u-vlg.)gf V=2n>0
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(n-v2).3 (w+ vE)E = 2-1>0

v - @ {sin (- \lg).;%_sin (u + v2).% cor /: = 2%k-1>0 50)

If the widths rather than the heights of the two guides differ,
analogous expressions are obtained. The zero modes are in general excluded,
except for radial transmission in cylindricel structures and similar cases,
and the symmetry conditions (even and odd limitations on and V) are re-
veréed, because the transverse electric field vanishes at integration
boundaries instead of having a maximum there.

This analysis of discontinuities in wave guldes cen easily be
extended to obstacles cylindrical with respect to the wave-guide axis by
means of symmetry considerations. The obstacle forms a short section of
wvave gulde of reduced cross section. Let us suppose that only one mode
is propagated in the larger wave guide. Two idealized problems are solved
first, and then any practical case is obtained by superposition of the two
ideal solutions multiplied by proper constants.

In the first idealized problem the obstacle is illuminated from
both sides by waves of equal emplitude and phase in the propagated mode.
The input impedance 'z'I is obtained from (14) by multiplying each 'z‘A/L by
cot:-ﬁ where 2l is the axial length of the obstacle and }7u. the wave-
guide wave length of the /Ath mode in the smaller "wave guide" formed by
the obstacle.

The second idealized problem differs from the first one only by
the reversed phase of illumination to the right, so that the reansverse
field eomponents are anti-symmetrical rather than symmetrical; the wave
impedances -Z_A/;. are then modified by ta.n.’i‘f:, and en input impedance Z, .
is determined from (1k4).
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EQUIVALENT NETWORK OF THE JUNCTION OF TWO
WAVE GUIDES. (THE BOUNDARY SURFACE EQUAL TO
THE CROSS SECTION OF THE SMALLER GUIDE).
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For non-propagating modes A4 is imaginary and the trigonometric
functions change to hyperbolic functions.

The two problems are equivalent to placing a sheet of infinite
or zero impedance, respectively, at the midplane of the obsi‘.a.cle.é,7

The two solutions are added in such a way that the boundary
conditions at the source and at the termination of the wave guide B are
satisfied. |

If more than one mode in the wave guide propagate at the fre-
quency of excitation, ideal solutions are determined for all combinations
of symmetrical and a.ntisymmétrical illumination and all the resulting
solutions are used to satlsfy the boundary conditions.

Fig. 3 shows an equivalent network of a wave guide containing
an obstacle cylindrical with respect to the wave-guide axis. It is seen
to be derived directly from the network shown in Fig. 2.

The impedances Zr and Zry are simply related to the open-circuit
and short-circuit impedancesv used in lumped-constant network theory, and
to the elements of an equivalent T network.

If the electric field of the propagated mode in the output side

of the obstacle is Ey + h'E,, and the wave impedance Zp, the factor h is

determined by
_E_2 = EI + h EII = 7 1
Hp By + b Hyg 2 (51)
which reduces to
h o JHxZp H . (32)
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The input impedance for the propagated mode is

— Er h ErT
Zl = - m (33)

ZI + ZII + 222

The open-circuit and short-circuit impedances are then

Z_ = LA (35)
ocC )

8C 'Z‘I + "Z"II

0
|

(30)

The impedances of the equivalent T-network are

7, = I (37)
7y = I -7 (38)
2
or(Z = EII (39)
= _ Z1-2Z
&y = ——= (40)

The same procedure leads to corresponding admittance relations
if we start out fram (13) or (19). A simpler determinant is obtained in
this case, but the desired input admittance appears in every element of
the determinant. It should be emphasized again that (13) and (14) are
equivalent and realistic only if we consistently account for a consider-

ably larger number of modes in the larger cross section.



General Case A # S # B
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In order to apply a similar procedure as used previoudly we

introduce a set of orthogonal functions sy

surface S.

over the common boundary

Writing the corresponding systems of equations in a shorter

notation we have

Similarly

B

V=1

Se

z (0 H
"

T ,u AV

(41)

(42)

(43)

(b4)

(45)

(40)

(47)

(48)
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In this case it is convenient to eliminate all field components
except the set ES s which forme a complete system of homogeneous linear

equations for which the compatibility relation is obtained by setting the

determinant

where the subscript n refers to the' row and m to the column in the
determinent. Note that the mode-number symbols A Vs By n.here and
below are used indicriminately, since the wave system in each case is
indicated by subscripts A, B, S.

In an approximate solution of this equation the number of
terms in the summations should be considerably larger than the order of
the determinant. Unfortunately the unknown admittance appears in all
the elements of the determinant. In many 'practical cases it'will be
found expedient to obtain a first approximetion by setting the upper
left corner element = O and use the resulting admittance value in all
the other elements when the higher-order approximetions are calculated.

« If the final system of equations instead is made to contain

the components EB the compatlibility equation becomes
I.&

o oo
p T+ ;ﬁmv; %n Uy YAF = o, (50)

where A and ¢ can be interchanged with B and B because of the symmetry

of the problem. Here the unknown admittance appears in the elements

of one colum only, but for the same accuracy a determinent of higher

order has to be used. The use of (49) is, therefore, in general more

convenient.
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The first approximation obtained from (49) is

= (1) _ 1 e = 2 = 2 =
- YAl = ;L-]:E {Bll YBl +/A = (a/ul YAILL + BfAl YB/-()} . (51)

The second epproximation is

- - |2
.o Y +8, 8,1Y,)
g.(@) _ g (), L pEpER PREE
-Y = -Y + == . (52)
n m ST ca P
/l.,L:: /A 9.(2
The special case A = B, @ = f represents an infinitely thin

iris in a wave guide; a problem, however, that has been more conveniently

solved by other methods.

B. A PROBLEM INVOLVING THREE~-DIMENSIONAL HARMONIC ANALYSIS

A common example of a junction where the boundary surface between
the two systems is not the same if described by the two relations x5 =
constant and y5 = constant is shown in Fig. 4. A rectangular wave guide is
opening directly into a cavity formed by a rotational cylinder or a sector

of such a cylinder. The height 2h, of the wave guide is smaller than the

G
axial height ehc of the cavity. The same coordinate Yo = ¥p = ¥ cen
be used in this dimension, but the other coordinates, v, = kf ’ y5 = T
and x; = - X, Xz = 2 are different in the two systems. It is evidently

convenient in this case to place the origin of both coordinate systems on
the axis of the cylinder rather than on the boundary surface., As a con-
sequence the wave admittance for waves traveling in the negative direction
is calculated from the transverse field components with the sign of the

magnetic field reversed. In order to apply as far as possible the same
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procedure here as in previous problems we shall consider the cavity as
a wave guide with wave propagation in radial direction.

