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ABSTRACT

A stream of electrons 1s considered, partly filling the space
between two plane, parallel admittance sheets of different d-c potential
and focussed by a uniform magnetic field parallel to the sheets. The
natural modes of propagation of small sinusoidal perturbations are cal-
culated for various boundary admittances, and the conditions are inves-~
tigated under which these modes represent growing waves.

Comparisons are made between propagation parallel with and per-
pendicular to the magnetic field.

For applications to magnetrons the cases are considered where
the low-potential sheet (analagous to the cathode) has infinite admit-
tance or is a pure conductance, respectively. In the latter case the cal-
culations show that growing waves may exist even when the high-potential

sheet (anode) is a capacitive admittance.
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THEORETICAL STUDY OF THE INITTIATION OF OSCILLATIONS

IN ELECTRON STREAMS THROUGH CROSSED FIELDS

Introduction

The purpose of this study is to find the general conditions
under which spontaneous, approximately sinusoidal oscillations will build
up in an idealized system consisting of a stream of electrons flowing be-
tween two admittance sheets in crossed electric and magnetic fields. The
motivation for a small-signal, greatly oversimplified theory is as usual
the hope that the results after comparison with experimental data may make
it possible to reach a better at least qualitative understanding of the
behavior of realizable systems and to show the way toward further improve-
ment of the performance of these systems. The independent variables that
are given particular attention are the admittances of the boundary sur-
faces, i.e., the "circuit" characteristics of the oscillator.

The very general statement of the problem makes it possible to
make some comparisons between the mechanisms of oscillation in traveling-
wave and magnetron oscillators.

It is hoped that some of the results will make it possible to
lock beyond the present frontiers, for instance, in the field of voltage-
tunable operation of magnetrons where the understanding of the mechanism
of oscillation and the relations between the various design parameters is

very incomplete.
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Statement and Solution of the Idealized
Problem in Mathematical Form

Figure 1 relates a Cartesian coordinate system to the geometry of
the system to be studied. Between two plane parallel admittance sheets

O and y = d a stream of electrons occupies the volume from y = O to

]

y

y = h. It has an average velocity component v, . in the direction of the
x-axis and one vg, = u in the direction of the z-axis. A uniform magnetic
flux density B is parallel to the z-axis, and a potential difference Vd is
maintained between the admittance sheets y = d and y = 0.

For the electric field E and the magnetic flux density B we in-

troduce the variables

j2

2> e

e = e

. (1)
3

(Dc = 'EE-. [ (2)

Translating the components of the acceleration into partial de-
rivatives by means of the "hydrodynamic operator" aé t + v *V we obtain

Newton's equations of motion for an electron in the following form:

dv V.
—(eX+vyﬂ)C)=—E%=3T§+(an%+vya%_+vz-§z—)vx (5)
dvy dvy 0 0 )
_(ey - Vx“)c) = _d—_JE = '-d——_E‘ + (VX a"}‘("-i- Vy ry + Vg 'a'z‘) Vy ()4)
-e, = EZE = QXZ.+ (v 04y, 9. v iL) v (5)'
Z at d t Xox Yoy %oz’ 2°

We shall assume that the unperturbed state of the system is the

ideal Brillouin state of the cut-off linear magnetron and that the zero-



_5_
order quantities (d-c) will remain invariant under small sinusoidal pertur-

bations. Thus we have

0voy 9Voy

9 x _ 09z =~ Sox = €z = Voy = O (6)
Vox T "%V (7)
v, = u (8)
€oy = - wbz y . (9)

For the first-order perturbations the equations (3)-(5) assume

the following appearance

e1x = - Q Vig (10)
€1y T Vix % T % Viy (11)
e, = - a7V, - (12)
where the operator notation
0 ¢ su g (13)

qQ = E-wcy a‘;-*-ua-z

has been introduced.

The analysis to be presented here 1s nonrelativistic, i. e., it
is assumed throughout that the squares of the ratios of the electron veloc-
ities and the phase velocities of all wave motions to the velocity of light
are negligible compared to unity. This means that the first-order electric
field inside the electron stream satisfies Poisson's equation and outside
Laplace's equation rather than the vector wave equation.

Inside the stream then

2 (14)

divey, = pg = = W



T

dive; = pq. (15)
Furthermore, conservation of charge requires that

'3‘% = div (T o). (16)

Note that the space-charge density p has equally arbitrary dimen-
sions and units as the electric field e; the choice is Jjustified by the re-
sulting compact form of the equations.

Expansion of (16) gives
qdivd, = of2aivd . (17)

Making use of the fact that there will be no vortices inside

the electron stream

curl v; = O (18)

we can eliminate the field components and all but one velocity component
between the equations (10)-(12), (17) and (18). The result is a four-
dimensional partial differential equation. For sinusoidal perturbations

a separation of the variables is easily achieved. Let
le(t,x,y,z) = le(y) ex_p{ Jjot - jax - jyz} . (19)
Then the operator
4 = Jw+ jowy - Juy
= Jwp = jwc{ ._mc.‘i’ +Qy - g} . (20)

It is found convenient to express the solution as a function of

the new variable p rather than of y. Evidently 6/8p is equal to lﬁa . S/Sy.
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The resulting differential equation 1s

2

vy N op  OViy ac +Y° 0 (21)
: - v - ]

502 21 op 2 1x

The same equation is obtained for the componentrvlz.

