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ABSTRACT

This report discusses the steady-state space-charge distri-
bution in a d-c magnetron when its anode voltage is léwer than its
cut-off voltage. It is shown that the discrete electron-to-electron
interaction has a cumulative effect on the space-charge distribution
that is not negligible. The distributions derived by Brillouin, Slater,
and others are not steady-state distributions, since they are obtained
without regard to the discrete interaction. The actual distribution
and its dependence on the ratio of anode voltage to cut-off voltage are
discussed qualitatively, but no attempt is made to calculate the space-

charge distribution explicitly.
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SPACE-CHARGE  EQUILIBRIUM IN A MAGNETRON

A STATISTICAL APPROACH

I. INTRODUCTION

As an initial state for the oscillating magnetron the non-conducting
(or approximately non-conducting) condition of a d-c magnetron has a consider-
able interest and has received appreciable attention, both of a theoretical
and an experimental nature. Nontheless, a satisfactory agreement has not
been reached about the shape of the electron orbits and the detailed distri-
bution of potential and electron density in such a space charge.

The solutions presented necessarily rest on postulates and assump-
tions that constitute idealizations of the real conditions. So does, of
course, all physical theory, but in this case well-known factors have been
neglected with the justification that their effect is judged to be so small
that the approximate solution resulting will be close enough to be of value.
Furthermore, the mathematical difficulties of a more rigorous approach
gppeared prohibitive.

It is the purpose of this report to reconsider the conventional
simplifications on which these solutions are based, to discuss whether or
not they introduce appreciable errors, and to investigate the feasibility
of a solution from a more realistic set of assumptions. Since the space
charge is essentially a gas formed by discrete electrons, classical statis-

tical mechanics offers a logical approach to a fresh study of the problem.



We shall first place the problem into the framework of statistical
mechanics. The next step is to consider the solutions proposed so far in
this new light and to show that they can not possibly represent steady states.
This discussion does not directly indicate whether the errors in the distribu-
tion of space charge and potential are large or small. Finally, the problem
of finding a solution consistent with the laws of statistical mechanics will

be investigated and the result compared with the previously suggested solutions.



ITI. EQUATIONS FOR ELECTRON MOTION IN A LINEAR MAGNETRON

Since we are going to apply the methods of statistical mechanics to
the problem of electron motion in a magnetron, it is convenient to write the

equations of motion in Hamiltonian form. The total energy of an electron is:

Vo= m5R e e, (1)

where 5 is the momentum vector, A the vector potential of the constant magnetic

field, and E the scalar electric potential. The momentum 5 is given by
P = f@v+eék, (2)

where Vv is the velocity vector of the electron.
To simplify the mathematical processes, we choose a plane magnetron

and a Cartesian coordinate system (Fig. 1). The cathode is represented by

y A E-Eq
v / ,
Y
d
B®
Y4 & \
7777 % 7
E=0
FIG. |

COORDINATE SYSTEM FOR PLANE MAGNETRON



the plane y = o, the anode by the plane y = d. The uniform magnetic flux
vector § is parallel to the positive z-axis. The potential d the cathode
is taken to be zero and the potential of the anode positive is equal to Eg.

No variations are taking place with x and z.
2 -2 - . (3)

) Y
The vector potential A then has only one component, Ay, such that

04, :
.- -a—y'}"{ = BZ = B ) (ll')
AX = -By ’ (5)

since we can choose A as well as E to be zero at the cathode.

The Hamiltonian (Eq 1) then is
1 2 :
W = E{(pX + eBy) + py2 + ng}- ek , (6)

and the canonical equations of motion

d W a

- Ti;Etx = %_}-( = 0 = m 'ath + EBVy ) (7)
a W '

-7‘%{ = g-); = % (px+eBy)-eB-eg—§' = erx-eg%, (8)
d W

g %.Z - o0, (9)
dx . W _ 1l iepy) = (10)
T - dox ~ m ‘Px esy = Vxo
d; _ oW _ :
&  dpy Vy o (11)
dz ow

= —— = Vg . (12)



The constants of the motion, or the parameters that determine the

energy state of each electron, are W, px and pz. Optionally, we can specify

the state of an electron by px, pz and Pyo, the last quantity being the value
of Py at the cathode (y = 0). It should be noted that Pyo may be imaginary,

since the orbit of an electron may not necessarily reach the cathode.

