
Declarative Querying For Biological Sequences

by
Sandeep Tata

A dissertation submitted in partial fulllment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2007

Doctoral Committee:

Associate Professor Jignesh M. Patel, Chair
Professor Hosagrahar V. Jagadish
Professor David States
Assistant Professor Martin J. Strauss
Assistant Professor Peter J. Woolf

c©
Sandeep Tata

All Rights Reserved
2007

To the people who taught me to strive, smile, share, and love.

ii

ACKNOWLEDGEMENTS

I have received a lot of help from different people during the course of the last ve

years at Michigan. Without their help, this dissertation would have been quite impossible.

First, I would like to thank my advisor Jignesh. He helped me strike the magical balance

between learning, research, work, and play. He was supportive of even my wildest ideas

and allowed me the freedom to explore and learn. Graduate school wouldn’t have been so

much fun without his support and guidance.

I had the good fortune of working with Rich Hankins early in the program. Rich in-

troduced me to refactoring and several other ideas that quickly allowed me to be more

productive. I learned much from Rich and am very grateful to him for the encouragement

and mentoring he provided.

My colleagues and friends in the database lab made it easy to look forward to going

to in work every day. I am thankful to Jason Chen, Magesh Jayapandian, You Jung Kim,

Michael Morse, Yuanyuan Tian, Adriane Chapman, Yun Yao Li, Bin Liu, Arnab Nandi,

Stelios Paparizos, and Cong Yu.

Finally, I am deeply grateful to my friends and family for making even the difcult

times feel like fun!

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

II. Algebra . 6

2.1 Introduction . 6
2.1.1 The Problem . 7

2.2 Related Work . 9
2.3 The PiQA Algebra . 10

2.3.1 Types . 11
2.3.2 Operators . 14

2.4 Expressive Power of PiQA . 21
2.4.1 Sample Queries . 21
2.4.2 Expressing BLAST . 22

2.5 Query Evaluation . 23
2.5.1 Cost Model . 23
2.5.2 Generation of Query Plans . 24

2.6 Conclusions . 27

III. Suffix Tree Construction . 29

3.1 Introduction . 29
3.2 Related Work . 32
3.3 The TDD Technique . 35

3.3.1 PWOTD Algorithm . 35
3.3.2 Buffer Management . 39
3.3.3 Buffer Size Determination . 41

3.4 Analysis . 44
3.4.1 I/O Benets . 45
3.4.2 Main-Memory Analysis . 45
3.4.3 Effect of Alphabet Size and Data Skew 48

3.5 The ST-Merge Algorithm . 51

iv

3.5.1 Comparison with TDD . 53
3.6 Experimental Evaluation . 55

3.6.1 Experimental Setup and Implementation 56
3.6.2 Implications of 64-bit Architectures . 58
3.6.3 Comparison of the In-Memory Algorithms 59
3.6.4 Buffer Management with TDD . 74
3.6.5 Comparison of Disk-based Algorithms 77
3.6.6 Constructing Sufx Trees on Very Large Inputs 81

3.7 Conclusions . 82

IV. Selectivity Estimation and Optimization . 84

4.1 Introduction . 84
4.2 Extending a Relational DBMS . 87

4.2.1 Algebra and Query Language . 87
4.3 Estimation, Operators, and Optimization for Query Processing 92

4.3.1 Estimation Method . 93
4.3.2 The Symmetric Markovian Summary 96
4.3.3 Experimental Evaluation . 100
4.3.4 K-Mismatch Estimation . 104

4.4 Query Evaluation . 105
4.4.1 Algorithms for Match . 105
4.4.2 A New Combined Operator . 107
4.4.3 Optimization . 107
4.4.4 Cost Models . 108

4.5 Experimental Validation . 110
4.5.1 Impact of SMS-based Estimation . 111
4.5.2 Impact of Using Match and Augment 112
4.5.3 Optimizer Evaluation . 113
4.5.4 GeneLocator: An Application . 114
4.5.5 Performance of GeneLocator . 117
4.5.6 Results . 117

4.6 Related Work . 118
4.7 Conclusions and Future Work . 120

V. Mining for Patterns . 122

5.1 Introduction . 122
5.2 Related Work . 126
5.3 The Model . 129

5.3.1 Special Case: The (L, d, k) Model . 132
5.3.2 Special Case: The (L, f, d, k) Model . 134

5.4 The FLAME Algorithm . 136
5.4.1 Optimizations . 141

5.5 Evaluation . 143
5.5.1 Comparison with cSPADE . 144
5.5.2 Comparison with Random Projections 145
5.5.3 Comparison with Weeder and YMF . 147
5.5.4 Performance Characteristics of FLAME 151
5.5.5 Summary . 154

5.6 Conclusions and Future Work . 154

VI. Application – GeneFinder . 160

v

6.1 Introduction . 160
6.2 Methods . 162

6.2.1 Searching the genome . 163
6.2.2 Rening Candidates . 165

6.3 Results . 171
6.3.1 Nrl binding . 173
6.3.2 Nrl Targets with multiple sites . 174
6.3.3 ERα binding site . 174

6.4 Conclusions . 175

VII. Conclusions . 176

BIBLIOGRAPHY . 179

vi

LIST OF FIGURES

Figure

2.1 Regular Expression Syntax . 13

2.2 Query Plan for EQ . 27

2.3 More Efcient Query Plan for EQ . 28

3.1 Sufx Tree Representation (Leaf nodes are shaded, the rightmost child is denoted with an R) 63

3.2 The TDD Algorithm . 64

3.3 Buffer Management Schema . 65

3.4 Sample Page Miss Curves . 66

3.5 Buffer Allocation for Different Data Structures: Note how other data structures are gradu-
ally pushed out of memory as the input string size increases. 67

3.6 LCP Histogram: This gure plots the histogram until an LCP length of 32. For the DNA
dataset, 18.8% of the LCPs have a length greater than 32, and for the protein data set 13.8%
of the LCPs have a length greater than 32. 68

3.7 The Scheme for ST-Merge . 69

3.8 The ST-Merge Algorithm . 69

3.9 The NodeMerge Subroutine . 70

3.10 The EdgeMerge Subroutine . 70

3.11 Example of Trees Being Merged . 71

3.12 EdgeMerge for Group-A . 71

3.13 EdgeMerge for Group-T . 72

3.14 EdgeMerge for Group-G . 72

3.15 The Result of the Merge . 72

3.16 In-Memory Execution Time Breakdown for TDD, Ukkonen, McCreight, and Deep-Shallow* 73

3.17 String Buffer . 74

vii

3.18 Sufx Buffer . 75

3.19 Temp Buffer . 76

3.20 Tree Buffer . 77

3.21 Execution Times : TDD and ST-Merge . 82

4.1 Example PiQL Statements . 88

4.2 Estimation Function StrEst . 95

4.3 Algorithm H1 to construct SMS . 98

4.4 Low Selectivity Queries, MGEN: H1 vs. H2 . 99

4.5 Medium Selectivity Queries, MGEN: H1 vs. H2 . 99

4.6 High Selectivity Queries, MGEN: H1 vs. H2 . 99

4.7 MGEN: SMS vs. PSTMO . 100

4.8 SPROT: SMS vs. PSTMO . 100

4.9 GUTEN: SMS vs. PSTMO . 100

4.10 K-Mismatch Estimation Error . 104

4.11 The Optimization Algorithm . 111

4.12 Optimization and Evaluation Times . 114

4.13 Promoter Binding Region . 115

4.14 Screenshot of the GeneLocator Interface . 116

4.15 Screenshot of the Search Results . 121

5.1 IBM Stock Data: The bold segments represent a frequently occurring approximate pattern. 123

5.2 Potential uses of the LDK model - the lower segment is identical to the upper segment
except for the single spike. The (L, d, k) model can match these. 134

5.3 A count sufx tree on the string ABBCACCB. The counts are indicated inside the node. . . 137

5.4 The FLAME Algorithm . 156

5.5 Functions for (L,M,s,k) . 157

5.6 cSPADE vs FLAME on the Snake dataset for different length exact motifs at supports of
10% and 50%. 157

5.7 RP vs FLAME for varying database sizes. Note that the time axis is on a log scale. 157

viii

5.8 Weeder - Accuracy on real DNA datasets. FLAME is guaranteed to be 100% accurate, and
is not shown here. 158

5.9 YMF vs FLAME on synthetic datasets. Note that the time axis uses a log scale. 158

5.10 Performance as alphabet size varies. 158

5.11 FLAME: Distance threshold vs time taken for (L,M,s,k) motifs on IBM stock price data at
support = 21. 158

5.12 FLAME: Distance threshold vs time taken for (L,M,s,k) motifs on IBM stock price data at
support = 60. 158

5.13 FLAME: Distance threshold vs time taken for (L,M,s,k) motifs on IBM stock price data at
support = 120. 158

5.14 FLAME: (L,M,s,k) motifs on the Snake dataset. 159

5.15 Scalability of FLAME with increasing database size. 159

6.1 A Sufx Tree . 164

6.2 Distance of Binding Site from the Transcription Start Site 166

6.3 Distribution of Conservation Scores . 167

6.4 Tissue Expression Distribution For Eye Tissue . 169

6.5 Number of Binding Sites per Promoter . 170

ix

LIST OF TABLES

Table

2.1 Example Matches . 15

2.2 Unnested Relation . 15

3.1 Main Memory Data Sources . 60

3.2 Execution Time Details for Deep-Shallow*: Time spent by the algorithm in the three
phases – sufx array construction (SA), LCP array construction (LCP), and sufx array
to sufx tree conversion (Conv). 61

3.3 The On-Disk Sizes of each Data Structure . 75

3.4 On-Disk Data Sources . 78

3.5 On-Disk Performance Comparison . 78

4.1 Relation R . 90

4.2 Match Results . 90

4.3 Estimation Time (in microseconds) . 106

4.4 Query Plan Evaluation Times (in minutes) . 113

4.5 Execution Times . 117

5.1 An example distance matrix that implements the sum of squared differences measure . . . 131

5.2 The list of matches for the model A. 139

6.1 A Sample Position Weight Matrix . 165

6.2 Predicted Targets of Nrl . 171

6.3 Top Results For NRE . 172

6.4 Top ER results . 173

x

ABSTRACT

Life science research labs today manage increasing volumes of sequence data. Much of

the data management and querying today is accomplished procedurally using Perl, Python,

or Java programs that integrate data from different sources and query tools. The dangers

of this procedural approach are well known to the database community– a) severe limita-

tions on the ability to rapidly express queries and b) inefcient query plans due to the lack

of sophisticated optimization tools. This situation is likely to get worse with advances

in high-throughput technologies that make it easier to quickly produce vast amounts of

sequence data. The need for a declarative and efcient system to manage and query bi-

ological sequence data is urgent. To address this need, we designed the Periscope/SQ

system. Periscope/SQ extends current relational systems to enable sophisticated queries

on sequence data and can optimize and execute these queries efciently.

This thesis describes the problems that need to be solved to make it possible to build

the Periscope/SQ system. First, we describe the algebraic framework which forms the

backbone of Periscope/SQ. Second, we describe algorithms to construct large scale sufx

tree indexes for efciently answering sequence queries. Third, we describe techniques for

selectivity estimation and optimization in the context of queries over biological sequences.

Next, we demonstrate how some of the techniques developed for Periscope/SQ can be

applied to produce a powerful mining algorithm that we call FLAME. Finally, we describe

GeneFinder, a biological application built on top of Periscope/SQ. GeneFinder is currently

being used to predict the targets of transcription factors.

xi

Today, genomic and proteomic sequences are the most abundantly available source of

high-quality biological data. By making it possible to declaratively and efciently query

vast amount of sequence data, Periscope/SQ opens the door to vast improvements in the

pace of bioinformatics research.

xii

CHAPTER I

Introduction

The life sciences community today faces the same problem that the business world

faced over 25 years ago. They are generating increasingly large volumes of data that they

want to manage and query in sophisticated ways. However, existing querying techniques

employ procedural methods, with life sciences laboratories around the world using custom

Perl, Python, or JAVA programs for posing and evaluating complex queries. The perils of

using a procedural querying paradigm are well known to a database audience, namely

a) severely limiting the ability of the scientist to rapidly express complex queries, and

b) often resulting in very inefcient query plans as sophisticated query optimization and

evaluation methods are not employed. However, existing database products do not have

adequate support for sophisticated querying on biological data sets. This is unfortunate

as new discoveries in modern life sciences are strongly driven by analysis of biological

datasets. Not surprisingly, there is a growing and urgent need for a system that can support

complex declarative and efcient querying on biological datasets.

There are several large databases worldwide that store protein and DNA sequence in-

formation. (DNA can be abstractly thought of as a sequence over an alphabet of size four:

{A,C,G,T}. Proteins can be represented as sequences over the amino acid alphabet, which

is of size twenty. Proteins also have a secondary structure which refers to the local geomet-

1

2

ric folding. This too is represented as a sequence over the secondary structure alphabet of

size three: alpha helix, beta sheet, and loops.) Some of these databases are growing very

fast. For instance, GenBank, a repository for genetic information has been doubling every

16 months [63] – a rate faster than Moore’s law! Protein databases, such as PDB [65]

and PIR [10, 169] have also grown rapidly in the last few years. The growing sizes of the

databases exacerbates the current deciency in querying methods.

In this thesis, we describe database methods that are required to support declarative and

efcient analysis of sequences in an object-relational database system. We have developed

these techniques as part of the Periscope/SQ system, which is part of a larger project called

Periscope that aims to develop database methods for declarative and efcient querying of

all biological data such as graphs, structures, expression data, etc. Periscope/SQ is the

sub-system that deals with sequence data. In this thesis, we will focus on Periscope/SQ.

To address the need for easy and efcient querying mechanisms for sequences, we rst

propose an algebra [145] to express such queries over sequences. This algebra (called

PiQA) provides a rich set of operators that permit sophisticated querying on both the pri-

mary and secondary structures of protein, and on DNA sequences. In addition, procedures

used by existing tools like BLAST can also be expressed in PiQA. PiQA is also the basis

for PiQL, an extension to SQL that allows us to declaratively express complex queries

over sequence data. The expressive power of PiQA allows us to easily express queries that

would be extremely awkward and difcult to express in a plain relational database. The

details of PiQA are described in Chapter II.

A data structure that is extremely versatile and useful for evaluating a wide variety

of queries on sequence datasets is the sufx tree. The sufx tree is especially useful for

nding exact and approximate string matches, and to nd repeating patterns. However,

methods for constructing sufx trees are often very time-consuming, especially for sufx

3

trees that are large and do not t in the available main memory. Even when the sufx tree

ts in memory, it turns out that the processor cache behavior of theoretically optimal sufx

tree construction methods is poor, resulting in poor performance.

In Chapter III, we explore sufx tree construction algorithms over a wide spectrum of

data sources and sizes. We show that on modern processors, a cache-efcient algorithm

with O(n2) worst-case complexity outperforms popular linear time algorithms like Ukko-

nen and McCreight, even for in-memory construction. For larger datasets, the disk I/O

requirement quickly becomes the bottleneck in each algorithm’s performance. To address

this problem, we describe two approaches. First, we present a buffer management strat-

egy for the O(n2) algorithm. The resulting new algorithm, which we call TDD, scales

to sizes much larger than have been previously described in literature. This approach far

outperforms the best known disk-based construction methods. Second, we present a new

disk-based sufx tree construction algorithm that is based on a sort-merge paradigm, and

show that for constructing very large sufx trees with very little resources, this algorithm

is more efcient than TDD. The TDD algorithm enables Periscope/SQ to use the sufx

tree index to efciently query large sequence datasets.

Chapter IV discusses estimation techniques, operators, and optimization algorithms

used in Periscope/SQ. We describe PiQL, the extension of SQL that can express PiQA

queries. We introduce new physical operators and support for sufx tree indexes in the

database. The sufx trees add the option of a very efcient access path for many sequence

queries. We describe a novel approach to estimating the selectivity of string predicates

using a Symmetric Markovian Summary. We also describe a simple, yet highly effective

algorithm to optimize sequence queries. We demonstrate that Periscope/SQ is efcient for

different kinds of queries and using a real world application in eye genetics, we show that

we can achieve speedup of two orders of magnitude over existing procedural methods.

4

Complex sequence analysis goes beyond just querying sequence databases. Mining se-

quences for interesting patterns is an extremely important and difcult problem. Existing

database sequence mining algorithms mostly focus on mining for subsequences. How-

ever, for many emerging applications, the subsequence model is inadequate for detecting

interesting patterns. Domains that involve medical time series data, nancial time series

data, biological sequences, etc. often require other more complex models. For instance,

mining DNA sequences to identify regulatory regions requires nding frequent approx-

imate substrings. The approximate substring model better accommodates the notion of

a noisy pattern, and is therefore better suited than the subsequence model for many new

applications.

To facilitate mining of different datasets, we present a powerful new model for approx-

imate pattern mining. In Chapter V, we show that this model can be used to capture the

notion of an approximate match for a variety of different applications. We present a novel,

sufx tree based pattern mining algorithm called FLAME (FLexible and Accurate Motif

DEtector). Through an extensive empirical evaluation on both real and synthetic datasets

from different domains, we demonstrate that FLAME is a fast, accurate, and scalable

method for discovering hidden patterns in large sequence databases.

Periscope/SQ provides the infrastructure to develop sophisticated sequence processing

applications. As a demonstration, we built an application called GeneFinder on top of

Periscope/SQ. GeneFinder tackles the difcult problem of predicting target genes for tran-

scription factors where the binding signature of the factor is known. GeneFinder takes

advantage of Periscope/SQ by combining sophisticated sequence predicates with several

relational queries and is able to make high quality predictions. GeneFinder demonstrates

the ease with which a declarative framework can be used to rapidly develop an appli-

cation, which is also signicantly faster in executing queries than existing methods. In

5

Chapter VI, we describe the problem in detail and show how the techniques developed in

Periscope/SQ are crucial to GeneFinder.

The contributions in this thesis are summarized in Chapter VII along with our conclu-

sions.

CHAPTER II

Algebra

2.1 Introduction

Recent years have seen an enormous explosion in the sizes and uses of biological data.

Several nucleotide and protein sequence data sets are growing at an exponential rate, dou-

bling roughly every 16 months [146]. In addition, the nature of the searches against these

databases is also changing, and scientists today would like to ask more complex queries

against these data sets. Database management tools have an important role to play in

querying such biological datasets [37, 52]. This work focuses on one such aspect, namely

the querying of protein data sets based on different structural attributes that describe each

protein.

Proteins have the following four levels of structural organizations: primary, secondary,

tertiary and quaternary structures. In this study, we focus on querying the primary and

secondary structures. The primary structure is simply a linear sequence of amino acids

residues that forms the protein. The secondary structure describes how the linear sequence

of amino acids residues orients itself, or folds, in three-dimensional space. There are three

basic types of folds: alpha-helices, beta-pleated sheets, and turns or loops. Knowledge

of a proteins secondary structure has been shown to provide important insights into its

evolutionary relationships, and hence its function.

6

7

Typically, biologists are interested in nding similarities between a sequenced protein

and others in the database so that they can understand the function of the sequenced pro-

tein. For instance, given a protein, they may want to determine if similar proteins exist in

other species, and may also want to determine the function of the protein. Or they might

be interested in knowing if there are other proteins that have a different primary structure,

but have a similar secondary structure. The secondary structure of the protein is crucial to

understanding the function that the protein performs [13,23,124], and hence it is important

to be able to understand it in relation to the primary structure.

2.1.1 The Problem

Today when scientists investigate a protein, they usually search databases of known

proteins based on the primary sequence. The search is typically carried out using tools

such as BLAST [66,126]. Such search tools essentially nds homologous matches. These

search tools return approximate answers, and often a scientist may have to post-process

these results, or run the search iteratively (as in PSI-BLAST). In addition, the scientist

may query multiple data sets producing a large number of approximate matches that may

feed into the next stage of their analysis. With protein queries, in many cases the next

step after matching on the primary sequences may be to examine the protein of interest

with the secondary structures of other known proteins in the database. The matching on

the secondary structure is important as the functionality of proteins is strongly inuenced

by its actual folding pattern, and even proteins that are not close homologs may exhibit

similar behavior if their folding patterns are similar.

As an example, a biologist might have just sequenced the hemoglobin protein in mon-

keys and may be interested in hemoglobin and other proteins in other species that are

similar to this protein. Such comparisons are also useful in tracking evolutionary changes

in the structure of the protein [78]. In certain other instances, when a biologist is trying to

8

nd a protein that matches a certain structural ngerprint i.e. a certain spatial arrangement,

they might have a secondary structure in mind and want to nd proteins in the database

that have a similar structure.

In many cases, these steps of querying on the primary and secondary structures may

be repeated many times, and for many different databases. Often the iteration between

these steps is driven by a manually coded program, which may need to be modied every

time the underlying query changes. In addition, this entire process may needs to be carried

out for each distinct experiment that is undertaken in a lab. A declarative query tool that

permits querying on both the primary and secondary structures can not only reduce the

time spent in posing such queries, but can also allow the biologist to pose more complex

queries than are currently used today.

As an example, using currently existing tools one cannot express the following query

in a straightforward way: Match the given primary sequence of length 120, but ignore

mismatches in the segment from positions 44 to 78 if it is on a loop in the secondary

structure.

In the next several sections we shall describe an algebra that can be used to query

protein data sets based on both the primary and secondary structures. The algebra supports

approximate matching, and also includes operators that allow extensions of two or more

approximate matches to calculate a longer match. We believe that the algebra is expressive

enough to express a large class of interesting queries on both the primary and secondary

structures of proteins.

The motivations for developing such algebra are fairly obvious to a database audience.

The algebra is a rst step in providing a declarative query language-based interface to the

user, rather than the more cumbersome procedural paradigm that is currently being used

for queries across both primary and secondary structures. In addition, the algebra can also

9

be exploited by a query optimizer to produce efcient query plans.

The key contribution of this work is PiQA, a Protein Query Algebra that enables us to

express queries on both the primary and secondary structures of proteins. To the best of our

knowledge, PiQA is the rst algebra that allows querying on both these structures. Using

PiQA we also show how existing queries on only the primary structure can be expressed

in this algebra. In addition, we also illustrate the use of the algebra in query optimization.

Though PiQA is basically designed to express queries on protein data, it can easily be

applied to querying genetic data. We demonstrate the exibility of PiQA by describing an

application of PiQA in genetic research related to eye-disorders.

2.2 Related Work

Surprisingly, there is little previous work on developing an algebraic framework for

querying biological data sets. Recently, Hammer and Schneider [80] proposed a long-

term approach towards developing an algebra that abstracts several biological processes.

Seshadri et al. [110, 111] describe techniques for querying sequence databases. However,

these techniques primarily focus on aggregate-based analysis of sequences, and are not di-

rectly applicable for querying biological sequences, which often require pattern matching

and approximate matching operators. There has been a lot of work in string matching, in-

cluding proposals for a declarative language based on alignment calculus for strings [121].

However, these techniques can only be applied to primary sequence matching without ap-

proximations. Linguistic approaches have been used in [125] to predict gene structure

from DNA sequences. However, such approaches do not generalize for other kinds of

pattern based querying over sequences.

The algebraic constructs that we present in this chapter employ many of the constructs

that have been developed for nested relational algebras [56, 99, 128, 133]. However, we

10

have been able to express the queries that we target using only a limited form of nesting,

namely PNF relations [99], with only one level of nesting. Consequently, the optimiza-

tions, too, are simpler than those developed for more general forms of nesting [94,96,179].

A number of tools have been developed for searching on nucleotide sequences and pri-

mary protein sequences. The most frequently used tool in this category is the BLAST [126,

127] family of search programs. BLAST works in three steps: in the rst step it nds all

K-mers (strings from the alphabet of length K) that score above a certain threshold with

some part of the query string. In the next step, it searches the database to nd hits. In

the nal step, BLAST extends the hits according to certain heuristics and returns a list of

high-scoring segment pairs. This score is a measure of similarity.

Searching based on the secondary structure of proteins has recently been examined by

Hammel and Patel [95]. The authors dene an intuitive query language that can be used to

express queries on secondary structure and also developed techniques for evaluating and

optimizing these queries.

2.3 The PiQA Algebra

The algebra that we describe is a multi-sorted algebra. The operators can be composed

to specify complex queries involving both the primary structure and the secondary struc-

ture. We have formulated the algebra as an extension to relational algebra so that we still

have the advantage of modeling data as relations. More precisely, the relations in our

model are in the Partitioned Normal Form (PNF) [99]. (PNF relations restrict the class

of general nested relations to guarantee the desirable property that a nest operation is the

inverse of an unnest operation.)

We shall rst describe all the types in the algebra, and then describe each of the op-

erators, the types of their operands, and the type of the result. In the interest of space,

11

we do not describe the basic relational algebraic constructs [49], and extensions of these

constructs to accommodate PNF relations [99].

2.3.1 Types

The basic types in the algebra are:

• Basic Scalar Types Integers, Characters etc.

• Hits and Matches

• Sequences

• Tuples

• Relations (sets)

Hit: A hit is basically a triple (p,l,s). When specied together with some sequence, the

hit (p,l,s) means that there is a hit at position p of length l with a score of s on the given

sequence. For instance, suppose that A = (2,3,3) is a hit on the sequence SEQ = “TG-

GTTTAGGAGGTA”. This hit refers to the “GGT” substring, which could have matched

some query for a score of 3. This hit is shown in the original database sequence as

“TGGTTTAGGAGGTA”, with the hit portion highlighted in bold-face.

Match: A match is simply a set of hits. For example, consider the sequence SEQ =

“TGGTTTAGGAGGTA”, and a query to nd “GGT” followed by a “GGA” within 10

symbols. A match for this query using an exact matching paradigm is X= {sid, (2,3,3),

(8,3,2)}. “sid” is simply a sequence identier that allows us to determine which sequence

this match refers to. In this example, the match describes two hits in the data sequences as

shown in bold-face in “TGGTTTAGGAGGTA”.

Consider another example: (CG2B, ((22, 7, 6), (44, 12, 9))) is a match which could

have been the result of some operation, and it means that the sequence referred to by CG2B

12

matched at position 22 and at position 44 with lengths of the matches being 7 and 12, and

the scores being 6 and 9 respectively.

For ease of presentation, in some of the examples below, we represent the matches in

an alternative form. In this alternative representation, the match is represented as a 4-

tuple where the rst component is an identier. The remaining components of a match are

sequences. The second component is a sequence of integers which refer to positions in

a string, the third component is a sequence of integers which refer to the lengths of each

of the matches whose positions are referred to by the previous sequence, and the fourth

sequence in a match comprises the integers that represents the scores. In this alternative

representation, the previous example would be expressed as: (CG2B, (22, 44), (7, 12), (6,

9)).

Several operators that we describe operate on sets of matches. We can view a set of

matches as a nested relation with the rst identifying component of the match serving as a

key which functionally determines the other attributes in the relation. With this interpreta-

tion, we observe that these sets are in Partition Normal Form [99] .

Regular Expressions and Matches: A regular expression can be used to represent a

match criterion. As in [95], a regular expression is expressed as a sequence of segment

predicates, each of which must be matched to satisfy the entire expression. Each segment

predicate is described by the type and the length of the segment. The type of the segment

is drawn from the alphabet of the underlying sequence, and depends on the sequence being

queried. For the protein secondary structures, the allowed segment types are h, e, and l,

for the alpha-helices, beta-sheets, and loops, respectively. In addition we also add a fourth

option, ?, which stands for a gap segment and allows scientists to represent regions of

unimportance in a query. The length of the segment is specied using an upper bound and

a lower bound, each of which could be 0. In addition the upper bound could be specied

13

RegExp → {Segments}
Segments → Segment*
Segment → <type lb ub>
type → e|h|l|? (for protein secondary structures)
type → A|R|N|. . . |? (for protein primary structures)
type → A|C|G|T|? (for nucleotide sequences)
lb → any integer ≥ 0
ub → any integer ≥ 0 | ∞
Segment Constraint: lb ≤ ub

Figure 2.1: Regular Expression Syntax

as ∞. Segment predicates over other structures are similar, except that the type used is set

to the symbols in the underlying alphabet, with the addition of the “?” symbol. Formally,

a regular expression is dened using the rules shown in Figure 2.1.

As an example, consider the following expression on a protein secondary structure:

<e 3 5><? 0 ∞><l 7 7>. This regular expression matches all proteins that contain a

beta-sheet of length 3 to 5 followed at some point by a loop of length 7.

Sets and Sequences: Sets and Sequences are well known types. Sequences have the

standard position (or index) operator which allows access to an arbitrary element in the

sequences. For example, the ith position in a sequence S is simply accessed as S(i).

In this algebra, we only permit a sequence of the basic scalar types. That is, we may

have a sequence of integers, characters, etc. But we do not have sequences on complex

types such as relations. We do not dene operations on sequences directly, but on the

matches that have sequences as a part. Therefore, not having sequences of more complex

types does not detract from the power of expressing queries that PiQA targets.

Since a string is merely a sequence of characters (over a relevant alphabet), we will use

the terms string and character sequence interchangeably.

14

2.3.2 Operators

Match operator (*)

∗ : Set < strings > ×(str ∪ regexp) → Set < matches >

The match operator searches the set of strings (the left operand) to nd substrings that

approximately match the right operand, which could be a string or a regular expression

specifying a set of strings. The result of this operation is a set of matches, each consisting

of the identier of the corresponding string, the match-positions and their lengths and

scores. Symbolically, a match expression is of the form: T ∗ (strorregexp), where T is a

set of strings. A common use of the match operator is to search on the primary structures

using a string str, or searching on the secondary structures using a regular expression

regexp.

The match operator is dened under some matching criterion, for instance PAM-30,

PAM-70 or a BLOSUM62 matrix can be used to determine a match score between two pri-

mary protein structures. One may also choose to use an exact matching criterion or some

other measure of approximate matching gapped, un-gapped, etc. for secondary structures

(and even for primary structures). We will not deal in depth with specic matching crite-

ria in this chapter. Though certain kinds of optimization may be possible if we know the

matching criterion and scoring function used, in the interest of generality, our formulation

will not be tied to any choice of matching criteria, except when explicitly specied.

Example:

Consider a protein table, P, with the following attributes: id- a unique identier, p- a

string representing the protein primary structure, and s- a string representing the protein

secondary structure. In this example, we shall use the short-hand P.p to denote the set of

15

id p s
1 GQISDSIEEKRGFF HLLLLLLLLLHEE
2 EEKKGFEEKRAVW LLEEEEEHHHHHL
3 QDGGSEEKSTKEEK HHHHLLLEEEELLL

str = EEK , regexp = <l 3 5>
P.p * str = {(1, (8), (3), (3)), (2, (1, 7), (3, 3), (2, 1)), (3, (6, 12), (3, 3), (1, 0)) }
P.s * regexp = {(1, (2, 3, 4, 5, 6, 7, 8), (5, 5, 5, 5, 5, 4, 3), (1, 1, 1, 1, 1, 0, 1)), (3, (5, 12), (3, 3), (2, 2))}

Table 2.1: Example Matches

ID POSITION LENGTH SCORE
1 8 3 3
2 1 3 2
2 7 3 1
3 6 3 1
3 12 3 0

Table 2.2: Unnested Relation

primary sequences, and P.s to denote the set of secondary sequences.

The scores in the example above have been arbitrarily assigned. However, we can also

choose to explicitly specify the scoring criteria. If we for instance wished to specify that

the matches be scored using the BLOSUM62 matrix, we would say P.p ∗BLOSUM62 str .

This is a simple way of expressing the idea used in BLAST for similarity searching. The

type of matching operation used has an effect on the semantics of other operators that we

will describe in subsequent sections.

Nest (ν) and Unnenst (µ) Operators

∗ : Set < matches >→ Set < matches >

Unnest is a simple operator that attens out a relation holding matches. For instance,

Unnest({(1, (8), (3), (3)), (2, (1, 7), (3, 3), (2, 1)), (3, (6, 12), (3, 3), (1, 0))}), would

result in the relation shown in Table 2.2.

The Nest operation is merely the reverse. It collapses each of the tuples (matches) into

single, more complex matches. Note that the ID does not serve as a key in this relation.

16

(ID, Position) can serve as a composite key. These operators make it easier to dene

certain operations like intersection.

Union Operator (∪)

∪ : Set < matches > ×Set < matches >→ Set < matches >

The set union operator generates a set that consists of all the matches of the two sets it

operates on. If match with a common protein exist in the two sets, their match-positions

are combined, and their length functions are updated. Symbolically, the operation is rep-

resented as:

T = R ∪ S, where R and S are two sets of matchings, and T is their union.

Example:

R = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4), (4, 4), (3, 4))}

S = {(2, (5), (4), (3)), (5, (1, 8), (5, 5), (4, 5))}

T = R ∪ S = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4, 5), (4, 4, 4), (3, 4)), (5, (1, 8), (5,

5), (4, 5))}

Intersection Operator (∩)

∩ : Set < matches > ×Set < matches >→ Set < matches >

The intersection of two sets of matches consists only of matches with proteins common

to both sets. Within each match, only match-positions common to both sets are included.

Symbolically, the operation is represented as:

T = R ∩ S, where R and S are two sets of matches, and T is their exact intersection.

Example:

17

R = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4), (4, 4), (3, 4)), (3, (7, 13, 22), (7, 7, 7), (5,

6, 6))}

S = {(2, (1, 5), (4, 6), (3, 5)), (3, (13), (7), (6)), (5, (1, 8), (6, 6), (5, 6))}

T = R ∩ S = {(2, (1), (4), (3)), (3, (13), (7))}

To disambiguate the denition, we observe that T = Nest (Unnest(R) ∩ Unnest(S)).

Difference Operator (−)

− : Set < matches > ×Set < matches >→ Set < matches >

The difference of two sets of matches consists of matches that are present in the rst set

and not the second. The operation is clearly not commutative. If matches with a common

protein exist in both sets, only match-positions in the rst set that do not occur in the

second are included in the result set. In such cases, the length function of the match may

be updated if its cardinality changes. Symbolically, the operation is represented as:

T = R − S, where R and S are two sets of matches, and T is their difference.

Example:

R = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4), (4, 4), (3, 4)), (3, (7, 13, 22), (7, 7, 7), (5,

6, 6))}

S = {(2, (1, 5), (4, 6), (3, 5)), (3, (13), (7), (6)), (5, (1, 8), (6, 6), (5, 6))}

T = R − S = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (4), (4), (4)), (3, (7, 22), (7, 7), (5, 6))}

Match Extension Operators (|, ||)

|| : Set < matches > ×Set < matches >→ Set < matches >, and

| : matchXmatch → match)

18

The Match Extension operator, operates on two matches, and returns a match that is

the list of all matches that can be formed by concatenating a match from Match-1 with

a match from Match-2. That is, the result of the operator is the list of matches in its left

operand that could be extended in length using the right operand. Symbolically, let

m1 = (pid1, (a1, a2, a3, . . . , ak), f, s1) be a match, and

m2 = (pid2, (b1, b2, b3, . . . , bL), g, s2) be another match.

m1|m2 is dened only when pid1 = pid2, and is equal to (pid1, (c1, c2, c3, . . . , cn), h, s3),

where ci = aj , h(i) = f(i) + g(i), and for some p, aj + f(j) = bp .

Clearly, the operator is not commutative. If R and S are sets, then the operation of

match extension can be written as: T = R||S = {m|m = m1|m2,m1 ∈ R,m2 ∈ S}

Example:

R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4), (3, 3))}

S = {(1, (5, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))}

T = R || S = {(1, (1, 22), (14, 13), (13, 11))}

The general form of the extension operator concatenates two matches that are at most

at a distance k and re-computes the score of the new match. The match extension operator

described above is obtained by putting k = 0 in the generalized form. One can mathemat-

ically describe the operator as follows:

m1 = (pid1, (a1, a2, a3, . . . , ak), f, s1) be a match, and

m2 = (pid2, (b1, b2, b3, . . . , bL), g, s2) be another match.

m1|km2 is dened only when pid1 = pid2,

19

and is equal to (pid1, (c1, c2, c3, . . . , cn), h, s3),

where ci = aj , and for some p, bp − (aj + f(j)) ≤ k , and h(i) = f(i) + g(i) + k

If R and S are sets, then the operation of match extension can be written as T = R ||k S

= {m|m = m1|km2,m1 ∈ R, m2 ∈S}.