The variable p is zero for an electron that has an average veloc-
ity equal to the phase velocity of the perturbation. The origin of p thus
falls inside the stream only if such a condition of sychronism exists at
any plane in the stream.

The solution of this equation, the electromagnetic field equa-
tions in the space betwéen y = h and y = d and the appropriate boundary
relations at y = O; y = h, and y = d results in a number of natural modes
of propagation along the stream. In the x and z dimensions we shall assume
"¢yclic" boundary conditions, i.e., that waves leaving the system in one
direction, immediately reenter the system from the opposite direction. The
components @ and y of the propagation constant then have a discrete set of
real values, but the radian frequency of any partieular natural mode of the
system may be either real or complex. In the latter case the amplitude of
the node decays or grows exponentially with time. The existence of grow-
ing waves is a necessary condition for the system to be a self-excited
oscillator. The sufficient set of conditions includes in addition some re-
lations given by the initial state of the system. By the use of the device
of cyeclic boundary conditions we have eliminated the growth and decay in
space that is typical of the traveling-wave amplifier and limited our study
to reentrant oscillators like the magnetron, without having to deal with
the additional complication of a cylindrical geometry. Since time has only

one direction, complex roots in frequency are somewhat less confusing than



complex roots in wave number.

The assumption of real values of @ and y is realistic when one
of the admittance sheets is an interdigital structure connected to a
single-mode resonator, such as a lumped RIC circuit. A perturbation in
the resonator will then produce instantaneously an identical potential
difference at all pairs of fingers. For other configurations this as-
sumption may not be Jjustifiable. In order to simplify the analysis, how-
ever, we shall here consider a and y real quantities determined by the
structures producing the wave admittances Y, at y = h and Yy at y = O.

We shall discuss the solution of (21) and corresponding natu-
ral modes of the system for two extreme conditions. The first is obtain-
ed by letting ¢ go to zero, so that the wave propagation takes place par-
allel to the magnetic field. We shall refer to this case as that of a
pure traveling-wave oscillator, since the system can be interpreted as an
idealization of a hollow—beaﬁ coaxial-circuit traveling-wave tube with mag-
netic focusing.

The equation (21) in this case becomes

52 Viz 2

__E;E_ -y vy, =0 {TW: a = O} (22)

with the solutions
vy = view { Jot - dyzxyv}. (23)

The opposite extreme is reached by setting y= 0, so that the
wave propagation is perpendicular to the direction of the magnetic field.
We shall call this case that of the pure magnetron, since the system now

obviously is an ideal linear magnetron. Then we have from (21) and (20)



5% v O v
1x 2p X v, = 0, M:y =0) (2b)
5 p°-1 ¥ D
where
P = gt O, (25)

which is the differential equation studied by Macfarlane and Hay2 and in
slightly different form by Brewer.5

The solutions are one odd and one even function of p, which for
real values of p are real and monotonic between the singular points
p =+ 1. These functions will be discussed further later on; for the

time being we simply write the solutions in the form

Vie = 8o (p) + a Ty (p). (26)

The next step in the analysis is the evaluation of the "ripple"

1 procedure

in the boundary of the electron stream. According to Hahn's
the equivalent surface charge or discontinuity in the normal component of
the electric field is found to be

Jwe Viy

> (27)

Aely

At first sight it is tempting to set vy, = vly =V, = 0 at
y = 0, since these relations may seem the natural boundary conditions at a
solid surface smoothly covered by the electron stream. However, we prefer
to assume that the boundary conditions are given by the continuity of the

tangential electric and magnetic field components and the admittance of the

1) Ref. 3, page 93.
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sheet. For simplicity we also assume that the sheet will permit an infin-
itesimal ripple of the stream boundary and values of Viy Or vy, and vly
different from zero. Admittedly this assumption is unrealistic; we may not
be Justified in neglecting the power loss produced by the fact that the
electrons impinging on the cathode have finite kinetic energy while those

emitted have zero energy on the average.

The boundary conditions at y = O can then be written

H w € E e WE
Yk = - E._X = .____:g S = .._3_,. . ...._._o (a = O) (28)
A Y bz €y Y
for the first case, since
5 H 5 B
1H), = X = M 2
(Cur )y 8Z €0 6t ( 9)
and for the second case
H wWeEn E e weE
Yk = E_Z. = _.___O._y - —-3-7. . © (y-: O). (50)
x o Eyx Cx o

At y = h the boundary conditions will be expressed by the same

relations with reversed signs, since the admittance then is measured in the

direction of positive rather than negative y.