In the study of the space charge in the magnetron we shall be
interested in the distribution of the electrons in phase space or u -space,
i.e., a six-dimensional space with the coordinates x, y, z, px, Pys Pz.
Actually, a subspace y, px, py will contain all the boundary surfaces and

orbit projections necessary for the study of the problem.



III. EOUILIERIUK STATES

If the cathode of the magnetron is at constant temperature and
no current flows to the anode, no energy is received or lost by the swarm
of electrons in the tube. It should, under these hypothetic conditions, be
possible to consider the magnetron as a closed system in thermal equilibrium.
In this section we shall consider the conditions to be satisfied for thermal
equilibrium in a magnetron.

When a minute current flows to the anode the problem becomes a
transport problem, and the solution is obtained from the thermal equilibrium
by applying a small perturbation to the distribution function for the elec-
trons. As the current is increased, the diffusion of electrons through the
ispace charge from the cathode graduvally changes to a steady flow of the whole
space charge towards the anode. The intermediate conditions, with severely
distorted distribution function but no coherent flow pattern, offer the greatest
mathenatical difficulties; unfortunately, there are reasons to believe that
this is the actual state of affairs in a cut-off magnetron.

Since the space charge is assumed to be in equilibrium with the
thermionic cathode emitter, the distribution density function at y = 0 is

necessarily of the Maxwell-Boltzmann type.
. a 2 2
Py, = A.ekp.[- Th(px™ * pyo2 + Dy )] (13)

The distribution density function P at an arbitary point
approaches its equilibrium value under the influence of two simultaneous
processes, convection by electron motion, and exchange of energy and momentum

between the electrons because of Coulomb interaction.



We shall not include here the complete classical derivation of the
distribution density function. It is only necessary to investigate the conse-
quences of the magnetic field and the curvilinear orbits of the electrons.

Under equilibrium conditions the convection-cﬁrrent element formed
by a certain group of electrons in phase space must be continuous throughout
its path through x—y-z space. The expected value of a current element formed
by electrons of y-directed momentum between pyo and Pyo *+ @Pyo at the cathode

is, therefore, equal to the corresponding element at any other value of y.

ePy Pyo dPyo = €P py dpy . (1h)

However, conservation of energy requires

1| ' 1 2
- Ep2engen?) - Ao @v®enfnt)- a0

and consequently
pyo dpyo = Py dpy . (16)
Continuity therefore requires that the distribution density at y is

Pdpy = Podpy . (17)

It should be noted that the distribution density function P is given
by (17) only for the regions in phase space accessible to electrons emitted from
the cathode. We shall later map these reglons.

The interaction between the electrons during thermal equilibrium must
be such that the same number of electrons are removed from a certain cell in

phase space as are entering into the cell during the same time interval.

Suppose that a certain encounter involves n electrons with the initial

1 H
energy states Wj....Wn, and after the encounter, the energy states Wi....Wn .

Conservation of energy requires that



(18)

Wl + w2 +....Wn = W=

The rates at which such encounters and the inverse encounters take

place should be equal and are proportional to

! 1
Pl‘Pe'PB....Pn = Pl 'P2 o.Qan (19)

Since the exponential function transforms a sum into a product, it
is obvious that the Maxwell-Boltzmann distribution function satisfies the re-

quirements (18) and (19), as well as (1%) and (17). Thus we can write:

p o= A" (20)

vhere A is constant related to the total number of electrons in the space
charge and @= 1/kT.