Example:

R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4), (3, 3))}

S = {(1, (7, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))}

T = R ||2 S = {(1, (1, 22), (16, 13), (12, 11))}

Overlap Operator (Φ, φ)

Φ : Set × Set → Set, and

φ : match × match → match)

The overlap operator is in a certain sense a generalization of the exact intersection op-

erator, i.e., a weaker denition of intersection over a set of Matches. It returns a match

position in Match-1 (the rst match input), if the corresponding string contains (is a su-

perset of) the string that corresponds to a match position in Match-2. The purpose of this

operator, in the algebra, is to express queries for proteins containing a fragment that, in its

entirety, has a certain primary (or secondary) structure while only a part of it has a certain

secondary (or primary) structure. Let:

m1 = (pid1, (a1, a2, a3, . . . , ak), f, s) be a match, and

m2 = (pid2, (b1, b2, b3, . . . , bl), g, t) be another match.

m1φm2 is dened only when pid1 = pid2 and is equal to (pid1, (c1, c2, c3, . . . , cn), h),

where ci = aj , and for some bl, aj ≤ bl and aj + f(j) ≥ bl + g(l)

Symbolically, if R and S are sets, then the result of this operation, T can be written as:

20

T = RΦS = {m|m1 ∈ R,m2 ∈ S,m = m1φm2}

Example:

R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4), (3, 3))}

S = {(1, (5, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))}

T = R Φ S = {(1, (8), (10), (8))}

Non-overlap Operators (Ψ, ψ)

Ψ : Set < matches > ×Set < matches >→ Set < matches >, and

ψ : match × match → match)

The non overlap operator is in some sense a generalization of the difference operator.

Over matches, the operation produces a match from its left operand if a match element

from the right operand does not overlap with it completely. Over sets of matches, the op-

erator basically does the non overlap checking with every pair of matches. The purpose

of this operator, in the algebra, is to express queries for proteins containing a fragment

that, in its entirety, has a certain primary (or secondary) structure while no part of it has a

certain secondary (or primary) structure. Let:

m1 = (pid1, (a1, a2, a3, . . . ak), f) be a match, and

m2 = (pid2, (b1, b2, b3, . . . , bl), g) be another match.

m1ψm2 is dened only when pid1 = pid2 and is equal to (pid1, (c1, c2, c3, . . . , cn), h),

where ci = aj , and for no bl, aj ≤ bl and aj + f(j) ≥ bl + g(l)

If R and S are sets, then the result of this operation, T can be written as: T = RΨS =

{m|m1 ∈ R,m2 ∈ S,m = m1ψm2}

21

Example:

R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4), (3, 3))}

S = {(1, (5, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))}

T = RΨS = {(1, (1, 22), (4, 6), (4, 5)), (2, (3, 7), (3, 4), (3, 3))}

2.4 Expressive Power of PiQA

2.4.1 Sample Queries

In this section, we demonstrate the expressive power of PiQA using several different

examples.

1. Find all proteins that contain the primary structure sequence “QISDSIE” with the

secondary structure of “DSI” being <H 3 3> or <L 3 3>.

(P.p * “QIS”) || ((P.p * “DSI”) Φ ((P.s * <H 3 3>) ∪ (P.s * <L 3 3>))) || (P.p * “E”)

2. Find all proteins that contain the secondary structure <E 1 5><L 2 2><E 3 9> and

a primary structure sequence “SSDGTQ” nowhere within it.

(P.s * <E 1 5><L 2 2><E 3 9>) Ψ (P.p * “SSDGTQ”)

3. Find all proteins that contain the primary structure sequence “SPPNKD” with the

condition that the secondary structure for “PP” is not <E 2 2>.

(P.p * “S”) || ((P.p * “PP”) - (P.s * <E 2 2>)) || (P.p * “NKD”)

4. Find all proteins that have the secondary structure <H 3 6> or <E 4 5> and the

primary structure “NKN” contained in it.

((P.s * <H 3 6>) ∪ (P.s * <E 4 5>)) Φ (P.p * “NKN”)

5. Match “AAANBPPPPSDF” with the database, but ignore mismatch in the segment

NBPPP if it is on a loop.

22

(P.p * “AAA”) || ((P.p * “NBPPP”) ∪ (P.s * <L 5 5>)) || (P.p * “PSDF”)

6. 6. Match a protein with secondary structure <L 20 40><E 10 30> that has the

fragment “AAPQS” in the loop segment.

((P.s * <L 20 40>) Φ (P.p * “AAPQS”)) || (P.s * <E 10 30>)

2.4.2 Expressing BLAST

As mentioned in Section 2.2, BLAST is a family of similarity searching tools. One

of the tools called blastp is used for similarity searching amongst protein datasets. The

BLAST idea was trivially expressed in Section 2.3. We can express the BLAST algorithm

at a ner detail. We will express a blastp query for “QAANVP” in PiQA as a demonstra-

tion.

To express this query, we need the following notation: ∆k is used to denote the set of

all possible protein strings of length k.

If we are considering proteins from only the basic 20 amino acids, then the size of ∆k

would be 20k. The rst step of BLAST, in which we prune out all the k-mers below a

certain threshold, can be expressed as follows:

(1) A = {QAA, AAN, ANV, NVP} *BLOSUM62,Threshold=T ∆3

The second step of BLAST, in which the database is searched to nd hits that match

with any of the k-mers from the previous step is:

(2) B = A *Exact P.p

The third step of BLAST involves extending the hits to form HSPs. The rst version of

BLAST extends the hits residue by residue on both sides. In the second version, a two-hit

method is used which extends hits only when two of the hits are within a certain distance.

There are several variations on the heuristic for this step. We express this step as:

(3) C = R ||Maxdist R ||Maxdist R ||Maxdist R ...

23

We could incorporate a transitive closure for this operator in the algebra so that all

possible ways of extending the hits are captured in the algebra. BLAST stops extending

the hits when the score of the extended hit drops below a certain value of the maximum

it had reached since the start of the process of extending. A simple ltering operation can

be dened to select out only those matches with a minimum score from C. When writing

this programmatically, a while loop structure can be used to stop the hit-extension process

precisely when it is desired. This is much like the use of while in SQL even though it is

not part of the relational algebra.

2.5 Query Evaluation

A typical query of the protein dataset consists of one or more search predicates con-

nected by operators dened in the algebra. The rst step in the evaluation of such a query

is to generate all possible query plans that can be used to evaluate the query correctly.

These plans differ essentially in the order in which the algebraic operations are performed.

Costs are computed for each query plan and the cheapest plan is selected for evaluation.

2.5.1 Cost Model

The cost of a query plan is essentially the sum-total of costs of all the operations per-

formed in it. We observe the asymptotic complexities of the cost functions of the various

algebraic operators to be as follows.

1. Cost of a Match Operation (*) The cost of a match operation of the form (P ∗ ps) de-

pends on the exact algorithm used to nd the matches. We expect that the parameters

involved would be:

(a) |P |, the size of the protein database P in bytes,

(b) Sps, the selectivity of the search sequence ps, and

24

(c) Other parameters used by the specic algorithm used to perform the matching.

2. Cost of Set (Union, Intersection or Difference) Operations (∪, ∩, −)

The cost of an exact union operation (A∪B), an exact intersection operation (A∩B)

or and exact difference operation (A − B), where A and B are two sets of matches,

is a function of the sizes of the two sets, |A| and |B|. If the two sets are sorted, the

cost of the operation is of the order O(max(|A|, |B|)).

3. Cost of an Overlap or Non Overlap Operation Operations (Φ,Ψ)

The cost of an approximate intersection operation (AΦB) or an approximate differ-

ence operation (AΨB), where A and B are two sets of matchings, is a function of

the lengths of the two sets, |A| and |B|. The cost of the operation is of the order

O(|A| × |B|).

4. Cost of a Match Extension Operation (||)

The cost of a match extension operation (A||B) where A and B are two sets of

matchings, is also of the order O(max(|A|, |B|)).

2.5.2 Generation of Query Plans

A query of the protein dataset can have multiple plans that direct its evaluation. The

one selected is that which minimizes the overall cost incurred. Each query plan generated

is a tree in which the resulting set of proteins of one search predicate becomes the base

dataset for all the other search predicates in the query. We illustrate the generation of query

plans with an example:

EQ: Match the primary structure sequence AAANBPPPPSDF with the database, but

ignore a mismatch in the segment NBPPP if it is on a loop.

In our algebra, this query is expressed as:

25

(P.p * AAA) || ((P.p * NBPPP) ∪ (P.s * <L 5 5>)) || (P.p * PSDF)

Since the match extension operator (||) is associative and distributive over the union

operator (∪), we can evaluate the predicates in the following different orders:

1. (P.p * AAA) || ((P.p * NBPPP) ∪ (P.s * <L 5 5>)) || (P.p * PSDF)

2. ((P.p * AAA) || (P.p * NBPPP) || (P.p * PSDF)) ∪ ((P.p * AAA) || (P.s * <L 5 5>) ||

(P.p * PSDF))

3. ((P.p * AAA) || (P.p * NBPPP)) ∪ ((P.p * AAA) || (P.s * <L 5 5>)) || (P.p * PSDF)

4. ((P.p * AAA) || ((P.p * NBPPP) || (P.p * PSDF)) ∪ ((P.s * <L 5 5>) || (P.p * PSDF))

Observe that in executing each of the plans listed above, we would need to perform

three match operations. Also notice that all the strings that are in the result of the ex-

pression are likely to be in the result of each of the match operations. We may be able

to optimize this query by picking one of the three match operations, and using the list of

all proteins that it outputs to constitute the set of strings over which the other matches are

done, instead of performing the matches over the entire dataset P. This set of strings is

likely to be much smaller than the full dataset P, which may lead to a more efcient query

plan. However, the cost we incur is that we may miss out good matches that might have

been found by the other match operators, but would not have matched with the rst oper-

ator. We can quantify this tradeoff and let the optimizer decide how many of the match

operations should be done from the base dataset and how many from the output set of

strings of other match operators.

Consider that we have three match sub-queries as in the above example. We dene the

selectivity of a sub-query as the ratio of the number of strings in the output to the number

of strings in the base dataset. We dene the importance of a sub-query as a measure of

its importance relative to the entire query. If there is only one match operation, then its

26

importance is unity. The importance is a measure of how much of an impact a match on

the sub-query fragment will contribute to the overall match score. A simple metric for this

is the ratio of the length of the sub-query to the length of the full query. To illustrate this

point, consider the following example: (P.p * PNB) || (P.p * AAATTTAAA)

Let p1 and p2 denote the two sub-queries “PNB” and “AAATTTAAA”. For the purpose

of this example, let the entire protein database be the following set of proteins, each row

the form (id, primary structure):

(1, AAATTTAAAAAUPNBPSTTT)

(2, PSSSQRRTTSTRRAAAUWVV)

(3, UIPPSTTTGGGAAATTTAAAR)

(4, QQQPPLSSTTRRWRNNNBBB)

(5, AAATTTAAAVVVWUIPLAAR)

(6, WQQQRRWSSTWWWCCFFFA)

(7, PPPPPNNNNNNPPPNBSTRRQ)

(8, TTTAAATTTAAARASTTTWW)

(9, VVVWWWAAABBBSSSQQQT)

(10, PPPQQSSSRRRAAATTTAAA)

Here we see that the selectivity of sub-query p1 is 0.2 while that of p2 is 0.5. We want

to use more selective (one with least selectivity) sub-queries so that the size of the new

dataset is smaller. If we just tried to use p1, and use its outputs then we would miss out

on matches like strings 3, 5, 8, and 10. We also need to consider the importance of the

sub-query. Clearly, p1 is less important than p2. The optimizer can use some preferences

from the user about how much optimization at what cost to quality should be done by

specifying selectivity and importance levels for which the output of one match operation

27

may be used for the input of another.

Figure 2.2: Query Plan for EQ

We present one possible query plan that could be generated for query EQ in Figure 2.2

We introduce a ltering operation π, which extracts the IDs from a set of matches obtained

from the result of a match operation. This operator is used to construct an alternative and

likely more optimal query plan for this same query is shown in Figure 2.3. The fragment

“AAA” is rst matched, and the results of that query are further probed with the remaining

match operators leading to a potentially large savings in computational effort.

2.6 Conclusions

In this chapter we have presented PiQA, an algebra for expressing queries on both the

primary and secondary structures of proteins. The algebra provides a rich set of operators

that permits approximate matching, combination of two or more matches, and various

28

Figure 2.3: More Efcient Query Plan for EQ

set operations on the matches. The algebra provides a unied approach to querying on

both primary and secondary structures of proteins, and also be used to optimize complex

queries.

PiQA is the rst step in developing a declarative querying interface on all protein struc-

tures. In the following chapters, we describe actual system that we built using the basic

algebraic framework provided by PiQA.

We note that although this chapter concentrates on the protein structures, the alge-

bra can also be applied to querying on nucleotide sequence data sets, which are similar

in nature (from the querying perspective) to the protein primary sequences. In fact we

demonstrate several examples using DNA sequences in the following chapters.

CHAPTER III

Suffix Tree Construction

3.1 Introduction

Querying large string datasets is becoming increasingly important in a number of life-

science and text applications. Life science researchers are often interested in explorative

querying of large biological sequence databases, such as genomes and large sets of pro-

tein sequences. Many of these biological datasets are growing at exponential rates — for

example, the sizes of the sequence datasets in GenBank have been doubling every six-

teen months [146]. Consequently, methods for efficiently querying large string datasets

are critical to the success of these emerging database applications.

A sufx tree is a versatile data structure that can help execute such queries efciently. In

fact, sufx trees are useful for evaluating a wide variety of queries on string databases [64].

For instance, the exact substring matching problem can be solved in time proportional to

the length of the query, once the sufx tree is built on the database string. Sufx trees can

also be used to solve approximate string matching problems efciently. Some bioinfor-

matics applications such as MUMmer [40,41,90], REPuter [92], and OASIS [105] exploit

sufx trees to efciently evaluate queries on biological sequence datasets. However, sufx

trees are not widely used because of their high cost of construction. As we show in this

chapter, building a sufx tree on moderately sized datasets, such as a single chromosome

29

30

of the human genome, takes over 1.5 hours with the best known existing disk-based con-

struction technique [73]. In contrast, the techniques that we develop in this chapter reduce

the construction time by a factor of ve on inputs of the same size.

Even though sufx trees are currently not in widespread use, there is a rich history of

algorithms for constructing sufx trees. A large focus of previous research has been on

linear-time sufx tree construction algorithms [103, 156, 166]. These algorithms are well

suited for small input strings where the tree can be constructed entirely in main memory.

The growing size of input datasets, however, requires that we construct sufx trees ef-

ciently on disk. The algorithms proposed in [103, 156, 166] cannot be used for disk-based

construction as they have poor locality of reference. This poor locality causes a large

amount of random disk I/O once the data structures no longer t in main memory. If we

naively use these main-memory algorithms for on-disk sufx tree construction, the process

may take well over a day for a single human chromosome.

The large and rapidly growing size of many string datasets underscores the need for

fast disk-based sufx tree construction algorithms. Theoretical methods for optimal exter-

nal memory sufx tree construction have also been developed [54], however, the practical

behavior of these algorithms has not been explored. A number of recent research inves-

tigations have also examined practical sufx tree construction techniques for large data

sets [16, 73]. However, these approaches do not scale well for large datasets (such as an

entire eukaryotic genome).

In this chapter, we present new approaches for efficiently constructing large sufx trees

on disk. We use a philosophy similar to the one in [73]. We forgo the use of sufx links

in return for a much better memory reference pattern, which translates to better scalability

and performance for constructing large sufx trees.

The main contributions in this chapter are as follows:

31

1. We introduce the “Top Down Disk-based” (TDD) approach which can be used to ef-

ciently build sufx trees for a wide range of sizes and input types. This technique in-

cludes a sufx tree construction algorithm called PWOTD, and a sophisticated buffer

management strategy.

2. We compare the performance of TDD with Ukkonen [156], McCreight [103], and

a sufx array based technique: Deep-Shallow [101] for the in-memory case, where

all the data structures needed for building the sufx trees are memory resident (i.e.

the datasets are “small”). Interestingly, we show that even though Ukkonen and

McCreight have a better worst-case theoretical cost on a random access machine,

TDD and Deep-Shallow perform better on modern cached processors because they

incur fewer cache misses.

3. We systematically explore the space of data sizes and types, and highlight the advan-

tages and disadvantages of TDD with respect to other construction algorithms.

4. We experimentally demonstrate that TDD scales gracefully with increasing input

size. With extensive experimental evaluation, we show that TDD outperforms ex-

isting disk-based construction methods. Using the TDD process, we are able to con-

struct a sufx tree on the entire human genome in thirty hours on a single processor

machine! To the best of our knowledge, sufx tree construction on an input string of

this size (approximately three billion symbols) has yet to be reported in literature.

5. We describe a new algorithm called ST-Merge that is based on a partition and merge

strategy. We experimentally show that ST-Merge algorithm is more efcient than

TDD when the input string size is signicantly larger than the available memory.

However, for most current biological sequence datasets on modern machines with

large memory conguration, TDD is the algorithm of choice.

32

The remainder of this chapter is organized as follows: Section 3.2 discusses related

work. The TDD technique is described in Section 3.3, and we analyze the behavior of this

algorithm in Section 3.4. The ST-Merge algorithm is presented in Section 3.5. Section 3.6

describes the experimental results, and Section 3.7 presents our conclusions.

3.2 Related Work

Linear time algorithms for constructing sufx trees have been described by Weiner

[166], McCreight [103], and Ukkonen [156]. (For a discussion on the relationship among

these algorithms, see [59].) Ukkonen’s is a popular algorithm because it is easier to im-

plement than the other algorithms. It is an O(n), in-memory construction algorithm based

on the clever observation that constructing the sufx tree can be performed by iteratively

expanding the leaves of a partially constructed sufx tree. Through the use of suffix links,

which provide a mechanism for quickly traversing across subtrees, the sufx tree can be

expanded by simply adding the i + 1st character to the leaves of the sufx tree built on

the previous i characters. The algorithm thus relies on sufx links to traverse through all

of the subtrees in the main tree, expanding the outer edges for each input character. Mc-

Creight’s algorithm is a space-economical linear time sufx tree construction algorithm.

This algorithm starts from an empty tree and inserts sufxes into the partial tree from the

longest to the shortest sufx. Like Ukknonen’s algorithm, McCreight’s algorithm also

utilizes sufx links to traverse from one part of the tree to another. Both are linear time

algorithms, but they have poor locality of reference. This leads to poor performance on

cached architectures and on disk.

Variants of sufx trees have been considered for disk-based construction [71]. Recently,

Bedathur and Haritsa developed a buffering strategy, called TOP-Q, which improves the

performance of Ukkonen’s algorithm (which uses sufx links) when constructing on-disk

33

sufx trees [16]. A different approach was suggested by Hunt et al. [73] where the authors

drop the use of sufx links and use an O(n2) algorithm with a better locality of memory

reference. In one pass over the string, they index all sufxes with the same prex by in-

serting them into an on-disk subtree managed by PJama [12], a Java-based object store.

Construction of each independent subtree requires a full pass over the string. The main

drawback of Hunt’s algorithm is that the tree traversal incurs a large number of random

accesses during the construction process. A partition and clustering based approach is de-

scribed by Schürmann and Stoye in [131] which is an improvement over Hunt et al. This

approach uses clustering to better organize disk accesses. A partitioning-based approach

was suggested by Clifford and Sergot in [33] to build distributed and paged sufx trees.

However, this is an in-memory technique. Cheung et al. [31] have recently proposed an

algorithm called DynaCluster. This algorithm employs a dynamic clustering technique to

reduce the random accesses that are incurred during the tree traversal. Every cluster con-

tains tree nodes that are frequently referenced by each other. In this chapter, we compare

our sufx tree construction methods with TOP-Q [16], Hunt’s [73] method and Dyna-

Cluster [31], and show that in practice our methods for constructing sufx trees are more

efcient.

A top-down sufx tree construction approach has been suggested in [8]. In [60],

Giegerich, Kurtz, and Stoye explore the benets of using a lazy implementation of sufx

trees. In this approach, the authors argue that one can avoid paying the full construction

cost by constructing the subtree only when it is accessed for the rst time. This approach

is useful either when a small number of queries are posed or only short queries are posed

against a string dataset. When executing a large number of (longer) queries, most of the

tree must be materialized, and in this case, this approach will perform poorly.

Previous research has also produced theoretical results on understanding the average

34

sizes of sufx trees [18, 142], and theoretical complexity of using sorting to build sufx

trees. In [53], Farach describes a linear time algorithm by constructing odd and even sufx

trees, and merging them. In [54], the authors show that this algorithm has the same I/O

complexity as sorting on the DAM model described by Vitter and Shriver [160]. However,

they do not differentiate between random and sequential I/O. In contrast, our approach

makes careful choices in order to reduce random I/O, and incurs mostly sequential I/O.

Sufx arrays are closely related to sufx trees, and can be used as an alternative to sufx

trees for many string matching tasks [1,30,34,108]. A sufx tree can also be constructed by

rst building a sufx array. With the help of an additional LCP (Longest Common Prex)

array, a sufx array can be converted into a sufx tree in O(n) time. Theoretical linear time

sufx array construction algorithms have been proposed in [84,87,88]. There has also been

considerable interest in practical sufx array construction algorithms. The Deep-Shallow

algorithm proposed in [101] is a space efcient internal memory sufx array construction

algorithm. Although its worst case cost is Θ(n2 log n), it is arguably the fastest in-memory

method in practice. In [84, 85, 100], algorithms for constructing LCP arrays in linear time

are proposed.

The long interest of the algorithmic community in optimal external memory sufx array

construction algorithms has led to the external DC3 algorithm recently proposed by De-

mentiev et al. [42]. This external construction method is based on the Skew algorithm [84].

The Skew algorithm is a theoretically optimal sufx array construction algorithm, and uses

a merge-based approach. This method recursively reduces the sufx array construction

using a two thirds to one thirds split of the sufx array. Each recursive call rst sorts the

larger array, and the smaller array is sorted using the ordering information in the larger ar-

ray. The arrays are merged to produce the nal array. The external DC3 algorithm extends

the in-memory Skew algorithm with the help of the STXXL library [140]. The STXXL

35

library is a C++ template library that enables containers and algorithms to process large

amounts of data that don’t t in main memory. It also improves performance by support-

ing multiple disks and overlapping I/O with CPU computation (see [140] for details). The

external DC3 algorithm [42] is theoretically optimal and superior to the previous external

sufx array construction methods in practice. We draw some comparisons between our

methods and the external DC3 algorithm in Section 3.6.5, and show that in practice TDD

is faster than the external DC3 algorithm.

TDD uses a simple partitioning strategy. However, a more sophisticated partitioning

method was recently proposed by Carvalho et al. [25], which can complement our existing

partitioning method.

3.3 The TDD Technique

Most sufx tree construction algorithms do not scale due to the prohibitive disk I/O

requirements. The high per-character space overhead of a sufx tree quickly causes the

data structures to outgrow main memory, and the poor locality of reference makes efcient

buffer management difcult.

We now present a new disk-based construction technique called the “Top-Down Disk-

based” technique, hereafter referred to simply as TDD. TDD scales much more gracefully

than existing techniques by reducing the main-memory requirements through strategic

buffering of the largest data structures. The TDD technique consists of a sufx tree con-

struction algorithm, called PWOTD, and the related buffer management strategy described

in the following sections.

3.3.1 PWOTD Algorithm

The rst component of the TDD technique is our sufx tree construction algorithm,

called PWOTD (Partition and Write Only Top Down). This algorithm is based on the

36

wotdeager algorithm suggested by Giegerich et al. [60]. We improve on this algorithm

by using a partitioning phase which allows one to immediately build larger, independent

subtrees in memory. (A similar partitioning strategy was proposed in [131].) Before we

explain the details of our algorithm, we briey discuss the representation of the sufx tree.

The sufx tree is represented by a linear array, just as in wotdeager. This is a compact

representation using 8.5 bytes per indexed symbol in the average case with 4 byte integers.

Figure 3.1 illustrates a sufx tree on the string ATTAGTACA$ and the tree’s corresponding

array representation in memory. Shaded entries in the array represent leaf nodes, with all

other entries representing non-leaf nodes. An R in the lower right-hand corner of an entry

denotes a rightmost child. Note that leaf nodes are represented using a single integer, while

non-leaf nodes use two integers. (The two entries of a non-leaf node are separated by a

dashed line in the gure.) The rst entry in a non-leaf node is an index into the input string;

the character at that index is the starting character of the incoming edge’s label. The length

of the label can be deduced by examining the children of the current node. The second

entry in a non-leaf node points to the rst child. For example, in Figure 3.1, the non-leaf

node represented by the entries indexed by 0 and 1 in the tree array has four leaf children

located at entries 12, 13, 14 and 15, respectively. The parent’s sufx starts at index 0 in the

string, whereas the children’s sufxes begins with the indexes 1, 7, 4 and 9, respectively.

Therefore, we know the length of the parent’s edge label is min{1, 7, 4, 9} − 0 = 1. Note

that the leaf nodes do not have a second entry. The leaf node requires only the starting

index of the label; the end of the label is the string’s terminating character. See [60] for a

more detailed explanation.

The PWOTD algorithm consists of two phases. In the rst phase, we partition the

sufxes of the input string into |A|prefixlen partitions, where |A| is the alphabet size of

the string and prefixlen is the depth of the partitioning. The partitioning step is executed

37

as follows. The input string is scanned from left to right. At each index position i, the

prefixlen subsequent characters are used to determine one of the |A|prefixlen partitions.

This index i is then written to the calculated partition’s buffer. At the end of the scan, each

partition will contain the sufx pointers for sufxes that all have the same prex of size

prefixlen. Note that the number of partitions (|A|prefixlen) is much smaller than the length

of the string.

To further illustrate the partition step, consider the following example. Partitioning the

string ATTAGTACA$ using a prefixlen of 1 would create four partitions of sufxes, one

for each symbol in the alphabet. (We ignore the nal partition consisting of just the string

terminator symbol $.) The sufx partition for the character A would be {0,3,6,8}, rep-

resenting the sufxes {ATTAGTACA$, AGTACA$, ACA$, A$}. The sufx partition for

the character T would be {1,2,5} representing the sufxes {TTAGTACA$, TAGTACA$,

TACA$}. In phase two, we use the wotdeager algorithm to build the sufx tree on each

partition using a top down construction.

The pseudo-code for the PWOTD algorithm is shown in Figure 3.2. While the partition-

ing in phase one of PWOTD is simple enough, the algorithm for wotdeager in phase two

warrants further discussion. We now illustrate the wotdeager algorithm using an example.

Example Illustrating the wotdeager Algorithm

The PWOTD algorithm requires four data structures for constructing sufx trees: an in-

put string array, a sufx array, a temporary array, and the sufx tree. For the discussion that

follows, we name each of these structures String, Suffixes, Temp, and Tree, respectively.

The Sufxes array is rst populated with sufxes from a partition after discarding the

rst prefixlen characters. Using the same example string as before, ATTAGTACA$ with

prefixlen=1, consider the construction of the Sufxes array for the T-partition. The sufxes

38

in this partition are at positions 1, 2, and 5. Since all these sufxes share the same prex, T,

we add one to each offset to produce the new Sufx array {2,3,6}. The next step involves

sorting this array of sufxes based on the rst character. The rst characters of each sufx

are {T, A, A}. The sorting is done in linear time using an algorithm called count-sort (for

a constant alphabet size). In a single pass, for each character in the alphabet, we count the

number of occurrences of that character as the rst character of each sufx, and copy the

sufx pointers into the Temp array. We see that the count for A is 2 and the count for T

is 1; the counts for G, C, and $ are 0. We can use these counts to determine the character

group boundaries: group A will start at position 0 with two entries, and group T will start

at position 2 with one entry. We make a single pass through the Temp array and produce

the Sufxes array sorted on the rst character. The Sufxes array is now {3, 6, 2}. The A-

group has two members and is therefore a branching node. These two sufxes completely

determine the subtree below this node. Space is reserved in the Tree to write this non-leaf

node once it is expanded, then the node is pushed onto the stack. Since the T-group has

only one member, it is a leaf node and will be immediately written to the Tree. Since no

other children need to be processed, no additional entries are added to the stack, and this

node will be popped off rst.

Once the node is popped off the stack, we nd the longest common prex (LCP) of all

the nodes in the group {3, 6}. We examine position 4 (G) and position 7 (C) to determine

that the LCP is 1. Each sufx pointer is incremented by the LCP, and the result is processed

as before. The computation proceeds until all nodes have been expanded and the stack is

empty. Figure 3.1 shows the complete sufx tree and its array representation.

39

Discussion of the PWOTD Algorithm

Observe that phase 2 of PWOTD operates on subsets of the sufxes of the string. In

wotdeager, for a string of n symbols, the size of the Sufxes array and the Temp array

needed to be 4 × n bytes (assuming 4 byte integers are used as pointers). By partitioning

in phase 1, the amount of memory needed by the sufx arrays in each run is just (4 ×

n)/(|A|prefixlen) on average. (Some partitions might be smaller and some larger than this

gure due to skew in real world data. Sophisticated partitioning techniques can be used

to balance the partition sizes [25].) The important point is that partitioning decreases the

main-memory requirements for sufx tree construction, allowing independent subtrees to

be built entirely in main memory. Suppose we are partitioning a 100 million symbol string

over an alphabet of size 4. Using a prefixlen = 2 will decrease the space requirement of

the Sufxes and Temp arrays from 400 MB to approximately 25 MB each, and the Tree

array from 1200 MB to 75 MB. Unfortunately, this savings is not entirely free. The cost of

the partitioning phase is O(n × prefixlen), which increases linearly with prefixlen. For

small input strings where we have sufcient main memory for all the structures, we can

skip the partitioning phase entirely. It is not necessary to continue partitioning once the

Sufxes and Temp arrays t into memory. For even very large datasets, such as the human

genome, partitioning with prefixlen more than 7 is not benecial.

3.3.2 Buffer Management

Since sufx trees are an order of magnitude larger in size than the input data strings,

sufx tree construction algorithms require large amounts of memory, and may exceed the

amount of main memory that is available. For such large datasets, efcient disk-based

construction methods are needed that can scale well for large input sizes. One strength

of TDD is that its data structures transition gracefully to disk as necessary, and individ-

40

ual buffer management polices for each structure are used. As a result, TDD can scale

gracefully to handle large input sizes.

Recall that the PWOTD algorithm requires four data structures for constructing sufx

trees: String, Suffixes, Temp, and Tree. Figure 3.3 shows each of these structures as sepa-

rate, in-memory buffer caches. By appropriately allocating memory and by using the right

buffer replacement policy for each structure, the TDD approach is able to build sufx trees

on extremely large inputs. The buffer management policies are summarized in Figure 3.3

and are discussed in detail below.

The largest data structure is the Tree buffer. This array stores the sufx tree during

its intermediate stages as well as the nal computed result. The Tree data structure is

typically 8-12 times the size of the input string. The reference pattern to Tree consists

mainly of sequential writes when the children of a node are being recorded. Occasionally,

pages are revisited when an unexpanded node is popped off the stack. This access pattern

displays very good temporal and spatial locality. Clearly, the majority of this structure

can be placed on disk and managed efciently with a simple LRU (Least Recently Used)

replacement policy.

The next largest data structures are the Sufxes and the Temp arrays. The Sufxes

array is accessed as follows: rst a sequential scan is used to copy the values into the

Temp array. The count phase of the count sort is piggybacked on this sequential scan. The

sort operation following the scan causes writes back into the Sufxes array. However, there

is some locality in the pattern of writes in the Sufxes array, since the writes start at each

character-group boundary and proceed sequentially to the right. Based on the (limited)

locality of reference, one expects LRU to perform reasonably well. The Temp array is

referenced in two sequential scans: the rst to copy all of the sufxes in the Sufxes array,

and the second to copy all of them back into the Sufxes array in sorted order. For this

41

reference pattern, replacing the most recently used page (MRU) works best.

The String array has the smallest main-memory requirement of all the data structures,

but the worst locality of access. The String array is referenced when performing the count-

sort and to nd the longest common prex in each sorted group. During the count-sort all

of the portions of the string referenced by the sufx pointers are accessed. Though these

positions could be anywhere in the string, they are always accessed in left to right order.

In the function to nd the longest common prex of a group, a similar pattern of reference

is observed. In the case of this nd-LCP function, each iteration will access the characters

in the string, one symbol to the right of those previously referenced. In the case of the

count-sort operation, the next set of sufxes to be sorted will be a subset of the current set.

This is a fairly complex reference pattern, and there is some locality of reference, so we

expect LRU and RANDOM to do well. Based on evidence in Section 3.6.4, we see that

both are reasonable choices.

3.3.3 Buffer Size Determination

To obtain the maximum benet from buffer management policy, it is important to divide

the available memory amongst the data structures appropriately. A careful apportioning of

the available memory between these data structures can affect the overall execution time

dramatically. In the rest of this section, we describe a technique to divide the available

memory among the buffers.

If we know the access pattern for each of the data structures, we can devise an algorithm

to partition the memory to minimize the overall number of buffer cache misses. Note that

we need only an access pattern on a string representative of each class, such as DNA

sequences, protein sequences, etc. In fact, we have found experimentally that these access

patterns are similar across a wide-range of datasets (we discuss these results in detail in

Section 3.6.4.) An illustrative graph of the buffer cache miss pattern for each data structure

42

is shown in Figure 3.4. In this gure, the X-axis represents the number of pages allocated

to the buffer as a percentage of the total size of the data structure. The Y-axis shows the

number of cache misses. This gure is representative of biological sequences, and it is

based on data derived from actual experiments in Section 3.6.4.

As we will see at the end of section 3.3.3, our buffer allocation strategy needs to es-

timate only the relative magnitudes of the slopes of each curve and the position of the

“knee” towards the start of the curve. The full curve as shown in Figure 3.4 is not needed

for the algorithm. However, it is useful to facilitate the following discussion.

TDD Heuristic for Allocating Buffers

We know from Figure 3.4 that the cache miss behavior for each buffer is approximately

linear once the memory is allocated beyond a minimum point. Once we identify these

points, we can allocate the minimum buffer size necessary for each structure. The remain-

ing memory is then allocated in order of decreasing slopes of the buffer miss curves.

We know from arguments in Section 3.3.2 that references to the String have poor local-

ity. One can infer that the String data structure is likely to require the most buffer space.

We also know that the references to the Tree array have very good locality, so the buffer

space it needs is likely to be a very small fraction of its full size. Between Sufxes and

Temp, we know that the Temp array has more locality than the Sufxes array, and will

therefore require less memory. Both Sufxes and Temp require a smaller fraction of their

pages to be resident in the buffer cache when compared to the String. We exploit this

behavior to design a heuristic for memory allotment.

We suggest setting the minimum number of pages allocated to the Temp and Sufxes

arrays to |A|. During the sort phase, we know that the Sufxes array will be accessed at |A|

different positions which correspond to the character group boundaries. The incremental

43

benet of adding a page will be very high until |A| pages, and then one can expect to see

a change in the slope at this point. By allocating at least |A| pages, we avoid the penalty

of operating in the initial high miss-rate region. The TDD heuristic chooses to allocate a

minimum of |A| pages to Sufxes and Temp rst.

We suggest allocating two pages to the Tree array. Two pages allow a parent node,

possibly written to a previous page and then pushed onto the stack for later processing, to

be accessed without replacing the current active page. This saves a large amount of I/O

over choosing a buffer size of only one page.

The remaining pages are allocated to the String array up to its maximum required

amount. If any pages are left over, they are allocated to Sufxes up to its maximum

requirement. The remaining pages (if any) are allocated to Temp, and nally to Tree.

The reasoning behind this heuristic is borne out by the graphs in Figure 3.4. The String,

which has the least locality of reference, has the highest slope and the largest magnitude.

Sufxes and Temp have a lower magnitude and a more gradual slope, indicating that the

improvement with each additional page allocated is smaller. Finally, the Tree, which has

excellent locality of reference, is nearly zero. All curves have a knee which we estimate

by choosing minimum allocations.

An Example Allocation

The following example demonstrates how to allocate the main memory to the buffer

caches. Assume that your system has 100 buffer pages available for use and that you

are building a sufx tree on a small string that requires 6 pages. Further assume that the

alphabet size is 4 and that 4 byte integers are used. Assuming that no partitioning is done,

the Sufxes array will need 24 pages (one integer for each character in the String), the

Temp array will need 24 pages, and the Tree will need at most 72 pages. First we allocate

44

4 pages each to Sufxes and Temp. We allocate 2 pages to Tree. We are now left with 90

pages. Of these, we allocate 6 pages to the String, thereby tting it entirely in memory.