We shall here assume that Y, 1s a pure conductance l/Rk and in-

troduce the dimensionless parameters

ey Y

1
e, o T weRy T W (@ = 0) (31)
&y _ o 1
| e T weR, T W (y=0) (32)

X y=0



y .

- — = Y = Oé=0)
€2 Jyen weo B Y % ( &2
e a

- ;l = Ges Yn = 0By (y=0). (3k4)
X/y=h

By, 1s a dimensionless susceptance parameter that is complex when
Yh has a real component. It can be expressed in terms of the admittance Y4

at y = d and the distance d-h.

B~ chailth(%a;hh))r(g—}%i (@ = 0) (35)
where
1% = gL ta (56)
For y = O the corresponding expressions are obtained by replacing
y by a.

For large values of y (4 - h), By, of course approaches unity, i.e.
the normalized capacitive susceptance of free space.

In order to obtain a necessary condition for oscillation in the
first case (traveling-wave oscillator, & = 0), we combine the boundary con-
ditions (31) and (33) with the wave solutions (23) and examine the complex
roots of w. Introducing (11), (12), and (27) into (31) we obtain the dif-
ferential equation
|1y * 2e1y “‘J'%P*é%)-c-vly

€1z y=0 L - J W p vy, y=0

It
I

1
Y



) 6y
p
- : (37)
- dJd Vig =0
Sle _ _ jy
Sl 7 Vi, for y =0 (38)
= 1-=. (39)
1Y
In the same way (33) leads to the equation
&vyg Y Bn
5y -~ @ ‘1z for y = h. (40)

Let us write the complete wave solution inside the space charge

(23)
Vig = ag coshyy + aj sinhyy . (41)

This expression can now be substituted for vy, either in (38) and
(4O0) or in the integrals of these equations. In the present case the forme

alternative leads to the simpler result.

The compatibility relation of the two resulting equations deter-

mines the eigen-values of w.
tanhyh + Ph
g 1

T (ko)

Bn, .
1+ ¢-—tanhy h

Here both ¢ and B, may be functions of w; consequently the gen-

eral solution for the eigen-values of w can hardly be written in simpler

form.
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When By is independent of w a quadratic equation in ¢ is obtained

R L (15)

where for short

tanh yh = s. (M)

When also p = O, we get simply

- 2
2 = 1 = [;___llé] ) (45)
1+ By tanh y h We

At first sight, (45) may seem to be in conflict with the conwen-

tional small-signal theory of the traveling-wave tube, since it is of the
second rather than of the third degree. However, if w be considered real
and tanhyh replaced by‘y h, it is seen that the equation will be of the
third degree iny , as usual.

Incidentally, it 1s interesting to note that the electric field
components calculated from (23) and (10)-(12) satisfy Laplace's equation,
so that the first-order space-charge perturbation Pl is zero. No bunching
actually takes place; the effect of space-charge waves is produced entirely
by the ripple along the surface of the electron stream.

In the magnetron case (y = 0) the boundary conditions at y = O

(32) and y = h (34) in the same way give the differential equations

1y 1 Ovig 1 1
1 - ———— + - = me——— )4-6)
[( ;E) Vix Op ;ly=0 Jn (

o)
(-3)2 2= ] 1)
p2 Vix dp Py_____h

)
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The general wave solution inside the space charge is

Vie = a f (p) + alfl(P) . (26)

Expansion about the origin defines the functions fo(p) and fl(p)

from (24) in the following way

1.2, 5 Lk 3 6 3848 8

£ = 14= 2 93 _3%48

o(®) +S5P et = P + Tos0 ° + .. (L8)

£.(p) = p+ipi+ilpd e 3217 . (L9)
1 2 ITe) 1680

The integrals of (46) and (47) consistent with (26) and valid in

i 1/2 1/3n
aq |:(-ll—-:_§) epJ =0

the interval - 1< p< 1l are

Vix

(50)

I
5
<
V]
°
|~
S

y=h

- {%\p (v, —Bh)} (51)

If p» = 0O, then the tangential electric field €14 and also Vig
should be zero. The right-hand side of (50), however, behaves quite dif-
ferently depending on the direction in the complex plane from which 75
approaches zero. When the resistivity of the conductor is >0, the magnet-

ic field according to the skin-effect theory always lags the electric field,

so that
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n= r+ ix (x >0 if r >0). (52)
Consequently
X + Jr
1/2 x° 4+ 12
v, = mf(i=R) eP (y=0).  (53)
1+ 0p

When x and r simultaneously approach zero, this expression also

becomes zero, as it should.

The alternative forms of the equation of compatibility obtained

by substituting (26) for Vi, in (46)-(47) and (50)-(51) respectively, are

® [~ 2'7 ® —l %1
e () ] e a8
f'o(ph) 1 -;;5 + fO(Ph)rBhi-ﬁi

(%) e& B w(E) B

The eigen-values of w representing the natural modes of the sys-
tem can be solved from either one of these equations. The first one is

more convenient for an approximate solution based on the assumption

Ph<< 1 (57)

p f<< 1. (58)
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The result is

1 2
l-§ph

phg{cxh - I-_(Z)_)E)e - %] } (59)

Since it is known that magnetrons operate close to synchronism

Bh%

between the electron velocity at the edge of the space charge (y = h) and
the phase velocity of the circuit wave w/a, we may neglect,% ph2 in com-

parison with unity and write

2 2
n’ ~(&em)?s :

Bh{ah s [(w&)z -%—:l} (60)

The value py at y = 0 is of course still subject to the condi-

tion (57) only.