We can formulate boundary conditions either at the surface
r = r, or at the surface z = rc,but before this can be done in the same
wey &s before, the field components must be expressed in terms of the
same kind of waves, plane or cylindrical, on both sides of the boundary.
Let us, for insteance, tremslate the plane-wave field components in the
wave guide to cylindricel-weve field components and then introduce the
boundary ‘cqnditvions at the sﬁrf‘acfe.r = Tr.. ‘'This problem of expanding the
plane waves into cylindrical waves can be attacked in more than one way.
We would like to have the azimuthal wave funcfions form an orthogonal
set over the wave-guide opening rather than over 2x, so that only one
more expansion, in terms of the modes of the éylindrical cavity, would
be required to solve the problem in accordance with the two-dimensional
procedure previously presented. However, this would in general lead to
cylinder functions of nonintergral order and very awkward integration
limits for calculation of the coefficients in the series. The computa-
tional problem would be, for all practical purposes, prohibitive.

A more reasonable alternative involves extrapolation of the
wave-guide waves to infinite plane ﬁai'es s i:re.nslating these to cylin-
dricel waves expressible in integral-order cylinder functions. Two sub-
sequent two-dimensional expansions are then required, one in terms of
orthonormal functions over the curved surface r= T, limited by the wave
guide opening,and the other identical to the set of normel modes in the
cavity. Thus we buy the more easily computable three-dimensional expan-
sion at the cost of performing an additional two-dimensional expsnsion

and summation.
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The purpose of the three-dimensional expansion is to express
the cavity-mode components, Ey and H¥»at the boundary surface r = T,
in terms of the complex amplitudes of the wave-guide modes.

Waves prbpagated in the opposite directions are orthogonal in
thrée-dimensional space and can, therefore, not as conveniently as in the
two-dimensional'analysis be lumped together and their relation expressed
by a wave admittance. We shall here express the amplitude of a wave
propagated in the negative z-direction as equal to the one’of the posi-
tive wave multiplied by & complex reflection coefficient p, referred to
the origin, z = O.

Using'as before smell letters e and h for wave functions and
introducing the subscript G for the plane waves and A for the cylindri-
cal waves as will as superscripts (i) and (2) to indicate positive and

negative direction of propagation, respectively, we obtain the following

equations for the abové field components in space:

. ) @) (5 ‘
5, = 0 EG/“[eGF G) + g o, )] o, ¥ 53)
DI [eM“) (=) +¢, ¢, (r)] o 4 9) (54)

Bo = 2T, .1, [hAv(” (x) + £(p,) B, () (r)] by, Gpr ). (55)

As before Y_ is the wave admittance of frece space ‘léoéyo'

The relations between plane wave functions and cylindrical

wave functions can be written

g (5 0 ¥) =y Sy (52105 ) (56)
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hAV (r)‘e, y) = ¢ {eAV (I‘, kF’ Y)] . (57)

The last equation, where ¢[ ]sta.nds for "function of", is
based on the fact that all vector components of a circularly cylindrical
wave can be derived from the wave fumctions of one and the same scalar
quantity.

Introducing the subscript B for field components of the

cylindrical waves at the boundary r = r_ we get from (53) to (57)

> By, o o ) =ZEM[ ) ve, eJHr)} ey (f )
v

ZEG/,(V vlu Cay (‘/) ¥) (58)

(2)

ZEA\/ [hA\/ l) (rc) + f(p‘/) hA,/ (I‘c) hAy 670: y)

- ;:EG/* T ) o () (59)

;’—HB« CAv (\@ y)

where we have introduced for short

By = C‘v/u(l) er, ) @) + g, oy

Av s eAv(e) (re) (60)

Oﬁ\/f;(

beA

ay, @) p @)y, 2(s,) @ @ @) () (61)

e
Gy ) = by e T) (62)

The analytic expressions for the cylindrical wave functions

and the coefficients of coupling will be given later.
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Following the procedure in previous sections we can rewrite
(58) and (59) as the following linear systems of equations between the

coefficients in the expansions

B, = ;a'//u EG/J (63)

;bvﬂ Y, By - (6%)

gy

From here on we apply the two-dimensional analysis presented in
previous sections., If the sﬁbscripts S and C refer to the coefficients
of the orthogonal wave fumctions over the common boundary at r = T,

and over the whole cavity circumference, respectively, the following addi-

tional systems of equations are obtained

ESS = 5;:}35 Eg,, (65)

By = E;Yv; Hpy (66)

EC§ = }::7S§E%5 (67)
s

By = ES:?%HCE = ?gSEcg('?cg) : (68)

where

s
&

<)
B
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+hG 10

ﬂv = ey (v) eg (v) &y Tlﬁ cosusp coB %d&ﬂ (69)
-

(v odd)

For even values of v the cosines should be replaced by sines.
For g = 0 the right member should be multiplied by J/ ER
The corresponding coefficients on the cavity side differ only

by the variation of the wave functions with y.

4 +hG

'?/u v = eGIu. (‘]D: y) eSv (70: v) d‘f dy . (70)

< -

Elimination of EC§ between (67) and (68) gives

By = Z:(-?Sfx) Fax = . Esx%%,(?gs ('?cg) ' (1)

Continued elimination leads to a homogeneous system of equa-

tions in E; with the compatibility determinant equation

E- a,/u;:](yx.?sxs + Y°§v:m5 bv,x = 0 (72)

This is the relation between the wave admittances of the cavity

modes, implicit in the admittances -fs defined by (71), and the reflection
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coefficients in the wave guide, implicit in a and b according to (60)
and (61). (72) can only be satisfied by non-vanishing fields if

at least one reflection coefficient has an absolute value larger than
one or at least one of the wave admittances in the cavity has a negative
real part.

In order to compute a first approximetion of the input admit-
tance of the junction we reduce the determinant to the cormer element
representing the lowest-order mode in the waveguide and also limit the
sumations over the waveguide opening (subscripts X and 5) to one term.