From the remaining 84 pages, Sufxes and Temp are allocated 20 and t into memory, and

the nal 44 pages are all given to Tree. This allocation is shown pictorially in the rst row

of Figure 3.5.

Similarly, the second row in Figure 3.5 is an allocation for a medium sized input of 50

pages. The heuristic allocates 2 pages to the Tree, 4 to the Temp array, 44 to Sufxes, and

50 to the String. The third allocation corresponds to a large string of 120 pages. Here,

Sufxes, Temp, and Tree are allocated their minimums of 4, 4, and 2 respectively, and the

rest of the memory (90 pages) is given to String. Note that the entire string does not t in

memory now, and portions will be swapped into memory from disk when they are needed.

Observe from Figure 3.5 that when the input is small and all the structures t into

memory, most of the space is occupied by the largest data structure: the Tree. As the input

size increases, the Tree is pushed out to disk. For very large strings that do not t into

memory, everything but the String is pushed out to disk, and the String is given nearly all

of the memory. By rst pushing the structures with better locality of reference onto disk,

TDD is able to scale gracefully to very large input sizes.

Note that our heuristic does not need the actual utility curves to calculate the allotments.

It estimates the “knee” of each curve using the algorithm, and assumes that the curve is

linear for the rest of the region.

3.4 Analysis

In this section, we analyze the advantages and the disadvantages of using the TDD

technique for various types and sizes of string data. We also describe how the design

choices we have made in TDD overcome the performance bottlenecks present in other

45

proposed techniques.

3.4.1 I/O Benefits

Unlike the approach of [16] where the authors use the in-memory O(n) algorithm

(Ukkonen) as the basis for their disk-based algorithm, we use the theoretically less ef-

cient O(n2) wotdeager algorithm [60]. A major difference between the two algorithms

is that Ukkonen’s algorithm sequentially accesses the string data and then updates the

sufx tree through random traversals, while our TDD approach accesses the input string

randomly and then writes the tree sequentially. For disk-based construction algorithms,

random access is the performance bottleneck as on each access an entire page will poten-

tially have to be read from disk; therefore, efcient caching of the randomly accessed disk

pages is critical.

On rst appearance, it may seem that we are simply trading some random disk I/O for

other random disk I/O, but the input string is the smallest structure in the construction

algorithm, while the sufx tree is the largest structure. TDD can place the sufx tree

in very small buffer cache as the writes are almost entirely sequential, which leaves the

remaining memory free to buffer the randomly accessed, but much smaller, input string.

Therefore, our algorithm requires a much smaller buffer cache to contain the randomly

accessed data. Conversely, for the same amount of buffer cache, we can cache much more

of the randomly accessed pages, allowing us to construct sufx trees on much larger input

strings.

3.4.2 Main-Memory Analysis

When we build sufx trees on small strings (i.e. when the string and all the data struc-

tures t in memory), no disk I/O is incurred. For the case of in-memory construction,

one would expect that a linear time algorithm such as Ukkonen or McCreight would per-

46

form better than the TDD approach, which has a worst case cost of O(n2). However, one

must consider more than just the theoretical cost to understand the execution time of the

algorithms.

Traditionally, in designing disk-based algorithms, all accesses to main memory are

considered equally good, as the disk I/O is the performance bottleneck. However, for

programs that incur little disk I/O, the performance bottleneck shifts to the main-memory

hierarchy. Modern processors typically employ one or more data caches for improving

access time to memory when there is a lot of spatial and/or temporal locality in the ac-

cess patterns. The processor cache is analogous to a database’s buffer cache, the primary

difference being that the user does not have control over the replacement policy. Read-

ing data from the processor’s data cache is an order of magnitude faster than reading data

from the main memory. Furthermore, as the speed of the processor increases, so does the

main-memory latency (in terms of number of cycles). As a result, the latency of random

memory accesses will only grow with future processors.

Linear time algorithms such as Ukkonen and McCreight require a large number of

random memory accesses due to the linked list traversals through the tree structure. In

Ukkonen, a majority of cache misses occur after traversing a sufx link to a new subtree

and then examining each child of the new parent. The traversal of the sufx link to the

sibling subtree and the subsequent search of the destination node’s children require random

accesses to memory over a large address space. Because this span of memory is too large

to t in the processor cache, each access has a very high probability of incurring the full

main-memory latency. Similarly, McCreight’s algorithm also traverses sufx links during

construction, and incurs many cache misses. Furthermore, the rescanning and scanning

steps used to nd the extended locus of the head of the newly added sufx result in more

random accesses. Using an array-based representation [91], where the pointers to the

47

children are stored in an array with an element for each symbol in the alphabet, can reduce

the number of cache misses. However, this representation uses a lot of space, potentially

leading to higher execution time. In previous work, both McCreight [103] and TOP-Q [16]

argue for the linked list based implementation as being a better choice.

Observe that when using the linked list implementation, as the alphabet size grows, the

number of children for each non-leaf node will increase accordingly. As more children are

examined to nd the right position to insert the next character, the number of cache misses

also increases. Therefore, Ukkonen’s method will incur an increasing number of processor

cache misses with an increase in alphabet size. Similarly, with McCreight’s algorithm, an

increase in alphabet size leads to more cache misses.

For TDD, the alphabet size has the opposite effect. As the branching factor increases,

the working set of the Sufxes and Temp arrays quickly decreases, and can t into the

processor cache sooner. The majority of read misses in the TDD algorithm occur when

calculating the size of each character group (in Line 8 of Figure 3.2). This is because the

beginning character of each sufx must be read, and there is little spatial locality in the

reads. While both algorithms must perform random accesses to main memory, incurring

very expensive cache misses, there are three properties about the TDD algorithm that make

it more suited for in-memory performance: (a) the access pattern is sequential through

memory, (b) each random memory access is independent of the other accesses, and (c)

the accesses are known a priori. A detailed discussion of these properties can be found

in [60]. Because the accesses to the input data string are sequential through the memory

address space, hardware-based data prefetchers may be able to identify opportunities for

prefetching the cache lines [75]. In addition, techniques for overlapping execution with

main-memory latency can easily be incorporated in TDD.

The Deep-Shallow algorithm of [101] is a space efcient in-memory sufx array con-

48

struction technique. It differentiates the cases of sorting sufxes with a short common pre-

x from sorting sufxes with a long common prex. These two cases are called “shallow”

sorting and “deep” sorting respectively. The Bentley-Sedgewick multikey quick sort [17]

is used as the shallow sorter, and a combination of different algorithms are used in the

deep sorter. The memory reference pattern is different in the case of each algorithm, and a

thorough analysis of the reference pattern is very complicated. This complex combination

of different sorting strategies at different stages of sufx array construction turns out to

perform very well in practice.

3.4.3 Effect of Alphabet Size and Data Skew

In this section, we consider the effect of alphabet size and data skew on TDD.

There are two properties of the input string that can affect the execution time of TDD:

the size of the alphabet and the skew in the string. The average case running time for

constructing a sufx tree on a Random Access Machine for uniformly random input strings

is O(n log|A| n), where |A| is the size of the input alphabet and n is the length of the input

string. (A uniformly random string can be thought of as a sequence generated by a source

that emits each symbol in sequence from the alphabet set with equal probabilities, and

the symbol emitted is independent of previous symbols.) The sufx tree has O(log|A| n)

levels [43], and at each level i, the sufxes array is divided into i|A| equal parts (|A| is

the branching factor, and the string is uniformly random.) The count-sort and the nd-

LCP (Line 7 of Figure 3.2) functions are called on each of these levels. The running time

of count-sort is linear. To nd the longest common prex for a set of sufxes from a

uniformly distributed string, the expected number of sufxes compared before a mismatch

is slightly over 1. Therefore, the nd-LCP function would return after just one or two

comparisons most of the time. In some cases, the actual LCP is more than 1 and a scan

of the entire sufxes is required. Therefore, in the case of uniformly random data, the

49

nd-LCP function is expected to run in constant time. At each of the O(log|A|n) levels,

the amount of computation performed is O(n). This gives rise to the overall average

case running time of O(n log|A| n). The same average case cost can be shown to hold for

random strings generated by picking symbols independently from the alphabet with fixed

non-uniform probabilities. [9] shows that the height of trees on such strings is O(log n),

and a linear amount of work is done at each level, leading to an average cost of O(n log n).

The longest common prex of a set of sufxes is actually the label on the incoming

edge for the node that corresponds to this set of sufxes. The average length of all the

LCPs computed while building a tree is equal to the average length of the labels on each

edge ending in a non-leaf node. This average LCP length is dependent on the distribution

of symbols in the data. Real datasets, such as DNA strings, have a skew that is particular

to them. By nature, DNA often consists of large repeating sequences; different symbols

occur with more or less the same frequency but certain patterns occur more frequently than

others. As a result, the average LCP length is higher than that for uniformly distributed

data.

Figure 3.6 shows a histogram for the LCP lengths generated while constructing sufx

trees on the SwissProt protein database [10] and the rst 50 MB of Human DNA from

chromosome 1 [57]. Notice that both sequences have a high probability that the LCP

length will be greater than 1. Even among biological datasets, the differences can be quite

dramatic. From the gure, we observe that the DNA sequence is much more likely to have

LCP lengths greater than 1 compared with the protein sequence (70% versus 50%). It is

important to note that the LCP histograms for the DNA and protein sequences shown in

the gure are not representative of all DNA and protein sequences, but these particular

results do highlight the differences one can expect between input datasets.

For data with a lot of repeating sequences, the nd-LCP function will not be able to

50

complete in a constant amount of time. It will have to scan at least the rst l characters of

all the sufxes in the range, where l is the length of the actual LCP. In this case, the cost

of nd-LCP becomes O(l× r) where l is the length of the actual LCP, and r is the number

of sufxes in the range that the function is examining. As a result, the PWOTD algorithm

will take longer to complete.

TDD performs worse on inputs with many repeats such as DNA. On the other hand,

Ukkonen’s algorithm exploits these repeats by terminating an insert phase when a similar

sufx is already in the tree. With long repeating sequences like DNA, this works in favor

of Ukkonen’s algorithm. Unfortunately, this advantage is not enough to offset the random

reference pattern which still makes it a poor choice for large input strings when using

cached architectures.

The size of the input alphabet also has an important effect. Larger input alphabets are

an advantage for TDD because the running time is O(n log|A| n), where |A| is the size of

the alphabet. A larger input alphabet size implies a larger branching factor for the sufx

tree. This in turn implies that the working size of the Sufxes and Temp arrays shrinks

more rapidly - and could t into the cache entirely at a lower depth. For Ukkonen, a

larger branching factor would imply that on an average, more siblings will have to be

examined while searching for the right place to insert. This leads to a longer running

time for Ukkonen. The same discussion also applies to McCreight’s algorithm. There are

hash-based and array-based approaches that alleviate this problem [91], but at the cost of

consuming much more space for the tree. A larger tree representation naturally implies

that for the in-memory case, we are limited to building trees on smaller strings.

Note that the case where Ukkonen’s and McCreight’s methods will have an advantage

over TDD is for short input strings over a small alphabet size with high skew (repeat

sequences). TDD is a better choice in all other cases. We experimentally demonstrate

51

these effects in Section 3.6.

3.5 The ST-Merge Algorithm

The TDD technique works very well so long as the input string ts into available main

memory. In Section 3.6, we show that if the input string does not t completely in memory,

accesses to the string will incur a large number of random I/O. Consequently, for input

strings that are signicantly larger than the available memory the performance of TDD

will rapidly degrade. In this section, we present a merge-based sufx tree construction

algorithm that is more efcient than TDD when the input data string does not t in main

memory.

The ST-Merge algorithm employs a divide-and-conquer strategy similar to the external

sort-merge algorithm. It is outlined in Figure 3.7 and shown in detail in Figure 3.8. While

the ST-Merge algorithm can have more than one merge phase (as with sort-merge), here

we only present a two-phase algorithm which has a single merge phase. (As with external

sort-merge, in practice, this two-phase method is often sufcient with large main memory

congurations.) At a high-level, the ST-Merge algorithm works as follows: To construct

a sufx tree for a string of size n, the algorithm rst partitions the set of n sufxes into k

disjoint subsets. Then a sufx tree is built on each of these subsets. Next, the intermediate

trees are merged to produce the nal sufx tree.

Note that the partitioning step of ST-Merge can be carried out in any arbitrary way–

in fact, we could randomly assign a sufx to one of k buckets. However, we choose to

partition the sufxes such that a given subset will contain only contiguous sufxes from

the string. As we will discuss in detail in Section 3.5.1, using this partition strategy,

we have a very high locality of access to the string when constructing the trees on each

partition.

52

In the merging phase, the references to the input string have a more clustered access pat-

tern, which has a better locality of reference than TDD. In addition, the ST-Merge method

permits a number of merge strategies. For example, all the trees could be merged in a sin-

gle merge step, or alternatively trees can be merged incrementally, i.e., trees are merged

one after another. However, the rst approach is preferable as it reduces the number of

intermediate sufx trees that are produced (which may be written to the disk).

For building the sufx trees on the individual partitions, the ST-Merge algorithm simply

uses the PWOTD algorithm. The subsequent merge phase is more complicated, and is

described in detail below.

There are two main subroutines used in the merge phase: NodeMerge and EdgeMerge.

The merge algorithm starts by merging the root nodes of the trees that are generated by

phase 1. This is accomplished by a call to NodeMerge. EdgeMerge is used by Node-

Merge when it is trying to merge multiple nodes that have outgoing edges with a common

prex. The NodeMerge and EdgeMerge subroutines are shown in Figures 3.9 and 3.10,

respectively.

The NodeMerge algorithm merges the nodes from the source trees and creates a merged

node as the ending node of the parent edge in the merged sufx tree. Note that the parent

edge of the merged node is NULL only when the roots of the source trees are merged. The

NodeMerge algorithm rst groups all the outgoing edges from the source nodes according

to the rst character along each edge, so that edges from each group share the same starting

alphabet. If the alphabet set size is |A|, there are at most |A| groups of edges. As the edges

of each node are already sorted, replacement selection sort or count sort can be used to

generate the groups. Next, the algorithm examines each edge group. If the edge group

contains only one edge, then it implies that this edge along with the subtree below is a

branch of the merged node in the merged sufx tree. In this case, the algorithm simply

53

copies the entire branch from the source tree to the merged tree. If a group contains more

than one edge, the algorithm creates a new outgoing edge of the merged node. This step is

carried out by calling EdgeMerge.

Note that NodeMerge will never need to merge a leaf node with an internal node. If

such a case arose, it would mean that the sufx represented by the leaf node is a prex of

another sufx. This cannot happen since we add a terminating symbol to the end of the

string to prevent this very case!

The EdgeMerge algorithm merges together multiple edges that start with the same sym-

bol. It rst nds the longest common prex (LCP) of the set of edges. Then, it creates

a new edge in the result tree and labels it with the LCP. If any of the source edges have

labels longer than the LCP, the edges are articially split by inserting a node after the LCP.

All the nodes ending at LCP now can be merged together with a call to NodeMerge, since

they are all at the end of edges labeled identically.

A detailed example of ST-Merge is shown in Figures 3.11 to 3.15.

3.5.1 Comparison with TDD

In this section, we present an analysis of the ST-Merge algorithm and discuss its relative

advantages and disadvantages.

The main advantage for ST-Merge comes from the way it accesses the disk. In the

partition and build phase, the algorithm accesses only a small portion of the string corre-

sponding to that partition (the sufxes at the end of each partition may require accesses

that spill across the partition boundary). This ensures that most accesses to the string are

in memory if the buffer for the String is at least the size of the partition. This can be much

smaller than the whole string, and can therefore save a large amount of I/O. In fact, the

rst phase of the algorithm typically takes an order of magnitude less time than TDD. In

the second phase, the input trees and the output tree are all sequentially accessed. So,

54

allocating each tree requires only a small buffer. The remaining memory is allocated to

the string. Compared to TDD, the accesses to the string in the second phase of ST-Merge

have more spatial locality of reference. This is because the accesses to the string (driven

by the trees from phase 1) result in a smaller working set.

The decision of how many partitions to use in the rst phase can be made using a simple

formula. Suppose that M is the total amount of memory available. Let n be the size of the

input string. The number of partitions to be used in the rst phase is given by k = ,n×f
M -,

where f (> 1) is an adjustment multiplication factor to account for overhead associated

with the memory required for the auxiliary data structures, which are proportional in size

to the input string. When the amount of main memory is greater than the string size,

partitioning does not provide much benet, and we simply use TDD.

Now, we examine the worst case cost of the merge algorithm. The rst phase is O(n2)

in the worst case. The second phase has two components: the cost of merging the nodes,

and the cost of merging the edges. In the worst case, each node in the output tree (O(n)

nodes) is a result of merging k nodes from the source trees. This involves sorting at most

|A| × k edges. Any sorting algorithm can be used to group the edges– a count sort can do

this in O(|A| × k) time. Therefore, the cost of merging the nodes is O(n × k) (assuming

a constant sized alphabet). The cost of merging the edges is the sum of the lengths of the

edge labels of the source trees. This is because each symbol on an edge is considered at

most once. In the worst case, the length of an edge is O(n). This yields a worst case cost

of O(n2). Adding the three components, the worst case cost of ST-Merge is O(n2).

Next, we derive a loose bound for the average case cost assuming that the string is

generated by a Bernoulli source (i.e. the characters are drawn from the alphabet indepen-

dently with xed probabilities). The rst phase takes O(n log n
k), with k partitions each

taking time O(n
k log n

k). The cost of merging the edges is O(n log n
k) on average, since

55

the number of edges in the source trees totals O(k × n
k), and the average length of the

LCP is O(log n
k) [9]. The worst case cost of merging the nodes serves as an upper bound

for the average case cost. Adding the three components, the average cost of merging is

O(nk + n log n
k). As k = Θ(n), this is O(n2). Note that in practice with large main mem-

ory congurations, k is usually a small number, since k = ,n×f
M -, where M is the size of

the memory.

It is important to note that since ST-Merge writes a set of intermediate trees (the trees

generated for each partition in the rst phase) and merges them together for the nal tree,

the amount of data it writes is approximately twice the amount written by TDD (assuming

that phase 2 requires only a single pass). However, this disadvantage is offset by the fact

that the amount of memory required by the string buffer is smaller for ST-Merge and this

results in less random I/O. The exact effect of these two factors depends on the ratio of

the size of the string to the amount of memory available. In Section 3.6.6, we compare the

execution times of TDD and ST-Merge.

3.6 Experimental Evaluation

In this section, we present the results of an extensive experimental evaluation of the

different sufx tree construction techniques. First, we compare the performance of TDD

with Ukkonen’s algorithm [156] and Kurtz’s implementation [91] of McCreight’s algo-

rithm [103] for constructing in-memory sufx trees. For the in-memory case, we also

compare these algorithms with an indirect approach that builds a sufx array rst and

converts the sufx array to a sufx tree. The sufx array method we choose is the Deep-

Shallow algorithm [101], which is a fast, lightweight, in-memory sufx array construction

algorithm. Then we compare TDD with Hunt’s algorithm [73] for disk-based construction

performance. We also evaluate the external DC3 algorithm [42], which is a fast disk-based

56

sufx array construction technique. Finally, we examine the performance of ST-Merge and

TDD when the input string is larger than the available memory.

3.6.1 Experimental Setup and Implementation

Our TDD algorithm uses separate buffer caches for the four main structures: the string,

the sufxes array, the temporary working space for the count sort, and the sufx tree. We

use xed-size pages of 8K for reading and writing to disk. Buffer allocation for TDD is

done using the method described in Section 3.3.3. If the amount of memory required is less

than the size of the buffer cache, then that structure is loaded into the cache, with accesses

to the data bypassing the buffer cache logic. TDD was written in C++ and compiled with

GNU’s g++ compiler version 3.2.2 with full optimizations activated.

For an implementation of Ukkonen’s algorithm, we use the version from [177]. It is

a textbook implementation based on Guseld’s description [64] and is written in C. The

algorithm operates entirely in main memory, and there is no persistence. The sufx tree

representation uses 32 bytes per node.

For the McCreight’s algorithm we use the implementation that is part of the MUMmer

software package [148]. This version of McCreight’s algorithm is both space and time

efcient, and the tree representation requires 10.1 bytes on average per input character.

The implementation of the Deep-Shallow sufx array construction algorithm is from [39].

Since this algorithm only constructs a sufx array, to build a sufx tree we augmented this

method with a method for converting the sufx array to a sufx tree. For the remainder

of this section, we refer to this Deep-Shallow implementation for constructing sufx trees

as Deep-Shallow*. The conversion from sufx arrays to sufx trees requires the construc-

tion of an LCP array. For this implementation, we used the GetHeight algorithm proposed

in [85]. We implemented a simple linear algorithm for converting a sufx array to a sufx

tree as described in [7].

57

Our C++ implementation of Hunt’s algorithm is from the OASIS sequence search tool

[105], which is part of a larger project called Periscope [112]. The OASIS implementation

uses a shared buffer cache instead of the persistent Java object store, PJama [12], described

in the original proposal [73]. The buffer manager employs the CLOCK replacement policy.

The OASIS implementation performed better than the implementation described in [73].

This is not surprising since PJama incurs the overhead of running through the Java Virtual

Machine.

To compare TDD with a disk-based sufx array construction method, we used the

external DC3 algorithm [42]. For the external DC3 sufx array construction algorithm,

we use the code provided in [51]. The external DC3 algorithm from [51] can support

multiple disks, but for all the disk-based methods including DC3, we used only one disk.

For the disk-based experiments that follow, unless stated otherwise, all I/O is to raw

devices; i.e., there is no buffering of disk blocks by the operating system, and all reads and

writes to disk are synchronous (blocking). This provides an unbiased accounting of the

performance for disk-based construction as operating system buffering will not (positively)

affect the performance. Therefore, our results present the worst case performance for the

disk-based construction methods. Using asynchronous writes is expected to improve the

performance of our algorithm over the results presented. Each raw device accesses a single

partition on one Maxtor Atlas 10K IV drive. The disk drive controller is an LSI 53C1030,

Ultra 320 SCSI controller.

All experiments were performed on an Intel Pentium 4 processor with 2.8 GHz clock

speed and 2 GB of main memory. This processor includes a two-level cache hierarchy.

There are two rst level caches, named L1-I and L1-D, that cache instructions and data

respectively. There is also a single Level-2 (L2) cache that stores both instructions and

data. The L1 data cache is an 8 KB, 4-way set-associative cache with a 64 byte line size.

58

The L1 instruction cache is a 12 K trace cache, 4-way set associative. The L2 cache is a

512 KB, 8-way, set-associative cache, also with a 128 byte line size. The operating system

was Linux, kernel version 2.4.20.

The Pentium 4 processor includes 18 event counters that are available for recording

micro-architectural events, such as the number of instructions executed [76]. To access the

event counters, the perfctr library was used [117]. The events measured include: clock cy-

cles executed, instructions and micro-operations executed, L2 cache accesses and misses,

Translation Lookaside Buffer (TLB) misses, and branch mispredictions.

3.6.2 Implications of 64-bit Architectures

The implementation that we use for the evaluation presented in this section, is based on

a 32-bit architecture. However, our code can easily be adapted to use 64-bit addressing.

In this section, we briey examine the impact of using 64-bit architectures, which can

directly address more than 4GB of physical memory.

We rst investigate the memory requirement of the data structures used in our algo-

rithms. There are two types of pointers in the data structures. The rst type is a string

pointer, which points to a position in the input string. The second type of pointer is a

node pointer, which points to another node in the sufx tree. For the pointer to the string

position, a 64-bit integer representation is needed only when the string size is larger than

4G (232) symbols. For the pointers to nodes, a 64-bit integer representation is needed only

if the number of array entries in the sufx tree structure is more than 4G. Note that if the

string has less than 4G symbols, and the sufx tree has more than 4G entries, then we can

use a 32-bit representation for the string pointer and a 64-bit representation for the node

pointer.

A non-leaf node in the sufx tree (the Tree structure shown in Figure 3.1) has one string

pointer and one node pointer, whereas a leaf node simply has one string pointer. In our

59

tree representation, in addition to the tree array, we have 2 bits per entry in the tree array

to indicate whether the entry is a leaf or a non-leaf, and whether the entry is the right-most

sibling (see Figure 3.1 for details). The bit overhead is not affected by the changes to the

pointer representation.

With a 32-bit representation for both string and node pointers, the size of a non-leaf

node is 8 bytes, and the size of a leaf-node is 4 bytes. Going to a 64-bit representation

adds four bytes for each pointer type that is affected.

In addition to the actual sufx tree (the Tree structure shown in Figure 3.1), the sufx

tree construction algorithm also uses two additional arrays, namely the Suffixes and Temp

arrays. Both of them only contain string pointers. The size of the entries for both these

arrays is 4 bytes with a 32-bit representation.

Note that TDD uses a partitioning method to construct the sufx trees (see Section 3.3

for details). This partitioning method constructs disjoint sufx trees based on the rst few

symbols of the sufxes (the prefixlen variable in Figure 3.2). Since each disjoint sufx

tree only contains node pointers that point to nodes within the subtree, even when the total

number of entries in the system is more than 4G, as long as each subtree has less than 4G

entries, the node pointers can continue to use 32-bit representation.

3.6.3 Comparison of the In-Memory Algorithms

To evaluate the performance of the TDD technique for in-memory construction, we

compare with the O(n) time algorithms of Ukkonen and McCreight, and the Deep-Shallow*

algorithm. We do not evaluate Hunt’s algorithm in this section as it was not designed as

an in-memory technique.

For this experiment, we used six different datasets: chromosome 2 of Drosophila

Melanogaster from GenBank [57], a slice of the SwissProt dataset [10] containing 20 mil-

lion symbols, and the text dataset from the 1995 collection from project Gutenberg [119].

60

Data Description Symbols
Source (106)
dmelano D.Melanogaster Chr. 2 (DNA) 20
guten95 Gutenberg Project, Year 1995 20

(English Text)
swp20 Slice of SwissProt (Protein) 20
unif4 4-char alphabet, uniform distrib. 20
unif40 40-char alphabet, uniform distrib. 20
unif80 80-char alphabet, uniform distrib. 20

Table 3.1: Main Memory Data Sources

The DNA dataset has an alphabet size of 5 (4 nucleotides, and the character ‘N’ for un-

known positions). The protein dataset has an alphabet size of 23 (for the 20 amino acids,

one character for representing unknown, and two characters to represent combinations),

and the text dataset uses an alphabet of size 61 (all uppercase characters, numbers, and

punctuation marks). We also chose three strings that contain uniformly distributed sym-

bols from an alphabet of size 4, 40, and 80. The datasets used in this experiment are

summarized in Table 3.1.

Figure 3.16 shows the execution time breakdown for four algorithms, grouped by

the datasets. In order, we present the times for TDD, Ukkonen, McCreight, and Deep-

Shallow*. Note that since this is the in-memory case, TDD reduces to the PWOTD algo-

rithm. In these experiments, all data structures t into memory. The total execution time is

decomposed into the time executing the following microarchitectural events (from bottom

to top): instructions executed plus resource related stalls, TLB misses, branch mispredic-

tions, L2 cache hits, and L2 cache misses (or main-memory reads).

From Figure 3.16, we observe that the L2 cache miss component is a large contributor

to the execution time for all algorithms. All algorithms show a similar breakdown for the

small alphabet sizes of DNA data (unif4 and dmelano). When the alphabet size increases

from 4 symbols to 20 symbols for swp20, then to 40 symbols for unif40, and nally to 80

symbols for unif80, the cache miss component of the sufx link based algorithms (Ukko-

61

Data SA LCP Conv Total
Source (sec) (sec) (sec) (sec)
unif4 9.32 9.34 5.09 24.03
dmelano 10.65 9.69 7.25 27.59
swp20 9.57 9.22 4.86 23.65
unif40 7.87 10.61 3.98 22.46
guten95 9.31 8.1 4.58 21.78
unif80 7.53 9.98 3.67 21.18

Table 3.2: Execution Time Details for Deep-Shallow*: Time spent by the algorithm in the three phases
– sufx array construction (SA), LCP array construction (LCP), and sufx array to sufx tree
conversion (Conv).

nen and McCreight) increases dramatically, while it remains low for TDD. The reason

for this, as discussed in Section 3.4.2, is that these algorithms incur a lot of cache misses

while following the sufx link to a new portion of the tree, and in traversing all the chil-

dren when trying to nd the right position to insert the new entry. The sufx array based

method, Deep-Shallow*, does not exhibit this increase.

We observe that for each dataset, TDD outperforms the implementation of Ukkonen’s

algorithm that we use, and the performance difference increases with the alphabet size.

This behavior was expected based on discussions in Section 3.4.3. TDD is faster than

Ukkonen’s method by a factor of 2.5 (dmelano) to 16 (unif80). TDD also outperforms

McCreight’s algorithm for swp20, unif40, guten95, and unif80 by a factor of 2.7, 6.2, 1.5,

and 10.9 respectively. On the other two datasets, unif4 and dmelano, the performance is

nearly the same. Interestingly, the sufx array based method, Deep-Shallow*, performs

roughly as well as TDD. For the Deep-Shallow* algorithm, Table 3.2 shows the actual

times spent in each of the three phases of the algorithm.

Collectively, these results demonstrate that despite having a O(n2) time cost, the TDD

technique signicantly outperforms the implementations of the linear time algorithms of

Ukkonen and McCreight on cached architectures. It does not, however, have any signi-

cant advantage over the sufx array based Deep-Shallow* algorithm.

62

We must caution the reader, however, that this superior performance of TDD is not

guaranteed in all cases. There may be inputs with a small alphabet size and a high amount

of skew on which Ukkonen or McCreight could out-perform TDD, despite being less

cache-efcient.

63

8

A T CA$ GTACA$ $ A

5 6 70 1 2 3 4

39470 12 1 7 R 10

TA
G

TA
CA

$

G
TA

CA
$

TT
A

G
TA

CA
$

CA
$

CA
$

G
TA

CA
$ $

1511109 12 13 14

R94747R2 R 1

String: ATTAGTACA$
0 1 2 3 4 5 6 7 8 9

A

T

GTACA$

$

A

CA$

G
TA

CA
$

TAGTACA$

CATTAGTACA$

CA$

GTACA$

Figure 3.1: Sufx Tree Representation (Leaf nodes are shaded, the rightmost child is denoted with an
R)

64

Algorithm PWOTD(String,prefixlen)
Phase 1:
Scan the String and partition Suffixes based
on the rst prefixlen symbols of each sufx
Phase 2: Do for each partition:
1. START BuildSufxTree
2. Populate Suffixes from current partition
3. Sort Suffixes on rst symbol using Temp
4. Output branching and leaf nodes to the Tree
5. Push the nodes pointing to an unevaluated range

onto the Stack
While Stack is not empty

6. Pop a node
7. Find the Longest Common Prex (LCP) of

all the sufxes in this range by checking
the String

8. Sort the range in Suffixes on the rst
symbol using Temp

9. Write out branching nodes or leaf nodes to Tree
10.Push the nodes pointing to an unevaluated range

onto the Stack
11. END

Figure 3.2: The TDD Algorithm

65

Main Memory

Temp

MRU LRU

Tree Buffer

LRU

Replacement Policy: LRU / RANDOM

String Buffer

Suffixes

Disk

Size: n

String File
Suffixes File

Size: 4n
Temp File

Size: 4n

Tree File
Size: 12n

Figure 3.3: Buffer Management Schema

66

Di
sk

 A
cc

es
se

s

0

2000

4000

6000

8000

10000

12000

14000

Buffer Size (% of File Size)
 0 20 40 60 80 100

String Buffer
Suffixes Buffer
Temp Buffer
Tree Buffer

Figure 3.4: Sample Page Miss Curves

67

In Memory
 (small dataset)

Partial Disk
 (medium dataset)

On Disk
 (large dataset)

Percentage of Main Memory

 0% 20% 40% 60% 80% 100%

String Suffix Temp Tree

Figure 3.5: Buffer Allocation for Different Data Structures: Note how other data structures are gradu-
ally pushed out of memory as the input string size increases.

68

Co
un

t (
no

rm
al

ize
d)

0

0.1

0.2

0.3

0.4

0.5

0.6

LCP Length

0 5 10 15 20 25 30

swp
hdna50

Figure 3.6: LCP Histogram: This gure plots the histogram until an LCP length of 32. For the DNA
dataset, 18.8% of the LCPs have a length greater than 32, and for the protein data set 13.8%
of the LCPs have a length greater than 32.

69

 Tree
0 Tree

4 Tree
3 Tree

2 Tree
1

 Partition 0 Partition 1 Partition 2 Partition 3 Partition 4

Suffix Tree
Merged

Figure 3.7: The Scheme for ST-Merge

Algorithm ST-Merge
Phase 1
1. Partition the string into k partitions
2. Build trees on each partition using TDD
Phase 2
1. NodeSet={}
2. For each tree to be merged

3. Add the root of the tree to NodeSet
4. End For
5. NodeMerge(NodeSet, NULL)

Figure 3.8: The ST-Merge Algorithm

70

NodeMerge(NodeSet,ParentEdge)
1. If ParentEdge == NULL

2. Create a new node N for the merged tree
3. Else

4. Create a new node N at the end of ParentEdge
5. Group the edges from the nodes in the NodeSet

by the rst character on each edge using a sort.
6. For each edge group

7. If the group contains one edge
8. Copy the edge and the subtree below

from the corresponding source tree to
node N of the merged tree

9. Else
10. EdgeSet={edges in the edge group}
11. EdgeMerge(EdgeSet, N)

12. End If
13.End For

Figure 3.9: The NodeMerge Subroutine

EdgeMerge(EdgeSet, ParentNode)
1. Find the longest common prex LCP of edges in EdgeSet
2. Create a new edge E, labeled with the LCP,

as one outgoing edge of ParentNode
3. NodeSet={}
4. For each edge in EdgeSet

5. If LCP is a proper prex of the edge
6. Create a new node to the corresponding tree,

which breaks the edge at the end of LCP
7. Add the new node to NodeSet

8. Else
9. Add the ending node of the edge to NodeSet

10. End if
11. End For
12. NodeMerge(NodeSet, E)

Figure 3.10: The EdgeMerge Subroutine

71

ATGCG$
TAC

GC
TAA

TCG
GC

$
AT GC

C

C
$

Group GGroup A Group T Group C Group $

Group A

Group T
Group G

T1 T3T2

MT

Figure 3.11: Example of Trees Being Merged
T1, T2 and T3 are three source trees to be merged. The nal merged tree is MT. The triangle below a
node represents the subtree under that node. The algorithm starts by calling NodeMerge on the trees
T1–T3, which creates a root node for MT and groups the edges of the source trees according to the rst
character of each edge. This step produces ve groups. Group A, T and G all contain more than one
edge, so EdgeMerge is called for each of these groups, whereas group C and $ only have one edge, so
the corresponding branches are copied to MT.

New
Node ATAT

GCG$

 NodeMerge

AT

Group A
T1 T2 MT

Figure 3.12: EdgeMerge for Group-A
We rst create one outgoing edge from MT’s root node, and label it with the LCP of the edges in group
A. As the edge from T1 is longer than the LCP, we insert a new node in the middle of the long edge
of T1 to split it into two edges labeled AT and GCG$ respectively. Then NodeMerge is called on the
newly created node in T1 and the node in T2 at the end of the label AT. NodeMerge then produces a
node at the end of the edge AT in MT, as well as the sub tree below it.

72

 NodeMerge

TT

AC

T

AA

T

CG

T

CG

Group T
T1 T3T2 MT

Figure 3.13: EdgeMerge for Group-T
The LCP of the edges in this group is a proper prex of every edge, so we insert a node at the end of
the LCP into every edge. The newly created nodes are then merged by making a call to NodeMerge.

 NodeMerge

GC GC GC GC

Group G
T2 T3T1 MT

Figure 3.14: EdgeMerge for Group-G
All the edges are the same in this group. Consequently, the corresponding nodes ending at these edges
are merged by making a call to NodeMerge.