Capacitive Boundary at y = d

We shall first discuss the conditions prevailing when the upper
boundary is an admittance sheet of pure, capacitive susceptance. Then the
admittance seen by the electrons at the edge of the beam (y = h) is also
a capacitive susceptance. The normalized quantity By (33)-(34) is a pos-
itive real number independent of frequency.

For ¢ = O (i.e., TWO) the frequencies of the natural modes are

determined by the equation (45),

w=-Yu _ 1
O [1+ B, tann y n]1/2 (61)

if the lower boundary (y = 0) is an ideal conductor ( 7 = 0). Evidently
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the roots of w are real and no growing waves can exist.
On the other hand, if the conductivity of the lower boundary

is finite ( np > 0) and the frequency dependence of is neglected, (42)
Yj n ’

leads to
_ o1 % ¥
¢—l (a)—yu)
= —d 1+ ja) + /(1 + 3a)2 - k4 jas® (62)
2775{( Jja ,\/ ja jas }
where
a = sMB, . (63)

If a is a first-order small quantity and the minus sign is cho-

sen, a second-order approximation of one root is

¢ = J = {ja 2 + a%s° (1 - 82)} (64)
N s
- e is s, (65)

and

-2
1_01;2 _ (9_@&) = 1+sB, -dpsoB° (L-s7),  (66)

@e

® = ru: {l+th-jr)82 Bh2 ‘(ZL--SE‘)}l/2

(67)

Here the minus sign places the second term in the third quadrant,
and the corresponding value of w represents a growing wave with slightly
less than synchronous frequency. The second root of ¢ must be discarded,
since the result does not approach the correct limit asy approaches zero.

The result (67) will of course not be quantitatively correct when
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a is not small. The roots will always be complex, however, and placed
in opposite quadrants, except in the limits a = 0, a =@® , and s = 1; one
root will thus in all practical cases give a growing wave.

Since the beam velocity u occurs only in the first term of (67),
the frequency of oscillation will vary linearly with this velocity, while
the rate of growth is independent of u. The oscillation thus appears to
be perfectly "voltage-tunable," since u is proportional to the square root
of the beam voltage.

Usually there is a whole set of discrete wave numbers y possible.
The question of "mode selection' is then important. With which one of
these values is the oscillation most likely to take place?

The exponent of growth is the negative imaginary component of
(67); for small m it is a monotonic, increasing function of n , which is
inversely proportional to y (31).

For given By also By is a function of y (35). So is s = tanh yh.
When tanh y h and tanh y’(d-h) are small the exponent of growth increases
rapidly with y » SO that the higher space harmonics are favored. When the
hyperbolic tangents approach unity, on the other hand, this exponent is a
decreasing function of Y s favoring the lower space harmonics. In the
latter case, however, (67) is not very accurate; the second term is no long-
er small and it is not a good approximation to consider 1 independent of
frequency.

It is understood, of course, that in most practical structures
the variation of By with y is not as simple as assumed in (36). The above
discussion is an illustration only.

If the skin-effect inductance of the lower boundary (y = 0) is

taken into account, the roots of (62) will be somewhat modified; there



- 17 -
will still be two complex eigen values of w, however, one of which will

represent a growing wave.

If the upper boundary is a lossy capacitance, we have
G,
tanh y (@-h) + By + )' d
Jw €4

By = (68)

G
1 + tanh y (d—h){Bd + j);)ed }
o)

or in shorter notation

w

-3 _8
) g + Bd J —-—a)

h wg

l+ g (Bd - J ﬂr)

(g + By) (yu+ ap) - Jog

= 1 ) (69)
g[(’g'““ By) (yu + acp) - ng]
and if 7 =0
02 = 1
1+ B+ Ba) (yu+ o) - Joy
g[(-:é-+ Bd) (Yu + app) - ja)g]
AL+ kp) - J
- & (70)
B(l + kp) - Jﬁd)g
where
= (L
A = (g + Bd) yu (71)

ol
i
—t——
—~
1=
+
(es]

o
~—
+

[4}]
—
l.—l
+

td

02 | o
~—

S
~
o]
—~~
=)
no
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The resulting characteristic equation is

5, 2B-dag A A J%
For comparison we set mg = 0 and note that then
3 2 1 A A _ ( 2 Ak)( 1 ) ~
p -+ p — ™ p — = p = - + = - 0 . 6
X ~ B kB B/\° 7k (76)