The result can be written

2;— b Vi
EV: Bv1Yyy

“Igy = Yo

(73)

The most important element in the equivalent circult of the
Junction is the turn ratio of the ideal transformer between the domi-
nant wave guid.é modé and the resonant cavity mode, because the "impe-
dance match" between the two modes depends primerily on this ratio.
If the resonant mode in the cavity is the hth node, the important
term in the expa.hsion for ?Sll is 7n12—Y-Cn In the right member of
(73) (i.e. in (60) and (61)) the reflection coefficient p; is replaced
by the wave admittance of thé dominant mode at z = r c Py means of the

identity

_ k, e-Jerc e Jk,r
Y = '—'oYO pJ ] ) (72-!-)

GL k - szrc szrc

(<] + ple

where
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k= l:\/l - (M) = 2NN - (s
z A

The approximate ratio of the ildeal transformer between the
two modes is then obtained as \/- YCn/?Gl from (73) after these modi-
Tications.
It remains to express the coefficients a.w and b% in terms of
ordinary cylinder functions. The expansion of a plane wave into circularly
. i 3 - 1 * m .
cylindrical waves is well knowm. The two plane waves forming a pro-

pagated Tﬂno-wave in a rectangular wave guide can be expressed in the

following way

-k, 2 -3kr cosB, cosip
e (%, 2) = g cos k Xe = q cos(kr sin By sin?) e )
(76)
where
. . na
X = r smf X /k =  sinp = =
X n Lq
. (77)

1

V- &)

[
i

rcos‘o kz/k = cosBn

In (76) it i1s not necessary to evaluate the normelizing factor q, as
long as we are interested only in admittances and admittance ratios.

(76) transforms to

Jkr cos (B_ -9) Jkr cos (B +f)
e (x, z) = %{e n °f + e n
= q{J (kr) + 2 E (-,j)me(I;r) cosmp, COs nP}. (78)
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The wave function and corresponding expansion for propagation
in the opposite direction is the complex conjugate relation to (78).

Tor calculation of the corresponding equation for the trans-
verse magnetic tield we make use of the relation between the transverse

components in a cylindrical TM-wave (Eq. (5) in part II of this paper):

by () = sy e (Y) (79)

(60) and (61) thus become

aol‘ = q\2x J_ (krc) (1 + p/l) (80=)
av/u = 2q {n.J, (krg) [(-J)V + ou JV] cos v P (v>0) (80b)
by, = 1B I () (g ()
by = 2ja\x 3" (kre) [(-J)V * e J‘(} cosy Bu (v > 0) (81b)

The extension to TEj,-modes is straightforward, but it is not
required Tor the approximate solution of the present problem.

In order to evalvate the equivalent susceptance of the junction
we/should also expand the attenuvated modes of the wave guide in terms of
cylinder functions. Since the cylinder functions form a complete ortho-
gonal set, this can be done. However, to calculate higher-order approxi-
mate solutions of (70) is beyond the scope of this paper.

The general solution to the problem discussed in this section
is contained in (72). We have shown how the constants of this equation
can be evaluated &69), (70), (60), (61), (80), and (81# and how approxi-
mate values of the admittance of such a junction between a cylindrical

cavity and & rectangular wave gulide can be calculated.



CALCULATION OF A VAVE-GUIDE-LOADED RESONATCR

FOR INTERDIGITAL MAGNETROIS

PART IT  SOLUTION OF THl: SPFECIFIC PRODLEM

INTRODUCT ION

Since the war-time work of Crawford and Hare,l in which the
author had the opportunity to participate to a minor extent, the inter-
digital magnetron has been subject to a fair amount of interest. The
reason is primarily the simplicity of its resonant system, which means
comparatively large mode separation and wide-range tunability. A tho-
rough analysis of the resonance frequencies of resonators for such magne-
trons has been presented by a Harvard group in a report to the Office of
Naval Research.2 Operation In the lowest-order mode has been studied at
the University of Michigan.3 A more recent paper by dJ. Hullh contains
additional contributions to the analysis of interdigital magnetron reso-
nators.

The main topic of the present paper is the impedance transfor-
mation from the wave-guide load, constituting the output terminals, to
the anode segments forming the input terminals of the resonator of an
interdigital magnetron. The primary objective is to present a design
procedure whereby the conductance at the anode segments can be made to
agree at a given resonance frequency with an optimum value specified by
the electronic system. The results are not unique; it is, therefore, pos-

sible to take into account also conditions for frequency stebility and
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circuilt efficiency. For this reason, the calculations of external and
internal Q are included, and the main design parameters are discussed.

Fig. 1 shows a somewhat simplified model of en interdigital
magnetron resonator, in two slightly different versions, A and B. The
central cylindrical post K represents the cathode, ¥ the finger system,
i.e., the interdigital anode segments (developed in Fig. 2), I, the inter-
action space, C the cavity external to the fingers, T the wave-guide
transformer section, and G the wave guide. The electrode system is de-
signed for operating in the second-order azimuthal mode of the cavity,
that is, the mode in which the electric field strength varies through
two cycles as the coordinate 70'waries from O to 2x. 1In Model A, the inter-
action space and the cavity are of equal axial height, so that the reson-
ator appears as a flat cylindrical cavity with a central post and a number
of fingers arranged in a circle and fixed each to one of the flat walls,
In Model B, the interaction space has been extended at E in axial direc-
tion as a first approximation of the actual insulating space between anode
and cathode, which because of cathode end hats, pole pieces, etc., has too
complicated a geometry for close calculation. The analysis presented
here starts out from the geometry of Model A; the modifications introduced
by the extended interaction space are discussed later and comparisons
mede with the experimental data,

The design problem includes choosing & suitable matching net-
work between the cavity and the wave guide and calculating the optimum
dimensions of this network.

The main alternatives offered are a simple aperture (iris), a

quarter-wave uniform wave-guide section, or a tapered wave-guide section.
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The order given represents decreasing simplicity and increasing bandwidth.
As a compramise solution, the second alternative has been chosen. It is
undesirable to have too frequency sensitive a transducer, particularly

if it may be anticipated that tunable or semitunable resonators will
ultimately be desired. However, the desired bandwidth was in this case
not so large as to require a tapered transformer.

Several ways of designing the transformer secfion'are‘open. Fig.
3 shows: (a) a section employing cylindrical waves and‘forming a natural
extension of the cavity, (b) a rectangular section, (c) a "ridged“ or
"H-shaped" section.

The first and the third of these alternatives are suitable when
the cavity is small compared to the wave length. In the present design
problem, the second alternative can be applied without approaching the
cut-off-frequency of the transformer section too closely. The design
chosen is shown in Fig. 1. It should be noted that there is no strong
argument in favor of the short taper that makes the wave-guide opening
exactly one quarter of the davity circumference. On the contrary, a
harmonic analyisis of the transition from cylincrical to plane waves would
be somewhat simpler if the sides of the wave-guide transformer were

straight all the way to the cavity.