C
$AT

T
GC

MT

Figure 3.15: The Result of the Merge

73

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

0

40

80

120

160

200

240

280

320

Input Set

T U M D T U M D T U M D T U M D T U M D T U M D
unif4 dmelano swp20 unif40 guten95 unif80

L2 miss
L2 hit
Branch
TLB
Inst+Resource

Figure 3.16: In-Memory Execution Time Breakdown for TDD, Ukkonen, McCreight, and Deep-
Shallow*

74

Bu
ffe

r M
iss

es

0

1e+08

2e+08

3e+08

4e+08

5e+08

Buffer Size (% of File Size)
0 20 40 60 80 100

(a) SwissProt

LRU
RANDOM
CLOCK

Bu
ffe

r M
iss

es

0

1e+08

2e+08

3e+08

4e+08

5e+08

Buffer Size (% of File Size)
0 20 40 60 80 100

(b) H.Chr1

LRU
RANDOM
CLOCK

Figure 3.17: String Buffer

3.6.4 Buffer Management with TDD

In this section we evaluate the effectiveness of various buffer management policies on

TDD. For each data structure used in the TDD algorithm, we analyze the performance of

the LRU, MRU, RANDOM, and CLOCK page replacement polices over a wide range of

buffer cache sizes. To facilitate this analysis over the wide range of variables, we employed

a buffer cache simulator. The simulator takes as input a trace of the address requests into

the buffer cache and the page size. The simulator outputs the disk I/O statistics for the

desired replacement policy. For all the results shown here, except for the Temp array,

MRU performs the worst by far and is not shown in the gures that we present in this

section.

To generate the address request traces, we built sufx trees on the SwissProt database [10]

and a 50 Mbps slice of the Human Chromosome-1 database [57]. A prefixlen of 1 was used

for partitioning in the rst phase. The total size of each of the arrays for these datasets is

summarized in Table 3.3.

75

Bu
ffe

r M
iss

es

0

100000

200000

300000

400000

500000

Buffer Size (% of File Size)
0 20 40 60 80 100

(a) SwissProt

LRU
RANDOM
CLOCK

Bu
ffe

r M
iss

es

0

100000

200000

300000

400000

500000

Buffer Size (% of File Size)
0 20 40 60 80 100

(b) H.Chr1

LRU
RANDOM
CLOCK

Figure 3.18: Sufx Buffer

Data Structure SwissProt Human DNA
(size in pages) (size in pages)

String 6,250 (50 MB) 6,250 (50 MB)
Sufxes 1,250 (10 MB) 6,250 (10 MB)
Temp 1,250 (10 MB) 6,250 (50 MB)
Tree 4,100 (32.8 MB) 16,200 (129.6 MB)

Table 3.3: The On-Disk Sizes of each Data Structure

Page Size

In order to determine the page size to use for the buffers, we conducted several experi-

ments. We observed that larger page sizes produced fewer page misses when the alphabet

size was large (protein datasets, for instance). Smaller page sizes seemed to have a slight

advantage in the case of input sets with smaller alphabets (like DNA sequences). We ob-

served that a page size of 8192 bytes performed well for a wide range of alphabet sizes.

In the interest of space, we omit the details of our page-size study. For all the experiments

described in this section we use a page size of 8 KB.

76

Bu
ffe

r M
iss

es

0

20000

40000

60000

80000

100000

Buffer Size (% of File Size)
0 20 40 60 80 100

(a) SwissProt

LRU
MRU
RANDOM
CLOCK

Bu
ffe

r M
iss

es

0

20000

40000

60000

80000

100000

Buffer Size (% of File Size)
0 20 40 60 80 100

(b) H.Chr1

LRU
MRU
RANDOM
CLOCK

Figure 3.19: Temp Buffer

Buffer Replacement Policy

The results showing the effect of the various buffer replacement policies for the four

data structures are presented in Figures 3.17 to 3.20. In these gures, the x-axis is the

buffer size (shown as a percentage of the original input string size), and the y-axis is the

number of buffer misses that are incurred by various replacement policies.

From Figure 3.17, we observe that for the String buffer LRU, RANDOM, and CLOCK

all perform similarly. Of all the arrays, when the buffer size is a xed fraction of the

total size of the structure, the String incurs the largest number of page misses. This is not

surprising since this structure is accessed the most and in a random fashion. RANDOM

and LRU are both good choices for the String buffer.

In the case of the Sufxes buffer (shown in Figure 3.18), all three policies perform

similarly for small buffer sizes. In the case of the Temp buffer, the reference pattern

consists of one linear scan from left to right to copy the sufxes from the Sufxes array,

and then another scan from left to right to copy the sufxes back into the Sufxes array

in the sorted order. Clearly, MRU is the best policy in this case as shown by the results in

77

Bu
ffe

r M
iss

es

0

160

320

480

640

800

Buffer Size (% of File Size)
0 2 4 6 8 10

(a) SwissProt

LRU
RANDOM
CLOCK

Bu
ffe

r M
iss

es

0

160

320

480

640

800

Buffer Size (% of File Size)
0 2 4 6 8 10

(b) H.Chr1

LRU
RANDOM
CLOCK

Figure 3.20: Tree Buffer

Figure 3.19. It is interesting to observe that the space required by the Temp buffer is much

smaller than the space required by the Sufxes buffer to keep the number of misses down

to the same level, though the array sizes are the same.

For the Tree buffer (see Figure 3.20), with very small buffer sizes, LRU and CLOCK

outperform RANDOM. However, this advantage is lost for even moderate buffer sizes.

The most important observation to be made here is that despite being the largest data

structure, it requires the smallest amount of buffer space, and takes a relatively insignif-

icant number of misses for any policy. Therefore for the Tree buffer, we can choose to

implement the cheapest policy - the RANDOM replacement policy.

3.6.5 Comparison of Disk-based Algorithms

In this section we rst compare the performance of our technique with the technique

proposed by Hunt et al. [73], which is currently considered the best practical disk-based

sufx tree construction approach. We also compare the performance of TDD with the DC3

sufx array construction method [51]. Note that the DC3 method only constructs a sufx

array and not the sufx tree. However, these results provide a lower bound on the cost of

78

Data Description Symbols
Source (106)
swp Entire UniProt/SwissProt

(Protein)
53

H.Chr1-
50

50 Mbps slice of Human
Chromosome-1 (DNA)

50

guten03 2003 Directory of Gutenberg
Project (English Text)

58

trembl TrEMBL (Protein) 338
H.Chr1 Entire Human Chromosome-1

(DNA)
227

guten Entire Gutenberg Collection
(English Text)

407

HG Entire Human Genome (DNA) 3, 000

Table 3.4: On-Disk Data Sources

Data Symbols Hunt TDD Speed DC3
Source (106) (min) (min) -up (min)
swp 53 13.95 2.78 5.0 12.60
H.Chr1-50 50 11.47 2.02 5.7 12.67
guten03 58 22.5 6.03 3.7 13.78
trembl 338 236.7 32.00 7.4 102.78
H.Chr1 227 97.50 17.83 5.5 74.57
guten 407 463.3 46.67 9.9 120.53
HG 3, 000 — 30hrs — —

Table 3.5: On-Disk Performance Comparison

constructing a disk-based sufx tree using a sufx array construction method.

For this experiment, we used seven datasets which are described in Table 3.4. The

construction times for the three algorithms are shown in Table 3.5.

From Table 3.5, we see that in each case TDD signicantly outperforms Hunt’s algo-

rithm. On the TrEMBL dataset, TDD is faster by a factor of 7.4. For Human Chromosome-

1, TDD is faster by a factor of 5.5. For a large text dataset like the Gutenberg Collection,

TDD is nearly ten times faster! For the largest dataset, the human genome, Hunt’s algo-

rithm did not complete in a reasonable amount of time. TDD nishes in less than 30 hours.

The 3 billion symbols of the human genome can be in memory if we use 4 bits per symbol,

which is what was used to obtain the number in Table 3.5. The reason why TDD performs

better is that Hunt’s algorithm traverses the on-disk tree during construction, while TDD

79

does not. During construction, a given node in the tree is written at most once in TDD. In

addition, the careful management of the buffer sizes and the separate buffer replacement

policies help reduce the disk I/O costs for TDD even further.

Next, we compare TDD with the fastest known disk-based sufx array construction

algorithm – the disk-based DC3 algorithm [42]. These results are shown in Table 3.5.

From Table 3.5, we can see that TDD is more than twice as fast as the external DC3 method

in all cases. For HG, DC3 did not complete successfully. When the cost of building

the LCP array and converting the sufx array to a sufx tree is added, the cost of this

approach will be even higher (the number for the external DC3 algorithm in Table 3.5

only includes the time to build the sufx array). The sufx array construction algorithm

works by recursively splitting the set of sufxes into a “two thirds” array (for sufxes

starting at positions i such that i mod 3 .= 0) and a “one thirds” array (for sufxes starting

at positions i such that i mod 3 = 0). The larger array is sorted using radix sort, essentially

giving lexicographic names to triples of symbols in the sufx. If there are two sufxes that

cannot be distinguished by radix sort at this level, then an additional level of recursion is

used where the lexicographic name is derived from three times as many symbols, and so

on. The smaller array is sorted using the information from the “two thirds” array and then

merged to this larger array using a fairly simple merge algorithm. In this algorithm, a large

amount of random I/O is incurred during the radix sort. In addition, the amount of random

I/O quickly increases as the recursion proceeds to a deeper level. This can happen very

frequently with biological sequences where long repeats are common and deeper recursion

is required to sort sufxes with longer LCPs.

Comparison of TDD with TOP-Q Recently, Bedathur and Haritsa have proposed the TOP-

Q technique for constructing sufx trees [16]. TOP-Q is a new low overhead buffer man-

80

agement method which can be used with Ukkonen’s construction algorithm. The goal

of the TOP-Q approach is to invent a buffer management technique that does not require

modifying an existing in-memory construction algorithm. In contrast, TDD and Hunt’s

algorithm [73] take the approach of modifying existing sufx tree construction algorithms

to produce a new disk-based sufx tree construction algorithm. Even though the research

focus of TOP-Q is different from TDD and Hunt’s algorithm, it is natural to ask how the

TOP-Q method compares to these other approaches.

To compare TDD with TOP-Q, we obtained a copy of the TOP-Q code from the authors.

This version of the code only supports building sufx tree indices on DNA sequences. As

per the recommendation in [16], we used a buffer pool of 880 MB for the internal nodes

and 800 MB for the leaf nodes (this was the maximum memory allocation possible with

the TOP-Q code). On 50 Mbp of Human Chromosome-1, TOP-Q took about 78 minutes.

By contrast, under the same conditions, TDD took about 2.1 minutes: faster by a factor of

37. On the entire Human Chromosome-1, TOP-Q took 5800 minutes, while our approach

takes around 18 minutes. In this case, TDD is faster by two orders of magnitude!

Comparison of TDD with DynaCluster The DynaCluster algorithm [31] is based upon

Hunt’s algorithm and tries to group nodes that are frequently referenced by each other

into one cluster. The clusters are recursively created in a top-down fashion and a depth-

rst order. By using a dynamic clustering technique, DynaCluster reduces the random

accesses to the sufx tree during construction time. However, just as in TOP-Q, Dyna-

Cluster is also inherently disadvantaged because they use clustering to improve what is a

highly random reference pattern (on a large structure) to start with.

This is highlighted in the following comparison of I/O costs. In one of their experiments

in [31], the authors constructed the sufx tree for Human Chromosome-1 (224 MB) with

81

a total of 864 MB of available memory. The I/O cost of this experiment is more than 800

seconds on their experimental platform. For computing the I/O costs, the authors used

simulated disk numbers. Based on their method and the parameters in their paper (30

MB/s transfer rate, 8 KB pages), 800 seconds translates to 3 million disk reads/writes. For

the same dataset and with identical parameters, TDD incurs 0.5 million page accesses,

which is around a sixth of that incurred by DynaCluster. This directly translates to a clear

advantage for TDD.

3.6.6 Constructing Suffix Trees on Very Large Inputs

In the previous section, we saw that TDD outperformed the other methods. The ST-

Merge algorithm has advantages over TDD when the input string size is much larger than

the main memory available (n
M >> 1). When the input string ts in memory, ST-Merge is

the same as the TDD algorithm.

Figure 3.21 shows the execution times of TDD and ST-Merge when the data string is

much larger than the available main memory. To keep the running times for this experi-

ment measurable, for this experiment only, we limited the total memory available to the

algorithms to 6 MB, and varied the size of the input string from 10 MB to 80 MB. The

other experimental conditions are the same as before. We note that our main motivation for

using a small amount of main memory for this experiment is primarily to keep this exper-

iment manageable. As can be seen in Figure 3.21, even in this “scaled down” setting the

execution time for the algorithms is very large - using a larger dataset with a larger amount

of memory would have taken many days or weeks for each run. The “scaled down” setting

exposes the behavior of these algorithms, while keeping the run times for the algorithms

reasonable.

From Figure 3.21, we observe, that when the input data string is signicantly larger

(about 3 times or more) than the main memory size, the ST-Merge algorithm starts to

82

Ti
m

e
(m

in
)

0
1000
2000
3000
4000
5000
6000
7000
8000

String Size (MB)
0 20 40 60 80 100

ST!Merge
TDD Time

Figure 3.21: Execution Times : TDD and ST-Merge

outperform the TDD algorithm. We also observe that as the ratio n
M increases, the ST-

Merge algorithm has a larger advantage over TDD. This is expected because TDD incurs

an increasingly larger penalty from the random I/O on the string. Consequently, for very

large datasets, in which case the input string is signicantly larger than the available main

memory, ST-Merge is clearly the algorithm of choice.

3.7 Conclusions

Practical methods for sufx tree construction on large character sequences have been

virtually intractable. Existing approaches have excessive memory requirements and poor

locality of reference and therefore do not scale well for even moderately sized datasets.

We rst compare different algorithms used for constructing sufx trees in-memory.

We demonstrate that our method (which is essentially PWOTD for the in-memory case)

83

has an advantage over Ukkonen’s algorithm by a factor of 2.5 to 16. It is also better

than McCreight in some cases by up to a factor of 10. We argue that PWOTD wins

over Ukkonen and McCreight because of superior cache performance. We also show that

PWOTD is competitive with the sufx array based Deep-Shallow* algorithm and takes

nearly the same time on various inputs.

To address the problem of disk-based sufx tree construction and unlock the potential of

this powerful indexing structure, we have introduced the “Top Down Disk-based” (TDD)

technique. The TDD technique includes the sufx tree construction algorithm (PWOTD),

and an accompanying buffer management strategy.

Extensive experimental evaluations show that TDD scales gracefully as the dataset size

increases. The TDD approach lets us build sufx trees on large frequently used sequence

datasets such as UniProt/TrEMBL [10] in a few minutes. The TDD approach outperforms

a popular disk-based sufx tree construction method (the Hunt’s algorithm) by a factor of

5 to 10. In fact, to demonstrate the strength of TDD, we show that using slightly more

main-memory than the input string, a sufx tree can be constructed on the entire Human

Genome in 30 hours on a single processor machine! These input sizes are signicantly

larger than the datasets that have been used in previously published approaches.

In this chapter, we also compared TDD with a recently proposed disk-based sufx array

construction method [42], and show that TDD also outperforms this method.

Even though TDD far outperforms the existing sufx tree construction algorithms,

TDD degrades in performance when the input data string is much larger than the amount

of main memory. To address this case, we have also proposed a new merge-based suf-

x tree algorithm called ST-Merge. The TDD algorithm can be seen as a special case of

the ST-Merge algorithm when the number of merge partitions is equal to one. We have

implemented ST-Merge, and demonstrated its benets over TDD.

CHAPTER IV

Selectivity Estimation and Optimization

4.1 Introduction

Life science researchers today are faced with the problem of querying and mining large

sequence datasets. There are several large databases worldwide that store protein and

DNA sequence information. Some of these databases are growing very fast. For instance,

GenBank, a repository for genetic information has been doubling every 16 months [63]

– a rate faster than Moore’s law! Protein databases, such as PDB [65] and PIR [10, 169]

have also grown rapidly in the last few years.

Biologists try to analyze these databases in several complex ways. Similarity search is

an important operation that is often used for both protein and genetic databases, although

the way in which similarity search is used is different in each case. When querying protein

databases, the goal is often to nd proteins that are similar to the protein being studied.

Studying a similar protein can yield important information about the role of the query

protein in the cell. The computational criteria for specifying similarity is approximate, and

includes similarity based on the amino acid sequence of the protein, or similarity based on

the geometrical structure of the protein, or a combination of these. With genetic databases,

scientists perform approximate similarity searches to identify regions of interest such as

genes, regulatory markers, repeating units, etc. For any approximate matching query, the

84

85

desired output is an ordered list of results.

We note that existing sequence search tools such as BLAST [5, 6] only provide a lim-

ited search functionality. With BLAST one can only search for approximate hits to a

single query sequence. One cannot look for more complex patterns such as one query se-

quence separated from another query sequence by a certain distance, or a query sequence

with some constraints on other non-sequence attributes. Consider the following query:

“Find all genes in the human genome that are expressed in the liver and have a TTG-

GACAGGATCCGA (allowing for 1 or 2 mismatches) followed by GCCGCG within 40

symbols in a 4000 symbol stretch upstream of the gene”. This is an instance of a rela-

tively straightforward, yet important query that can be quite cumbersome to express and

evaluate with current methods. One could code a specic query plan for this query in

a scripting language. For example, the query plan may rst perform a BLAST [5, 6] or

Smith-Waterman [136] search to locate all instances of the two query patterns on the hu-

man genome. Then, the results of these matches can be combined to nd all pairs that are

within 40 symbols of each other. Next, a gene database can be consulted to check if this

match is in the region upstream of any known gene. Finally, another database search would

be required to check if the gene is expressed in the liver. Note that there are several other

ways of evaluating this query, which may be more efcient. Moreover, current tools do

not permit expressing such queries declaratively, and force the script programmer to pick

and encode a query plan. Researchers frequently ask such queries and current procedural

methods are quite cumbersome to use and reuse.

In this chapter, we describe a system called Periscope/SQ, which takes on the challenge

of building a declarative and efcient query processing tool for biological sequences. The

system makes it possible to declaratively pose queries such as the one described above.

We also describe techniques to efciently evaluate such queries, and using a real world

86

example, demonstrate that Periscope/SQ is faster than current procedural techniques by

over two orders of magnitude!

Periscope/SQ is part of a larger research project - called Periscope - which aims to build

a declarative and efcient query processing engine for querying on all protein and genetic

structures [113]. For proteins the structures include not only sequence structure but also

various geometrical structures that describe the shape and 3D structure of the protein. The

SQ component stands for “Sequence Querying” and is our focus.

The main contributions of in this chapter are as follows:

• We identify the need for an efcient and declarative querying system for biological se-

quences. We present the design of the Periscope/SQ system that extends SQL to support

complex sequence querying operations.

• To optimize complex sequence queries, fast and accurate estimation methods are crit-

ical. We make a contribution in this area by presenting a technique for estimating the

selectivity of string/sequence pattern matching predicates based on a new structure called

the Symmetric Markovian Summary. We show that this new summary structure is less

expensive and more accurate than existing methods.

• We introduce novel query processing operators and also present an optimization frame-

work that yields query plans that are signicantly faster than simple approaches (which

are usually coded by existing procedural querying methods).

• We present a case study of an actual application in eye genetics that is currently using

our system, and demonstrate through a simple performance study the advantages of the

Periscope/SQ approach.

The remainder of this chapter is structured as follows: Section 4.2 discusses our ex-

tensions to SQL. Our query processing technique includes novel string/sequence predicate

estimation methods, which are presented in Section 4.3, and query optimization and eval-

87

uation methods, which are presented in Section 4.4. Section 4.5 contains the results of

our experimental evaluation, including an actual application in eye genetics. Section 4.6

describes related work, and Section 4.7 contains our conclusions.

4.2 Extending a Relational DBMS

Biologists often pose queries that involve complex sequence similarity conditions as

well as regular relational operations (select, project, join, etc.). Consequently, rather than

build a stand-alone tool only for complex querying on sequences, the best way to achieve

this goal is to extend an existing object-relational DBMS [138] to include support for the

complex sequence processing. For the Periscope project, we have chosen to extend the

free open-source object-relational DBMS (ORDBMS) Postgres [149]. Periscope/SQ, and

also comment on the new types that are needed for this extension.

4.2.1 Algebra and Query Language

Our query language, which extends the SQL query language, is called called PiQL

(pronounced as “pickle”). PiQL incorporates the new data types and algebraic operations

that are described in our query algebra PiQA [145] 1.

The purpose of this section is to describe very briefly the PiQL extension to SQL and

the related algebraic constructs. Readers who are interested in the details of the algebraic

properties of these extensions may refer to [145].

Hit and Match Types

Hit: A hit is basically a triple (p,l,s). When specied together with some sequence, the

hit (p,l,s) means that there is a hit at position p of length l with a score of s on the given

sequence. For instance, suppose that A = (2,3,3) is a hit on the sequence SEQ = “TG-
1PiQL stands for Protein Query Language – the full versions of both PiQA and PiQL can be used to query sequences and protein

geometrical structures. Since DNA datasets don’t have geometrical structures, querying on DNA only requires the subsets of these
these methods that allows for querying on biological sequences.

88

Example PiQL Queries
1.CREATE TABLE prot-matches (pid INT,

p STRING, match MATCH TYPE)
2. SELECT * FROM MATCH(R,p,“EEK”,EXACT,3)
3. SELECT AUGMENT(M1.match, M2.match, 0, 10) FROM

MATCH(prots.p,“VLLSTTSA”, MM(PAM30)) M1,
MATCH(prots.p,“REVWAYLL”, MM(PAM30)) M2

4. SELECT CONTAINS(AUGMENT(
M1.match, M2.match, 0,10),M3.match) AS resmatch
FROM
MATCH(prots.p,“VLLSTTSA”, MM(PAM60)) M1,
MATCH(prots.p,“REVWAYLL”, MM(PAM60) M2,
MATCH(prots.s,“LLLLL”, EXACT) M3
WHERE score(resmatch) ≥ 15

Figure 4.1: Example PiQL Statements

GTTTAGGAGGTA”. This hit refers to the “GGT” substring, which could have matched

some query for a score of 3. This hit can be shown in the original database sequence as

“TGGTTTAGGAGGTA”, with the hit portion highlighted in bold-face.

Match: A match is simply a set of hits. For example, consider the sequence SEQ = “TG-

GTTTAGGAGGTA”, and a query to nd “GGT” followed by a “GGA” within 10 symbols.

A match for this query using an exact matching paradigm is X= {(2,3,3), (8,3,2)}. This

match describes two hits in the data sequences as shown in bold-face in “TGGTTTAGGAGGTA”.

Several operations are dened on the Match type:

• Start(match) is the lowest p value of all the hits in the match.

• End(match) is the highest p+l value of all the hits.

• Length(match) is End(match)-Start(match).

• Flatten(match, f) is the match {(Start(match), Length(match), f (match)}, where f is

a score-combination function.

Operations for match type are implemented as user-dened functions on this new data

type. Query 1 in Figure 4.1 shows how to create attributes of this type using PiQL.

89

Match Operator

The Match operator nds approximate matches for a query string. It is implemented as

a table function which takes as input a string, an attribute name, a match model (described

later), and a cutoff score. The operator returns a relation with the match attribute. As an

example of this operator, consider Query 2 shown in Figure 4.1 that nds all instances of

the string “EEK” in attribute p of relation R (Table 4.1). The result of the PiQL query re-

turns the relation R with an additional match column as shown in Table 4.2. The matching

portions are shown in boldface in Table 4.1. These are referred to by position, length, and

score in the match column of Table 4.2.

Since local-similarity search is a crucial operation in querying biological sequences,

one needs to pay close attention to the match-model. In practice, the commonly used

match models include the exact match model, the k-mismatch model, and the substitution

matrix based models with different gap penalties. An exact match model simply requires

that we nd exact matches for the query with any substring in the database. A k-mismatch

model allows for at most k differences (mismatches) between the query and any database

substring. Finally, the general substitution matrix based models use a substitution matrix

that species the precise score to be awarded when one symbol in the query is matched

with a different symbol in the database. In this model, both insertions and deletions are

permitted. A more detailed discussion of various matching models is beyond the scope

of this manuscript, and we refer the interested reader to an excellent treatise on this sub-

ject [46]. The algorithms that Periscope/SQ uses for these different match models are

discussed in Section 4.4.1.

While Periscope/SQ supports the three match models listed above, we focus on the

exact match model and the k-mismatch model. The substitution matrix model is primarily

used for protein sequences, and is not applicable for querying DNA or RNA sequences.

90

id p s
1 GQISDSIEEKRGHH HLLLLLLLLLHEE
2 EEKKGFEEKRAVW LLEEEEEHHHHHL
3 QDGGSEEKSTKEEK HHHHLLLEEEELLL

Table 4.1: Relation R

id p s match
1 GQI... HLL... {(8,3,3)}
2 EEK... LLE... {(1,3,3),(7,3,3)}
3 QDG... HHH... {(6,3,3),(12,3,3)}

Table 4.2: Match Results

The exact and k-mismatch models however are often used with both protein and DNA

sequences. When we discuss the techniques for query evaluation with the exact and k-

mismatch models, we will make brief remarks on the extension for arbitrary substitution

matrix based model.

Nest and Unnest

These operations can be implemented as table functions that take as input arguments the

relation and the list of attributes to nest/unnest, returning the nested/unnested relation. For

example, an expression like Unnest(prot-matches, match) will unnest the match attribute

in relation prot-matches. Similarly, an expression such as Nest(prot-matches, pid) will nest

the relation prot-matches with the pid as the simple key attribute [145].

Match Augmentation Operator

This operator operates on two relations (say R1 and R2 - both having a match attribute),

and produces a new relation that contains all the non-match attributes, a new match at-

tribute, and a key/id attribute. The match attribute is the union of the match of the left

relation and a match on the right relation if the one from the right relation has the same

(specied) id-eld, and is within a specied distance range after the match of the rela-

tion on the left. If the match eld in an operand contains several hits, then the operator

91

computes flatten(m) and uses that value for computation. As is obvious, the augmen-

tation operator needs to be given the list of attributes in the two tables that need to be

equal before it can compute a tuple in the result relation. As an example, consider Query

3 in Figure 4.1, which will nd all matches that are the form “VLLSTTSA” followed by

“REVWAYLL” with a gap of 0-10 symbols between them. Each component is found using

a match operator, and combined using the augmentation operator.

Contains, Not-Contains

The contains operator selects those matches from its left operand that contain some

match from the right operand. A match A(p1, l1, s1) is contained in B(p2, l2, s2) if p2 ≥ p1

and p2 + l2 ≤ p1 + l1. The syntax is similar to the Match Augmentation operator. The

complex query described next (Query 4 in Figure 4.1) demonstrates a use of the contains

operator. See [145] for more details.

Complex Query Example: As an example of a complex PiQL query consider the follow-

ing query:

Find all proteins that match the string “VLLSTTSSA” followed by a match of the string

“REVWAYLL” such that a hit to the second pattern is within 10 symbols of a hit to the

first pattern. The secondary structure of the fragment should contain a loop of length

5. Only report those matches that score over 15 points.

The PiQL query for this example is shown as Query 4 in Figure 4.1. The three MATCH

clauses correspond to the match operators that would be needed to search for each of the

specied patterns. The inner AUGMENT function in the SELECT clause nds the patterns

that have “VLLSTTSA” followed by the “REVWAYLL”. The CONTAINS call makes sure

that only those matches that contain a loop of length 5 get selected.

92

4.3 Estimation, Operators, and Optimization for Query Processing

The introduction of sequence/string matching predicates poses an important problem

while trying to optimize PiQL queries. Since an optimizer relies on fast and accurate

selectivity estimation methods, poor estimation methods can lead to inefcient query plans

(see Section 4.4). We address this issue by rst presenting a new technique for estimating

the selectivity of exact match predicates that is more accurate than previous methods.

Then, we describe extensions of this technique for the k-mismatch and the substitution

matrix models.

Our estimation method uses a novel structure called the Symmetric Markovian Sum-

mary (SMS). SMS produces more accurate estimates than the two currently known sum-

mary structures, namely: Markov tables [2], and pruned sufx trees [79, 89]. A Markov

table stores the frequencies of the most common q-grams. (A q-gram is simply a string

of length q that occurs in the database.) Pruned sufx trees are derived from count sufx

trees. A count sufx tree is a sufx tree [103] where each node contains a count of the

number of occurrences of the substring from the root that terminates at that node. To nd

the number of occurrences of the pattern “computer” using a count sufx tree, we simply

traverse the edges of the tree until we locate the node that is at the end of a path labeled

“computer’, and return the corresponding count value. The pruned count sufx tree uses

a pruning rule to store only a small portion of the entire count sufx tree [79]. A simple

rule is to store just the top few levels of the tree, or store only those nodes that have a

count above a certain value. Observe that a pruned count sufx tree in effect stores the

frequencies of the most commonly occurring patterns in the database.

Notice that in these previously proposed strategies, the summary structures are biased

towards recording the patterns that occur frequently. The estimation algorithms then typ-

93

ically assume a default frequency for patterns that are not found in the summary. For in-

stance, this could be the threshold frequency used in pruning a count sufx tree. If a query

is composed mostly of frequently occurring patterns, then this bias towards recording the

frequent patterns is not an issue. However, if the query tends to have a higher selectivity

(i.e., matches very few tuples,) such a summary can bias the estimation algorithm towards

greatly overestimating the result size. As the experimental evaluation in Section 4.3.3

shows, these existing algorithms perform very poorly when it comes to negative queries

(where 0 tuples are selected) and queries that are highly selective.

The key strength of SMS is that it captures both the frequent and rare patterns. Our

estimation algorithm that uses SMS not only produces more accurate estimates for the

highly selective predicates (the “weak spot” of previous methods,) but also produces better

estimates for predicates with lower selectivities. In the following section, we now describe

our estimation algorithm, and the SMS structure.

4.3.1 Estimation Method

Preliminaries

In a traditional database context, the selectivity of a string predicate is the number of

rows in which the query string occurs. Alternately, we can dene it as the number of

occurrences of the query string in the database. Multiple occurrences in each row make

these two metrics different. This alternate denition is more useful in bioinformatics where

we are interested in nding all occurrences of a query string. This is the denition of

selectivity we use in the rest of the chapter. Our technique can also be adapted to return

the number of rows, and thereby be used in a traditional database setting for text predicates.

This involves calculating q-gram frequencies differently, and in the interest of space we

omit this discussion.

Most string datasets (English text or DNA or protein sequences) can be modeled quite

94

accurately as a sequence emitted by a Markov source. That is, we assume that the source

generates the text by emitting each symbol with a probability that depends on the previous

symbols emitted. If this dependence is limited to k previous symbols, then we call this

a Markovian source with memory k, or simply a kth order Markov source. In [79], the

authors show that for most real world data sets, this k is a fairly small number. We refer to

this property as the “short-memory” property, to mean that most real world sequences do

not have signicant long range correlations.

The Estimation Algorithm

Now, suppose that we have a query q = a1a2a3...an. The number of occurrences of the

string q in the database is the probability of nding an occurrence of q times the size of the

database. Equivalently, this is (the probability that the Markov source emits q) × (the size

of the database). If P (q) denotes the probability of the source emitting q, then:

P (q) = P (a1) × P (a2/a1) × P (a3/a1a2) ×

... × P (an/a1...an−1)

= P (a1) × Πn
i=2P (ai/a1...ai−1)

We can exploit the short-memory assumption and use the fact that P (a/b1..bn) is the

same as P (a/bn−k+1..bn), where k is the memory of the Markovian source. The expression

can now be rewritten as P (q) = P (a1) × Πn
i=2P (ai/ai−k..i−1). If we had a table where

we could look up values for P (ai/ai−k..i−1), this probability can be computed easily. The

Symmetric Markovian Summary (SMS) provides these values.

The crux of the estimation algorithm is in making the best use of these values, and

using reasonable approximations when these values are not found in the summary.

Algorithm StrEst

95

Estimation Function StrEst(q, summary)
1. p = 1.0
2. For i= 1 to |q|

3. s = q1...qi−1

4. If Prob(qi/s) is stored in the summary, v = Prob(qi/s)
5. Else, v = Prob(qi/s′),

where s′ is the longest sufx of s such that Prob(qi/s′)
is in the summary

6. p = p × v
7. End For
8. Return p × DBsize

Figure 4.2: Estimation Function StrEst

This algorithm, as shown in Figure 4.2, computes the estimates using the equation de-

scribed above. While retrieving a probability from the summary, it rst looks for P (a/Y).

If this value is not found, it searches the summary for P (a/Z), where Y = bZ for some

symbol b. It successively searches for shorter sufxes of Y , and if nothing else is found,

it returns P (a). This algorithm may make as many as k|q| probes of the summary. The

basic intuition behind this approach is that we expect P (a/bZ) can be approximated by

P (a/Z).

Other Match Models

For the k-mismatch model, we use a simple estimation technique. For small values of k, we

list all possible strings that have at most k mismatches with the query string. We compute

their selectivity using the exact match model, and add them up. For larger values of k, we

use a different approach. We compute a representative selectivity sr for the set of strings

(W) that have at most k differences with the query string. The number of such strings

is: |W | =
∑k

i=1 C(L, i) × (A − 1)i. L is the length of the string and A is the alphabet

size. (For an i-mismatch string, you choose i symbols from the L and replace them with

one of A − 1 symbols for a mismatch.) We then compute the selectivity as sr × |W |. An

96

obvious choice for sr is the exact match selectivity of the query string. A better choice is

the average selectivity of the set of strings with l mismatches, where l is a small number

like 1 or 2. Such an average will effectively sample a larger subset of W and produce a

better estimate (as also supported by the experimental results presented in Section 4.3.4).

For predicates using the general substitution matrix model, a simple estimation method

is to use a heuristic that computes the selectivity of an equivalent k-mismatch predicate

by choosing an appropriate k. The value of k is determined by examining the substitution

matrix, the length of the query (L), and the threshold similarity score (T) of the predicate.

We compute the average score for identity (Ai), and the average score for substitution(As).

Frequent substitutions have a positive score, and rare ones often have a negative score. A

near identical match would have a score of approximately L × Ai. Since the required

threshold is T , the slack we have is L × Ai − T . This can be uniformly divided over

the mismatches - so we compute k = L×Ai
2×|As| . This is a simple and straightforward way of

exploiting the matrix. However, this method makes it difcult to account for insertions

and deletions. We are currently evaluating the performance of this technique.

Another alternative is to examine the properties of the substitution matrix to expand

the query string into a set of closely homologous strings and to use existing estimation

methods for each string. For instance, one could construct a set of homologous strings that

included insertions and deletions, and then use the method previously described on each

string and combine the results.

4.3.2 The Symmetric Markovian Summary

The Symmetric Markovian Summary (SMS) is essentially a lookup table that stores

various probabilities of the form P (a/Y), where a is a symbol in A (the alphabet,) and Y

is a string of length at most k. If we let Dk denote the set of all probabilities where Y is

exactly of length k, then |Dk| = |A|k+1. In the simplest case when k = 0, this reduces to

97

storing the unconditional probability for each symbol in the alphabet. Ideally, one would

like to have the summary S = ∪k
i=0Dk for some sufciently large k.

The size of such a table grows exponentially with the value of k, making it impractical

especially for large alphabets. Therefore, we need to choose a smaller subset of S such that

these probabilities provide an accurate estimate. The basic idea behind SMS is to choose

only the most important probabilities from S. A probability value is less important if we

would incur only a small error if we didn’t store it and approximated it with a different

probability instead (when using algorithm StrEst).

We present two algorithms H1 and H2 that use different notions of the importance of

a probability to construct an SMS. These two methods differ in the manner in which they

compute the importance of an entry. Before describing these algorithms in detail, we rst

present the intuition behind dening a good notion of importance.

There are two components to the importance of a probability. A straightforward indica-

tor of importance is the error that might be incurred if the value were not in the summary.

We call this the δ-value of the probability entry. Suppose that we exclude P (a/Y) from

the SMS, and use some P (a/X) (where X is the maximal sufx of Y ,) from the summary

to approximate it. We compute δ = |P (a/Y) − P (a/X)|. Note that P (a/Y) being more

likely than P (a/X) is just as important as it being less likely. It is this symmetric property

that leads to a better summary.

An orthogonal but important factor that determines the importance of a probability

entry is the likelihood that it will actually be used in some queries. This is basically a

workload dependent factor. For instance, even if the probability P (A/CACAC) has a

higher δ value than P (A/AC), it might still make better sense to choose P (A/AC) to

retain in the summary, simply because it is likely to be used more often than the former.

For the workload as a whole, the average error incurred from approximating P (A/AC)

98

Algorithm H1(String,k,B)
OCC = [], STR = [], PROB=[] A = Alphabet U {null}
1. Calculate the frequency of each q-gram s for

q varying from 1 to k as OCC(s).
//Now calculate conditional probability
2. For every a,Y such that |Y| < k

3. PROB(a/Y) = OCC(Ya)/OCC(Y)
4. End For
5. Create Priority Queue PQ of Size B bytes
6. Fix unconditional probabilities into PQ.
7. For each entry in Prob

8. priority = |A|−|Y |+1 × |Prob(a/Y) - Prob(a/X)|
where X is the longest sufx of Y present in PQ.