The last root p = -l/k is not a root of the original equation (70)
for w, = 0. Consequently we examine the roots of (75) that correspond to
p = i,(A/B)l/g for ®y = 0 and discard the one that corresponds to -1/k.
When wg and the imaginary components —61 and —62 of the first two

roots are small it is found that

5&@0
5.
1 2B (Ck + 1) (77)
PagC
B2 = 5B (Ck - 1) (78)
where
c® = a/B. (79)
Since g and s are smaller than or equal to one
1 2
T+ Bg < C°< 1. (80)

The ratio k of the cyclotron or plasma frequency to the synchronous
frequency y u can assume a wide range of values. When Ck i1s smaller than
one a positive value of &, and a growing wave are possible. The exponent
of growth is particularly large close to the critical point Ck = 1. The

mode selection in this case favors the wave numbers )rthat approach the
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critical value Ye which makes Ck = 1.

When y = 0, i.e.,for a magnetron, the characteristic equation

was found to be

2
Pn2 (ﬁ-&-ah) & ozhlBh R (81)

if the lower boundary were a perfect conductor ( n = 0). Evidently no com-
plex roots and growing waves can exist as long as By 1s real, positive, and

independent of frequency.

If = > 0 we have

2 _ (-9—+ Oth)2 z{ o, {l-%l[(&)Q j

]} ' (82)

It must be remembered that this equation is valid for small py,

MoJ

only; since @h is in general smaller than one, Bh must be large. Otherwise

more accurate solutions of (55) and (56) must be used.

If small roots of py exist, their approximate values are

oty 2R T e

one of which lies in the first quadrant, the other in the third quadrant.

The latter represents a growing wave of the following radian frequency

o = o { on - [t {1e i;?jg (2 __;_(ah)e)}]l/e, (8L)

Note that for synchronous or nearly synchronous waves Q is numer-
ically negative. Only the first term is affected by this sign since both

n and Bh are normalized in such a way that they change sign with < [see

(32) and (33))
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Also here the real component of the natural frequency is slight-
ly smaller than the synchronous frequency wg = - Gh w,, and for a given
magnetic field the thickness h of the beam and the radian wave number &
determine the frequency of oscillation.

Since under these conditions h depends only on the d-c potential
difference between the planes y = d and y = O, the oscillation is again
"voltage-tunable."

The mode selection when the radian wave number & can have a num-
ber of discrete values can be discussed in the same way as for the travel-
ing-wave oscillator. Because of the limited range of validity of the ap-
proximate solution given here, we can only consider large values of By
i.e., small values of tanh a(d-h). Under such conditions the exponent of
growth 1s a rapidly decreasing function of @, indicating that the oscilla-
tion is most likely to occur with the lowest or fundamental wave number.

When no small roots of Py exist it may be inferred from experi-
ence that no spontaneous oscillations are possible.

Also in this case it is interesting to investigate the effect of
losses in the upper capacitive boundary. From (81) and a revised (69) we

obtain

5 {(é”f Bd) (wgp - oh) - Jwg}

=
~—~

g + By) (a.p - ah) - ng}

A1+ kp) - Jog
5 (85)

(1 + kp) - JBwy,

which is exactly the same as the final form of (70), although the constants

(defined so as to be positive numbers) have a different interpretation:



= 1y 86
A ozh(g+Bd), (86)
2
B - (O‘Z) (& + By) > (87)
_ @
p - 2, (88)
k- -1 (89)

The decay constants for the acceptable roots (77), (T78) are both

positive, if Ck is larger than one. Since in most practical cases ch < 1,

2.2 1

Ck~ > > 1 (if By > 1), (90)
(on)?

and no growing waves can exist.

For very high space harmonics this inequality may not be true; in
that case however the right side of (85) is not small, and the approximate
theory does not hold. The analysis permits only a qualified conclusion that
within the range of the present analysis no growing waves are in evidence
in a magnetron with a lossy capacitance as anode boundary, as long as the
cathode is a perfect conductor.

The solutions for a lossy capacitance admittance at y = d and
n > O have not been computed. Qualitatively, however, it is obvious that
they must be interpolated between the solutions of the two cases treated
above. The losses in the anode circuit tend to prevent or restrict the os-
cillations that would be caused by the resistivity of the cathode, if the

anode were a pure capacitance.
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Inductive Boundary at y = d

When the admittance sheet at y = d acts as a pure inductance L,

the dimensionless quantity By, according to (35) is (for & = 0)

tanh y (d-h) + 3—5%5 ji—L
By = v
1+ oo JTOL_)L_tanhy(d-h)
2
e (®)
= ® ’ (91)

L - ()

where the following shorter notation has been introduced

g = tanhy(d-h) (92)
w,? = e’;L tanh y (d-h) .. (93)

In the magnetron case the same notation will be used, y being

replaced by .

Because of the capacitive nature of the space between y = h and
y = d, the admittance at y = h has a series-resonance frequency w, and a
parallel-resonance frequency wo/g.