It is interesting to note that the presence of the magnetic field

and the consequent curvature of the electron orbits does not affect the distri-

bution function. The factors that determine the distribution arise from

conservation of energy and isotropy of interaction.

In order to find a space-charge distribution compatible with thermal

equilibrium, we integrate Eq 20 with respect to py, Py and p, from -cor + ®,

The result is
P = PE (21)

This relation is corbined with Poisson's equation to

oel

P - Po€ ‘
- - £ _eg__ , (22)
-é- F-s - - a-é?-o_e l )



In order to perform the second integration, we introduce

Q = eO!eE R . (211.) .

YRl €

Since the fifst term in Eq 23 is always positive, Cl and a must be
negative if a potential minimum exists.

Changing the sign of a and integrating, we get

‘ ‘ ’ 2 -1/ -a _ | '
, S EE e T v ® (26)

. | . . . |
; p = 02 Po [ cos Rim )] - (27

cos2 b(y - ym) B cos b(y - ym
| 5 .
| _ 2 . cos byp | o8
B = %% oy - vw) | (29)

where

DN E N | (29)
- €0 .

Thé boundary conditions are represented by the consténts Po, a, and
ym+ For negative values of yp the solution represents temperature-limited |
conditions.

Fig. 2 indicates the space-charée distribution required for this

© thermal equilibrium. It obviously does not resemble the distribution in a
/' cut-off magnetron, since it demands emission of electrons from the anode with
| the sameltemperature as those emitted from fhe cathode but with considerably

higher density,

Pg = Pope | ) ' (%0)
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FIG. 2

SPACE-CHARGE DISTRIBUTION
AT THERMAL EQUILIBRIUM

Nontheless this equilibrium has a certain interest to ué, since the
difference between this distribution and the actual distribution in any parti-
cular volume element in real space dictates the amount of diffusion that takes
place in that element. A steady state is reached when the diffusion into every
energy state is equal to the diffusion out of the same energy state.

Before we investigate more closely this diffusion process, we shall
in the next section discuss the representation of electron energy states as

points and orbits in phase space.
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' IV. INITIAL STATES AND PHASE-SPACE REPRESENTATION OF ELECTRON ENERGY STATES

When a magnetrén is switched to a source'wiﬁhba voltage E smaller
than the cut-off wvoltage of thé magnetron, & charge Q will flow to the magne-
tron. The sburce supplies the energy EQ, but the stored energy in the
magnetron is only 1/2 EQ. The difference is lost in the circuit‘résistance
and; possibly, in a temporary increase in the electron temperature of the
‘magnetron space chafge above the cathode femperature. These transient effects
we shall diéregard and assume that the initial conditions are consistenﬁ with
conservation of energy and momentum for each electron emitted from the cathode
“and with Poisson's.law.

| As stated earliér in this report, the energy state of an electron
is charécterized by its energy W and two of the components of its mamentum, :
Px and pz,' these three.quahtities being constants of the motion, as long as
energy and momentum are conserved. On the other hand, the component Py and
the;potential energy vary during the motioﬁ.-

In order to map_the regions in phase'space accessible to the

electrons emitted from the cathode it is sufficient to consider the space px,

Py, yo
 The accessibility criterion is obtained from
ZmW = py® + Pyo +Dg° = (Px + eBy)Z # py? + py° - 2m eE
or
py2 = py02 + 2m el - 82132.')72 - 2Px eBy | (51)

where Py and p&o have to be real quantifies.
Fig.bi shows a sketch of the boundary surface between the accessible
and the inaccessible part of Px~Py-y-space. - It is, of course, qualitative only,

since E {y) is not known but related to the space-charge distribution by Poisson's
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law. Integration of the distribution function (20) over the accessible space
with respect to py and Py would give the relation between p, E, and y that,
combined with Poisson's equation, determines the initial conditions.