9. PQ.insert(<a/Y, Prob(a/Y), priority>)
10. If Size of PQ exceeds B, drop lowest priority element

and adjust the priorities of affected elements.
11. End For
12. PQ contains the Symmetric Markovian Summary

Figure 4.3: Algorithm H1 to construct SMS

will add up to more than the error from approximating P (A/CACAC) since P (A/AC)

is likely to be used more often. The likelihood that a given probability entry will be used

for a given workload is the γ-value of the entry. In the absence of any characterization of

the queries, one can assume a uniform query distribution and assign a higher γ to shorter

strings. We combine these two components to dene importance as the product of δ and

γ.

Formally speaking, for a given k, and a xed summary size (B entries), we want to

store a subset of values from each of D0, D1, ...Dk such that the values we prune away

can be approximated well. Mathematically, we want to choose T ⊂ Uk
i=0Di such that

imp = Σp∈T (γ × |p − ApproxT (p)|) is maximized. Here ApproxT (p) is the value that

will be used to approximate p in T , if p is excluded from T . We want a subset such that the

total importance of each of the elements is the maximum over any subset of this size. In

other words, we pick the subset that has the most important B elements. This is clearly a

hard optimization problem. Constructing an optimal summary with a naive approach will

99

take an unacceptably long time. We therefore present two heuristic approaches H1 and H2

that perform very well for a wide range of datasets.
Av

er
ag

e
Er

ro
r (

%
)

0

20

40

60

80

100

Summary Size (Number of Entries)
0 1000 2000 3000 4000 5000

H1
H2

Av
er

ag
e

Er
ro

r (
%

)

0

20

40

60

Summary Size (Number of Entries)
0 1000 2000 3000 4000 5000

H1
H2

Av
er

ag
e

Er
ro

r (
%

)

0

20

40

60

80

100

Summary Size (Number of Entries)
0 1000 2000 3000 4000 5000

H1
H2

Figure 4.4: Low Selectivity Queries,
MGEN: H1 vs. H2

Figure 4.5: Medium Selectivity
Queries, MGEN: H1 vs.
H2

Figure 4.6: High Selectivity Queries,
MGEN: H1 vs. H2

Algorithm H1

Algorithm H1 rst computes D0,D1,...,Dk using a q-gram frequency table. Note that

values from D0 are the unconditional probabilities of occurrence of each of the symbols.

We’ll always need these for the rst symbol of the query string. The algorithm rst selects

D0 into the summary structure (maintained as a priority queue). For each of the entries in

Di(i > 0), the algorithm computes δ = |P (a/Y) − P (a/X)|. To nd X , the maximal

sufx of Y , it scans the priority queue. It then computes γ = |A|−|Y |+1, and importance =

δ× γ and inserts the entry into the priority queue. If the queue size exceeds the maximum

size of the summary, we remove the element with the lowest importance. We then scan the

queue and adjust the δ value for those elements that were directly dependent on the entry

we just deleted. This heuristic runs in time O(nBlog(B)), where B is the summary size,

and n is the total number of probability entries being considered.

Algorithm H2

Though H1 is a good heuristic, an important drawback is that it is computationally ex-

pensive. H2 uses a simpler algorithm that runs faster than H1, but may yield a slightly less

100

accurate summary. Instead of scanning the priority queue to nd the X that is the maxi-

mal sufx, H2 simply uses the unconditional probability instead of the actual ApproxT (p)

entry. Everything else remains the same. Note that we don’t have to adjust any values now

when we delete an element from the priority queue. The main advantage of this algorithm

is that it is very simple, and fast. The running time for H2 is O(nlog(B)). Experimental

evaluations show that H2 is not much worse than H1, but is signicantly faster to compute.

Both H1 and H2 store the summary as a list of pairs (“a/Y ”, P (a/Y)) sorted on the

rst part. A lookup can be performed in O(log(B)) time using binary search.

4.3.3 Experimental Evaluation

In this section, we rst compare the SMS-based algorithms H1 and H2. We also com-

pare the SMS method with the method of [79], which is currently considered to be the best

method for estimating the selectivities of exact match predicates. (Note that the recent

work by Surajit et al. [26] uses an estimation method that is built upon existing summary

structures such as the pruned sufx tree. Their technique uses a learning model to exploit

the properties of English text, and is not applicable to biological data. We note that our

contribution is orthogonal to [26] as their system can be built on top of SMS.)

Av
er

ag
e

Er
ro

r (
%

)

0

100

200

300

Query Selectivity
Low Med High

SMS
PSTMO

Av
er

ag
e

Er
ro

r (
%

)

0

100

200

Query Selectivity
Low Med High

SMS
PSTMO

Av
er

ag
e

Er
ro

r (
%

)

0

100

200

300

400

500

Query Selectivity
Low Med High

SMS
PSTMO

Figure 4.7: MGEN: SMS vs. PSTMO Figure 4.8: SPROT: SMS vs. PSTMO Figure 4.9: GUTEN: SMS vs. PSTMO

101

Experimental Setup

Data sets: We tested our estimation methods on number of different biological datasets:

a nucleotide (DNA) dataset [57] (Chromosome 1 of Mouse, 200 million symbols) and

a protein dataset (the SwissProt [10, 158] collection, 53 million symbols). We refer to

these datasets as MGEN and SPROT respectively. To demonstrate the applicability of our

methods for conventional databases, we tried our methods on a number of English text

sources, including DBLP [44], a number of sources from the LDC Corpus [147], and the

Gutenberg text repository [119]. The results using these text sources was very similar, and

we only present the results using data from the Gutenberg project [119]. We refer to this

dataset as GUTEN.

Query Sets: For MGEN, we generated 150 random strings ranging from lengths 6 to 12 so

it would span all the selectivities. Similarly, for SPROT, we generated a set of 150 random

strings of lengths ranging from 3 to 7. For GUTEN, we randomly picked 150 words of

varying lengths from the database itself.

Result Organization: For each algorithm, we classify the queries based on their actual

selectivities. Queries that have less than 1% selectivity are classied as high selectivity

queries. The ones between 1%-10% were classied medium selectivity, and those that

had more than 10% selectivity were classied as low selectivity queries. The metric of

accuracy we use is the average absolute relative error calculated as a percentage : e =

100 × |prediction−actual|
actual . We refer to it simply as the average error.

Note that since highly selective queries produce only a few results, the error in estimat-

ing this class can potentially present a skewed picture. For instance, if the actual number

of occurrences was just 1, and we predicted 2 , that’s a 100% error! A well established

convention to not bias the result presentation for such cases, is to use a correction [26,79].

While calculating the error, if the actual selectivity is less than 100/|R|, we divide the

102

absolute error in selectivity by 100/|R| instead of the actual value. |R| is the number of

tuples in the relation.

Platform: All experiments in this chapter were carried out on an 2.8 GHz Intel Pentium 4

machine with 2GB of main memory, and running Linux, kernel version 2.4.20.

Comparison of H1 and H2

In our rst study, we examine the effect of using an SMS of type H1 versus one of type

H2.

We ran the query sets using H1 and H2 on each of the datasets for varying summary

sizes. We present the results for low, medium, and high selectivity queries with MGEN

in Figures 4.4, 4.5 and 4.6. The results for other datasets are similar and are omitted

here. From these gures, we see that as the summary size increases, both H1 and H2 have

increased accuracy. However, H1 has a consistent advantage over H2. At larger summary

sizes the error from H2 is within 10% of H1.

Note that the cost of using H1 is signicantly higher than the cost of H2. For instance,

with the MGEN dataset and an SMS with 1000 entries, the time taken to construct H1

is 219 seconds, while H2 takes only 93 seconds. However, H2 incurs only a small loss

in accuracy. Therefore, we conclude that except for cases where very high accuracy is

needed, or if the summary size is very small, we use H1 to construct the summary. In all

other cases, we use H2 as it is cheaper to construct, and nearly as accurate as H1.

Comparison with Existing Methods

In this section, we compare our SMS based algorithm with the algorithm proposed

in [79]. For this experiment, we used algorithm H2 to construct the summaries. The

algorithm in [79] uses a maximum overlap parsing along with a Markovian model for the

text. The summary structure they use is a pruned count sufx tree. For ease in presentation,

103

we refer to the method in [79] as the PSTMO algorithm.

For this experiment, we xed the summary size to be 5% of the database size (results

with 1% and 10% summary sizes are similar, and suppressed in the interest of space).

We present the average absolute relative error for each class of query for each dataset in

Figures 4.7, 4.8, and 4.9.

For the MGEN dataset (Figure 4.7), SMS has a slight advantage over PSTMO for low

and medium selectivity queries. However, for high selectivity queries, PSTMO has a

very large error - over 340%, compared to only 18% with SMS! In the case of SPROT

(Figure 4.8), we see that PSTMO has a slight advantage for low and medium selectivity

queries. This is mostly due to the fact that the query set has many short strings. PSTMO

stores the exact counts of these short strings and therefore ends up being very accurate for

these queries. However, for longer strings (high selectivity), the error for PSTMO rises

sharply to 164%. In contrast, SMS has a low error of 21%. For GUTEN (Figure 4.9),

SMS is better in all three cases, and the advantage is very large (70% versus 470%) in the

case of highly selective queries. As discussed before in Section 4.3.2 SMS produces more

accurate estimates because it is a symmetric digest of the information in the text.

The queries considered in the above study does not consider an important type of query

– namely a negative query. While searching text databases, users commonly make spelling

or typographical errors which result in the string predicate selecting zero records. Algo-

rithms like PSTMO tend to provide very poor estimates for these queries. However, our

SMS based algorithm works very well for these queries too. We have also experimented

with negative queries, and the results are similar to the highly selective queries such as in

Figure 4.6.

Execution times: In addition to producing accurate estimates, it is also desirable to have

estimation methods that can compute the estimation very fast. We examined the estimation

104

Av
er

ag
e

Er
ro

r (
%

)
0

20

40

60

80

100

Query Selectivity
Low Med High

Small k(2)
Large k(5)

Figure 4.10: K-Mismatch Estimation Error

computation time for each method, and show the average per-query estimation times in

Table 4.3. As can be seen from this table, our approach is cheaper than PSTMO. This is

because PSTMO needs to repeatedly traverse a sufx tree. Traversing sufx tree nodes is

expensive as it involves chasing a number of pointers. It is noteworthy that the SMS based

estimation is both faster and more accurate than PSTMO!

4.3.4 K-Mismatch Estimation

We examined the efcacy of our approach for estimating predicates using the k-mismatch

model for different values of k. We present the results of the study for the case of a small

k (2) and a large k (5) in Figure 4.10. Observe that the error in estimation in this case is

generally higher than the exact model. This is because we use the estimates from the exact

model to compute these estimates, and the cumulative error tends to be signicantly larger.

Inspite of the relatively larger error, the estimates are reasonably accurate for queries of all

selectivities.

105

Summary

In summary, we have presented an algorithm for estimating the selectivity of string/sequence

predicates using a novel structure called the Symmetric Markovian Summary (SMS). Our

estimation method using SMS is more accurate than existing algorithms, and also takes

less time for computing the estimate. Existing methods are particularly poor in estimating

the selectivity of highly selective predicates, which is gracefully handled by our approach.

As our empirical evaluation shows, in some cases our approach is up to 5 times more

accurate than the previous best algorithm.

4.4 Query Evaluation

The introduction of new operators in PiQL presents two signicant challenges. First,

we need efcient algorithms to execute new operators like match, augment, contains, etc.

Second, we need to extend the optimizer to be able to optimize over the new operators. We

rst discuss algorithms for the crucial match operator. We then briey describe algorithms

for other operators and present a new physical operator called the Match-and-Augment.

Finally, we present an optimization algorithm that is highly effective at nding good plans

for a subset of queries.

4.4.1 Algorithms for Match

The algorithms for evaluating the match operator varies depending on the match model.

In the simplest case - the exact match - a linear scan of the database can be used. The Scan

algorithm scans the sequence from start to nish and compares each sequence with the

query pattern for an exact match. With a match model such as a k-mismatch model, a Finite

State Automaton (FSA) is constructed for the query, and each sequence is run through this

automaton. The cost of this algorithm is O(n× qeq) where n is the length of the database,

and qeq is the expected number of states of the automaton that are traversed before deciding

106

Data Type SMS PSTMO
MGEN 3.1 66.1
SPROT 7.2 17.8

Table 4.3: Estimation Time (in microseconds)

on a hit or a miss. For the more complex model using a substitution matrix, the linear scan

or the FSA scan algorithm cannot be used directly. For this complex match model, we can

use the Smith-Waterman [136] (SW) algorithm, which is a dynamic programming local-

alignment algorithm. Its time complexity is O(m × n) where m is the size of the query

and n is the size of the database. The BLAST [5, 6] family of algorithms is a heuristic

approach to local-similarity searching that runs faster than SW, and nds most matches for

a given query.

The OASIS [105] algorithm is a sufx tree based technique for sequence similarity that

can be used with any match model (including the substitution-based matrix model with

afne gap penalties). In the case of the exact match, one can simply traverse down the

sufx tree along the query string and collect all the leaf nodes under that node (this is

essentially a simple sufx tree query). The cost of this algorithm is O(q + r) where q is

the length of the query and r is the number of matches. The cost of a k-mismatch search

with a sufx tree is typically similar to an OASIS search.

Choosing the right algorithm can not only impact the performance greatly, but some-

times even the accuracy. If BLAST is used, then there is a possibility that some of the

hits might be missed - it should be used only in cases when this is acceptable. Smith-

Waterman and OASIS on the other hand never miss matches and could always be used in

all situations, though these algorithms can be more expensive to execute.

Algorithms for other operators like augment, contains, not-contains are similar to a

traditional join. Instead of a simple equality, the join condition tends to be a complex

predicate involving match types. A nested loop style algorithm is used to evaluate the

107

match-augmentation and the contains operator.

4.4.2 A New Combined Operator

We have designed a new physical operator that combines matching with the match

augmentation operator. We call this the Match-and-Augment (MA) operator. It can be

used to extend a set of matches with another set of matches on the same dataset. For

instance, consider the following expression:

AUGMENT(MATCH(A.seq,“ATTA”,MM(BLOSUM62)),

MATCH(A.seq.“CA”,EXACT), 0,50).

A simple way to compute this expression is to evaluate each match independently, and

then use a join to compute the augment. Alternately, we can evaluate the rst MATCH,

then scan 50 symbols to the right of each match that is found, and check for the occurrences

of “CA”. In this process, we select and augment only those matches where we nd the

“CA”. This is essentially the approach used in the MA operator. The MA approach can

often be cheaper than performing two matches separately and combining the results with

the augment operation.

4.4.3 Optimization

Our current optimization strategy uses a two stage optimization method. In the rst

step, we optimize the portion of the query that refers to the complex sequence predicates,

and in the second stage we call the Postgres optimizer to optimize the traditional relational

components of the query. We acknowledge that this two step process may miss opportu-

nities for optimization across the two components. Our eventual aim is to integrate these

two steps, but we start with this two step optimization as it is more amenable for rapid pro-

totyping. In this section, we describe the methods that we have developed for optimizing

the complex sequence predicates.

108

The basic idea behind the optimization algorithm is as follows: Suppose that the query

contains n match predicates connected together by operators like augments. We compute

the selectivity of each match predicate, and pick the most selective predicate to start with.

We examine the predicate adjacent to this and compute the cost of evaluating that match

and combining it with the current predicate. Now, we compare this with the cost of using

a match and augment operator. If it is cheaper, then we rewrite the plan to use a match and

augment operation and examine another adjacent predicate in the same way. The algorithm

terminates when an adjacent predicate cannot be combined using a match and augment or

when all the predicates have been combined. The algorithm is outlined in Figure 4.11.

It is clear that the algorithm runs in time proportional to the number of match predicates.

Although it explores a very small portion of the plan space, it is highly effective at nding

good plans. We demonstrate this in Section 4.5 using extensive experimental evaluation.

The optimizer uses SMS for predicate selectivity estimation. The cost models are fairly

straightforward and considers CPU cost and I/O cost. The cost models follow the com-

plexity of the algorithms with empirically determined constants plugged in. The following

section briey describes the cost models.

4.4.4 Cost Models

In real database systems, the cost models for various operations are often nely tuned

and returned over the lifetime of the system. The cost models presented here are simple

initial estimates.

The match operator can be evaluated using many algorithms. The linear scan for the

exact match will incur N reads, where N is the number of pages the database sequence

occupies (every page is read once). The CPU cost for this is (c1 × lexp × D) + (c2 × Q),

where lexp is the expected number of comparisons needed to determine if a match has

occurred or not for the given string. Q is the number of results - every time a match is

109

obtained, it is copied into a buffer, and that incurs a cost. D is the length of the database

sequence. So, the total cost for the scan operator is: (c1× lexp×D)+(c2×Q)+(c3×N),

where c3 is the cost of a disk I/O. The FSA scan operator has the same cost, except that

lexp is computed differently, and c1 has a larger value.

When a sufx tree is used to compute exact matches, we rst traverse down the sufx

tree until we nd the node at the end of the query path, and collect all leaves below that

node. The rst part requires computational time proportional to the length of the query.

The computational cost of the second part is proportional to the size of the subtree below

the node. The number of I/O’s incurred depends on the size of the buffer pool, and the

buffer replacement policy. To simplify the analysis, we assume that the top few levels

of the sufx tree are kept in memory. So the rst part does not incur any I/O (for short

queries). The second part incurs at least as much I/O as the number of pages that the leaf

nodes occupy. This is approximately Q × f where f is the number of nodes per page.

Therefore the cost for this operation is approximately (c1 × |S|) + (c2 × Q × f), where

|S| is the length of the query string and Q is the number of matches. The rst part tends to

be very small, so we use c2 × f × Q as the cost estimate. c2 accounts for the I/O cost and

also includes a correction factor to account for the non-leaf nodes.

The OASIS and BLAST algorithms are more complex. The OASIS algorithm has a

worst case cost, W , which is equal to min(c1 × |S||A|, l), where |S| is the length of the

query, |A| is the size of the alphabet, c1 is a constant, and l is the number of symbols in the

database. The constant c1 is roughly the time it takes to compare an entry in a cell of the

Smith-Waterman matrix [105]. The average cost of an OASIS operation is often smaller

than this. Assuming that the top few levels of the sufx tree are cached in memory, the

algorithm incurs roughly k × Q page reads where Q is the number of results, and k is an

empirical constant. (This I/O estimate is very crude, but represents a good starting point.

110

In reality the I/O complexity depends on the parameters of the search, such as the E-value,

the characteristics of the substitution matrix, and the afne gap penalty model.) The total

cost is therefore W + (c2 × k × Q).

The BLAST algorithm has a computational cost of (c1 × D) + (c2 × c3 × Q). D and

Q are as described above. c1 is the cost of a hash lookup, and c2 is the cost of expanding

a word hit, which we set to a constant (actually, this depends on the method used like the

1-hit or the 2-hit extension and the scoring model.) Finally, c3 is the number of word hits

produced by the word matching component of BLAST, which we set to a xed constant.

The I/O cost for the rst phase (nding word hits) in BLAST is modeled as a search of the

entire database sequentially - this is N reads. The word extension phase reads c3 random

blocks out of these N . This leads to approximately N [1 − Πk
i=1(D − B − i + 1)/(D −

i + 1)] page accesses, where B is the number of symbols per page. This formula is an

approximation [168] to Yao’s formula [175] used for estimating page accesses.

The match augmentation and the contains operators are join-based algorithms. We use

a nested loops style join for these operators, and estimate these costs using traditional join

cost models [132].

The match-and-augment operator’s cost is similar to the cost of the FSA scan. Suppose

the left operand is a set of A1 matches, and distance to which we need to search is L

symbols, then a total of A1 × L symbols need to be compared. The computational cost is

(c1 × lexp × A1 × L) + (c2 × Q). If f is the number of symbols per page, the I/O cost

incurred is roughly A1 × ,L × f- page accesses.

4.5 Experimental Validation

In this section, we present the results of various experimental studies that we conducted

to examine the performance of our system. Using several synthetically generated query

111

Algorithm Optimize
1. Compute selectivity s(i) of each predicate
2. Compute cost c(i) of evaluating each predicate
3. Let f be the most selective predicate
4. Let g be an adjacent predicate
5. t = cost of evaluating g, then combining it with f.
6. u = cost of using a match-and-augment operator
7. If t > u , then rewrite the plan as match-and-augment
8. If there is another adjacent predicate that has

not been considered, pick it to be g. Go to step 5.
9. End

Figure 4.11: The Optimization Algorithm

loads, we explore a wide range of query situations. In addition, we also present results

that are based on a real-life workload that was captured while a scientist was performing

explorative querying using our tools. We used the full mouse genome [57] (2.6 billion

symbols) as the dataset for the experiments in this section. We also performed experiments

on several other genetic datasets and protein datasets, which show similar trends.

4.5.1 Impact of SMS-based Estimation

In order to understand the benets of increased accuracy from the new SMS based

estimation algorithm, we performed the following experiment. We randomly generated

a hundred queries having three match predicates each. One of the predicates used a k-

mismatch model, while the others used an exact match. The query load was executed for

k = 0, 1, and 2. (We use these relatively small values since k is usually a small number in

practice. Our methods also work for larger values of k.

The lengths of each of these predicates was randomly chosen to be between 6 and

14. Neither the sufx tree index, nor the match and augment operator is used in evalu-

ating these queries. Each query was optimized by exhaustively searching over the plan

space. (Note that in this experiment we are not using the linear optimization algorithm

of Section 4.4.3, but rather, a simple exhaustive enumeration of all the query plans. This

112

exhaustive optimization is guaranteed to pick the plan with the best estimated cost, thereby

isolating any effects related to the optimization algorithm.)

We optimized the queries in two ways: In one case we used PSTMO [79] to estimate

the selectivities while optimizing the query, and in another case, we used the SMS based

estimation algorithm. We used a one percent summary in both cases. We found that the

average running time of the query plan (which does not include the optimization time) was

higher by about 43% when using PSTMO. Of the 100 queries, 90 queries were optimized

identically by both algorithms, and 10 queries were optimized differently. These 10 query

plans took roughly 4.6 times as long to execute when optimized using PSTMO as opposed

to using SMS. The reason for this behavior is because PSTMO had overestimated the

selectivity of some of the predicates by a margin large enough that it led to a different

execution plan in each of these ten queries.

4.5.2 Impact of Using Match and Augment

In this experiment, we explore the effectiveness of using the new match and augment

operator (MA), which was described in Section 4.4.2. For this experiment, we ran the set

of 100 queries generated as above in two different ways. One plan was optimized with

the match and augment operator and the other plan without it. For this experiment also,

we used an exhaustive search optimization algorithm. The query plan evaluation times are

summarized in Table 4.4 for each value of k. As is evident, the use of the new operator can

lead to signicant savings. The plan that used the match-and-augment operator executed

10 to 80 times faster on average!

In Table 4.4, we also provide the standard deviation of the times for the 100 queries.

To get a better understanding of how often and how much the match and augment operator

helps, we split the queries into three sets: the rst set, where the new operator provides at

most a 2X speedup (small advantage), the second bin where the speedup was greater than

113

k Without MA With MA
Average (Std-Dev) Average (Std-Dev)

0 3.04 (11.5) 0.19 (0.08)
1 46.71 (142.08) 0.55 (0.65)
2 226.76 (808.5) 13.55 (41.46)

Table 4.4: Query Plan Evaluation Times (in minutes)

2 but less than 10 (signicant advantage), and the third bin where the speedup exceeded a

factor of 10 (large advantage). We observed that for k = 0, in 65% of the queries were in

the rst category, around 20% in the second, and 15% in the third. Similarly for the case

where k = 1, the split-up was 35%, 30%, and 35% respectively. Finally for k = 2, the query

set split was 30%, 20%, 50% into the three categories. It is clear from the evidence that

the new operator can be very useful in a signicant number of queries.

4.5.3 Optimizer Evaluation

In this experiment, we compare two optimization algorithms. The rst one is a conven-

tional algorithm that exhaustively searches the plan space for the best plan. The second

algorithm is the linear time optimization algorithm described in Figure 4.11. For this

experiment, a sufx tree index is available on the data, which increases the number of al-

gorithms that the optimizer can choose from. We generated three sets of hundred queries

each with 3, 5, and 7 predicates. One of the predicates in each query was randomly se-

lected to use a k-mismatch model with k randomly chosen as one of 0, 1, 2. The average

query optimization time and the evaluation time in each case is shown in Figure 4.12. The

plan obtained using the linear time optimization algorithm always runs within 6% of the

optimal plan’s running time. For the exhaustive query optimization method, the time take

to optimize the query is low for a small number of predicates (3 or 5), but is unacceptably

large when more predicates (7 and above) are used. Performing an exhaustive search to

nd the optimal plan is a better option only in the case of 3 predicates. Overall, what

114

this experiment shows is that the linear query optimization method is quite robust. The

exhaustive optimization method can produce slightly better plans, but should only be used

when the query has a small number of predicates.

Ti
m

e
(m

in
)

0

1

2

3

Number of Predicates
3 5 7

Optimization
Evaluation

Exh Lin Exh Lin

Exh

Lin

Figure 4.12: Optimization and Evaluation Times

4.5.4 GeneLocator: An Application

The current prototype implementation of Periscope/SQ has been used in an web-based

application called GeneLocator that we have built in collaboration with researchers at the

Kellogg Eye Institute at the University of Michigan. GeneLocator is a tool for nding

target promoter regions. In order to understand certain genetic factors associated with

eye diseases, our collaborators are trying to identify all genes that are regulated by a par-

ticular transcription factor (a regulatory protein, also called a promoter). Such proteins

typically bind to a “signature” binding site: a short sequence of DNA about 10-15 bases

115

ACGTTGATGGAG CATAATA

Start of Gene
0!3000 bp 20!30 bp

DNA Strand (+ direction)

Figure 4.13: Promoter Binding Region

long. The pattern usually allows for a few mismatches. The presence of a TATA-box (a

pattern such as “TAATA”) or a GC-box (a pattern like “GCGC”) within a certain distance

downstream of the match to the signature often indicates that it is a potential binding site.

Also, transcription almost always begins at a “CA” site, which is a short distance following

the TATA-box or the GC-box. Figure 4.13 pictorially represents the kind of pattern our

collaborators are looking for. In PiQL, this query can be expressed as:

SELECT AUGMENT(AUGMENT(
M1.match, M2.match, 0,2988),
M3.match, 15,35) AS res, G.name FROM
MATCH(DB.dna,“ACGTTGATGGAG”,KM(1)) M1,
MATCH(DB.dna,“TAATA”,EX) M2,
MATCH(DB.dna,“CA”,EX) M3,
GeneAnnotations as G, WHERE score(res) > 15 AND
G.start > start(res) AND G.start - start(res) ≤ 5000 AND
G.chromosome = DB.chromosome

The extra conditions in the Where clause lter out the matches to report only those that

are a short distance upstream of a known gene. In the above query, GeneAnnotations is

a table with the following schema: GeneAnnotations (id, chromosome, start, end, type,

annotation), and is loaded with the gene annotation data from NCBI [57].

GeneLocator is accessed by a web interface, which allows the end user to pose queries

by lling out a simple form. Our collaborators are working with the mouse genome, and

use this tool for posing interactive queries. With their permission we logged the queries

116

Figure 4.14: Screenshot of the GeneLocator Interface

that they issued. Most of their queries had three match predicates. The inter-predicate

distance and the number of mismatches allowed in the match model varied across the

queries. One or two of the predicates often used an exact match model. The others used

a k-mismatch model. The actual queries are not presented in order to protect the privacy

of the research. For this application we built a sufx tree on the mouse genome using our

sufx tree construction method [143]. A screenshot of the GeneLocator interface is shown

in Figure 4.14. The search results are displayed as in Figure 4.15.

117

Algorithm Time (min)
Unoptimized Plan (No Index) 473.05
Optimized, No MA (With Index) 9.76
Optimized, With MA 1.02

Table 4.5: Execution Times

4.5.5 Performance of GeneLocator

We compared the execution times of the set of queries logged using three different

query plans. The rst query plan does not use any indexes, and uses no optimization - a

naive left to right evaluation of the augments is used to compute the result. The second

plan uses a sufx tree and an exhaustive search to choose the cheapest plan. It does not use

the match-and-augment operator. The third plan is optimized using the linear optimization

method and includes the match-and-augment operator. The dataset used was entire the

mouse genome (2.6 billion symbols). The execution times are as are shown in Table 4.5.

The rst observation we can make from Table 4.5 is that using the sufx tree can dra-

matically improve the query execution time. This does not come as a surprise, since sufx

tree index based algorithms are usually very efcient. Second, we observe that the plan

with the match and augment operator executes faster than the version without it by nearly

an order of magnitude. The current procedural methods that are used in life sciences re-

search labs tend to resemble the rst plan (no indexes, no optimization, simple operators)

and therefore take an extremely long time to run. The contribution of Periscope is not

only that it provides a declarative and easy way to pose complex queries, but also that it

executes them up to 450 times faster than existing procedural approaches!

4.5.6 Results

Using GeneLocator, the eye genetics researchers were able to identify several potential

targets for the transcription factor of interest, which are now being veried using wet-lab

experiments. These targets were computationally identied using our system after just a

118

few days of explorative querying. This process could easily have taken several weeks or

months to accomplish using conventional methods. Encouraged by these results, we are

now planning more ambitious queries in comparative genomics.

4.6 Related Work

Miranker et al. suggest an approach for querying biological sequences in [106]. They

borrow some constructs from our previous algebraic proposal PiQA [145], to describe

complex queries, and largely focus on designing and exploiting metric space indexing

structures for querying sequences. Our work does not require a similarity measure to be a

metric and focuses on providing a declarative way of posing complex queries while being

able to evaluate them efciently.

A closely related previous effort is the work by Hammer and Schneider [68], which

outlines an approach to expressing complex biological phenomenon through algebraic op-

erations. Their approach aims to build a completely new algebra that is very powerful

in expressing all biological operations such as transcription, translation, crossover, muta-

tions, etc. However, our approach more carefully charts out the operations for querying

sequences and aims at extending relational algebra so that we can take advantage of all the

existing relational infrastructure.

In [121], the authors propose an alignment calculus on strings to query string databases.

They also describe a system that was built based on this algebra [62]. The language lets

a user express very complex queries, by permitting complex string processing predicates

to be written using alignment calculus declarations. However, the notion of an approxi-

mate match is hard to capture in this context. Also, to our knowledge, no performance

evaluations have been carried out for this system.

Previous work in querying sequences by Seshadri, Livny, and Ramakrishnan [110,134],

119

describe techniques for storing and declaratively querying sequences. However, this work

is tailored towards handling time series style data where windowing, projecting, aggre-

gating over subsequences are important. In our work, we are interested in operations on

biological sequences which are quite different as it involves approximate pattern matching

queries with complex match models.

Recognizing the need for supporting sequence query matching in a relational frame-

work, commercial DBMS vendors have recently started supporting BLAST calls from

SQL statements [48,137]. However, these methods only provided limited sequence search-

ing capabilities, allowing only simple pattern search (for example match-augmentation is

not supported), and can only work with the BLAST match model.

Krishnan, Vitter, and Iyer presented one of the earliest approaches for estimating the

selectivity of exact wildcard string predicates in [89]. The more recent work by Jagadish

et al. [79] improves on [89] by using a short-memory Markovian assumption instead of

an independence assumption. These methods employ pruned sufx trees as the summary

of the text in the database. Sufx trees are versatile data structures, however, they have

the drawback of being biased towards storing more frequent patterns. The SMS based

approach we propose does not have this bias and is more accurate than existing techniques.

Chaudhuri, Ganti, and Gravano [26] recently proposed a technique which takes advan-

tage of the frequency distribution properties of the English text to increase the accuracy of

estimation techniques. The method is based on the fact that English text often has a short

identifying substring. This has not been shown to be applicable to other datasets such as

DNA and protein sequences. The estimation methods that we propose here can easily t

into the overall framework of [26] for use in text databases.

120

4.7 Conclusions and Future Work

In this chapter, we have presented Periscope/SQ - a DBMS for declarative querying on

biological sequences. We presented PiQL, a language that extends SQL to permit complex

queries on biological sequences, and have also described a novel and effective sequence

predicate estimation method. In addition, we have presented techniques for efciently

optimizing and evaluating queries using these complex sequence predicates. We also de-

scribed a real world application built using Periscope/SQ, which clearly demonstrates the

huge impact that this approach can have for scientists querying biological sequences.

121

Figure 4.15: Screenshot of the Search Results

CHAPTER V

Mining for Patterns

5.1 Introduction

In a number of emerging sequential data mining applications, the goal is to discover

frequently occurring patterns. To illustrate the characteristics of such an operation, con-

sider Figure 5.1. This gure shows the percentage change in the stock price for IBM over

the previous minute’s average price, for several minutes in a day. An interesting data min-

ing question on this sequence dataset is: “Are there any frequently recurring patterns in

this time series dataset?” Finding patterns in stock price data can provide valuable in-

sights to stock traders about short-term market uctuations. In fact, technical analysts in

nancial markets often try to discover price patterns through visual inspection. These pat-

terns are often given descriptive names such as “Head and Shoulders” [22] and “Adam and

Eve” [22], and are used in designing short-term trading strategies.

In the example shown in Figure 5.1, the bold segments highlight a pattern that occurs

four times in the dataset. Note that the recurring subsequences are similar, but not iden-

tical. The challenge in discovering such frequent patterns is to allow for some noise in

the matching process. At the heart of such a method is the denition of a pattern, and the

denition of similarity between two patterns. This denition of similarity can vary from

one application to another. A simple approach in the case of stock price data such as in

122

123

60 80 100 120 140 160 180
!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

0.2

Figure 5.1: IBM Stock Data: The bold segments represent a frequently occurring approximate pattern.

Figure 5.1 is to dene a tolerance value, ε, and consider two sequences to be similar if

corresponding values in the sequences are within ε of each other.

The approximate subsequence mining problem also has a number of applications in

many existing scientic database applications. A challenging problem in computational

biology is to detect short sequences, usually of length 6–15, that occur frequently in a

given set of DNA sequences. (A DNA sequence is a string over an alphabet of size four.)

These short sequences can provide clues regarding the locations of so called “regulatory

regions”, which are important repeated patterns along the DNA sequence. The repeated

occurrences of these short sequences are not always identical, and some copies of these

sequences may differ from others in a few positions. The similarity metric that is often

used here is the Hamming distance between the two sequences, or more simply, the number

of positions in which they differ. These frequently occurring patterns are called motifs in

the computational biology world. In the rest of this chapter, we use this term to describe

frequently occurring approximate sequences.

124

Clearly, different applications require different similarity models to suit the kind of

noise that they deal with. It is desirable for a motif mining algorithm to be able to deal

with a variety of notions of similarity. In this chapter, we present a powerful new model

for approximate motif mining that ts several applications with varying notions of ap-

proximate similarity, including the examples described above. We also present FLAME

(FLexible and Accurate Motif DEtector) – a novel motif mining algorithm which can

efciently nd motifs that satisfy our model.

We draw the reader’s attention to the fact that the problem of motif mining is related

to the traditionally studied problems of mining for frequent itemsets [3], and frequent

subsequences [4]. The problem of nding frequently occurring (non-contiguous) subse-

quences in large sequence databases has been extensively studied in previous works [4,

164, 173, 174, 181]. Traditionally, B is called a subsequence of A, if B can be con-

structed by projecting out some of the elements of sequence A. For instance, if A is the

sequence “a,b,a,c,b,a,c”, the sequence “a,b,b,c” is a subsequence constructed by choosing

the 1st, 2nd, 5th, and 7th elements from the original sequence and omitting the rest. While

mining for frequent non-contiguous subsequences has many uses, it is not appropriate

for many applications such as the DNA and stock price examples above. A subsequence

constructed by gluing together distant parts of the original sequence is not meaningful in

these applications. In mining for motifs, we are interested in contiguous subsequences.

Furthermore, previous work on non-contiguous subsequence models cannot easily incor-

porate noise tolerance in the way that contiguous motif models can. In short, subsequence

mining and motif mining are different data mining operations, and there are distinct appli-

cations of each of these. We focus on the contiguous subsequence (motif) mining problem.