Let us again begin with the case a = O (TWO) and perfect conduc-

tivity at y = 0 (M = 0), Then

(9k)
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N 7u)2 ) L () (95)
te (1 + sg®) _ll:sZe _(&)2} ]

Since it is empirically known that traveling-wave tubes operate
close to synchronism at least under small-signal conditions, it is expedient
to look for solutions for which both members of (95) are very small compared

to unity. It is then convenient to write

wﬂo = 1+4 - 33 (96)
W Yu

— = =4 - B

% w, by = JBp (97)

and to treat Ay A2 81 8, as small quantities.

The result is

w
o4 ——(_:. _——-g—————-
b Nt T2 (98)

provided this is a small quantity (A22 << 1).
o 2

) e (&) e

so that two real values of &, exist, one positive and one negative, if

2
RAN g Le
o 1> - D (a)o) . (100)

If this inequality is satisfied, two normal modes exist with a

phase velocity very close to the electron velocity u and a real frequency

component
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2
U.)C g
w, = yu - (101)
’ D g1 - g°)

one of them growing and the other decaying with time.

The right member of (lOO) is always positive; consequently the
beam velocity u must be large enough for the synchronous frequency yu to
exceed the series-resonance frequency'ab at the edge of the electron
stream (y = h), in order to satisfy the necessary conditions for the exis-
tence of a growing wave.

As far as mode selection is concerned, it can be seen that for
small values of s and g the right side (100) is nearly independent of y
while the left side grows very rapidly with 7 , so that the high space
harmonics are favored. When the factor (1 - g2) is small, however, also
the right side grows rapidly with y and the answer is more doubtful.

Since (95) is an equation of the fourth degree in w, two more
natural modes must exist. Their frequencies are far from the synchronous
frequency Y w however, and from physical considerations they must be ex-
pected to show neither growth nor decay with time.

For finite conductivity of the lower boundary (77 >0), an ex-
plicit determination of A, and 8, becomes difficult. For a qualitative
discussion, however, these quantities can be written in an implicit form
that can be compared with (98)-(99). It is then possible to calculate a
necessary condition for achieving a specified rate of growth 62 rather

than Jjust 82 > 0.

Ifg ~ - l/bg the equation (41) can be reduced to

in s
1+ VTSV
o (2 Mo - jO
(Bp - 385)" ~ (2 'J 2) a(Ay - 387) (102)
1 Jn

" - 3,2
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where
a(sy - 38y) = ;%— (103)
T
_ 2g
= oo R Loy

In order to find out how a finite 7 tends to change the previous-
ly determined solution formn = 0, let us arbitrarily choose B so small that

approximate methods can be applied. Since s < 1, (102) becomes

(B - 385)° = -a' (& - §&y) (L - 3p) (105)

where a' is slightly different from a and where B is a small positive quan-

tity monotonically increasing with 7.

The relative frequency increment A, of the two relevant modes is

found to be
1 Wa 62+Bb %)9 at w
= -ia'_ — ______..c.—— = - —— —E
= SR e @ TP (106)
2 2w
(o}
where
b = %}5 -1 . (107)
(o}

If the condition (100) is satisfied, the second term in the numer-

ator is larger than the second term in the denominator, so that the absolute

value of A2 increases with B.

In the shorter notation presently used the relation (99) above has

the following form



6" = a{p -2 (w_‘?_)g} : (n =0) (108)

The corresponding equation when 7 > O is

52 m oo {v-2 (XY f-e@ -0 -p2s). (o)

o ®o
If (108) is used as a first approximation to calculate F(B) under

the assumption that the second terms are at least one order of magnitude

smaller than 62, the following expression is obtained:

2

oy e (oo E(R) (R ] e} w0

The main difference between (108) and (110) is the addition of
the last term. Consequently, it takes a larger b or a higher beam veloc-
ity u to produce a specified rate of growth 82 when n > O.

In the magnetron case ( Yy = 0) an inductive upper boundary and a

zero-impedance lower boundary lead to a characteristic equation

P = (A - 352)2 ~ ahl = . _(%)2

By oh [1 - gE(%)E]

_Q(Al-jal) -
on (1-&°) ()

~

Just as in the traveling-wave oscillator case the result can be

written

o - -3 (%) (2

2_ ap - 35.(%)2 (113)

o
no
[
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although the quantities a and b now are defined differently:

2g
a = — T - &) (114)
b = -aoh-1. (115)

A necessary condition for the existence of a real positive root

of 52 and a corresponding growing wave is

b > g(_m"fcg)2 (116)
or
w 2
S 1> () (117)

o an (1 - g2)

It should be remembered that & is numerically negative, while

gﬂu is always positive.

The discussion of mode selection is the same as for the traveling-

wave oscillator.