The inaccessible region has the shape of a distorted cone with its
apex on the axis Py = 0, but in general not at py = 0. The axis Py = O to the
left of the apex is a generatrix of the surface. It should be pointed out that
the fact that the inaccessible region reaches the axis does not mean that
electrons with Py = O and py in this range can not escape from the cathode.
They do, but only tangentially to the Px-Py-plane, describe a broad elliptic
orbit in the y-py-plane and reach their turning point on the upper part of
the boundary line of the accessible‘region or hit the anode.

In Fig. 3 the boundary for interception of the electrons by the
anode is also indicated. In other words, any electron to the left of this
surface will be removed by impact on the anode. The space-charge density
can therefore be considered zero to the left of this boundary except where
this‘region overlaps: the region accessible from the cathode.

The volume .between the two boundaries contains all the possible
energy states whose electron.orbits reach neither the anode nor the cathode.
Wé shall refer to this volume as the secular region since the life of an
electron energy state in this region is very long compared with the period
of the cyclic motion of the electron. It should be noted that:

1. Only an infinitesimal change in momentum is required for
an _electron to cross the boundary into this volume.

2. The electron population of this volume. will continue to
increase until the. current flowing to the anode through the
opposite boundary exceeds the .current entering the volume
from the cathode-accessible region.

3. Whether the discrete electron-electron interaction is
weak or strong determines primarily the time required
to reach a steady state but not necessarily the final
space-charge distribution.
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Before discussing the possibility of determining at least roughly
the final space-charge distribution, we shall give some brief comments on
previously proposed solutions to the space-charge distribution in the cut-off
magnetron. Common to them all is that the solution is identified with some
form of what we have called initial conditions; sometimes the Jjustification
is given that the interaction between discrete electrons is small enough to
be neglected. The three underlined conditions above show that this reasoning
is not correct because of the effect of the interaction, however weak, is cumu-
lative.

The Brillouin or single-stream space-charge distribution §n phase
space (Fig. 1) is limited to the line AB and independent of y within this range.
At Tirst sight this distribution may appear to be a possible equilibrium at
0°K temperature. However, it would be strange indeed if all electrons occupied
the same point in momentum space, although lower energy states certainly are
possible. But we must consider the possibility that the state be metastable
because of the lack of a process whereby the unoccupied energy states could
be populated. Obviously such a process does exist. Since the space. charge
is formed by discrete electrons whose velocity varies with y, even though
their orbits do not intersect, the electric field at the edge of the space-
charge cloud necessarily fluctuates in magnitude and direction both in time
and space. A diffusion will therefore take place, both out into. the unoccupied
space and towards the cathode. The energy required for this random motion is,
of course, supplied by the d-c electric field.

The double-stream distribution described by Slater,lL Page and
Adams,5’6 and others is represented by an approximately elliptic line charge
in phase space (Fig. 5). The space-charge density in real space at the cathode
and at the edge of the swarim is infinite; a finite minimum is located at an

intermediate plane. This is also a 0°K distribution, since all the electrons
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have the same energy although occupying a line rather than a point in momentum
space. There can be no question about a metastable state in this case, since
the electron orbits intersect with considerable relative velocity so that
exchange of energy and momentum is inevitable.

Twiss has considered the modification in the initial space-charge
distribution produced by the initial velocities of the electrons. The result
is essentially the initial state mentioned earlier in this section as obtain-
able by integration of the distribution of function (20) over the accessible
region of momentum space. It‘avoids the discontinuities and singularities of
the two distributions mentioned above, but is otherwise subject to the same

criticism; it is an initial state but not a steady state.
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V. DISCUSSION OF THE MAGNETRON SPACE-CHARGE DISTRIBUTION AS A DIFFUSION PROBLEM

A calculation of the steady state in the cut-off magnetron from
the initial state previously indicated is complicated by the following
circumstances:

1. The relationships governing the transfer of momentum between the
electrons, including close encounters as well as distant encounters, are
rather involved even when the state of the space charge differs very little
from thermal equilibrium.,

2. The actual distribution density is very irregular because of the
initially abrupt variation at the accessibility boundaries.