Readers closely familiar with traditional (non-contiguous) subsequence mining algo-

rithms may note that some of these methods can be adapted to mine for contiguous sub-

125

sequences [116, 180]. In this work, we compare our method with one such algorithm,

namely cSPADE [180], and show that FLAME is faster by an order of magnitude.

The motif mining problem is also related to similarity searching for time series data

analysis. A host of techniques have been developed to nd sequences in a time series

database that are similar to a given query sequence [27, 55, 104, 107, 161, 182]. The motif

mining problem that we consider is a different data mining operation, where the user is

looking for frequent motifs based on some skeleton of a pattern. Interestingly, a similar

problem of nding motifs in traditional time series datasets has recently been identied

in [32, 114]. While mining for motifs, these algorithms use models that are similar to the

models used in the stock price example and the DNA example in favor of other measures.

For instance, [32] employs a motif nding method called Random Projections (RP) [21].

We compare our method with RP, and show that for larger database sizes, FLAME often

outperforms RP by more than an order of magnitude.

Motivated by the problem of nding frequent patterns in DNA sequences, which has

profound importance in life sciences, the computational biology community has developed

numerous algorithms for detecting frequent motifs using the Hamming distance notion

of similarity. YMF [135], Weeder [115], MITRA [50], and Random Projections [21]

are examples of algorithms in this category. Compared to this class of algorithms, we

show that FLAME is more exible, and can use more powerful match models. We also

demonstrate through empirical evaluation that FLAME is more scalable than these existing

methods and can be an order of magnitude faster for mining large databases.

There are several applications of motif mining in addition to those already mentioned.

It is often the rst step in discovering association rules in sequence data (“basic shapes”

in [36] and “frequent patterns” in [72]). It can also be used to nd good seeds for clustering

sequence datasets [114]. Records of medical signals, like ECG or respiratory data [170]

126

from patients can also be mined to nd signals that can indicate a potentially critical con-

dition.

We make the following contributions here:

1. We present a powerful new model that is very general and applicable in many emerg-

ing applications. We demonstrate the power and exibility of this model by applying

it to datasets from several real applications.

2. We describe a novel motif mining algorithm called FLAME (FLexible and Accurate

Motif DEtector) that uses a concurrent traversal of two sufx trees to efciently

explore the space of all motifs.

3. We present a comparison of FLAME with several existing algorithms (YMF [135],

cSPADE [180], Weeder [115], and Random Projections [21, 32]). FLAME never

misses any matches (as opposed to some of these methods that apply heuristics).

In fact, we show that FLAME is able to identify many true biological motifs that

existing algorithms miss.

4. We show that our algorithm is scalable, accurate, and often faster than existing meth-

ods by more than an order of magnitude!

The remainder of the chapter is organized as follows: Section 5.2 presents related work,

and Section 5.3 describes our model for motifs. In Section 5.4, we present the FLAME

algorithm. Section 5.5 contains our experimental results, and Section 5.6 contains the

summary and conclusions.

5.2 Related Work

There is a vast amount of literature on mining databases for frequent patterns. Early

work focused on mining association rules [3]. The problem of mining for subsequences

127

was introduced in [4]. Subsequence mining has several applications, and many algorithms

like SPADE [181], BIDE [164], CloSpan [173] (and several others) have been proposed

as improvements over [4].

More recently, interest in domains such as nancial time series, medical time series, bi-

ological sequences like DNA and proteins, etc., has led to research in algorithms for nd-

ing frequent patterns in the presence of noise. Yang et al. [174] use a statistical sampling

based method with a compatibility matrix to tolerate noise. However, they are primarily

concerned with subsequence mining, while we focus on contiguous patterns.

Some algorithms have been proposed that incorporate constraints in subsequence min-

ing. Constraints which limit the maximum gap between two items in the subsequence

make it possible to use these algorithms to mine for contiguous patterns. Algorithms such

as cSPADE [180], Pei et al. [116] can be adapted to mine for exact contiguous motifs. An

obvious reason why these are unsuitable for approximate frequent pattern mining is that

these algorithms do not include a notion of noise or an approximate match. Furthermore,

they tend to be inefcient even when used for exact substring mining. FLAME, on the

other hand is extremely efcient even for approximate substrings. (We demonstrate the

performance advantage of FLAME in Section 5.5.)

Many algorithms have been proposed in the bioinformatics community for nding pat-

terns in long noisy DNA sequences. These algorithms can be divided into two classes –

pattern based and statistical. The patterns based algorithms typically search through the

space of potential patterns and nd a motif that satises the minimum support. Marsan

and Sagot [102] proposed a sufx trie based algorithm to nd structured motifs tolerating

a few mismatches as noise. This method is primarily focused at nding pairs (or sets) of

motifs that co-occur in the dataset within a short distance of each other. This method only

considers a simple mismatch based denition of noise, and does not consider other more

128

complex motif models such as a substitution matrix or a compatibility matrix as in [174].

Furthermore, Marsan and Sagot do not have optimizations, such as the ones we describe

in Section 5.4.1. These optimizations make FLAME faster by an order of magnitude.

Several other algorithms such as the Yeast Motif Finder [135] (YMF), Weeder [115],

MITRA [50] have been used for nding motifs. YMF is a simple algorithm that scans the

dataset using a sliding window and counts the number of occurrences of every possible

motif of a given length. Once it has these counts, it computes the statistical signicance of

each motif, and outputs the best ones. YMF scales very poorly with increasing complexity

of motifs, and thus cannot be easily adapted to other applications. Weeder is a sufx

tree based algorithm that makes certain assumptions about the way the mismatches in

an instance of the motif are distributed. This makes Weeder extremely fast, but it is not

guaranteed to always nd the motif. Weeder too, cannot be adapted for other motif models.

MITRA is a mismatch tree based algorithm which uses clever heuristics to prune the large

space of possible motifs. MITRA is very resource intensive and requires large amounts of

memory.

Statistical approaches use techniques such as Expectation Maximization [15], Sam-

pling [150], Random Projections [21], etc. to search for frequent patterns in the data.

All of these heuristic approaches run the risk of nishing at a local optimum, and may

not be able to nd the right motif. Furthermore, these methods are specically tailored

for the problem of simple mismatch based motifs, and cannot easily be adapted for more

complicated models.

A recent study by Tompa et al. [152] compared several different statistical and pattern

based motif nding algorithms on a variety of real and synthetic datasets, and identied

Weeder [115] and YMF [135] as the most effective methods. In our evaluations, we ex-

tensively compare with these two methods.

129

Surprisingly, there is little published work in nding motifs in time series databases.

Time series data such as stock prices, economic indexes, time varying measurements from

sensors and medical signals like Electrocardiograms can be mined for motifs, and all have

compelling applications. Patel et al. [114] show that time series data can be discretized

and converted into a sequence over a xed alphabet and mined using existing motif mining

algorithms. Another algorithm that nds frequent trends in time series data was proposed

by Udechukwu, Barker, and Alhajj in [155]. However, these algorithms mine for exact

frequent patterns, and are difcult to employ in the case of noisy datasets. Chiu et al.

describe an algorithm in [32] (based on the Random Projections algorithm [21]) which

accounts for noise in the data. However, this algorithm is also limited to a simple mis-

match based noise model. In addition, this is a probabilistic algorithm, and is not always

guaranteed to nd all existing patterns. FLAME, on the other hand provides the options

of a variety of models, and is guaranteed to nd the motif (i.e. it is an accurate algorithm

and not a heuristic method).

5.3 The Model

A critical aspect of the motif mining problem is dening the model under which two

or more sequences are considered to match (approximately). Developing such models

poses an interesting challenge: On the one hand, we want a model that is robust enough

to detect the occurrence of a pattern even in the presence of noise, and on the other hand,

we do not want it to be so general that it matches unrelated subsequences. Since different

applications may have different criteria for how to strike this balance, a natural approach

is to develop a exible model with a few intuitive parameters that can be set by the user

based on the application characteristics. In this section, we present a powerful new model

for motifs that can be used for pattern mining in many different domains.

130

Throughout this section, we will assume that the input sequence is composed of sym-

bols from a discrete alphabet set. However, our methods can also be applied to continuous

time series datasets by converting such datasets into a symbolic sequence dataset by sim-

ply discretizing the numeric data. In fact such a transformation is frequently carried out

for mining continuous time series datasets [32, 114].

We call our motif model the (L,M, s, k) model after the four parameters that determine

it. L is the length of the motif, M is a distance matrix that is used to compute the similarity

between two strings, s is the maximum distance threshold within which two strings are

considered similar, and nally, k is the minimum support required for a pattern to qualify

as a motif.

The (L,M, s, k) model is a very intuitive and powerful model, and permits the user

a lot of exibility in making the right tradeoff between specicity and noise tolerance of

a model. As we describe below, much of this power comes from the ability to use any

matrix M as the distance matrix. This property makes it useful for a variety of complex

motif mining tasks. The matrix M allows us to dene a distance penalty when a symbol

X in the model matches a symbol Y in the data sequence. The penalty is specied by

M(X,Y), an entry in the matrix. The total distance between the two strings is computed by

summing the distance penalties of the corresponding symbols. That is, if A = a1a2a3...an

and B = b1b2b3...bn are two strings, then the distance between A and B under this model

is d(A,B) = Σn
i=1M(ai, bi).

Formally speaking, a string S is an (L,M, s, k) motif if there exist at least k strings

T1, ..., Tk in the database such that each of them is of length L, and d(S, Ti) ≤ s, where

d(A,B) = Σn
i=1M(ai, bi) is the distance function. Every string S that satises the above

is an (L,M, s, k) motif. Note that the string S need not actually appear in the database for

it to qualify as a motif. Only the instances Ti need to be in the database.

131

Sym A B C D E ... I J K
A 0 1 4 9 16 ... 64 81 100
B 1 0 1 4 9 ... 49 64 81
C 4 1 0 1 4 ... 36 49 64
D 9 4 1 0 1 ... 25 36 49
...
J 81 64 49 36 25 ... 1 0 1
K 100 81 64 49 36 ... 4 1 0

Table 5.1: An example distance matrix that implements the sum of squared differences measure

A domain which requires a matrix based measure of similarity is protein motif mining.

Finding regions in protein sequences that appear frequently in different proteins is useful

in inferring the functional sites in proteins. As in the case of DNA, the patterns in protein

sequences do not repeat exactly. The instances of the pattern usually differ from the model

in a few positions. To complicate things further, not all mismatches are equally bad. Some

amino acids are very similar to each other, while some are very different. For instance

Alanine and Valine are both hydrophobic amino acids, while Glycine and Serine are both

hydrophilic. The matrix can be used to award a small penalty for M(X,Y) when X and Y

are similar (Alanine and Valine, for instance) and a larger penalty otherwise (say, Alanine

and Glycine) [70]. Popular substitution matrices such as PAM [38] and BLOSUM [70]

can easily be used in our model.

Next, we demonstrate how this model can also be applied to the stock price example

of Section 5.1. Suppose that we had normalized the data for rm ABC. Assume that

the normalized stock price values are between 0-10. If we discretized them to integers,

we could use letters A – K to represent 0 – 10. Suppose further that we wanted to nd

sequences of length 10 that appeared (approximately) in the database at least 20 times.

If we wanted to use the sum of squared differences as the distance metric to check for

similarity, we can simply use the matrix shown in Table 5.1. In this table, M(X,Y) is set

to (v(X) - v(Y))2 where v(X) is the numerical value corresponding to the symbol X. Using

132

this matrix, we can specify that an instance matches the model if the Euclidean distance

between them is within a given threshold. We model this problem as a (10,M, s, 20) motif

nding problem, where s is an appropriately chosen similarity threshold.

The matrix can be adapted to allow other kinds of models. In fact, the matrix approach

lets us simulate any Lp-norm (Manhattan distance, Euclidean distance, etc.). If we wanted

to match two sequences only if the corresponding values (in the two sequences) were

within 2 units of each other, (the ε-error tolerance model from Section 5.1), we would

just set M(X,Y) = 0 where |v(X) - v(Y)| ≤ 2, and ∞ everywhere else. In general, any

measure that can be computed in an incremental fashion by comparing the symbols in the

corresponding positions can be simulated by constructing an appropriate distance penalty

matrix.

We now discuss two special cases of the (L,M, s, k) model that are commonly used in

computational biology and other domains - the (L, d, k) and (L, f, d, k) models.

5.3.1 Special Case: The (L, d, k) Model

The (L, d, k) model is a mismatch based model commonly used in computational biol-

ogy for nding DNA motifs. The distance measure between two strings is the Hamming

distance, or merely the number of mismatches. The (L, d, k) model is parameterized by

the length of the string that we want to nd (L), the maximum Hamming distance (d), and

the support (k). The parameter d controls the amount of noise we wish to tolerate.

The (L, d, k) model is a special case of the (L,M, s, k) model. It can easily be simu-

lated by a matrix by setting M(X,Y) = 1 if X .= Y and M(X,Y) = 0 if X = Y . This

way, the distance function simply counts the number of mismatches. We set s to d and use

the k from (L, d, k) as our minimum support.

One of the applications of this model is in the eld of computational biology. The

(L, d, k) model and its derivatives have been considered a good t for DNA regulatory

133

motifs [152]. Briey, the related problem of using this model to nd regulatory motifs in

DNA is as follows: Biologists today are interested in understanding how different genes in

the genome are regulated and the way they interact with each other. To this end, biologists

often study genes that exhibit similar expression patterns to extract clues about the proteins

that control their expression. It is believed that genes that are co-regulated by the same

protein (called a transcription factor) share some signal that allows the transcription factor

to recognize the gene and turn it on. This signal is usually present in the region upstream

of a gene (within a few thousand base pairs) called the promoter region. The signature

is usually a short string of DNA 6-15 bases long. As is often the case in biology, these

signatures are seldom identical, and differ in a few positions from one gene promoter

region to another. Finding this noisy signature that is common across all the genes is a

very important step towards locating the binding site for the transcription factor. Modeling

the set of promoter regions as our database, and the signature binding site as an (L, d, k)

pattern, we can simply apply the FLAME algorithm to solve this problem. We show in

Section 5.5, that this is indeed an effective approach.

In most practical situations we don’t know the exact value of L, and therefore, we

might have to try several values. In the case of DNA regulatory patterns, we know that

the signature is usually between 6 to 15 bases long, and therefore we can try these lengths

with varying number of mismatches.

The (L, d, k) model can also be used in other applications where we wish to tolerate

an occasional burst of noise. If two sequences were identical except for the addition of a

noise spike in one of them, they will match under a 1-mismatch model. Consider the two

sequences shown in Figure 5.2. The two bold segments are identical except for the single

spike in the lower sequence. Such spikes may occur due to measurement error or other

reasons, and an (L, d, k) model will be able to tolerate this noise and correctly match the

134

two sequences.

We show in Section 5.5 that the FLAME algorithm is faster than several existing algo-

rithms that deal with nding only (L, d, k) motifs.

0 20 40 60 80 100
!2

!1.5

!1

!0.5

0

0.5

Figure 5.2: Potential uses of the LDK model - the lower segment is identical to the upper segment
except for the single spike. The (L, d, k) model can match these.

5.3.2 Special Case: The (L, f, d, k) Model

The (L, f, d, k) builds on the (L, d, k) model to include some positional constraints on

the mismatches. We introduce this model using an example: Consider the three sequences

{ABCD, ACCD, ABCA}. If ABCD is the model sequence, the other two sequences are

within 1 mismatch of the motif, so these sequences would constitute a (4, 1, 3) motif in

the (L, d, k) model. Now consider the sequences {ABCD, ACCD, ADCD}. This set also

forms a (4, 1, 3) motif, but the mismatches, whenever they occur, are always in position

two (AcCD, AdCD). The (L, f, d, k) model allows us to specify the number of fixed-position

135

mismatches (f) along with just the number of free mismatches (d). This allows us to screen

out patterns of the rst kind, and focus on patterns of the latter kind. In other words, instead

of allowing a mismatch anywhere in the substring, we look for all model strings whose

instances always differ from it (if they differ at all) in the same positions.

The (L, f, d, k) model is also a special case of the (L,M, s, k) model. In order to

model the xed position mismatches, we simply augment the alphabet A with a wildcard

symbol, say “?”. For symbols in A, the distance matrix M is as in the (L, d, k) model, with

M(X,Y) = 1 if X .= Y and zero everywhere else. The wildcard symbol is allowed to

match any symbol with no penalty, so we set M(?, X) = 0 for all X . The space of model

strings that FLAME considers is strings of length L over the augmented alphabet such that

there are at most f occurrences of the wildcard symbol. This way, the (L,M, s, k) model

can simulate the (L, f, d, k) model.

The (L, f, d, k) model can also be very useful when mining for regulatory elements in

DNA since the mismatches tend to have a positional bias. In general, this model is useful

in applications where the noise has a positional bias as it allows us to be more specic in

nding the right patterns while ignoring extraneous matches. Some DNA motif nding

applications [135] use models that are somewhat similar to the (L, f, d, k) model.

We illustrate the advantage of being able to use positionally biased scoring with an

example. Consider a DNA dataset consisting of 5 sequences, each of length 500. Assume

that each sequence has in it the motif GTGAACAC, and each instance of the motif has a

mismatch at the fth position. In other words, the dataset contains an (8, 1, 0, 5) motif.

Note than an (8, 1, 0, 5) motif is also an (8, 1, 5) motif in the (L, d, k) model since a free

mismatch can capture a xed mismatch. If we use the (L, d, k) model to retrieve the

pattern, we will end up with many extraneous hits that might not be meaningful. When we

search for an (8, 1, 0, 5) pattern, FLAME (correctly) returns the result GTGA?CAC. On the

136

other hand, if we search for (8, 1, 5), FLAME returns several other hits that satisfy (8, 1, 5)

but not (8, 1, 0, 5). A post-processing step is needed to check if these are actually xed

position mismatch motifs. An (L, d, k) model can be used to simulate an (L, f, p, k) model

if f + p = d with some post processing. However, as we will explain in Section 5.4.1,

using an (L, f, d, k) model produces a huge cost saving when compared to (L, d + f, k)

with post-processing.

5.4 The FLAME Algorithm

In this section, we describe the FLAME algorithm, which can be used to nd (L,M, s, k)

motifs. For ease of exposition, we explain the algorithm using an (L, d, k) model, and then

describe how we extend it to the full-edged (L,M, s, k) model.

Recall that an (L, d, k) motif is a string of length L that occurs k times in the dataset,

with each occurrence being within a Hamming distance of d from the model string. Given,

L, d, and k, a naive algorithm is to consider all possible strings of length L over the

alphabet (the space of all models), and compute the support for each of them by scanning

the dataset. This algorithm is exponential and becomes infeasible with large L and d

values. One might be tempted to improve this method by considering only those strings

of length L that actually occur in the dataset. However, this approach might miss motifs

as the model string might not actually occur in the dataset even once. To illustrate this

point, suppose that the string ABCDEF is the true motif. Assume that we are looking for a

(6, 2, 3) pattern, and that the instances of this pattern in the dataset are FFCDEF, ABFFEF,

and ABCDAA. Each instance is at a distance of 2 from the model ABCDEF, but the distance

between any two instances is 4. If we consider only instances from the dataset (which

need not contain ABCDEF), then we will not nd the motif.

The approach we take in FLAME explores the space of all possible models. In order

137

A C
B

BB
CA

CC
B CCB

BC
A

CC
B

CA
CC

B null

A
CC

B

CB

B

2 33

8

String = ABBCACCB
Figure 5.3: A count sufx tree on the string ABBCACCB. The counts are indicated inside the node.

to carry out this exploration in an efcient way, we rst construct two sufx trees: a count

sufx tree on the actual dataset (called the data suffix tree), and a sufx tree on the set of

all possible model strings (called the model suffix tree). This second set is typically the set

of all strings of length L over the alphabet. As we describe below, the model sufx tree

helps guide the exploration of the model space in a way that avoids redundant work. The

data sufx tree helps us quickly compute the support of a model string. Recall that a count

sufx tree is merely a sufx tree in which every node contains the number of leaves in the

subtree rooted at that node. In other words, every node contains the number of occurrences

of the string corresponding to that node. (An example sufx tree is shown in Figure 5.3.)

The basic intuition here is that the data sufx tree helps us combine the work common

to nding the support for models like ABCDE and ABCDF (having a common prex) and

perform it only once.

Since the second sufx tree (built on all possible model strings) can be extremely large,

FLAME does not actually construct this sufx tree. Rather, it algorithmically generates

138

portions of this tree as and when needed. FLAME then explores the model space by

traversing this (conceptual) model sufx tree. Using the sufx tree on the dataset, FLAME

computes support at various nodes in the model space and prunes away large portions of

the model space that are guaranteed not to produce any results under the model. This

careful pruning (described in more detail below), ensures that FLAME does not waste any

time exploring models that do not have enough support. The FLAME algorithm simply

stops when it has nished traversing the model sufx tree and outputs the model strings

that had sufcient support.

To understand our strategy of pruning the model sufx tree, consider the following ex-

ample: Assume that the dataset consists of sequences over the alphabet {A,B,C,D,E}.

The dataset and the values of L, d, and k are specied as input. All the strings of length L

starting with the symbol A form a subset of the model space. We call this the A partition.

This partition corresponds to all the nodes in the model sufx tree under the subtree cor-

responding to node A. This partition is further divided into sub-partitions with prex AA,

AB, AC, AD, and AE. These partitions continue on for L levels, and at the last level, we

have only one model string for each partition.

Suppose that we start by considering the models in partition A. Assuming no mis-

matches are allowed, if the support for A is less than k, then, clearly any model that starts

with A cannot qualify as a valid motif since there will be fewer than k instances of it, and

it will not have the minimum support. Consequently, we can safely toss away the entire

space of models starting with the symbol A. This step essentially prunes away the subtree

corresponding to A in the model sufx tree. After pruning A, we proceed to consider the

B partition. An important step here is to compute the support for models starting with A.

This value is simply the number of times A occurs in the dataset, and this value can be

quickly looked up from the count sufx tree on the dataset.

139

Node Number of mismatches Count
A 0 100
B 1 50
C 1 45
D 1 120
E 1 15

Support - 330

Table 5.2: The list of matches for the model A.

When mismatches are allowed, computing the support of a (partial) model string is

more complicated. Suppose that d = 1. When considering matches for models starting

with A, we cannot rule out strings that start with B (or any other symbol), since a string

starting with B could match a model starting with A by only differing in the rst position.

Now assume that the data sufx tree nodes at depth 1 labeled A, B, C, D, and E have

counts of 100, 50, 45, 120, and 15 respectively. The possible number of strings starting

with B that could match a model starting with A is simply the count of node B, namely

50. In a similar fashion, the count value from other nodes at most d mismatches away is

read, and a list of potential matches for A is constructed as shown in Table 5.2. The list

contains the node in the data sufx tree, the number of mismatches corresponding to this

node, and the count from that node. For instance, node A in the data sufx tree has a count

of 100 and perfectly matches the model string (A) - we store this information in the list as

(A, 0, 100). The total support for the partial model is now computed by summing up the

individual counts. In the example for Table 5.2, this sum is 330. Those nodes where the

number of mismatches with the model being considered is greater than d are pruned away

and not included in the list of matches. The algorithm then proceeds to consider the next

partial model – AA.

Observe that the list of matches for any partial model can be constructed incrementally

using the list of matches for that model’s longest prex. For instance, the list of matches

for AC can be constructed using the list for A(Table 5.2). We take each string from the

140

list, and extend it by one symbol. The rst string A, for instance can be extended by one

symbol to AA, AB, ..., AE. The string AC has 0 mismatches itself, the remaining

strings have 1 mismatch each. The support for each of these string can be quickly looked

up in the count sufx tree. We locate the model sufx tree node corresponding to A (stored

in the list of matches). This node points to its children, namely AA, AB, ..., AE.

The support for each of these models can simply be read from the sufx tree, and a new

list of matches is constructed for AC to compute its support. Similarly, when B is extended

to length 2, all strings except BC have more than one mismatch with the model string AC.

Therefore only BC is included in the match list for AC. The remaining nodes (C, D, and E)

are expanded similarly.

We take advantage of this method for incrementally computing the support by travers-

ing the model sufx tree in the depth rst order. If L = 3, the partitions will be consid-

ered in the order A, AA, AAA, AAB, AAC, etc. At each node, the match list and the

support for the parent node has already been computed, and can be used to compute the

support of the current node.

The pseudocode for FLAME is given in Figure 5.4. The algorithm simply puts together

the ideas described above. FLAME uses a sufx tree on the model space and a count sufx

tree on the dataset. It starts by traversing the nodes of the model space in depth rst order.

At each node in the model sufx tree, the subroutine Evaluate Support is called to

compute the list of matches and the new support. This routine uses the match list from the

parent node to speed up the computation. The routine Expand Matches ensures that

the number of mismatches to the model string does not exceed d. At any node, if FLAME

discovers that the support is lower than k, it prunes away that subtree in the model sufx

tree, and continues its traversal. If it nds a model of length L with the required support,

it simply outputs the result.

141

The algorithm described in Figure 5.4 works with (L, d, k) models. For the (L,M, s, k)

model, the Evaluate Support and Expand Matches functions become more so-

phisticated. Instead of merely keeping track of the number of mismatches, they keep

track of the substitution distance score. That is, for each node, the match list stores

Σn
i=1M(xi, yi) where xi is the symbol from the prex of the partition, and yi is the symbol

it is being matched to in the data set. If this distance score exceeds the preset threshold

(s), we prune the model sufx tree at that point, and continue the depth rst traversal just

as in the case of the simpler (L, d, k) model. The new Evaluate Support function is

shown in Figure 5.4.

For the (L, f, d, k) model, we use the augmented alphabet to generate model strings that

contain at most f wildcard characters and use the scoring matrix described in Section 5.3.

5.4.1 Optimizations

We now describe two opportunities for optimization when applying FLAME to practi-

cal problems.

Combining Computation

Very often in a real application, the exact length of the motif is not known a priori.

Often, the user only has a rough idea of the range in which the length may lie. For instance,

in regulatory DNA motif nding, scientists believe that motifs are typically 6 to 15 bases

long. One often ends up trying several (L, d, k) values such as (6 − 15, 1, 100%), (6 −

15, 2, 100%) , (6 − 16, 1, 70%), (6 − 15, 2, 70%), etc. Given the way in which FLAME

computes the support for various candidate models, the algorithm can easily combine the

computation for many different lengths if the number of mismatches is the same across all

lengths.

Recall that the sufx tree of all models is traversed in a depth rst fashion. We build the

142

sufx tree on all strings of length Lmax – the longest length in the range we are examining.

At any node, if the length of the model happens to be in the range of lengths considered,

and the support is greater than the minimum support, we output that model, and continue

the traversal. When we were considering only one length at a time, a valid model would

only be found at a leaf node of the sufx tree since it consisted of strings only of length L.

We allow lengths in the range of Lmin to Lmax by returning valid models starting at depth

Lmin.

This optimization can be applied to (L,M, s, k) models in general. The speedup ob-

tained from this technique is often as high as a factor of (Lmax − Lmin). For instance,

while mining motifs in DNA datasets of [152], we look for motifs of lengths 6–15. In this

case, combining the computation gives FLAME an advantage of 8X over the unoptimized

algorithm.

Optimizing (L, f, d, k)

When mining a database for an (L, f, d, k) pattern, a special opportunity for faster

execution exists if d = 0. When d = 0, the pattern must have all the mismatches in

xed positions and have no free mismatches. Therefore, instead of considering all strings

of length L with at most f wildcard characters (?’s) over the alphabet A U{?}, we can

consider a smaller model space. Since there are no free mismatches, we consider only

those strings that occur in the dataset with at most f of the characters replaced with a

wildcard character. We are still guaranteed to nd the motif.

This reduced model space can be constructed by enhancing the data suffix tree by

adding a node with an edge labeled “?” as a child for every existing node. The algo-

rithm proceeds as described before with this new model tree. Before a (partial) model is

evaluated, the algorithm checks to make sure that the number of “?”s is no greater that f .

As a result of this smaller model space, (L, f, d, k) searches with this optimization are

143

orders of magnitude faster when d = 0.

5.5 Evaluation

In this section, we present results from various experiments that were designed to test

the effectiveness and performance of FLAME. We also compare FLAME with pattern

mining algorithms from different application domains. Most existing algorithms can only

work with (L, d, k) motifs and do not support the more general (L,M, s, k) model. There-

fore, we carry out the comparison between FLAME and these existing methods using only

the (L, d, k) model. Since we do not have a competing algorithm to compare the perfor-

mance of FLAME on (L,M, s, k), we present a detailed analysis of the performance as

different parameters in (L,M, s, k) are varied.

We use a variety of datasets including nancial time series data, DNA sequences, pro-

tein sequences, and synthetically generated sequence data for our comparison. The char-

acteristics of these datasets are summarized below:

Snake: This is a snake protein dataset from [81] that was considered for subsequence

mining in [164]. It consists of 352 different snake venom protein sequences of varying

lengths. The size of the dataset is about 28,000 symbols. The alphabet of amino acids

(that make up the proteins) is of size 20. Such protein datasets are often analyzed in

bioinformatics to nd common patterns that might provide insights into their function.

Washington: A recent paper [152] compares several different DNA motif nding tools

on a variety of datasets. The Washington dataset is actually a collection of 52 different

datasets. It includes DNA sequences taken from several genes in Yeast, Mouse, Fruit Fly,

and Humans, and also includes a few synthetic sequences. For a complete description,

see [152]. The total size of this collection is 1.3 Million symbols.

IBM: This dataset contains second by second average price of IBM stock for all the trading

144

days in December 1999 [74]. To reduce the noise in the detailed dataset, we preprocess

the data using the following standard data processing techniques that are designed to deal

with short term volatility in stock price information [154]: First, the data is converted

into a minute wise average price using a sliding window. And next, the price values are

transformed into a percentage change with respect to the price in the previous minute. This

technique is routinely used to compare movement data across different stocks that have a

different face value. The resulting dataset contained 21 sequences from 21 days, each of

length approximately 400 numbers, totaling 8,400 numbers.

Synthetic: In order to fully explore the space of data sizes and alphabet sizes, we use a

synthetic data generation method that has been extensively used in several previous ef-

forts [21, 50, 115, 118]. The data is generated as follows: Given the alphabet size, the

number of sequences, and the size of each sequences, we generate random sequences by

uniformly drawing symbols from the alphabet. We then randomly choose k sequences

and implant a pattern of length L with d mismatches at random positions in each of the k

sequences. This results in a dataset containing an (L, d, k) motif. The sizes of datasets we

generate are comparable to those used in previous related papers [21, 50, 115, 118].

All the experiments in this section were performed on a 2.8 GHz Intel Pentium 4 pro-

cessor with 2 GB of main memory. The operating system was Fedora Core 4 Linux,

kernel version 2.6.11. All sufx trees were constructed using the TDD sufx tree con-

struction algorithm [144]. We used the implementation of cSPADE available at [35]. The

YMF implementation was obtained from [176], the Weeder implementation was obtained

from [165], and the Random Projection implementation was obtained from [122].

5.5.1 Comparison with cSPADE

We rst compare FLAME with cSPADE [180], a traditional subsequence mining al-

gorithm, by mining for exact contiguous patterns. cSPADE [180] is a constrained subse-

145

quence mining algorithm based on SPADE [181]. cSPADE can be adapted to mine for

contiguous subsequences by specifying an upper limit on the gaps in sequences to be zero.

Since cSPADE was designed without approximate matches in mind, we can only compare

it against FLAME on exact motif mining.

In this experiment, we use the Snake dataset. cSPADE requires the data to be pre-

processed into a special format [181]. We do not include this preprocessing time in the

comparison. The time shown for FLAME includes the time taken to construct the sufx

tree. We run both algorithms to nd exact motifs of lengths 3-14. The results are shown

in Figure 5.6.

As is evident from Figure 5.6, FLAME is faster than cSPADE by an order of mag-

nitude in each case. This result is perhaps not very surprising if one considers the fact

that cSPADE and other subsequence mining algorithms like it, are designed for a differ-

ent data mining problem (namely subsequence mining). Adapting cSPADE to mine for

even a simple exact contiguous motif results in relatively poor performance compared to

FLAME, which is specically designed for motif mining.

5.5.2 Comparison with Random Projections

The Random Projections (RP) algorithm proposed by Bulher and Tompa [21] has re-

cently been applied to time series data for motif mining [32]. RP is an approximate motif

nding technique that works only for the special case of (L, d, k) patterns, and cannot

work with the more general (L,M, s, k) model. This algorithm has also been applied to

nding DNA motifs and is considered faster [21] than several popular algorithms such as

MITRA [50] and WINNOWER [118].

The RP algorithm is based on the idea of “locally sensitive hashing” from [61]. Given

L, d, and k, the algorithm chooses a p-position mask as a hash function. Then, the algo-

rithm hashes all the l-mers in the database. If a sufcient number of l-mers hash to the

146

same bucket, it is likely that there is a motif that is similar to the l-mers in the bucket.

Once a candidate bucket is identied, any local search algorithm can be used to search

in the vicinity of the l-mers in the bucket for the (L, d, k) motif. In particular, RP uses

an expectation maximization based algorithm like MEME [14] to search in the vicinity of

“enriched” buckets. The main contribution in [21] is that they describe how to compute

p, and the number of iterations for which the algorithm needs to be repeated for a certain

level of condence.

We compare FLAME and RP by performing a typical (L, d, k) motif mining task on

datasets of varying sizes. In order to explore a wide range of database sizes, we use syn-

thetically generated datasets (following the well established methods that have been used

before for similar comparisons [21,50]). These datasets are generated (as described above)

on a DNA alphabet of size 4. Each dataset contains 20 sequences. We vary the length of

each sequence from 200 to 1000 symbols for each dataset. The datasets are implanted

with a motif of length between 8 and 14 (chosen randomly). The algorithms do not know

the actual length of the motif in advance (as is the case in any real task [152]). Both al-

gorithms try to nd (L, d, 20) motifs for d = 1, 2 and L varying from 8 to 14. FLAME

takes advantage of the technique described in 5.4.1 to combine the computation from dif-

ferent lengths. RP is run once for each value of L, and we add up the time from each run.

(RP does not lend itself to combining computation.) RP is a heuristic technique, and in

our evaluation we set it to nd motifs with 95% condence (the default setting). There

is a 5% probability that RP might miss some motifs. The time taken by each algorithm

for this task as the database size (i.e. the sequence length) varies is shown in Figure 5.7.

The time taken to construct the sufx tree is a one time cost, and is less than 1 second for

each dataset. It is not included in the execution times that we report for FLAME in the

remainder of this section.

147

For the task of nding motifs with L varying from 8 to 14, and d=1 (denoted as (8 −

14, 1, 20) in Figure 5.7), the RP algorithm works well for small database sizes. However,

as the database size increases, we see that its performance begins to deteriorate rapidly.

The reason for this deterioration is that with larger datasets most choices for the hash

functions (the p-position mask) lead to a large number of “enriched” candidate buckets.

This is especially true with shorter patterns. Exploring a candidate bucket is an expensive

operation since it involves running an Expectation Maximization search.(The renement

step in [21].) When many buckets need to be explored to nd the real (L, d, k) pattern,

RP ends up taking much longer. FLAME, one the other hand, is relatively less sensitive

to increases in the database size (Figure 5.7). A larger database will lead to a model being

pruned deeper in the model tree, but FLAME still manages to avoid a lot of redundant

computation by virtue of using the sufx tree to efciently prune the model space. For the

(8 − 14, 2, 20) task, RP takes too long to complete for sequence lengths beyond 400, and

we do not report these times in Figure 5.7.

5.5.3 Comparison with Weeder and YMF

Many algorithms have been proposed in the eld of computational biology for nding

motifs. Most of these algorithms deal with (L, d, k) type motifs [21, 50, 118, 135]. A

recent study [152] compared several algorithms, and determined that Weeder [115] and

YMF [135] performed among the best. Weeder scored highest on many performance

metrics, and YMF did nearly as well. In this section, we compare FLAME with these two

algorithms.

Comparison with Weeder

Weeder is a very fast heuristic algorithm that was specically designed to nd motifs

in DNA datasets. The algorithm is limited to the (L, d, k) model and does not work with

148

the more powerful (L,M, s, k) model. Weeder is extremely fast because it assumes that

the mismatches are distributed uniformly across the length of the motif. While looking

for a motif of length 10, if it nds 2 mismatches after examining the rst 3 symbols of

a sequence, it eliminates the string because it assumes that it is highly unlikely that the

remaining 7 symbols will match correctly. As a result of this assumption, Weeder can

prune the search space very quickly, but it is not guaranteed to be accurate. Weeder cannot

nd motifs whose instances have mismatches not distributed uniformly across the length

of the motif.