When n > O the characteristic equation is

Again we compute the necessary condition for obtaining a speci-

fied positive value of 82. The corresponding frequency increment is

o
Bs - kaE-)
2 c

a2 , ,
AE & 2(000) 62(l+ kg) _ k_;_(__i_fi)
O
- -2 (&) r (119)

(o]
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where

k= 1 1 -2 (m)?]. (120)

If the second term of numerator and denominator of F(k) are an
order of magnitude smaller than 8, and if (113) is used as a first approxi-

mation in evaluating these small quantities,

F(k) ® 1 - ﬁ(f—c)[b - %(%)2]

(0]
(). o
Thenv
622 o a{b - %(-Z-Cg)g [1— (F(x) - 1)2]+ kag(z_z)} (122)
~ a{v -%(a“:c__o)QJrkag(%)}_. (123)

In this case the required values of ch and of the beam voltage
are somewhat lower when 7 > O (k >0) than when n = O for the same speci-
fied rate of growth &,.

The corresponding calculations for a lossy inductive boundary

have not been carried out but are not likely to offer any essential new re-

sults.

Resistive Boundary at y = h

If the upper boundary is moved down so that 4 = h, we can draw

some general conclusions about the existence of spontaneous oscillations
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but it is difficult to get explicit solutions of the characteristic equa-
tion for the oscillations.

When @ = O and § = O we have from (45)

2
W - yu 1
( Lc ) ) 1 Y s 7’ (124)
T 3w €oRy

Where Rh is the resistance of the boundary sheet. This relation can be

written
p? = _P*DPS (125)
P+ ps - Ja
or
: 2
p’ + (ps - Ja) p° -p -ps = O. (126)

By inspection it is clear that at least two roots are complex
or imaginary, since the sum of all three roots is complex and their product
real and positive. Then at least one root must lie in the third or fourth
quadrant, i.e. have a positive rate of growth 8,. We have here an oscilla-
tor corresponding to the resistance-wall amplifier of Birdsall et al.

When n > O and p is not small the solution becomes rather com-
plicated and would not be likely to contribute to the understanding of the
general problem under study. As long as 1) 1is small it can be expected to
affect the result only under marginal conditions, i.e. when the right mem-
ber of (124) differs very little from a real positive number.

In the magnetron case ( Y= 0) the solution .(60) is valid only
for small Py, It is therefore possible to study the influence of a resis-

tive boundary only for very low resistivity so that
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2 _ ® 2
= ”(Eﬂm) N2 - — << 1. (127)
Fxsg {l——il-[l-i(mﬂﬂ}
Then for n =0
ph2 = Ja (py - oh), (128)
where
€

dzshv

The solution is one growing and one decaying wave:

o R w {—ahiq/l/zaah —j(%iq/l/Eaah)} (130)

where the quantity (1/2 & oh) is independent of the sign of Q.

From (129) and (130) it is easily seen that the mode selection
favors the low wave numbers.

It is tempting to extrapolate the existence of a growing wave
beyond the validity of (127), but no assurance that such an extrapolation
is justified can be obtained without a study of the mapping of the func-
tion f (p) and £1(p) in (26) over the complex p-plane.

Also in the magnetron case the modification of the solution by
a small but finite resistivity at the lower boundary y = O (i.e., n > 0)
is clearly small. The effect of m 1is to give the quantity a a small
positive phase angle. In the solution of the quadratic equation (128)
the radical is the more important term, and a small change from its phase

angle -45° for m = O is of very little importance.
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If the resistive wall is placed at y = d > h, the admittance
at y = h is a lossy capacitance and the discussion above for such a termi~-

nation applies.

Discussion of Results

The theoretical investigation presented above studies the modes
of oscillation in a reentrant system formed by an ideal laminar stream of
electrons partly filling the space between two plane boundaries of speci-
fied wave admittances. Comparisons are made between propagation parallel
and perpendicular to the constant magnetic field. The particular purpose
of the study is to survey the conditions under which modes exist that in
the small-signal range show exponential growth of amplitude with time, in
the hope that the result provide some better understanding of the limits
for spontaneous initiation of oscillations in traveling-wave oscillators
and magnetrons.

When at least one of the boundary admittances contain induct«
ance components, the wave guide formed by the admittance walls and the
space between them is a propagating structure, and the classical small-
signal traveling-wave-amplifier theory applies. More interesting are the
cases where this structure is operated under cut-off conditions and at-
tenuates only, in the absence of the beam. The wall admittances are then
resistive and capacitive, and the analysis indicates that within certain
ranges of the parameters spontaneous oscillations can still occur.

Each root to the characteristic equation obtained for a speci-
fic case of boundary admittances leads to a relation between the radian

wave numbers @ and y , on the one hand, and the complex frequency on the
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other hand, with beam velocity and dimensions as parameters. A study of
this relation reveals the range of the parameters for which self-excited
oscillations can be obtained, the electronic tuning obtainable by vary-
ing the parameters, primarily the beam voltage, and the mode selection
rules when a set of different wave numbers are permitted.