3. The distribution density function is furthermore distorted by the
increased electron temperature produced by the diffusion of electrons from
the low-potential parts of the space charge to the high-potential parts, so
that the energies of electrons returning to the cathode are distributed
according to a higher temperature than those leaving the cathode. (We use the
term "temperature" for convenience although the distribution is not regular
Maxwell-Boltzmann. )

We shall here try to arrive at a qualitative understanding of the
way in which a steady state is reached without resolving quantitavely the
complications enumerated above.

The drift of electrons through phase space is such that if the
system were temporarily closed its state would gradually approach thermal
equilibrium,

During thermal equilibrium the number of electrons that move from
one particular volume element in phase space to another such element is equal to
the number that moves in the opposite direction. We should expect it to be

possible to calculate the instantaneous value of the interaction current from
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one volume element in the phase space to another by comparing the instantaneous
distribution with the equilibrium distribution. Here, however, we should not
consider thermai equilibrium, which is determined by the boundary conditions
of the whole space charge, but the standard normal distriubtion of (py + eBy),
Py and p, that has the same total population, the same energy, and the same
center of gravity as the initial distribution. The total interaction current
across a certain boundary surface in momentum space would be obtained by a
double integration over these two distribution density functions. In addition
to a function of the densities of the two volume elements in both distributions
the integrand must necessarily coﬁtain a welghting function expressing the
probability of the required change of momentum between the two volume elements.
At least two simultaneous asymptotic processes should be considered that
give quite different weighting functions. The first one operates by close
binary encounters and is a discrete random procéss of well-known type. The
influx to a certain volume element in phase space because of its density
deficiency is largely determined by the distance of the element from the center
of gravity of the distribution density functions. In this case the weighting
function accounts for the impact parameter and the angle between the relative
velocities of the two electrons with respect to their common center of gravity.

The second process is the result of interaction between a large
number of électrons at COnsiderably larger distances. The weighting function
in this case permits only very small changes of momentum. The interaction
current density across a certain surface in momentum space is consequently
determined chiefly by a relation between the actual density gradient at this
surface and the equilibrium density gradient there.

It has been shbwn8 that when the interaction is due to Coulomb forces

neither one of these two processes can in general be neglected in comparison

with the other.



In enumerating the factors that determine the steady state we should
begin with the boundary conditions at the cathode. It is natural to assume
that the mass and thermal capacity of the cathode are so large that the tem-
perature and distribution of the emitted electrons are independent of the
temperature and distribution of the returning electrons, that is to say, the
energy and momentum of the electron cloud are not conserved at the cathode.

We made this assumption previously in order to arrive at the thermal equilibrium
distribution, Eq 20. If momentum were at least partly conserved, the center of
gravity of the distribution could not fall on the line py = - eBy but somewhere
between this line and px = O. The assumption made here appears satisfactory

as long as the emission‘is strictly thermionic; if secondary emission is
appreciable, the boundary conditions become much more difficult to state.

Between the cathode and the potential minimum'the inaccessible part
of the phase space is likely to be small and not to include dense regions of
the distribution. The potential and space-charge density then drops approxi-
mately according to Eq 21 until roughly the Brillouin density is reached.

The most interesting region in real space is between the potential
minimum and the edge of the cloud. The boundary of the secular volume in phase
space on the cathode side is likely to be almost parallel to the y-axis here,
since the potential distribution is probably not very different from that of
the Brillouin solution (see Fig. 6). The space-charge density in the secular
volume obviously must be such that the net number of electrons entering from
the right equals the net number leaving at the left boundary. This density
is obviously smaller than the one required for ideal thermal equilibrium;
the center of gravity of the distribution must therefore be expected to be to
the right of the line px = - eBy, that is, closer to the right-hand boundary

than to the left-hand one. The space-charge density required for a steady

state is therefore closer to the density at the right boundary than to the
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one at the left, which is close to zero. To calculate this space-charge
distribution is evidently very difficult, but it should be clear that its
density is by no means negligible as far as calculation of space-charge
distribution in real space is concerned.