We perform a simple experiment to determine the accuracy of Weeder. We use the

Washington dataset [152] that is based on the real motifs found in the TRANSFAC [153]

database. We run both algorithms on the Washington dataset using a variety of models.

The implementation of Weeder [165], only works for motifs of even lengths between 6 and

12, so we limit FLAME to these lengths too. We present the number of motifs found by

Weeder as a percentage of the total number of motifs present in the dataset. Since FLAME

is an accurate algorithm, it always nds all the motifs in the dataset, and we do not show

its accuracy (100%) in the graph. These results are summarized in Figure 5.8. As one can

readily observe, Weeder nd a large portion of the simpler patterns, but as the patterns get

more complex, Weeder misses a large number of them. In fact, for motifs such as (12, 2),

Weeder nds less than 5% of the total number of motifs found by FLAME. However, the

one point in favor of Weeder is speed. It takes only one second to nd a (10,2,20) motif

while FLAME takes close to 40 seconds. Weeder pays the price for this speed with a very

low accuracy.

The task of predicting regulatory elements is a two step process. First a pattern nding

tool such as Weeder or FLAME can be used to nd all the patterns that frequently occur in

the dataset being considered. The second step is to examine these patterns and score them

149

on various factors such as strength of the motif, biological importance, statistical signif-

icance, etc. The second step requires domain knowledge to distinguish between patterns

that are real regulatory sequences versus random matches to the background “junk DNA”.

Biologists employ many heuristics for the second phase to varying degrees of success,

and often requires some manual processing. The rst phase is orthogonal, and any pattern

nding tool can be used and paired with a different scoring/ranking procedure.

Figure 5.8 shows that while FLAME nds all the candidate motifs, Weeder might miss a

signicant fraction. Finding more results in the rst phase of the computation is certainly

benecial since we will be better informed going into the second phase of ranking the

patterns found, and therefore stand a better chance of identifying the best motifs.

To demonstrate the effectiveness of FLAME in nding real biological motifs that are

missed by Weeder, we performed the following experiment: We list all the candidate mo-

tifs found by FLAME in the Washington dataset and rank them using the same scoring

function as Weeder’s. We observed that FLAME was able to correctly identify several

motifs that Weeder missed. For instance, FLAME reports TCGTAACG on human dataset

hm08r, CGACGTATGC on hm11g, and CGTACGAT on hm16r. Weeder offers no predic-

tion on any of these data sets. These motifs do not appear in the list of several hundred

potential motifs that Weeder nds in the rst phase before it starts scoring them. There-

fore, irrespective of the scoring method used, Weeder could not have reported the motifs

for these and several other similar datasets. Since FLAME explores the entire model space,

it does not miss any motifs, and is therefore able to detect the correct motif.

Since Weeder has a very low accuracy, we do not consider it for experiments in the

remainder of this section.

150

Comparison with YMF

Another algorithm that performed well in the comparison in [152] is YMF (Yeast Motif

Finder). YMF is a simple and accurate algorithm that nds all patterns that appear more

frequently than expected in a set of DNA sequences. Like Weeder, YMF too cannot be

used for (L,M, s, k) models. It simply has a counter corresponding to each possible motif

in the model space. It scans the database once using a sliding window and augments the

count for each motif that matches the sliding window. One can easily see that YMF will

scale linearly with the size of the database, but will scale very poorly with the size of the

model space since it keeps a counter for each possible model. YMF becomes impractical

for longer, complex motifs.

We demonstrate this behavior using a synthetic dataset containing 20 sequences, each

600 symbols long. We implant different (L,d,20) motifs in the sequence. We run YMF and

FLAME on a variety of (L, d, k) motifs. The results are averaged over 50 datasets. The

results of this experiment are presented in Figure 5.9. For the (8,1) motif, both YMF and

FLAME nish very quickly. However, we can easily see that YMF does not scale well as

the motif complexity increases. For the (12, 3) motif, YMF did not nish in a reasonable

amount of time, and we had to terminate the program after two hours. FLAME, on the

other hand, completes in less than two minutes. We conducted similar experiments by

varying the sequence length from 200 to 1000. FLAME continues to be faster than YMF

for these settings, and we omit presenting the results in the interest of space.

We devote the rest of the evaluation section to study the performance characteristics of

FLAME as different parameters in the problem setting are varied.

151

5.5.4 Performance Characteristics of FLAME

Alphabet Size

Our next experiment studies the effect of alphabet size on execution time. For this

task, we again use the synthetic dataset generator. We vary the alphabet size from 5 to 50,

and at each point evaluate the execution time for various implanted patterns. Each dataset

consisted of 20 sequences, each of length 600, totaling 12,000 symbols. The execution

time for various implanted motifs is summarized in Figure 5.10.

As can be seen in the gure, execution times for simpler motifs such as (6, 1), (8, 1), and

(10, 1) grow slowly with alphabet size. Complex motifs, such as (8, 2) and (10, 2), which

inherently require the algorithm to search a larger space, grow faster with alphabet size.

Nevertheless, the mining task is often completed within a few hours even for very large

alphabets. Several real world applications such as DNA sequence mining, and protein

sequence mining typically require an alphabet of size less than 25, and can be mined very

quickly with FLAME.

Mining Time Series Data

We now study the performance of FLAME for different parameters of the (L,M, s, k)

motif model. (Since existing algorithms do not support the (L,M, s, k) model, we do not

compare FLAME with any other algorithms for the rest of this section.)

In this experiment, we use the (L,M, s, k) model to mine the IBM dataset. We use

a 20 bucket histogram that partitions the dataset into roughly equal sized buckets. We

then assigned a symbol to each bucket, and encoded the numerical series into a symbolic

sequence. The dataset totaled about 8,400 symbols. The distance penalty matrix is a

squared error matrix using the numerical values corresponding to each symbol. That is,

M(A,B) = |v(A) − v(B)|2, where v(A) is the numerical value corresponding to the

152

symbol A (the midpoint of the bucket in the histogram). In effect, this is the L2 norm.

We present the time taken by FLAME to nd several (L,M, s, k) motifs. First we set

the support to be 21 (equal to the number of sequences in the dataset). We run FLAME

for L = 5, 8, and 11, while varying the distance threshold s. The results of this experiment

are shown in Figure 5.11. We observe from the gure that as the threshold is increased the

time taken to execute the search increases. This is because at higher thresholds, the pat-

tern is more relaxed, and the space of potential models that needs to be searched is larger.

FLAME is able to nd models of length 11 within 16 seconds. We then repeated the ex-

periment for higher support values of 60 and 120. These results are shown in Figures 5.12

and 5.13 respectively. As can be seen in these gures, increasing the support decreases

the amount of time taken. This is because of the fact that a higher support causes more

aggressive pruning of the search space, and hence, a lower execution time.

Mining Protein Sequences

Next, we examine the performance of FLAME on the Snake dataset [81]. Protein

motif mining is a good example of an application where the (L,M, s, k) model offers

a signicant advantage over using less powerful models. The (L, d, k) and (L, f, d, k)

models cannot capture the notion of similarity required for mining protein motifs. The

(L,M, s, k) model is the only model that allows us to use popular similarity matrices like

PAM30 [38] and BLOSUM [70], and is therefore essential for applications such as protein

motif mining. (PAM30 is a substitution matrix that is commonly used in life sciences

application to compute scores when searching for proteins based on sequence similarity.)

In this experiment, we look for (L,M, s, k) motifs using PAM30 as the distance matrix.

We x the support to be 175 (roughly half the number of sequences) to nd patterns that are

common to snake venom proteins. (Protein sequence mining typically uses high thresh-

olds [81].) We varied (L, s) as (6, 10), (8, 10), (10, 10), (10, 20), (12, 20), and (12, 30).

153

The results are shown in Figure 5.14. As we can see from this gure, the computation time

increases with an increase in the distance threshold. A higher distance threshold indicates

a more relaxed pattern – which in turn means that FLAME has to proceed deeper down the

model tree before it can start eliminating models. As can be observed from Figure 5.14,

even the longest motifs are found reasonably quickly.

Scaling to Large Datasets

Finally, we demonstrate the scalability of the FLAME algorithm for mining motifs

on very large datasets. Motif mining is a difcult task, and existing algorithms focus on

relatively small datasets (of the order of 10,000 symbols). We show that using FLAME,

it is possible to scale to much larger database sizes. We generate synthetic datasets, and

embed a motif of length chosen randomly between 8 and 14 in 10% of the sequences.

The datasets contain sequences of length 1000, and the number of sequences is increased

gradually to generate database of increasing sizes. The total database size is varied from

20,000 symbols to 1 million symbols. We run FLAME on these datasets to nd (8−14, 1)

and (8 − 14, 2) models with 10% support. The results for this experiment are shown in

Figure 5.15.

The execution time increases relatively slowly (Figure 5.15) as we increase the database

size. In the case of (8−14, 1, 10%) motifs, the time increases from 7 seconds to 55 seconds

over the entire range. In the case of (8 − 14, 2, 10%) motifs, the time increases from 290

seconds to 5900 seconds. As one would expect, the time to mine more complex motifs

grows a little faster. However, even patterns of length 14 in a database this large can be

mined in a few hours. To our knowledge, none of the existing algorithms can accurately

scale to such large database sizes.

154

5.5.5 Summary

In this section, we evaluated FLAME on a number of real and synthetic datasets. The

results demonstrate that for motif mining, FLAME is an order of magnitude faster than the

(constrained) subsequence mining algorithm cSPADE. The results also show that FLAME

is faster, and scales better than other algorithms that have been used for time series mining,

such as Random Projections. In addition, comparison of FLAME with two of the best

algorithms used in computational biology, namely Weeder and YMF, shows that:

1. Weeder is fast, but misses a signicant number of motifs (more than 90% for complex

motifs). On the other hand, FLAME is guaranteed to nd all motifs in the dataset.

2. YMF, like FLAME, is 100% accurate, but is very slow. Compared to YMF, FLAME

is faster by more than an order of magnitude.

We also conducted experiments to test various characteristics of FLAME. These exper-

iments reveal that FLAME performs well in a variety of mining situations, and scales to

datasets much larger (1 million symbols) than has been attempted before.

5.6 Conclusions and Future Work

In this chapter, we presented a powerful new model: (L,M, s, k) for motif mining in se-

quence databases. The (L,M, s, k) model subsumes several existing models and provides

additional exibility that makes it applicable in a wider variety of data mining applications.

We also presented FLAME, a exible and accurate algorithm that can nd (L,M, s, k) mo-

tifs. Through a series of experiments on real and synthetic datasets, we demonstrate that

FLAME is a versatile algorithm that can be used in several real motif mining tasks. We

also show that FLAME outperforms existing subsequence mining algorithms (cSPADE)

and time series mining algorithms (Random Projections) by more than an order of magni-

155

tude. FLAME is also superior to motif nding algorithms used in computational biology

(more accurate than Weeder, signicantly faster than YMF).

156

FLAME (modelTree, dataTree, l, d, k)
1. model = modelTree.FirstNode()
2. While (model .= modelTree.LastModel())
3. Evaluate Support(model,dataTree)
4. If (isValid(model))
5. Print “Found Model: ”, model
6. Else If(model.support() < k)
7. modelTree.PruneAt(model)
8. model = NextNode(model,modelTree)
9. End While
10.End

Sub Evaluate Support (model, dataTree)
1. newsymbol = last symbol of model.String
2. oldmatches = model.Parent().Matches()
3. newmatches = EmptyMatches()
4. If (model.Parent() == root)
5. newmatches = Expand Matches(root,newsymbol,dataTree)
6. Else
7. ForEach match x in oldmatches
8. newmatches = newmatches U

Expand Matches(x,newsymbol,dataTree)
9. End ForEach
10.model.SetMatches(newmatches)
11.Return

Sub Expand Matches (x, newsymbol, dataTree)
1. Let Y = Set of all single character expansions of x.String

in dataTree
2. ForEach element b in Y
3. If b’s last symbol .= newsymbol
4. b.mismatches ++
5. If b.mismatches > max mismatches
6. Remove b from Y
7. End ForEach
8. Return Y

Figure 5.4: The FLAME Algorithm

157

Sub Expand Matches lMsk (x, newsymbol, dataTree)
1. Let Y = Set of all single character expansions of x.String

in dataTree
2. ForEach element b in Y
3. b.distance += Distance Matrix(b.lastsymbol,newsymbol)
4. If b.distance > max distance
5. Remove b from Y
6. End ForEach
7. Return Y

Figure 5.5: Functions for (L,M,s,k)

Ti
m

e
(in

 s
ec

)

0

5

10

15

20

25

Length of Motif
2 4 6 8 10 12 14

FLAME,Sup=50%
cSPADE,Sup=50%
FLAME,Sup=10%
cSPADE,Sup=10%

Ti
m

e
(in

 s
ec

),
lo

g
sc

al
e

1

10

100

1000

10000

Length of Sequence
200 400 600 800 1000 1200

(8!14,1,20) FLAME
(8!14,1,20) RP
(8!14,2,20) FLAME
(8!14,2,20) RP

Figure 5.6: cSPADE vs FLAME on the Snake dataset
for different length exact motifs at supports
of 10% and 50%.

Figure 5.7: RP vs FLAME for varying database sizes.
Note that the time axis is on a log scale.

158

Ac
cu

ra
cy

(%
 o

f M
ot

ifs
 R

ec
ov

er
ed

)

0

5

10

15

20

25

30

35

Motif

(6
,1

)

(8
,1

)

(1
0,

1)

(1
0,

2)

(1
2,

1)

(1
2,

2)

Ti
m

e
(in

 s
ec

),
lo

g
sc

al
e

1

10

100

1000

10000

Motif

(8
,1

)

(1
0,

2)

(1
2,

2)

(1
2,

3)

YMF
FLAME

Ti
m

e
(in

 s
ec

),
lo

g
sc

al
e

1

10

100

1000

Alphabet Size

0 10 20 30 40 50 60

(6,1)
(8,1)
(10,1)
(10,2)
(12,2)

Figure 5.8: Weeder - Accuracy
on real DNA datasets.
FLAME is guaranteed
to be 100% accurate,
and is not shown here.

Figure 5.9: YMF vs FLAME on
synthetic datasets. Note
that the time axis uses a
log scale.

Figure 5.10: Performance as alpha-
bet size varies.

Ti
m

e
(in

 s
ec

)

0
2
4
6
8

10
12
14
16
18
20

Distance Threshold (s)
0.0002 0.0006 0.001

L=5
L=8
L=11

Ti
m

e
(in

 s
ec

)

0

2

4

6

8

10

Distance Threshold (s)
0.0002 0.0006 0.001

L=5
L=8
L=11

Ti
m

e
(in

 s
ec

)

0

2

4

6

8

10

Distance Threshold (s)
0.0002 0.0006 0.001

L=5
L=8
L=11

Figure 5.11: FLAME: Distance thresh-
old vs time taken for
(L,M,s,k) motifs on IBM
stock price data at support
= 21.

Figure 5.12: FLAME: Distance thresh-
old vs time taken for
(L,M,s,k) motifs on IBM
stock price data at support
= 60.

Figure 5.13: FLAME: Distance thresh-
old vs time taken for
(L,M,s,k) motifs on IBM
stock price data at support
= 120.

159

Ti
m

e
(in

 s
ec

),
lo

g
sc

al
e

1

10

100

1000

Motif

(6
,1

0)

(8
,1

0)

(1
0,

10
)

(1
0,

20
)

(1
2,

20
)

(1
2,

30
)

Figure 5.14: FLAME: (L,M,s,k) motifs on the Snake
dataset.

Ti
m

e
(in

 s
ec

),
lo

g
sc

al
e

1

10

100

1000

10000

Size of Database (K Symbols)
0 200 400 600 800 1000

(8!14,1,10%)
(8!14,2,10%)

Figure 5.15: Scalability of FLAME with increasing
database size.

CHAPTER VI

Application – GeneFinder

6.1 Introduction

Having sequenced the genomes of several organisms, the next major challenge for the

life sciences community is to understand the regulatory networks of an organism. A key

step to understanding the regulatory code is determining all the binding sites and therefore

the regulatory targets of each transcription factor. Much of the work in this area focuses

on two critical tasks: a) discovering motifs/binding sites through computational analysis

and b) using a known motif to predict other regulatory targets of the transcription factor.

Many high quality algorithms have been developed for discovering a motif or a binding

site by analyzing the promoter regions of genes thought to be regulated by the same tran-

scription factor [139]. This is frequently done by clustering genes based on gene expres-

sion data, and then using sequence analysis techniques on the promoter regions. Experi-

mentally veried binding sites are available for several transcription factors in databases

like TRANSFAC [153] and JASPAR [162]. Several motif discovery algorithms are de-

scribed and compared in [152]. This problem is known to be difcult since a given tran-

scription factor may bind to signicantly different sites.

In this chapter, we do not focus on the motif discovery algorithm. Instead, we focus on

problem of representing the information about binding sites and using it to predict other

160

161

binding sites. This problem has received much attention in recent years. A solution to this

problem is key to understanding transcription and regulation. The binding site signatures

of a transcription factor are represented using the consensus sequence, the position weight

matrix (surveyed in [139]), or the sequence logo [130]. Locating approximate matches

to a consensus sequence or a position weight matrix in the promoter regions of the gene

of interest is the predominant strategy used to predict if a gene is a potential target of a

transcription factor. Merely locating matches to a consensus sequence can result in a large

number of false positives. For instance, consider the case of the activating transcription

factor ATF3. The consensus sequence for ATF3 is TGACGTCA [172]. If we simply

search the promoter regions of all the genes in the mouse genome, we nd nearly 1000

hits. ATF3 is however known to regulate less than a few dozen genes. Clearly, locating the

targets of a transcription factor is not an easy task, and many other pieces of information in

addition to the binding site consensus sequence are required to reduce the false positives

and solve this problem.

Our current understanding of the mechanisms of transcription may be insufcient to

computationally determine all targets of a transcription factor. In fact, the very question

might be ill-posed in the sense that different binding sites are likely to be effective to dif-

ferent extents, and therefore lead to different levels of activation (or repression). However,

it is reasonable to expect that it is possible to computationally predict the major targets of

a transcription factor with high condence.

In this chapter, we present GeneFinder – a program that combines various pieces of

information to produce a ranked list of candidate targets for a given transcription factor.

Given the position weight matrix from a source like TRANSFAC, JAPSAR, or from litera-

ture, GeneFinder uses the position of the binding site relative to the transcription start site,

the degree of conservation of this binding site across closely related species, tissue specic

162

expression data, and multiplicity of binding sites to compute a more accurate ordering of

the candidate targets.

Previous approaches have employed only one or two of these techniques [86, 172] or

have restricted themselves to a smaller scale [120]. Some tools like those provided by

Genomatix [58] perform a subset of this analysis one promoter region at a time. However,

they do not offer genome scale analysis. GeneFinder builds on these approaches by solving

this problem in a scalable way that permits genome-wide searches in a fraction of the time

that other tools take to perform less detailed analyses. At the core of this approach is a

sufx tree based algorithm that can locate matches to position weight matrices extremely

quickly. In addition GeneFinder can rapidly incorporate other data sources to reorder the

candidate list. Further, GeneFinder makes it extremely easy to add new sources of data that

can further rene the scoring of candidate hits. This is made possible through a modular

approach that weights each data source independently and incorporates it using Bayesian

reasoning.

The rest of the chapter is outlined as follows: Section 6.2 describes the algorithms we

use to search the sequence, and then rene the list of hits to produce a re-ordered list of

candidate targets. Section 6.3 describes the results of a few GeneFinder queries. We show

that GeneFinder is not only able to nd known targets of transcription factors, but also

offer several predictions for new targets that seem very promising. Finally, Section 6.4

summarizes the chapter, and presents our conclusions.

6.2 Methods

This section details the algorithms used by GeneFinder. We rst describe the sufx

tree based algorithm that is used to locate sequence matches. We then describe the tech-

niques used to incorporate position information, phylogenetic information, tissue specic

163

expression data, and the multiplicity of binding sites to rescore these candidate targets.

6.2.1 Searching the genome

Given a position weight matrix, the rst step is to locate all candidate matches to the

position weight matrix that score above a certain threshold in the genome of interest. A

simple algorithm for this is to use a sliding window of size equal to the length of the matrix

and scan the entire sequence. This approach is slow, and may take several hours if we wish

to scan multiple genomes. GeneFinder overcomes this hurdle by using a sufx tree based

algorithm. The basic idea of the algorithm is to rst construct a sufx tree for the sequences

that need to be searched. This is a one time cost that gets amortized over many searches.

For each position weight matrix, we explore the sufx tree to prune out branches of the

tree that do not have promising matches. This approach lets us evaluate each subsequence

against the matrix only once, irrespective of the number of times it appears in the tree. We

briey describe the sufx tree and the algorithm below.

Suffix Trees

A sufx tree is described by [64] as a tree type data structure on a string S where each

of its n sufxes is represented as a path from the root to a leaf. The out-degree from each

of the nodes is O(| Σ |) where Σ is the alphabet. Thus given a sufx tree, a substring of

length p can be found or proved to not exist in time Θ(p).

Figure 6.1 shows a sufx tree on the sequence “ATTAGT$”. By traversing from the

root downward, one can determine if a substring is present in the tree. The sufx tree

provides unambiguous paths for a traversal algorithm.

GeneFinder uses sufx trees constructed by the TDD algorithm described in [151]. This

is a disk-based sufx tree construction algorithm that makes it possible to construct sufx

trees on disk for very large sequences. By comparison, popular in-memory construction

164

Figure 6.1: A Sufx Tree

algorithms like Ukkonen [156] or McCreight [103] are several orders of magnitude slower

when dealing with very large sequences where the size of the resulting sufx tree exceeds

the amount of main memory.

Algorithm

The algorithm used to search the sufx tree for matches to the matrix is similar to the

approach in [45, 171]. However, our algorithm uses a disk-based sufx tree in order to

scale to large sizes. We use a best rst exploration of the space of all possible matches.

We start by matching the matrix with all nodes in the rst level in the tree, we store

each (partial) match with the current score and the maximum possible nal score. The

maximum possible nal score can be computed as the score that will be obtained if the

partial match is expanded using the best possible symbols that lead to the highest score. If

165

this maximum possible score is below the threshold level, the partial match is discarded.

The highest scoring partial match is then expanded to the next level, and so on. A priority

queue is used to store the partial matches so that they can be retrieved in best rst order

efciently.

A C G T
12 13 50 25
80 10 5 5
100 0 0 0
0 90 0 10
0 80 10 10

Table 6.1: A Sample Position Weight Matrix

Table 6.1 shows a position weight matrix of length 5. If we assume that the scores are

additive, the score for the sequence “CCATG” would be 13 + 10 + 100 + 10 + 10 = 143.

The maximum possible score is for “CAACC” = 400. In GeneFinder, the weights in the

position weight matrix are normalized so they add up to 1. The scoring is multiplicative –

that is the score from each position is multiplied with the score from the next position and

so on. Equivalently, if we store the position weight matrix with log values, we use additive

scoring.

6.2.2 Refining Candidates

GeneFinder uses four main ideas to rene the rank of candidate matches:

1. Position of the binding site relative to transcription start site

2. Conservation across related species

3. Tissue Specic Gene Expression

4. Multiple Sites

We discuss these factors in more detail in the following sections.

166

Fr
ac

tio
n

of
 B

in
di

ng
 S

ite
s

0

0.05

0.1

0.15

0.2

Distance from TSS
0 100 200 300 400 500

Figure 6.2: Distance of Binding Site from the Tran-
scription Start Site

Position

The position of the binding site relative to the transcription start site has been shown to

be of signicance [120,172] in eukaryotes. Qian et. al. [120], show that transcription factor

binding sites may have a strong preferred location. A binding site located at a ‘preferred’

distance is more likely to be a real candidate than one located at a highly ‘non-preferred’

distance. The distribution of the distance of the binding site from the transcription start

site is shown in Figure 6.2. This is based on examination of over 200 binding sites from

TRANSFAC [153]. As we can see from the gure, a majority of the binding sites occur

between 50 and 250 bases upstream of the transcription start site. GeneFinder uses simple

Bayesian reasoning to incorporate the position information into the scoring algorithm. We

use the following equation:

P (H|P = p) = P (P=p|H)×P (H)
P (p=p) . Here, P (H) is the probability that a given hit is a true

motif. P (H|P = p) is the probability that the hit being considered is a true binding site

given its distance from the transcription start site, and P (P = p) is the probability that a

167

Fr
ac

tio
n

of
 S

ite
s

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

Conservation Score
1 3 5 7 9

Figure 6.3: Distribution of Conservation Scores

random sequence (of the same length as the binding site) would match at a distance of p

from the transcription start site.

Given the position of the hit, we can compute P (P = p|H) from Figure 6.2. P (H)

is empirically estimated from the raw match score as in [120]. We use a uniform random

distribution to model P (P = p).

Conservation across related species

A binding site that is conserved across multiple closely related species is more likely to

be a functional element than one that is not. The reasoning behind this is that a conserved

sequence is likely to have been evolutionarily selected for because of its function. Several

studies have used this approach [86,172]. Again, we use Bayesian reasoning to incorporate

this information into our scoring model. We compute P (H|C = c) = P (C=c|H)×P (H)
P (C=c) .

Here, P (H) is the probability of the hit being a true binding site. P (C = c|H) is the

probability that the site will obtain a conservation score of c given it is a true motif, and

nally, P (C = c) is the probability of a random sequence obtaining a conservation score

of c. Although any complex conservation score is admissible, we use a simple metric – c

168

as the number of species across which the binding site is conserved.

In order to compute the numerical values for each of these probabilities, we constructed

a training data set based on [172]. This chapter presents a list of regulatory elements iden-

tied by comparing the promoters of orthologous genes across multiple species. They

identify conserved segments that appear in multiple promoters to identify them as poten-

tial binding sites. Using the motif conservation score from this data, we computed the

distribution for P (C = c|H). Figure 6.3 shows this distribution. P (C = c) is computed

assuming a conservation rate of 6.8% for a random 8-mer. If the average phylogenetic

distance between the species being compared is much different from this, then the number

can be appropriately adjusted to accurately reect the signicance of conservation of the

binding site.

Tissue Specific Gene Expression

Tissue specic gene expression data can also be incorporated using Bayesian reasoning

to help differentiate random hits from true candidates. If the transcription factor and the

target are not known to be expressed in the same tissues, it is less likely that the putative

target is real. However, if expression data shows that the tissue and the target are both

expressed in some tissues, this can be interpreted in favor of the target. This reasoning has

been used in previous approaches such as [120]. However, instead of using it as a strict

lter, we use a Bayesian formula to incorporate this information:

P (H|T = t) = P (T=t|H)×P (H)
P (T=t) . Here, P (T = t|H) is the probability that tissue specic

expression score is t given that the target gene is a true hit. P (H|T = t) is the probability

that the hit being a true binding site given the tissue specic expression score. Finally,

P (T = t) is the probability that a random hit obtains a tissue specic expression score of

169

Pe
rc

en
ta

ge
 o

f G
en

es
0

0.6

1.2

1.8

2.4

3

Fractional Expression Level x 10000
0 1 2 3 4 5

Target Genes
All Genes

Figure 6.4: Tissue Expression Distribution For Eye
Tissue

t. We approximate P (T=t|H)
P (T=t) with P (expressionlevel=l|H)

P (expressionlevel=l) where l is the expression level of the

target being considered in the tissue of interest. These probabilities are estimated from the

Unigene data [157] that lists the expression level for different genes in different tissues.

If the transcription factor is known to be expressed in multiple tissues, we then use the

geometric mean of the ratios (computed as above) for each tissue.

The distribution of P (expressionlevel = l|H) and P (expressionlevel = l) for eye

tissue are shown in Figure 6.4. These are computed using data from [172] and Uni-

gene [157]. As we can see from the gure, targets of transcription factors known to be

expressed in the eye are more likely to have a higher level of expression in eye tissue than

random genes.

Multiple Sites

Recent studies have observed that many genes are regulated by multiple transcription

factors and have tried to exploit this information for predicting transcription factor binding

sites [47, 67]. Promoter regions often have multiple occurrences of binding sites. Based

on the data in [172], we plotted the number of binding sites in a promoter region as shown

170

Pe
rc

en
ta

ge
 o

f G
en

es
0
5

10
15
20
25
30
35
40
45
50

Number of Binding Sites
0 1 2 3 4 5 6 7

Figure 6.5: Number of Binding Sites per Promoter

in Figure 6.5. As we can observe from the gure, over 60% of the genes from [172] have

more than one binding site in the promoter region.

GeneFinder exploits this information using the following equation:

P (H|R = r) = P (R=r|H)×P (H)
P (R=r) . Here, P (R = r|H) is the probability of observing r

occurrences of binding sites in the promoter region given that it is a true target. This value

is computed using Figure 6.5. P (R = r) is the probability of nding r binding sites by

random chance. This is computed as the probability of nding r matches with a given

stringency in a random string of length 5000 bases.

To compute the overall probability that a candidate is an actual target, we use the fol-

lowing formula that includes all of the above four factors:

P (H|P = p ∧ C = c ∧ T = t ∧ R = r)

= P (H)4 × P (P=p|H)×P (C=c|H)×P (T=t|H)×P (R=r|H)
P (P=p)×P (C=c)×P (T=t)×P (R=r)

where:

H is the event that the hit being considered is a true target.

171

Gene Score Known Description
Pde6a 0.496

√
phosphodiesterase 6A, cGMP-specic, rod, alpha [129]

Dnajc13 0.238 DnaJ (Hsp40) homolog, subfamily C, member 13
LOC624446 0.130
Pla2g7 0.097

√
phospholipase A2, group VII (platelet-activating factor acetylhydrolase,
plasma) [178]

Nr2e3 0.075
√

nuclear receptor subfamily 2, group E, member 3 [83]
LOC620844 0.074
LOC547349 0.061
1110037F02Rik 0.044
Serpinb8 0.039 serine (or cysteine) peptdiase inhibitor, clade B, member 8
LOC620173 0.033
2410075B13Rik 0.029
Kctd8 0.027 potassium channel tetramerisation domain containing 8
LOC624988 0.027
LOC628754 0.027
Snrpd2 0.023 small nuclear ribonucleoprotein D2
Cct4 0.022 chaperonin subunit 4 (delta)
Arhgap5 0.021 Rho GTPase activating protein 5
1300006C06Rik 0.016
Slc6a9 0.015 solute carrier family 6 (neurotransmitter transporter, glycine), member 9
Iqgap1 0.014 IQ motif containing GTPase activating protein 1
LOC629548 0.014
Olfr1069-ps1 0.013
Gm381 0.012 gene model 381
LOC623881 0.012
LOC625988 0.012
Nav3 0.012 neuron navigator 3
LOC629553 0.012
Tesk1 0.012 testis specic protein kinase 1
Il17e 0.010 interleukin 25
LOC625838 0.010

Table 6.2: Predicted Targets of Nrl

P is the distance of a hit of given score from the transcription start site.

C is the extent of conservation of a hit of given score.

T is the tissue expression score of the target gene with respect to the TF (described below).

R is the number of times a hit of given score repeats in the promoter region.

In the above approximation, we make the assumption that each of these four factors is

independent.

6.3 Results

In this section, we show through multiple experiments that GeneFinder not only re-

covers known targets of transcription factors, but also predicts several novel targets. In

the following experiments, GeneFinder uses the genomes of Human, Mouse, and Dog as

downloaded from NCBI [109]. We extract the promoter regions (5kb upstream of the

172

Gene Score Known Description
LOC624541 0.231
LOC620617 0.092
Mapk10 0.088 mitogen-activated protein kinase 10
Rho 0.087

√
Rhodopsin (retinitis pigmentosa 4, autosomal dominant) [123]

Chi313 0.087
Syne2 0.082 synaptic nuclear envelope 2
Ccna1 0.081 cyclin A2
A330044P14Rik 0.080
Nr1d1 0.072 nuclear receptor subfamily 1, group D, member 1
Rom1 0.0645

√
Retinal outer segment membrane protein 1 [178]

Rab11b 0.057 RAB11B, member RAS oncogene family
4931419H13Rik 0.055
LOC625262 0.053
F830045P16Rik 0.051
Serpinb12 0.047 serine peptidase inhibitor, clade B (ovalbumin), member 12
Sdk1 0.046 sidekick homolog 1
LOC624994 0.045
LOC625300 0.042
LOC627883 0.032
LOC383546 0.030
Rnf190 0.026 ring nger protein 190
AI607873 0.024
Trpa1 0.024

√
transient receptor potential cation channel, subfamily A, member 1 [178]

LOC620926 0.23
LOC210714 0.022
Mcpt2 0.022 mast cell protease 2
Bsdc1 0.021 BSD domain containing 1
Gm847 0.019 gene model 847, (NCBI)
LOC621042 0.019
Slc16a6 0.018 solute carrier family 16 (monocarboxylic acid transporters), member 6

Table 6.3: Top Results For NRE

transcription start site) from each annotated gene in the genome, and construct a sufx

tree on this set of sequences for each organism. In each case, the promoter sequence le

contained about 110 million bases, and the sufx trees were each about 1 GB. We present

three anecdotal pieces of evidence that demonstrates how GeneFinder works.

A Note on Statistics We do not compute the overall E-value of the score that is reported

here. GeneFinder however makes it possible to compute the E-value of the sequence score

and lter out results based on the E-value before further rescoring based on position, tissue

expression, and phylogenetics. In this section, we present the score and the details for the

top thirty hits.

173

Gene Score Known Description
LOC646737 0.120 Similar to ribosomal protein S14
DKFZP781I1119 0.114 Mesoderm induction early response 1
SLD5 0.110

√
Component of GINS, heterotetramer that is regulated by ERα [69]

NUP205 0.108 Nucleoporin
FRG1 0.090 FSG1, FSHD region gene (muscular dystrophy)
FLJ38608 0.087
FUT7 0.086 1,3 fucosyltransferase
LAMA4 0.085 Laminin α 4
LOC642515 0.082
GTF2IRD1 0.082 MusTRD1/BEN, interacting with RB1
MGC72104 0.081 Putative FRG1-like protein C20orf80
LOC442293 0.075
Loc284751 0.068
C3orf27 0.067
LOC647190 0.063
SLC2A2 0.059

√
GLUT2, GLUT1,3,4 expression augmented by EE [29]

C9orf112 0.055
MTDH 0.040 - Metadherin, overexpressed in metastatic breast cancer [20]
ACTL7 0.039

√
Actin-like-7-β, Actin reported to be ER binding [159]

HSPA9B 0.039
√

Mortalin, Induced by estrogen [167] [97]
DEPDC6 0.039
LOC389124 0.038
LOC645515 0.038
GML 0.037 - LY6DL, signal transduction by p53 type mediator [11]
POU5F1 0.034 Octamer binding TF3
YTHDF1 0.034 DACA-1
BAT5 0.033 - G5, HLA-B associated transcript 5, related to cancer development/progression [163]
TPD52L2 0.032

√
Expressed in breast cancer and known to be estrogen responsive [19] [82]

C9orf86 0.029
ITFB8 0.028 Integrin β8

Table 6.4: Top ER results

6.3.1 Nrl binding

Nrl is a basic motif-leucine zipper DNA binding protein known to be expressed in the

retina [141]. Nrl is suspected to play an important role in regulating expression of various

retina specic genes. We queried GeneFinder using the consensus sequence for the Nrl

binding site in mouse [123]: TGATCCTCATRATC. (Recall that ‘R’ represents a position

where A and G may occur with equal likelihood.) The mouse genome was the target

genome. The thirty best matches are shown in Table 6.2

The rst hit is Pde6a, a well known target of Nrl in mice [129]. Several of the hits are

predicted but as yet uncharacterized genes. Pla2g7 was shown to be downregulated in the

absence of Nrl in [178], and is suspected to be directly or indirectly downstream of Nrl.

Nr2e3 is also known to be downstream of Nrl [178]. Of the thirty genes that we present in

Table 6.2, 15 genes have been characterized in literature, and 3 of these are known targets

174

of Nrl. Several of the remaining candidates are promising. Serpina3n was shown in [178]

to be downregulated in the absence of Nrl. We conjecture that Serpinb8 might be a target

of Nrl. Further, Cct4 and Arhgap5 are also likely to be novel targets of Nrl.