A, ANALYSIS OF FIELD CONFIGURATION IN RESONATCR

1. Equivalent Transmission Line. OQOutline of Procedure.

The analysis in this paper follows the conventional procedure:
the electro-magnetic field is calculated under the assumption that the
conductivity of the metallic boundaries is infinite. The copper losses
are subsequently obtained from the tangential component of the magnetic

field so calculated and the "skin resistance"” of the conductors.
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In Fig. 4A, the resonator and its output coupling is presented
a8 a transmission line or wave guide with a short circuit at one end (the
cathode) and a number of discontinuities representing the boundaries be-
tween the interaction space and the finger system (ral)’ the finger system
and the cavity (r,o), the cavity and the transformer section (rb), and the
transformer section and the wave guide (t), respectively. In Fig. 4B, a
T~junction accounts for the insulating space between the anode and the
cathode structures. The modification of the calculations by consideration
of this junction is particularly important when the cavity is operated in
the zero-order mode, i.e., the mode with no variation of the electromagnetic
field with the azimuthal coordinate . However, in this paper, we shall
consider only modes of higher order, where the axial branches are operated
in their cut-off range and modif'y the resonance frequency and energy stor-
age only to a very moderate extent.

In the equivalent wave guide shown in Fig. 4, the characteris-
tic impedance of the whort section F representing the finger system is
very low, and since its dimension in the direction of propagation is very
small compared to the wavelength, the line voltage can be considered con-
stant between To1 and Top SO that the finger system acts as a lumped suscep-
tance.

| The most fundamental condition imposed on the resonator is that

its resonance frequency have a specified value. This condition can con-
veniently be expressed as follows: at this frequency the total suscep-
tance at any convenient phase plane, say the cylindrical surface with
radius Toos should be zero. For the purpose of calculating the suscep-
tance contributed by the various sections of the equivalent line, the sec-
tion: Ta = Ty and r,p = Ty are considered short-circuitéd at ry and Ty s
respectively. The impedance of the transformer section at ry is small which

justifies this epproximation for calculation of the susceptance alone.
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)—( r jnggo T, Zy(k,r) sin nf (4)
)—(F = - ji—- E—o Y, 2' (kx) cos n{P (5)

(6)

X
d
U}
(@]

TE-waves
_ kn Ho
€. - IEET Zy (k) 8in nfP (7)
EF = %{;4‘2 Z', (k) cos nP (8)
£ = o (9)
Hr = J % Ho Z'n(lgrr) cos n‘f (10)
)-(f = - TE?; Ho 2,(kr) sin n (11)
Hy = }-(Q Z, (kyr) cos n“r ’ (12)
vwhere >
A (13)

and Y, 1s the admittance of free space, 2650umhos, Z,(x) a cylinder
function of order n, Zr'z(x) = J9x [Zn(x)] . The common factor exp

(Juwt - Jkyy) is considered included in £, and H,.

~ ’ - . P T SRR A . .

and Y, 1s the admittance of free space, 26504 mhos, Z,(x) a cylinder

function of order n, ZI'I(x) = J9x [Zn(x)] . The common factor exp

13514 _ 2 v) 24 ~n;natdanad tnmalndald 4w C an’ LU
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no veriation with y (ky = 0). These waves have only three field compo-
nents €, H 1., By , and ky = k = 22/, In analogy with the exponential
form of the ordinary transmission-line equations, we can express the
field in terms of radially traveling waves by the use of Hankel func-
tions.5 Representing an inward traveling wave by & Hankel function of

the first kind and an outward wave by one of the second kind, we write

in general:
Z(er) = AEMgr) +n 5, B r) = o aed® + B0 (14)
Z' (kpr) = A 51%; Hn(l)(krr) + Bs% Hn(z)(krr)
= 'j—dn (-Aej)u + Be-jY) s (15)

where the symbols Gy, _én, 9, and Y have been introduced to represent
the amplitudes and phase angles of the Hankel function and its deriv-

ative. We shall use the ratio

Y = (16)

Ky
or Gy (krr)

as & normalized admittance value for radial transmission. If the cavity
is terminated at r = ry by a wave admittance Tb , we "normaelize" this ad-

mittance as follows

= p 1

nlb YobYo (a7
If this ratio is introduced as a boundary condition in (14) and (15),
the ratio between the constants A and B can be determined, and the

admittance at an arbitrary radius r becomes
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j ein (¥, -V) +'2.b cos (& - ¥) (18)
r = Yol Sos (y)b - 8) + j?b sin (eb - 8) :

)
I
d

This relation is of course analogous to a well-known formula

for the admittance of a uniform transmission line of characteristic ad-

mittance Y, terminated by an admittance Y, at x = b

¥(x) = Y jeink (b = x) + Yy /Yy cos k (b - x)
= Ocosk(b'x)+ij/YoBink(b-x)

Figs. 5-9 give graphs of the guantities y_., © and Y es

functions of kr for n = 0, 1, 2, and 3.

3. The Axial Extensions of the Interaction Space

The admittance of the interaction space seen from rg; is ob-
tained from (8) by reversing the direction of propagation and introducing

the values §, and 1f/k for the cathode in place of o, and \//b

= _ v _cos(Y - ex)
Ya1 = Ta1'%, J 8in (6 - O) ’ (20)

This turns out to be by far the largest inductive susceptance
in the resonator. The modification of the geometry of this space by
the necessary insulation between anode and cathode is consequently bound
to have a considerable influence on the resonance frequency and energy
storage of the resonator. In order to study the evaluation of :fal in a
geometry thus modified, let us consider the configuration shown as Model
B in Fig. 1. The change in axial height that takes place at r = ry, re-
sults in a rather complicated (i.e., analytically complicated) field

vhich for an exact description requires an infinite expansion in both
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TE and TM waves in the central cavity as well as in the extension.

A very rough approximation for n > 0 can be obtained by considering

only the TM-wave represented by (20) in the central cavity and the low-

est order TE-wave in each end space. The equivalent reactances of these

three waves may all be regarded as lumped constants connected in series.
The equations (7) to (12) above give the genéral expressions for

the TE-waves, In the same way as for the TM-weves we can introduce Hankel

functions for Zn (kr).