Twiss maintains that a double-stream motion with considerably more
than thermal energy exists here in the cathode-accessible volume of phase

space. The square of the y-directed momentum of an electron can be written

(Eq 31)
pye = Pyo2 + 2mE - e2B2y2 - 2p, eBy £ Pyo2 - 2px eBy (32)

The orbits of the electrons in the DPy-y-plane are parabolas, and
since eBy px, py may be of a different order of magnitude than Pyo for
negative values of py. The orbits do not extend to the anode, because outside
the edge of the space-charge swarm e2B2ye is considerably larger than 2mE, so
that the electrons turn back into the cloud.

At first sight these conclusions seem to be inconsistent with the
view presented in section IV, that the initial energy distribution at any point
is an incomplete Maxwell-Boltzmann distribution of cathode temperature. The
answer is that as the electrons move in the positive y-direction and gain kinetic
energy from the electric field, they also move towards the high-energy
fringes of a distribution that, if it were complete, would have a much higher
gpace-charge density than at the cathode.

The high-energy electrons will be much closer to the center of
gravity of the actual, considerably distorted distribution than to the center
of gravity of the Maxwell-Boltzmann distribution of which they form a small

part. Consequently, the average energy or "temperature" of the actual distri-

bution will be much higher than at the cathode.
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This increase of the average electron energy with y no doubt contains
the clue to a number of magnetron problems. Considering the cut-off magnetron
as a resistor, we should expect the increased electron temperature to increase
the noise output. Twiss has attributed the noise level to a "noise amplifica-
tion" caused by the double-stream interaction in the space-charge cloud. The
points of view may not be equivalent, but they are certainly related.

The difference between the space-charge distribution discussed here
and the Brillouin or Twiss solution is probably not very large when the volume
of the secular region in phase space is small, i.e., when the tube is operated
close to the cut-off voltage. The anode current will be appreciably larger than
the direct convection current from cathode to anode, however, because of the
diffusion through the secular region.

When the ancde voltage is far below the cut-off voltage, on the other
hand, the secular volume is large, and the total space charge there msy be
large enough to affect the space-charge density in real space and the poten-
tial distribution appreciably.

So far it has been assumed that space-charge-limited conditions
prevail in the magnetron, so that a potential minimum exists a finite distance
from the cathode.. Sufficient emission is then available to maintain a space-
charge density in the cloud roughly equal to the Brillouin density. Under
temperature-limited conditions this is not the case (Fig. 7), initially at
least, although the possibility should be considered that the accumulation
of space charge in the secular region could modify the potential distribution
in such a way that Fig. 7 changed into something like Fig. 3. This is very
likely to be approximately true when the magnetron is operated far below the
cut-cff voltage, so that the anode current is infinitesimally small. There

can be no potential minirmum, however, and this part may be significant. Twiss
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has described a process whereby the shot noise from the cathode is increased

by the space-charge effects at the potential minimum instead of being reduced

as in a space-charge-limited diode. Twiss's suggestion that actual oscillations,
similiar to plasma oscillations, may take place between the cathode and the
potential minimum seems less plausible.

The mathematical difficulties discourage any attempt to predict
numerically the space-charge distribution in a cut-off magnetron; we must
therefore look to experimental investigations for quantitative information.
Reverdin? has described an interesting electron-optical method to explore the
magnetron space charge. Eis results show that the steady-state formation
is sensitive to cathode geometry and temperature, but his data are too
scanty to yield any definite quantitative information as to the effect of the
various parameters of the prdblem.

It is to be hoped that the exploring-beam experiments under way
at Columbia Radiation Laboratory and at the University of Michigan will throw

more light on the subject.
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