6.3.2 Nrl Targets with multiple sites

Transcription factors often work as part of larger regulatory modules where several

of them are involved in regulating each gene in the module. We use the technique for

rescoring using multiple sites as described in Section 6.2.2 and simultaneously search

for three motifs. We use the Nrl Response Element sequence from the Pde6a bind-

ing site (TGATCCTCATRACT) [123], the sequence from the Rho binding site (TGCT-

GAATCAGCC) [123], and the Crx binding site (YTAATCC) [28]. The results are pre-

sented in Table 6.3. Rho is a known downstream targets of Nrl [123]. Rom1 and the

calcium channel gene Trpc-1 were downregulated in the absence of Nrl [178].

6.3.3 ERα binding site

Estrogen is a steroid and is well known as the female sex hormone. Ethinyl estra-

diol (EE) is the common compound that is studied. Investigations into estrogen action

frequently focus on the estrogen receptor transcription factor ER. Researchers in phar-

macology and toxicology have particular interest in ER because of the drugs, chemicals,

and natural and synthetic environmental pollutants that can raise levels of estrogen to haz-

ardous, cancer-causing levels [93] [77]. ER itself is classied as 2 genes ERα and ERβ.

ERαβ is known to bind DNA either in an EE-ER complex or as a heterodimer with another

DNA binding transcription factor [98]. We wish to study the targets of ER and thus have

used a position weight matrix describing the estrogen responsive element (ERE) [24]. We

have used this matrix and targeted the human promoter regions.

175

After looking at the top 30 hits found, we have found 5 target genes that have been dis-

cussed in literature. SLD5 is a component of GINS which is a heterotetramer that is regu-

lated by ER [69]. SLC2A2, is a GLUT family member which has many members known

to be augmented by estrogen [29]. ER is known to bind to actin [159]. HSPA9B, also

known as mortalin, and TPD52L2 are known to be estrogen responsive [19, 82, 97, 167].

It is interesting to note that the 31st hit is a sorting nexin. Sorting nexin has been shown

to contain an ERE that deviates from the agreed consensus sequence for ER. However

in [159], it is shown by ChIP that it is indeed responsive and binds ER. This is evidence

that our method allows us to discover true targets that have differences in the consensus

binding regions. Three other targets are cancer related. Table 6.4 lists the top 30 hits.

6.4 Conclusions

In this chapter, we presented the GeneFinder algorithm for predicting targets of tran-

scription factors given the binding site signature. GeneFinder takes advantage of the posi-

tion of the binding site, the phylogenetic conservation, tissue expression data, and binding

site multiplicity. Previous approaches used only one or two of these approaches and were

often limited to a smaller scale. We showed that GeneFinder can nd several well known

targets of known transcription factors such as Nrl and ERα. We also showed that we are

able to offer promising predictions for novel targets.

CHAPTER VII

Conclusions

In this thesis, we described a collection of related database methods for managing and

querying large sequence databases. In Chapter II, we described an algebra called PiQA

that extends relational algebra to permit querying on sequence data. We showed that PiQA

can be used to express complex queries on both primary and secondary structure data

simultaneously thereby providing a greater expressive power than existing approaches.

In Chapter III, we outlined the usefulness of the sufx tree as an index for sequence

databases. Existing algorithms are very slow at constructing sufx tree indexes for large

sequences because of the high amount of random disk I/O they incur. Much of this random

I/O comes from using sufx links, which are an essential mechanism used by linear time

construction algorithms. We discard the use of sufx links, and adapt a top-down, worst

case O(n2) algorithm (WOTD) to formulate a Top-Down Disk-based approach (TDD).

TDD buffers data structures used in the WOTD algorithm and manages them carefully to

reduce the time taken to construct the sufx tree by nearly an order of magnitude.

Once the input string becomes too large to t into main memory, the performance of

TDD begins to deteriorate. The WOTD algorithm accesses the input string randomly, and

a large amount of random I/O is incurred regardless of the buffering policy. To address

this problem, we proposed ST-Merge– a merge based algorithm that constructs sufx trees

176

177

for portions of the input string, and merges them together. We show that for cases where

the input string is much larger than main memory, ST-Merge outperforms TDD and scales

better.

We described the design and implementation of Periscope/SQ– our extension to Post-

greSQL to support sequence queries from PiQA. Periscope uses PiQL– an extension of

SQL as the query language. In Chapter IV, we describe the various challenges in build-

ing such a system. Notably, we described a new technique for estimating the selectivity

of string predicates based on a novel summary structure called the Symmetric Markovian

Summary. We also described new physical operators such as match-and-augment, and a

simple optimization algorithm that optimized the sequence portion of the query. Using

the indexes, the different physical operators, and the optimization algorithm, we show that

the declarative approach of Periscope/SQ is two orders of magnitude faster than existing

procedural approaches for some bioinformatics sequence processing queries.

In Chapter V, we go beyond sequence querying into an important application in se-

quence analysis, namely sequence mining. We describe a highly versatile substitution

matrix based similarity model that captures several existing models in addition to provid-

ing the power to describe several new and useful models. We describe an algorithm called

FLAME which simultaneously traverses two sufx trees to explore the space of all fre-

quent patterns. FLAME leverages the TDD sufx tree construction algorithm. We show

that FLAME is not only more versatile than existing approaches, but also extremely fast

in comparison.

Finally, in Chapter VI, we demonstrate the power of the Periscope/SQ infrastructure by

building an application to predict novel targets of transcription factors. GeneFinder uses

multiple sources of data such as sequences, expression data, phylogenetics and combines

them using the sequence querying as well as relational processing abilities of Periscope/SQ.

178

We show that GeneFinder not only nds several well known targets of transcription fac-

tors such as Nrl, but also offers several promising predictions of novel targets. We expect

GeneFinder to be one of several applications that Periscope/SQ enables. By providing a

platform for easily developing applications that need to query large amounts of sequence

data, we hope that Periscope/SQ helps speed up the pace of bioinformatics research.

BIBLIOGRAPHY

179

180

BIBLIOGRAPHY

[1] Mohamen Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing sufx trees with
enhanced sufx arrays. Journal of Discrete Algorithms, 2:53–86, March 2004.

[2] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton. Estimating the Selectivity of XML
Path Expressions for Internet Scale Applications. In VLDB, pages 591–600, 2001.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. In
VLDB, pages 487–499, 1994.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In ICDE, pages 3–14, 1995.

[5] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic Local Alignment Search Tool.
Journal of Molecular Biology, 215:403–410, 1990.

[6] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. Gapped
BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids
Research, 25:3389–3402, 1997.

[7] S. Aluru. Suffix Trees and Suffix Arrays, Handbook of Data Structures and Applications. CRC Press,
2004.

[8] A. Andersson and S. Nilsson. Efcient implementation of sufx trees. Software: Practice and
Experience, 25(2):129–141, 1995.

[9] Alberto Apostolico and Wojciech Szpankowski. Self-alignments in words and their applications.
Journal of Algorithms, 13(3):446–467, 1992.

[10] R. Apweiler, A. Bairoch, C. H. Wu, W.C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang,
R. Lopez, M. Magrane, M. J. Martin, D. Natale, A. C. O’Donovan, N. Redaschi, and L. L. Yeh.
Uniprot: The universal protein knowledgebase. Nucleic Acids Research, 32(D):115–119, 2004.

[11] Michael Ashburner et al. Gene Ontology: Tool for the Unication of Biology. Nature Genetics,
25:25–29, 2000.

[12] Malcolm Atkinson and Mick Jordan. Providing orthogonal persistence for java. In Proceedings of
the 12th European Conference on Object-Oriented Programming, pages 383–395, 1998.

[13] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell.
Garland Publishing, 4th edition, 2002.

[14] Timothy L. Bailey and Charles Elkan. Fitting a Mixture Model by Expectation Maximization to
Discover Motifs in Biopolymers. In ISMB, pages 28–36, 1994.

[15] Timothy L. Bailey and Charles Elkan. Unsupervised Learning of Multiple Motifs in Biopolymers
using EM. Machine Learning, 21(1-2):51–80, 1995.

[16] Srikanta J. Bedathur and Jayant R. Haritsa. Engineering a fast online persistent sufx tree construc-
tion. In Proceedings of the 20th International Conference on Data Engineering, pages 720–731,
2004.

181

[17] Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching strings. In Proceed-
ings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 360–369, 1997.

[18] A. Blumer, A. Ehrenfeucht, and D. Haussler. Average sizes of sufx trees and DAWGs. Discrete
Applied Mathematics, 24(1):37–45, 1989.

[19] R. Boutros and J.A. Byrne. D53(TPD52L1) is a Cell Cycle-regulated Protein Maximally Expressed
at the G2-M Transition in Breast Cancer Cells. Experimental Cell Research, 310:152–165, 2005.

[20] D.M. Brown and E. Ruoslahti. Metadherin, a Cell Surface Protein in Breast Tumors that Mediate
Lung Metastasis. Cancer Cell, 5:365–374, 2004.

[21] Jeremy Buhler and Martin Tompa. Finding Motifs Using Random Projections. Journal Computa-
tional Biology, 9(2):225–242, 2002.

[22] Thomas N. Bulkowski. Encyclopedia of Chart Patterns. Wiley Trading, 2nd edition, May 2005.

[23] C. A. Orengo, A. E. Todd, and J. M. Thornton. From Protein Structure To Function. Current Opinion
in Structural Biology, 9:374.

[24] C. Klinge. Estrogen Receptor Interaction with Estrogen Response Elements. Nucleic Acids Research,
29:2905.

[25] Alexandra Carvalho, Ana Freitas, Arlindo Oliveira, and Marie-France Sagot. A parallel algorithm
for the extraction of structured motifs. In Proceedings of the 2004 ACM Symposium on Applied
Computing, pages 147–153, 2004.

[26] Surajit Chaudhuri, Venkatesh Ganti, and Luis Gravano. Selectivity Estimation for String Predicates:
Overcoming the Underestimation Problem. In ICDE, pages 227–238, 2004.

[27] Lei Chen, M. Tamer Ozsu, and Vincent Oria. Robust and Fast Similarity Search for Moving Object
Trajectories. In SIGMOD, pages 491–502, 2005.

[28] Shiming Chen, Qing-Liang Wang, Zuqin Nie, Hui Sun, Gregory Lennon, Neal Copeland, Debra
Gilbert, Nancy Jenkins, and Donald Zack. Crx, a Novel Otx-like Paired-Homeodomain Protein Binds
to and Trnasactivated Photoreceptor Cell-Specic Genes. Neuron, 19:1017.

[29] Clara M. Cheng, Matt Cohen, Jie Wang, and Carolyn A. Bondy. Estrogen Augments Glucose Trans-
porter and IGF1 Expression in Primate Cerebral Cortex. FASEB, 15:907–915, 2001.

[30] Lok-Lam Cheng, David Cheung, and Siu-Ming Yiu. Approximate string matching in DNA se-
quences. In Proceeings of the 8th International Conference on Database Systems for Advanced
Applications, pages 303–310, 2003.

[31] Ching-Fung Cheung, Jeffrey Xu Yu, and Hongjun Lu. Constructing sufx tree for gigabyte sequences
with megabyte memory. IEEE Transactions on Knowledge and Data Engineering, 17(1):90–105,
2005.

[32] Bill Yuan-Chi Chiu, Eamonn J. Keogh, and Stefano Lonardi. Probabilistic Discovery of Time Series
Motifs. In KDD, pages 493–498, 2003.

[33] Raphael Clifford and Marek J. Sergot. Distributed and paged sufx trees for large genetic databases.
In Proceedings of 14th Annual Symposium on Combinatorial Pattern Matching, pages 70–82, 2003.

[34] A. Crauser and P. Ferragina. A theoretical and experimental study on the construction of sufx arrays
in external memory and its applications. Algorithmica, 32(1):1–35, 2002.

[35] cSPADE Source Code. http://www.cs.rpi.edu/∼zaki/software/.

[36] Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic Smyth. Rule Discovery
From Time Series. In KDD, pages 16–22, 1998.

182

[37] S. B. Davidson. Tale of Two Cultures: Are There Database Research Issues in Bioinformatics? In
14th International Conference on Scientific and Statistical Database Management, 2002.

[38] Margaret O. Dayhoff, R. M. Schwartz, and B.C. Orcutt. A Model for Evolutionary Changes in Pro-
teins. Atlas of Protein Sequence and Structure, 5:345–352, 1978.

[39] Deep-Shallow Sufx Array and BWT Construction Algorithms.
http://www.mfn.unipmn.it/˜manzini/lightweight/.

[40] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L. Salzberg. Alignment of
whole genomes. Nucleic Acids Research, 27(11):2369–2376, 1999.

[41] A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms for large-scale genome
alignment and comparision. Nucleic Acids Research, 30(11):2478–2483, 2002.

[42] Roman Dementiev, Juha Kärkkäinen, Jens Mehnert, and Peter Sanders. Better external memory sufx
array construction. In Proceedings of the 7th Workshop on Algorithm Engineering and Experiments,
2005.

[43] Luc Devroye, Wojciech Szpankowski, and Bonita Rais. A note on the height of sufx trees. SIAM
Journal of Computing, 21(1):48–53, 1992.

[44] Digital Bibliography and Library Project (DBLP), http://dblp.uni-trier.de/.

[45] B. Dorohonceanu and C.G. Nevill-Manning. Accelerating Protein Classication Using Sufx Trees.
The Eighth International Conference on Intelligent Systems for Molecular Biology, 2000.

[46] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence Analysis
: Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univ. Press, 1st edition, 1999.

[47] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Nature Genetics,
34(2):166, June 2003.

[48] B. A. Eckman and A. Kaufmann. Querying BLAST within a Data Federation. IEEE Data Engineer-
ing Bulletin, 27(3):12–19, 2004.

[49] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of the ACM,
13(6):377.

[50] Eleazar Eskin and Pavel A. Pevzner. Finding Composite Regulatory Patterns in DNA Sequences. In
ISMB, pages S354–63, 2002.

[51] External Memory Sufx Array Construction Project. http://i10www.ira.uka.de/dementiev/esufx/docu/index.html.

[52] F. Moussouni, N. W. Paton, A. Hayes, S. Oliver, C. A. Goble, and A. Brass. Database Challenges for
Genome Information in the Post Sequencing Phase. In DEXA, 1999.

[53] M. Farach. Optimal sufx tree construction with large alphabets. In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, pages 137–143. IEEE Computer Society, 1997.

[54] Martin Farach-Colton, Paolo Ferragina, and S.Muthukrishnan. On the sorting-complexity of sufx
tree construction. Journal of The ACM, 47(6):987–1011, 2000.

[55] Ada Wai-Chee Fu, Eamonn J. Keogh, Leo Yung Hang Lau, and Chotirat (Ann) Ratanamahatana.
Scaling and Time Warping in Time Series Querying. In VLDB, pages 649–660, 2005.

[56] G. Jaeschke and H.-J. Schek. Remarks on the Algebra of Non First Normal Form Relations. In
PODS, page 124, 82.

[57] GenBank, NCBI, 2004.
www.ncbi.nlm.nih.gov/GenBank.

183

[58] Genomatix. http://www.genomatix.de.

[59] Robert Giegerich and Stefan Kurtz. From Ukkonen to McCreight and Weiner: A unifying view of
linear-time sufx tree construction. Algorithmica, 19(3):331–353, 1997.

[60] Robert Giegerich, Stefan Kurtz, and Jens Stoye. Efcient implementation of lazy sufx trees. Soft-
ware: Practice and Experience, 33(11):1035–1049, 2003.

[61] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity Search in High Dimensions via Hash-
ing. In VLDB, pages 518–529, 1999.

[62] Gosta Grahne, Raul Hakli, Matti Nykanen, Hellis Tamm, and Esko Ukkonen. Design and Implemen-
tation of a String Database Query Language. Information Systems, 28(4):311–337, 2003.

[63] Growth of GenBank, National Center for Biotechnology Information (NCBI).
www.ncbi.nlm.nih.gov/Genbank/genbankstats.html, 2004.

[64] Dan Guseld. Algorithms on Strings, Trees and Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

[65] H. M. Berman et al. The Protein Data Bank. Acta Crystallographica, D58:899–907, 2002.

[66] H. M. Berman, T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne, K. Burkhardt, Z. Feng, G. L.
Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki,
H. Weissig, J. D. Westbrook, and C. Zardecki. The protein data bank. Biological Crystallography,
58:899.

[67] Marc S. Halfon, Yonatan Grad, George M. Church, and Alan M. Michelson. Computation-Based Dis-
covery of Related Transcriptional Regulatory Modules and Motifs Using an Experimentally Validated
Combinatorial Model. Genome Research, 12:1019.

[68] Joachim Hammer and Markus Schneider. Genomics Algebra: A New, Integrating Data Model, Lan-
guage, and Tool for Processing and Querying Genomic Information. In CIDR, 2003.

[69] R. Hayashi, T Arauchi, M Tatequ, Y Goto, and K Yoshida. A Combined Computational and Ex-
perimental Study on the Structure-regulation Relationships of Putative Mammalian DNA Replication
Initiator GINS. Genomics Proteomics Bioinformatics, 4:156–164, August 2006.

[70] S. Henikoff and JG. Henikoff. Amino Acid Substitution Matrices from Protein Blocks. National
Academy of Sciences, USA, 89(22):10915–9, 1992.

[71] Klaus Heumann and Hans-Werner Mewes. The hashed position tree (HPT): A sufx tree variant
for large data sets stored on slow mass storage devices. In Proceedings of the 3rd South American
Workshop on String Processing, pages 101–115, 1996.

[72] S. Hoppner. Discovery of Temporal Patterns – Learning Rules about the Qualitative Behaviour of
Time Series. In 5th European Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 192–203, 2001.

[73] Ela Hunt, Malcolm P. Atkinson, and Robert W. Irving. A database index to large biological sequences.
The VLDB Journal, 7(3):139–148, 2001.

[74] Data Sets from Analysis of Financial Time Series. http://www.gsb.uchicago.edu/fac/
ruey.tsay/teaching/fts/.

[75] Intel Corporation. The IA-32 Intel Architecture Optimization Reference Manual. Intel (Order Number
248966), 2004.

[76] Intel Corporation. The IA-32 Intel Architecture Software Developer’s Manual: System Programming
Guide, volume 3. Intel (Order Number 253668), 2004.

184

[77] J. Carrol et al. Genome-wide Analysis of Estrogen Receptor Binding Sites. Nature Genetics, 38:1289,
2006.

[78] J. L. Thorne and N. Goldman and D. T. Jones. Combining Protein Evolution and Secondary Structure.
Molecular Biology and Evolution, 13(5):666.

[79] H. V. Jagadish, Olga Kapitskaia, Raymond Ng, and Divesh Srivastava. One-dimensional and Multi-
dimensional Substring Selectivity Estimation. The VLDB Journal, 9(3):214–230, 2000.

[80] Joachim Hammer and Markus Schneider. Genomics Algebra: A New, Integrating Data Model, Lan-
guage, and Tool for Processing and Querying Genomic Information. In CIDR, 2003.

[81] I. Jonassen, J. F. Collins, and D. G. Higgins. Finding Flexible Patterns in Unaligned Protein Se-
quences. Protein Science, 4(8):1587–1595, 1995.

[82] Sitharthan Kamalakaran, Senthil K. Radhakrishnan, and William T. Beck. Identication of Estrogen-
responsive Genes Using a Genome-wide Analysis of Promoter Elements for Transcription Factor
Binding Sites. Journal of Biological Chemistry, 205:21491–21497, 2005.

[83] Atsuhiro Kanda, James Friedman, Kaa M Nishiguchi, and Anand Swaroop. Retinopathy Mutations
in the bZIP protein NRL Alter Phosphorylation and Transcriptional Activity. Human Mutation, 2007.

[84] J. Kärkkäinen and P. Sanders. Simple linear work sufx array construction. In Proceedings of the
13th International Conference on Automata, Languages and Programming, pages 943–955, 2003.

[85] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time longest-
common-prex computation in sufx arrays and its applications. In Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Matching, pages 181–192, 2001.

[86] Manolis Kellis, Nick Patterson, Matt Endrizzi, Bruce Birren, and Eric Lander. Sequencing and Com-
parison of Yeast Species to Identify Genes and Regulatory Motifs. Nature, 423:241–254, May 2003.

[87] D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of sufx arrays. In Proceedings
of the 14th Annual Symposium on Combinatorial Pattern Matching, pages 186–199, June 2003.

[88] P. Ko and S. Aluru. Space efcient linear-time construction of sufx arrays. In Proceedings of the
14th Annual Symposium on Combinatorial Pattern Matching, pages 200–210, June 2003.

[89] P. Krishnan, Jeffrey Scott Vitter, and Bala Iyer. Estimating Alphanumeric Selectivity in the Presence
of Wildcards. In SIGMOD, pages 282–293, 1996.

[90] S. Kurtz, A. Phillippy, A.L. Delcher, M. Smoot, M. Shumway, C. Antonescu, and S.L. Salzberg.
Versatile and open software for comparing large genomes. Genome Biology, 5(R12), 2004.

[91] Stefan Kurtz. Reducing space requirement of sufx trees. Software: Practice and Experience,
29(13):1149–1171, 1999.

[92] Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher, Jens Stoye, and Robert
Giegerich. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids
Research, 29:4633–4642, 2001.

[93] John C. Kwekel et al. A Cross-species Analysis of the Rodent Uterotrophic Program: Elucidation of
Conserved Responses and Targets of Estrogen Signaling. Physiological Genomics, 2005.

[94] L. Fegaras and David Maier. Optimizing Object Queries Using and Effective Calculus. ACM TODS,
25(4):457.

[95] L. Hammel and J. M. Patel. Searching on the Secondary Structure of Protein Sequences. In VLDB,
2002.

185

[96] L. S. Colby. A Recursive Algebra and Query Optimization for Nested Relations. In SIGMOD, page
273, 1989.

[97] L.Cicatiello et al. A Genomic View of Estrogen Actions in Human Breast Cancer Cells by Expression
Proling of the Hormone-responsive Transcriptome. Journal of Molecular Endocrinology, 32:319–
775, 2004.

[98] Xiaodong Li, Jing Huang, Ping Yi, Robert A. Bambara, Russel Hilf, and Mesut Muyan. Single-chain
Estrogen Receptors (ERs) Reveal that the ERa/b Heterodimer Emulates Funcations of the ERa Dimer
in Genomic Estrogen Signaling Pathways. 24:7681, 2004.

[99] M. A. Roth and H. F. Korth and Adam Silberschatz. Extended Algebra and Calculus for Nested
Relational Databases. ACM TODS, 13(4):389.

[100] Giovanni Manzini. Two space saving tricks for linear time LCP array computation. In Proceedings
of the 9th Scandinavian Workshop on Algorithm Theory, pages 372–383, 2004.

[101] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight sufx array construction algo-
rithm. Algorithmica, 40(1):33–50, 2004.

[102] L. Marsan and M.-F. Sagot. Algorithms for Extracting Structured Motifs Using a Sufx Tree with
Application to Promoter and Regulatory Site Consensus Identication. Journal of Computational
Biology, 7(3/4):345–360, 2000.

[103] E. M. McCreight. A space-economical sufx tree construction algorithm. Journal of The ACM,
23(2):262–272, 1976.

[104] Colin Meek and William P. Birmingham. The Dangers of Parsimony in Query-by-Humming Appli-
cations. In Proc. of Int. Sym. on Music Information Retrieval, 2003.

[105] Colin Meek, Jignesh M. Patel, and Shruti Kasetty. Oasis: An online and accurate technique for local-
alignment searches on biological sequences. In Proceedings of 29th International Conference on Very
Large Data Bases, pages 910–921, 2003.

[106] Daniel P. Miranker, Weijia Xu, and Rui Mao. MoBIoS: A Metric-Space DBMS to Support Biological
Discovery. In SSDBM, pages 241–244, 2003.

[107] C. S. Myers and L. R. Rabiner. A Comparative Study of Several Dynamic Time-Warping Algorithms
for Connected Word Recognition. The Bell System Technical Journal, 60(7):1389–1409, 1981.

[108] G. Navarro, R. Baeza-Yates, and J. Tariho. Indexing methods for approximate string matching. IEEE
Data Engineering Bulletin, 24(4):19–27, 2001.

[109] NCBI Genomes. ftp://ftp.ncbi.nih.gov/genomes/.

[110] P. Seshadri, M. Livny, R. Ramakrishnan. Sequence Query Processing. In SIGMOD, 1994.

[111] P. Seshadri, Miron L., R. Ramakrishnan. SEQ: A Model for Sequence Databases. In ICDE, 1995.

[112] Jignesh M. Patel. The role of declarative querying in bioinformatics. OMICS: A Journal of Integrative
Biology, 7(1):89–92, 2003.

[113] Jignesh M. Patel. The Role of Declarative Querying in Bioinformatics. OMICS: A Journal of Inte-
grative Biology, 7(1):89–92, 2003.

[114] Pranav Patel, Eamonn Keogh, J.Lin, and S.Lonardi. Mining Motifs in Massive Time Series
Databases. In ICDM, pages 370–377, 2002.

[115] Giulio Pavesi, Paolo Mereghetti, Giancarlo Mauri, and Graziano Pesole. Weeder Web: Discovery of
Transcription Factor Binding Sites in a Set of Sequences From Co-Regulated Genes. Nucleic Acids
Research, 32(Web Server issue):W199–W203, 2004.

186

[116] Jian Pei, Jiawei Han, and Wei Wang. Mining Sequential Patterns With Constraints in Large Databases.
In CIKM, pages 18–25, 2002.

[117] Mikael Pettersson. Perfctr: Linux performance montioring counters driver.
http://user.it.uu.se/˜mikpe/linux/perfctr.

[118] Pavel A. Pevzner and S.-H. Sze. Combinatorial Approaches to Finding Subtle Signals in DNA Se-
quences. In ISMB, pages 269–278, 2000.

[119] Project Gutenberg. http://www.gutenberg.net.

[120] Jian Qian, Noriko Esumi, Yangjian Chen, Qungliang Wang, Itay Chowers, and Donald J. Zack. Iden-
tication of regulatory targets of tissue-specic trascription factors: application to retina specic
regulation. Nucleic Acids Research, 33(11):3479–3491, 2005.

[121] R. Hakli, M. Nyknen, H. Tamm, and E. Ukkonen. Implementing a Declarative String Query Language
with String Restructuring. In Practical Aspects of Declarative Languages, 1999.

[122] Random Projections Source Code. http://www.cse.wustl.edu/∼jbuhler/pgt/.

[123] Alnawaz Rehemtulla, Ron Warwar, Rajan Kumar, Xiaodong JiDagger, Donald J. Zack, and Anand
Swaroop. The Basic Motif-leucine Zipper Transcription Factor Nrl Can Positively Regulate
Rhodopsin Gene Expression. Proceedings of the National Academy of Sciences, 93:191–195, Jan-
uary 1996.

[124] S. A. Teichmann, A. G. Murzin, and C. Chothia. Determination of Protein Function, Evolution and
Interactions by Structural Genomics. Current Opinion in Structural Biology, 11:354.

[125] S. Dong and D. Searls. Gene Structure Prediction by Linguistic Methods. Genomics, 1994.

[126] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. Gapped
BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids
Research, 25:3389–402, 1997.

[127] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 215:403–10, 1990.

[128] S. J. Thomas and P. C. Fisher. Nested Relational Structures. Advances in Computing Research, 3:269,
1986.

[129] S. Pittler, Y. Zhang, S. Chen, A. Mears, D. Zack,Z. Ren, P. Swain, S. Yao, A. Swaroop, J. White.
Functional Analysis of the Rod Photoreceptor cGMP Phosphodiesterase Alpha-subunit Gene Pro-
moter: Nrl and Crx are Required for Full Transcriptional Activity. Journal of Biological Chemistry,
279:19800–7, 2004.

[130] Schneider, T.D. and Stepehsn, R.M. Sequence Logos: A New way to Display Consensus Sequences.
Nucleic Acids Research, 18:6097, 1990.

[131] Klaus-Bernd Schurmann and Jens Stoye. Sufx-tree construction and storage with limited main
memory. Technical Report 2003-06, Univeristy of Bielefeld, Germany, 2003.

[132] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and Thomas G.
Price. Access Path Selection in a Relational Database Management System. In SIGMOD, pages 23–
34, 1979.

[133] Serge Abiteboul and N Bidoit. Non 1st Normal-Form Relations - an Algebra Allowing Data Restruc-
turing. Journal of Computer and System Sciences, 33(3):361.

[134] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. The Design and Implementation of a
Sequence Database System. In VLDB, pages 99–110, 1996.

187

[135] Saurabh Sinha and Martin Tompa. YMF: A Program for Discovery of Novel Transcription Factor
Binding Sites by Statistical Overrepresentation. Nucleic Acids Research, 31(13), 2003.

[136] T. F. Smith and M. S. Waterman. Identication of Common Molecular Subsequences. Journal of
Molecular Biology, 147:195–197, 1981.

[137] Susie M. Stephens, Jake Y. Chen, and Shiby Thomas. ODM BLAST: Sequence Homology Search in
the RDBMS. IEEE Data Engineering Bulletin, 27(3):20–23, 2004.

[138] Michael Stonebraker, Dorothy Moore, and Paul Brown. Object Relational DBMS: Tracking the Next
Great Wave. Morgan Kauffman, 2nd edition, 1999.

[139] G.D. Stormo. DNA Binding Sites: Representation and Discovery. Bioinformatics, 16:16, 2000.

[140] STXXL Library. http://i10www.ira.uka.de/dementiev/stxxl.shtml.

[141] Anand Swaroop, J Xu, H Pawar, A Jackson, Cskolnick, and N Agarwal. A Conserved Retina-Specic
Gene Encodes a Basic Motif/Leucine Zipper Domain. Proceedings of the National Academy of Sci-
ences, 89:266–270, 1992.

[142] W. Szpankowski. Average-Case Analysis of Algorithms on Sequences. John Wiley and Sons, 2001.

[143] Sandeep Tata, Richard A. Hankins, and Jignesh M. Patel. Practical Sufx Tree Construction. In
VLDB, pages 36–47, 2004.

[144] Sandeep Tata, Richard A. Hankins, and Jignesh M. Patel. Practical Sufx Tree Construction. In
VLDB, pages 36–47, 2004.

[145] Sandeep Tata and Jignesh M. Patel. PiQA: An Algebra for Querying Protein Data Sets. In SSDBM,
pages 141–150, 2003.

[146] The Growth of GenBank, NCBI, 2004.
www.ncbi.nlm.nih.gov/genbank/
genbankstats.html.

[147] The LDC Corpus Catalog, http://wave.ldc.upenn.edu/Catalog/.

[148] The MUMmer Software. http://www.tigr.org/software/mummer/.

[149] The PostgreSQL Database System. www.postgresql.org.

[150] W. Thompson, E. C. Rouchka, and C. E. Lawrence. Gibbs Recursive Sampler: Finding Transcription
Factor Binding Sites. Nucleic Acids Research, 31(13):3580–3585, 2003.

[151] Y. Tian, S. Tata, R.A. Hankins, and J.M. Patel. Practical Methods for Constructing Sufx Trees.
VLDB, 14:281–299, September 2005.

[152] Martin Tompa et al. Assessing Computational Tools for the Discovery of Transcription Factor Bind-
ing Sites. Nature Biotechnology, 23:137–144, 2005.

[153] TRANSFAC. http://www.gene-regulation.com/pub/databases.html.

[154] Ruey S. Tsay. Analysis of Financial Time Series. Wiley-Interscience, 1st edition, October 2001.

[155] Ajumobi Udechukwu, Ken Barker, and Reda Alhajj. Discovering all frequent trends in time series.
In Proc. of Winter Int. Sym. on Information and Comm. Tech., volume 58, pages 1–6, 2004.

[156] E. Ukkonen. Constructing sufx-trees on-line in linear time. In Proceedings of the IFIP 12th World
Computer Congress on Algorithms, Software, Architecture: Information Processing, pages 484–92,
1992.

[157] Unigene. ftp://ftp.ncbi.nih.gov/repository/UniGene/.

188

[158] UniProt Knowledgebase. http://us.expasy.org/sprot.

[159] Vinsenius B. Vega, Chin-Yo Lin, Koon Siew Lai, Say Li Kong, Min Xie, Xiaodi Su, Huey Fang Teh,
Jane S Thomsen, Ai Li Yeo, Wing Kin Sung, Guillaume Bourque, and Edison T Liu. Multiplatform
Genome-wide Identication and Modeling of Functional Human Estrogen Receptor Binding Sites.
Genome Biology, 7, 2006.

[160] Jeffrey S. Vitter and M. Shriver. Algorithms for parallel memory: Two-level memories. Algorithmica,
12:110–147, 1994.

[161] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering Similar Multidimensional Trajectories. In
ICDE, page 673684, 2002.

[162] Vlieghe D, Sandelin A, De Bleser PJ, Vleminckx K, Wasserman WW, van Roy F, and Lenhard B.
A new generation of JASPAR, the Open-access Repository for Transcription Factor Binding Site
Proles. Nucleic Acids Research, 34(D):95–97, January 2006.

[163] Dafang Wan et al. Large-scale cDNA Transfection Screening for Genes Related to Cancer Develop-
ment and Progression. PNAS, 101:15724–15729, 2004.

[164] Jianyong Wang and Jiawei Han. BIDE: Efcient Mining of Frequent Closed Sequences. In ICDE,
pages 79–90, 2004.

[165] Weeder Source Code. http://www.pesolelab.it/Tool/ind.php.

[166] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th Annual Symposium on
Switching and Automata Theory, pages 1–11, 1973.

[167] Alessandro Weisz. New Insights on Estrogen Action from Gene Expression Proling. Atti dei Con-
vegni Lincei, 211:143–153, 2005.

[168] Kyu-Young Whang, Gio Wiederhold, and Daniel Sagalowicz. Estimating block accesses in database
organizations: A closed noniterative formula. Communicatoins of the ACM, 26(11):940–944, 1983.

[169] C. H. Wu and D. W. Nebert. Update on Human Genome Completion and Annotations: Protein
Information Resource. Human Genomics, 95760-21:35, 2004., 1(3):1–5, 2004.

[170] Huanmei Wu, Betty Salzberg, Gregory C Sharp, Steve B Jiang, Hiroki Shirato, and David Kaeli.
Subsequence Matching on Structured Time Series Data. In SIGMOD, pages 682–693, 2005.

[171] T.D. Wu, C.G. Nevill-Manning, and D.L. Brutlag. Fast Probabilistic Analysis of Sequence Function
using Scoring Matrices. Bioinformatics, 16:233–244, 2000.

[172] Xiaohui Xie, Jun Lu, EJ. Kulbokas, Todd Golub, Vamsi Mootha, Kerstin Lindblad-Toh, Eric Lander,
and Manolis Kellis. Systematic Discovery of Regulatory Motifs in Human Promoters and 3’ UTRs
by Comparison of Several Mammals. Nature, February 2005.

[173] Xifeng Yan, Jiawei Han, and Ramin Afshar. CloSpan: Mining Closed Sequential Patterns in Large
Datasets. In SDM, 2003.

[174] Jiong Yang, Wei Wang, Philip S. Yu, and Jiawei Han. Mining Long Sequential Patterns in a Noisy
Environment. In SIGMOD, pages 406–417, 2002.

[175] S.B. Yao. Approximating Block Accesses in Database Organizations. Communications of the ACM,
20(4):260–261, April 1977.

[176] YMF Source Code. http://bio.cs.washington.edu/software.html.

[177] Shlomo Yona and Dotan Tsadok. ANSI C implementation of a sufx tree.
http://cs.haifa.ac.il/˜shlomo/sufx tree.

189

[178] Shigeo Yoshida, Alan J. Mears, James S. Friedman, Todd Carter, Shirley He, Edwin Oh, Yuezhou
Jing, Rafal Farjo, Gilles Fleury, Carrolee Barlow, Alfred O. Hero, , and Anand Swaroop. Expression
Proling of the Developing and mature Nrl−/− Mouse Retina: Identication of Retinal Disease Can-
didates and Transcriptional Regulatory Targets of Nrl. Human Molecular Genetics, pages 1487–1503,
May 2004.

[179] Z. M. Ozsoyoglu and J. Wang. A Keying Method for a Nested Relational Database Management
System. In ICDE, page 438, 1992.

[180] Mohammed J Zaki. Sequence Mining in Categorical Domains: Incorporating Constrains. In CIKM,
pages 442–429, 2000.

[181] Mohammed Javeed Zaki. SPADE: An Efcient Algorithm for Mining Frequent Sequences. Machine
Learning, 42(1/2):31–60, 2001.

[182] Yunyue Zhu and Dennis Shasha. Warping Indexes with Envelope Transforms for Query by Humming.
In SIGMOD, pages 181–192, 2003.