Zt, (r) = 3G, (-ae’f + ™) . (21)

After introduction of the boundary condition 570 = 0 at

r = TIyp this becomes
2t (kr) = G, sin W, - ¥) . (22)
To make 6}0 = Qalsoatr = Ty we nmust have
sin (y/a -§Uk) = 0 (23)

For the lowest-order mode then

W, =Wy = 18¢° . (2k)

Because of the transcendental nature of these relations, a
graphical solution is convenient (Fig. 10). The Intersection between

a curve of krra V8. krr obtained from (2L) and a straight line through

1 k
the origin with the slope ra/rk gives kn,. From (13)

. - -
ko o= % \]1 - (kr/k) , (25)
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which will in general be imaginary so that there is attenuation rather
than propagation axially.

The wave admittance of one of the extensions then is

.

(26)

o

The total admittance of an end space is the total power flow

divided by the mean square at a point of maximum voltage.

fn rix‘a (E,rﬂ?p + Ey))(r)  cos nof ar 4

Y = . (27)

TR

For n = 2 this expression reduces to

nig Ty {52000 [ - ten)d - 22060 [ - gra)d]

— —

o 5 P
3o J2UaTe) _ Zo(kTa)

(r)°  (5x,)°

Y

28)

vhere Z,(kr) = G,(kr) cos (6 - Yk) (Fig. 12).

The modified admittance of interaction space then is approxi-

mately
. Yal.Ye/Q _ T,,-T,
al Y, +Y./2 Y, + T,
(29)
nr —
Y - al.Y

al h al
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We have here assumed that the axial direction is sufficiently
long and the attenuation constant jkz sufficiently large so that the

waves reflected from the ends are insignificant.

4, Finger System

The susceptance of the finger system depends on the properties
of this configuration as & radial transmission lireand on the boundary
phenomena at Toq and Tgo* The possibility of calculating this suscep-
tance by harmonic analysis by evaluating the complete spectrum of modes
in the three line sections has been investigated. Because of the unfa-
vorable ratio of the effective cross section of the line sections -
somewhat larger than 0.5 - the series of modes converges very slowly,
so that this method is impractical. The success of the Harvard group
in predicting the resonance frequencies from computations of the static
capacitance of the finger system and a rather rough evaluation of the
inductive susceptance has led the author to use their methods with
minor revisions.

The static capacitance is

d+w' 24 +w w (24 +fy
EDN[h-Z’g] { loyd +log—ia?———-)

Q
"

A ng . b 0
+ EoNu!{“ logcsc§§+-é ’ (30)

where G‘o is the dielectric constant ofi free space and N 1s the total
number of fingers. Other notation is presented in Fig. 2. For a mode

nuber n > O the capacitance is 1/2 of this value.
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This capacitance is derived for a uniform finger distribution
(Fig. 2A). Since a finger system with phase reversals (Fig. 2B) differs
from the former configuration only where the electric field is close to
zero, the same formula can be used if N is interpreted as the equivalent
rather than the actual number of fingers (N = 2:tral/ a+w) ).

The inductive susceptance is assumed to be due to the radial
component of the magnetic field between the fingers. This component is
taken to be the average of the computed values of the radial component
of the desired mode in the cylindrical sections at ry; and r,p, multiplied
by the ratio of the total volume between r,; and Too and the net volume
accessible to the magnetic field (i.e., the volume between the fingers).
This quantity is squared and multiplied by e /2 times the net volume
accessible to the magnetic field. The magnetic energy of the higher-
order modes in the cylindrical sections is neglected.

If the axial electric field at r,, and r , 18 £a , the reac-
tive "power" in this susceptance can be expressed as & times the stored
energy or, alternatively; as one-half the volume integral of the square of

of the electric field times an equivalent wave susceptance - B, as

fm
follows:

' 2

8.

2
or -B = Ly (A LBy T —Va _ *
fm ° [ Ygl Ta2 )2}: V 21t1'a2 -h (32)

Here V is the total volume between the surfaces of radii rp; and ryp and

Vg is the part of this volume that is not filled with copper.
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In order to account for the influence of the end spaces, the

term l/ral within the brackets above should be reduced in the ratio

Yo/(Tg + 2Yg) or Y' /.

5. Resonance Equation

The resonance criterion can be stated in the following form

for the Model A geametry:

WCe. b g g . QE_(_%_'_}_ZE_)’
2 nra2+3fm Yoa2 Yo 51n (8, - 64

(33)
_ ral cos (a1 - 6K) -
Teo Veal o o1y (947 - ) 0
where C’f and -ﬁm are given by (30) and (32).

In design problems the resonance frequency is given and some of

the geometrical parameters are left to be determined. Except in the
slowly varying term containing log csc gﬁ in (30) the axial beight h and
the radial thickness t of the fingers appear in an algebraically simple
way in (33), so that either of these dimensions can easily be adjusted

so that (33) is satisfied for the desired frequency.

6. Energy Storage

If the four susceptances included in the left member of (33)
were each a pure inductive or a pure capacitive susceptance, respectively,
the evaluation of the energy storage in the resonator would be extremely
simple. However, only the first two terms are "pure" in this sense;
the cavity sections inside and outside the finger system although pre-

dominantly inductive do hold also some electric energy storage.
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The stored electric energy and magnetic energles, respectively,

2 ALE:
A A —2-7/22 av (34)
v y

s }_‘2_9/}{2 av = /!-‘2-9/ (}La-f)-(é)dv (35)
4 v

If' these integrations are carried out and the result expressed

are:

=
1

=
it

in terms of the quantities Gy, Gy, 6 and % previously defined, we get

for the space between rk and Tos

e—j L(krk)coS(Yk Qk)] (36)

2
R 1 {al [ (kxy,)51n(0 - By)

krl

Mo 2_2f: 2 Zbayl, . 2
Vg = T”hea ¥ g'al [" al) " Era1 bal]

(37)

2
G (kry)cos (¥ - 941;)_y .
On (kg Jein(6y) - 6y

Here

- Sng._a.l.;_%?_(_‘ﬁu__ﬁfz_ : (38)
al Gplkry,)sin(6,1 - &

The coefficients in front of the brackets in (36) and (37)

Y, = \/6;% . (39)

o’
I

are identical, since
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Consequently

1 = 2
i 2nr,; h B Za . (40)

]
=
"
A
B
o
o
H
no
"

The difference between the magnetic and electric energy is equal
to the energy stored in a pure inductive susceptance of the same magni-
tude as the actual susceptance. Equation (40) shows that (36), (37) and
(20) aré consistent with this statement.

Analogous éxpressions are obtained for the stored energy in
the cavity external to the finger system. The short-circuited end of
the radial transmission line will be the upper limit of integration so
that the two terms inside brackets are interchanged, as the subscripts
k are changed to b. Since we are now measuring the susceptance looking
towards positive instead of negative r the magnetic field and the suscep-
tance have to be taken with reversed sign. This reversal is cancelled,
however, if the sine function in the denominator is written sin (Qb - 932).

‘In (36) and (37) the amplitude functions G and G, appear
separately; since we have so far given curves only for their ratio Yor
(Figs. 5-9) G, and En are plotted in Figs. 12, 13 and 1% forn = 2,

Since the input conductance at the anode is specified we can
now predict the Q of the resonator. From the stored energy we can cal-

culate an "equivalent susceptance" B, at rp, (n >o)

1¢ 2
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Then

(42)

vhere ﬁE is the equivalent cepacitive wave susceptance at r = ryo and
Eae is the wave conductance consistent with the specified electronic
input conductence. (See page 20)

The representation of the energy storage by an equivalent
capacitance makes it unnecessary to mske correction for the end spaces,
since the electrical energy storage there is a second-order small quan-

tity compared to the total energy storage.

The skin resistance of a unit area is

R - \/_g{‘;& : (43)

where s4and ¢ are the permeability and the conductivity, respectively,
of the conductor.

The current per unit length is perpendicular to and (in the mks
system) numerically equal to the tangential magnetic field at the sur-

face of the conductor. The loss in the space inside the finger system

then is
r
al 5
Fai = '%{“rk f)’(]oa(rk) t2 m‘(Hre +Hf ) dar
Tx

-éﬂn.Ea.Yo {ral 1 (-Er-a-i - =l

+r(h - Ty [Gn§kral)c:§n?eal-— oki] } |

, 2
+Dy, (s
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It is interesting to note that when the axial height is equal to the
cathode radius ry, the only term in (35) that depends on T and h dis-
appears. This means that the actual loss in the cathode surface is
equal to the additional loss that would have occurred in the end walls
if there had been no cathode.

Similarly the loss in the cavity external to the finger sys-

tem is

2
e - %
p. = K 1g2y {ur +n) [Gafimd conton - ¥5) f
d.'2 2 a (o] b b Gn<kra2 Bin gb - 32

45)
2 n 2 2b 2 (

The copper losses in the fingers should similarly be calcu-
lated from the radial and axial magnetic field components tangential
to the finger surfaces. To know these components exactly we should
have to determine the complete mode spectrum required to satisfy the
boundary conditions at the finger surfaces. It appears that the pre-
dominant high-order modes produced by reflection from the fingers have
large wave admittances. A minimum value of the tangential magnetic
field would consequently be twice the field calculated from the main

mode in the cylindrical cavity, with a probable value appreciable

higher than that. As an approximate value we can write

2
1
Pdf = 32'8‘ ﬁ(ano)Q {23(211 -2g + d +W) [—g(-frl;i' + -E;E)%] +
(46)

+ k4 - g) [.:rt,‘l(bal)2 + rae(baa)e] .
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The total copper loss in the resomator Py = Pdl + sz + Pdf

produces an equivalent conductance at r = Yoo

- Pg . (%7)
Gd B Itraz h n

All the expressions for the losses given above contain the fac-
tor G_ae , which consequently cancels out in (47), so that Ed is obtained
in terms of Rg» Yo, A, and the geometry parameters only.

(47) determines the internal Q of the resonator, since

Q. = e . (48)
Gy

and the circuit efficiency

Qc = Gao - Gg . (49)

B. DESIGN PROCEDURE

The objective of design &s far as impedance transformation is
concerned 18 to ascertain that the conductance between the anode seg-
ments, the slot conductance, is close to the optimum for the electronic
operation and that as large a fraction as possible of the power gener-
ated by the electronic system is delivered to the output wave guide.

The optimum slot conductance is conveniently given for an
ideal n-mode, that is for x radians phase difference between the r-f
voltages across consecutive slots and equal voltage magnitude across
all slots. In those interdigital magnetrons where n > 0 in (1), the

slot voltage varies from a maximum value Ea at certain slots to zero
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at other slots. A Fourler expansion of this slot voltage gives an

equivalent n-mode voltage

~ 1
E, = -é-Ea.h (69)

where éza as before is the axial electric field strength. The potential
difference.between adjacent fingers is assumed to be constant along the
entire length of the fingers. Equation (69) concerns a uniform arrange-
ment of the fingers (Fig. 2A). If the phase reversals at the nodes afe
introduced (Fig. 2B) and the tube is operated with the value of n for

which it is designed

The wx-mode slot conductance G, is obtained by setting the
power delivered by the electrons equal to the power transmitted by the
cavity. We assume that 6nly the n-component of the slot voltage ex-
changes any appreciable power with the electrons in the interaction

space

an

l_2 1= . 2

2500 - 3G | (€ emaplay . m)
o

Introducing (70) into (71), we obtain

i = _kn 2
G, = P G, . (72)

In order to realize this wave conductance Ea, the impedance
trensformation from the wave guide to the anode segments should produce

a wave-conductance component at the anode equal to:
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G = G0, (73)

where 'dd is the loss conducta.nce‘ given by (h‘?) . Under such condlitions

the circuit efficiency of the resonator becomes

. Ga-0a (49)

If this figure proves to be too low, it 1s necessary either to
redesign the electronic system 8o that a larger value of Ea. can be per-
mitfed or to reduce the loss conductance of the resonator. The largest
part of the coépper losses occurs in tfne fingers; a reduction of the.
area of the fingers should consequently reducevthe losses. At the same |
time, hmver, the cooling of the fingers becomes poorer. A lower
value of the azimufhal mode number n gives lower magn‘etic' field strength
at the fingers, but for the same resonaﬁée frequency the geometrical
dimensions become smaller,

At this point the energy storage and Q should be checked to
make sure that reasonable frequency stability will be obtained [(36) ’
(b1) and (42)]

The reel part of (18) gives a relation between 582 and the
loading ratio ,zb at the circumference of thé cavity. If ’Zb is assumed
to be a real number, we obtain:

1o {cos(eb - Ya2) cos(¥y, - 052) + s:tn(\,Pb -¥,o) sin(e, - 6822}
cosz(% - 9&2), + ,sz sinz(eé— ea2)

! -
Gy, = Yoa2 Yo
(T4)
Since the Q of the resonator 1s of the order of lOQ,"(b will be

a large quantity, so that the first term in the denominator can be neglected
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in comparison with the second, and 'zb is very simply obtained from

(36). The wave conductance at the edge of the cavity is then

G, = My Vp Y, - (75)

The transformer section should now be so designed that the
weve conductance produced at the boundary Ty has this value.

The characteristic wave admittance of the output wave guide is

Yo, = Yo\/l- (>\/)+bg)2 . (76)

where Ebg is the width of the wave guide.

The first approximation of the admittance seen from the trans-
former when the wave guide is terminated in its characteristic admittance
is, from (13) 1in Part I of this paper,

T, ~ o °7% . (77)

The characteristic wave admittance of the transformer section
is

- 2
T, - 1, \i-omm) . (78)

where 2bt is the width of the transformer section.
The wave admittance at the transformer side of the boundary Ty
Tot”

YTb = Yog atg 2

(79)



63

We have here assumed that the length of the transformer section is made
exactly a quarter of the guide wavelength. If this is not the case, (19)
should be used for the step from (77) to & more complete form of (79).
If the curvature of the boundary surface at r = Ty is disre-
garded the first approximation of the wave admittance on the cavity side

of the boundary is

Yn+2 (80)

-
Tog Pt “Vte

n

Y T Gy

Since all the modes involved here have no variation in the

y-direction
2 t 2
atg = E'g"Btg (81)
2 %t 2

c

vhere 2hg, 2t, and 2h, are the heights of the wave guide, transformer,
and cavity, respectively, and Bbg, Btc are constants determined by
the width of these units according to relations corresponding to (23)
to (28) in the first part of this paper. In (80) 2 thus appears in
the denominator of the right member, and the value of t can be so cho-
sen that Gy, gets the desired value computed in (75).

The facts that no allowance has been made for the transfor-
mation from cylindrical to plane waves and that the shunt susceptances at
the junctions have been neglected may introduce an appreciable error
in the results obtained by this procedure. The numerical calculations

and the model tests reported in the next section show that the external
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Q is likely to be 50 to 100% larger than the design value chosen by
the approximate procedure above. A check based on the results in
Section B of Part I is therefore desirable.

First a closer approximation of the wave admittance at the
output end of the‘ transformer is obtained by adding in (77) & suscep-
tance component. This susceptance is most conveniently determined from
graphs and formulas availeble in the literature.

The next step is to compute the reflection coefficient corres-
sponding to this termination and referred to the origin (z = 0). This
quantity is introduced in (79) and (80) in Part I, and the coefficients
é /1 and b\/l are calculated for r c equal to the radius of the cylindrical
surface terminating the straight part of the transformer section. Equation
(73), Part I, then gives the admittence to the principal cylindrical
wave at this surface. The admitta.nce_ on the transformer side of the
Junction between cavity and transformer can next be calculated by ap-
plication of (18), Part II. Dividing this admittance by the square of
the proper coefficient of couplihg '721 we obtain the terminating admit-
tance ib of the cyliﬁdrical cavvi'ty‘a.ﬁd normalize it to "]b which now is
a complex quantit:;r.' ‘In order to obtain 6'32 with reasonable accui'acy

from (18), Part II, we write the real component of (18) in the following

form |
sin (fy, - Yao)  co8 (f}, - 6;5)
'cos(eb-yJ)Jrsin(eb—e)p
=1 ~ a2 a2
a2 = Yoa2 Yo cos ‘ < ?
%__,_ (}Vb - a2)§}‘ ’
sin (O_b - an)

where

p+ 3§ = ,:tlg
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E'ae is roughly proportional to te, the square of the height
of the transformer section. By comparing the value of E'az we Jjust cal-
culated with the desired value we cen easily see how to adjust t so as
to eliminate the difference.

It mey seem inconsistent that the . junction susceptance is
accounted for on the output side of the transformer section but neg-
lected on the input side. The reason is, of course, that the input
admittance of the transformer is so large that the shunt susceptance
at this point is relatively umimportant, even if it is not negligible.

The determination of the appropriate helght of the transfor-
mer section completes the design computatioms. We shall in the next

section compare calculations according to the analysis presented here

with measurements on test models.

C. MODEL TESTS

In order to check the calculation procedure presented above
a model cavity of the design and dimensions shown in Fig. 1 was sub-
Jected to a series of measurements. The cavity was designéd to oper-
ate in the second-order mode (n = 2). The transformer section was 8o
made that its length could be varied in three steps. Due to an error
in the original calculations the height of the transformer wes made
too small, so that the external Q was very unrealistic and the circuit
efficiency extremely poor. For the purpose of comparing measured
and calculated data, however, this is unimportant. Before the tests
were concluded, the transformer section was redesigned, so that a more

realistic result was obtained in the lést measurements .
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Table I shows corresponding measured and calculated data for
the test models. The colum marked 1/2 GB indicates the error in reso-
nance frequency. Because of the transcendental nature of the resonance
equation the following indirect method was used to obtain this figure.
At the measured resonance frequency the sum of the inductive susceptance
and the sum of the capacitive susceptance at the radius of the finger
system were calculated. Half the difference between these two sums in
per cent is very nearly equal to the difference in per cent between
the measured frequency and the frequency that satisfies the resonance
equation with the calculated susceptances.

In the Q-measurements the standing-wave ratio was measured
to 0.5 db or 15‘ % accuracy. Since in each case a curve of standing-wave
ratio vs. wave length was plotted, the Q-values obtained from the
measurements are probably somewhat more accurate than this figure indi-
cates.

The computational errors may amount to a few per cent, since
& slide rule was used throughout, and the calculations were rather
lengthy, involving rationalization of complex fractions, etc.

The largest discrepancy between the measured and computed
values is about 15 %. The maximum error in the calculations conse-
quently is + 30 % and the probabie error considerably smaller than
that, which is the best confirmation obtainable with the instrumenta-
tion employed.

It is interesting to compare the numerical results obtained
in the first approximation (80), where the change from cylindrical to

plane waves was disregarded, with those obtained in the final calcu-
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lations, where an analytical transformation from plane to cylindricel
waves was performed. The first-mentioned procedure gave the following
values of Qp in the same order as given in Table I, 1780, 1830, and
190, or not much more then half of the observed values. At the point
in the transformer section whre this transformation wes introduced,
the wave admittance: in one case (Model B, 2t = .254cm) was (1.47 +
2.61 J)Yo according to the plane-wave approximation and (3.09 + 4.43 J)Yo
according to the cylindrical-wave analysis. At the input end of the
transformer section the corresponding figures were (5.22 - 5.21+j )Yo
and (2.53 - h.1+9j )Yo. The same terminating admittence was used in
both calculations. In the transformation formula (73), Part I, six
terms were included in numerator and denominator, accounting for cy-
linder waves of order zero to five. The highest-order terms included
were small but not negligible.

The computation procedure given in this paper involves a
number of approximations and simplifications that should be recapi-
tulated and discussed at this point.

The general method of neglecting the resistivity of copper in
the calculation of electromagnetic field configuration in resonators
and wave guides has proved itself through the years and needs no justi-
fication. The influence of the higher-order modes generated in the
transformer section by the discontinuities is very small. The cavity
modes are not so easily dismissed. In the last model test (Moder B, 2t
= .8lcm) the terminating admittance ratio in the cavity is Qb = 23.2 -
ll.ll-‘j , which is large enough to make non-resonant modes unimportant,
but QE is still abnormally high and the circuit efficiency abnormally

low. If Qp were reduced to 100 or lower it would probably be
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necessary to take the junction shunt susceptance into account. It
should be noted that the terminating admittance has an appreciable
susceptance component and that Qp is more strongly dependent on the
resistance than on the conductance of the cavity termination. Even a
moderate change in the susceptance will produce a noticeable change in
Qg -

The most radical approximations concern the energy storage and
copper loss in and in the immediate vicinity of the finger system. We
must assume that the very good agreement in resonance frequency between
calculations and observations is fortuitous.

In order to check how critical the length of the transformer
section is, three different lengths were used with the observed resultis
in Table II. The answer 1s evidently that Qp remains substantially
constant over a considerable range of transformer lengths. Incidentally,
since the Internal Q is independent of the output coupling, the table
glves some indication of the random error in the measurements. The
maximm deviation from the mean of Q_ is 6.9 % for Model A and 5% for
Model B.

The numerical calculations for a second-order-mode resonator
give some interesting information about energy distribution and losses
in the resonator. It is not unexpected, of course, that about ninety
per cent of the electric energy storage takes place in the immediate
vicinity of the finger system. More remarkable is that the magnetic
energy storage is aboul twice as large in interaction space as in the
cavity external to the finger system. The finger system itself and the
higher-order-modes in its vicinity account for twenty-five to thirty

percent of the magnetic energy storage. About sixty to seventy per-
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cent of the copper losses occur in the fingers, because these are
immersed in the r-f magnetic field in a region of the resonator where
both 'thev radial and azimuthal components have their maximum values. If
the same resistivity is assumed, the cathode surface accounts for
another fifteen totwenty percent. Since the losses increase with the
square foot of the resistivity, this item may in an actual tube become
an appreciable part of the total since the cathode surface has appre-
ciably lower conductivity than copper. At room temperature tungsten
and molybdenum would give more than twice the loss of copper, and at
normal operating temperature considerably more. The loss in the cavity
external to the finger system was found to be ten percent or less of
the total. The losses in the end walls or the interaction-space exten-

sions were found to be small compared to those previously mentioned.

TABLE I

Observed Data Calculated
Test = Transformer 1
Cavity  Height , Y % % 2%3 _ % <
Model A = .254 9.34 3360 420 1.35% 3820 kb5
Model B 254 9.92 2700 510 £ 1 % 3000 500

"o 810 9.93 368 50 £ 1 % 312 500
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TABLE II

QObserved Data

Transformer A Q

Length ° G>E °
Model A .25 Ay 9.34 3360 420
" " .2787\.t 9.35 3250 465
1 " . 300}“b 9.35 3’4»00 420
Model B .2l9xt 9.92 2700 510
"o 2l 9.91 2500 550
" " .26lht 9.92 2600 550

An interesting although not very successful experiment with
mode suppression was carried out in connection with the model tests.
All cavity modes with n ) 0 form degenerate pairs. For n = 2 the mode
that can be excited from the wave guide has a mate with no coupling to
the output system. A magnetron with such a resonator would tend to
operate in the unloaded mode. The phase-reversing anode structure
(Fig. 2B) may reduce this tendency but it does not eliminate it, Since
modes of higher frequency than the desired one do not cause any trouble
in a magnetron, the natural thing to do is to disturb the symmetry of
the cavity in such a way that the resonance frequency of the undesired
mode is moved to & higher frequency, while the desired one is substan-
tially unaffected. In the test model this was done by short-circuiting
the fingers placed at the nodes of the electric field in the desired

mode (Fig. 2b) to the opposite wall of the cavity by means of smell screws,
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To the undesired mode these fingers then form high-susceptance induc-

tive posts at the points of maximum electric field.

TABLE III

Observed Data with Mode Suppressors Applied

Test Transformer A QE Q
Cavity Height ° °
Model B 254 9.85 1400 620
Model B .3810 9.85 185 585
However, the lower-order modes, n = 0 andn = 1, are

affected in 2 similar way. In the test model the result was that the
mode separation practically disappeared, the resonance wave lengths
of the three lowest modes being 10.21, 10.02 and 9.84 cm for Model B
(2t = .254 cm). The result of the impedance measurements are given
above (Teble III), subject to an important reservation: the proce-
dure for computing Q from standing-wave measurements presupposes
ample mode separation, consequently an appreciable error must be ex-
pected in this case. We shall, therefore, make no attempt to dreaw
any conclusions from these data.

The result of this crude attempt at mode suppression is not
discouraging. There are several obvious ways in which a further in-
crease in the resonance frequency of the unwanted modes can be achieved.

In conclusion we can state that the results of the model tests
are in satisfactory agreement with the calculations made according to
the procedure proposed in this paper, although the measurements are

neither extensive enough nor accurate enough to determine sharply the
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limits of reliebility of the method. The purpose of the tests was to

give us confidence that the main principles of the method are sound and
that we have not overlooked any of the important factors in the problem.
Beyond that, we can judge the accuracy of the whole from the accuracy of
the separate items. The most radical approximations concern the finger
system, and,since appreciable fractions of the total energy storage and
copper losses are associated with the finger system, a certain error
from this source is probable. Neglect or rough approximations of higher-
order modes at the various junctions are other sources of errors, which
can be estimated in each case. An interesting observation is that
neglect of the proper transformetion between the cylindrical waves in
the cavity and the pléne waves in the wave gulde leads to an unexpecfedly
large error. For this'reason it is the author's hope that particularly
the formulas derived for this transformation will prove of value in

design problems similar to the one treated above.
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