In this report only those natural modes have been considered
for which either & or y is zero, because a comparison of these modes ap-
pears particularly instructive. Actually any cavity, limited in all three
dimensions, with or without a stream of electrons, has an infinite number
of natural modes with non-vanishing values of both & and y - In the pres-
ence of an electron stream and under appropriate conditions of approxi-
mate synchronism between electron and phase velocity in one dimension nat-
ural modes may exist that are growing waves. A closer study may reveal
that the complex frequencies of these modes differ very little from each
other, so that an oscillator may switch from one mode to another for very
small variations of the operating conditions. In many space-harmonic
slow-wave structures, however, modes of this kind are more or less ef-
fectively suppressed. This is in general true about traveling-wave tubes
but not about magnetrons.

The significance of the lower boundary (y = O) and of its ad-
mittance is apparent in a magnetron, where the cathode surface forms a
boundary which may have considerable wave resistance and, in case of a
helical shape, also appreciable wave reactance. When a potential mini-
mum exists, it is a rather complicated problem to state the boundary con-
ditions realistically. The analysis shows definitely, however, that even
for very small perturbations the space charge is by no means a perfect

shield around the cathode, and that the finite cathode admittance has an
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appreciable effect on the natural modes of oscillation of the system.

The wide-range operation of voltage-tunable magnetrons may pos-
sibly be explained on the basis of this analysis. It is too early to pre-
sent such a detailed interpretation here; only a general outline may be in
order. When the anode admittance is large, the resistivity of the cathode
may provide the necessary condition for the existence of growing waves even
at frequencies where the anode is primarily capacitive, thus making the os-
cillation only to a minor extent dependent on the anode circuit. The mode
selection and the variation of output power with frequency is still likely
to be determined by the anode circuit and its matching network, even if the
frequency range over which oscillations occur is not to any appreciable de-
gree.

Some attempts have been made to show that viscous losses in the
space charge, produced, for instance, by the presence of a small amount of
gas, may also create conditions favorable to the existence of growing
waves. Such losses could be represented by a constant term in the opera-
tor q (See equations (10)-(13) ), leading to the same differential equa-
tion (21) with a modified variable p and the expected conclusions. However,
the operator q appears also in the continuity equation (17), where the add-
ed term cannot be justified. The differential equation (21) does consequent-
ly not apply, and no safe conclusions can be reached without working out the
solution of the modified differential equation with appropriate boundary
conditions.

More important than the viscous losses in the space charge itself

''and it is reasonable to assume

are the r-f losses due to 'backheating,'
that the latter can be taken into account as increased resistance losses in

the cathode surface.



BIBLIOGRAPHY

Bunemann, 0., "Generation and Amplification of Waves in Dense Charged
Beams under Crossed Fields," Nature V. 165, p. L7k, March 1950.

MacFarlane, G. C., Hay, H. G., "Wave Propagation in a Slipping Stream
of Electrons: Small-Amplitude Theory," Proc. Phys. Soc., London,
B LXIII, p. 409, 1950.

Brewer, G. R., "The Propagation of Electromagnetic Waves in a Magne-
tron Space Charge," Technical Report No. 8, Electron Tube Laboratory,
Department of Electrical Engineering, University of Michigan, July

1951.

Hok, Gunnar, "Dependence of Initial Space-Charge Waves in a Magnetron
on Tank-Circuit Impedance," paper read at the Conference on Electron
Tube Research, Ottawa, June 1952.

Birdsall, C. K., Whinnery, J. R., "Waves in an Electron Stream with
General Admittance Walls," Jour. Appl. Phys., Vol. 24, p. 31k, March

1953.

Hok, Gunnar, "Circuit Considerations for Initiation of Oscillations
in Space-Charge Flow through Crossed Fields," paper read at the Con-
ference on Electron Tube Research, Stanford, June 1953.

- 34 -



_35_

?
L L.

-

-———

- YV S -
" ox cY
-

la—— T —»

& -
I

FIG. |



20

10

10

10

copies

copies

copies

copies

copies

copies

copy

DISTRIBUTION LIST

Director, Evans Signal Laboratory

Belmar, New Jersey
FOR: Chief, Thermionics Branch

Chief, Bureau of Ships
Navy Department
Washington 25, D.C.
ATTENTION: Code 930A

Chief, Engineering and Technical Service
Office of the Chief Signal Officer
Washington 25, D.C.

Director, Air Materiel Command
Wright Field

Dayton, Ohio

ATTENTION: Electron Tube Section

Mr. John Keto
Director, Aircraft Radiation Laboratory

Air Materiel Command
Wright Field
Dayton, Ohio

Document File

Electronic Defense Group
Engineering Research Institute
University of Michigan

Ann Arbor, Michigan

H. W. Welch, Jr., Project Supervisor
Electronic Defense Group
Engineering Research Institute
University of Michigan

Ann Arbor, Michigan

Engineering Research Institute File
University of Michigan
Ann Arbor, Michigan

W. E. Quinsey, Assistant to the Director
Engineering Research Institute
University of Michigan

Ann Arbor, Michigan

W. G. Dow, Professor

Department of Electrical Engineering
University of Michigan

Ann Arbor, Michigan

- 36 -



-57_

Gunnar Hok, Professor

Department of Electrical Engineering
University of Michigan

Ann Arbor, Michigan

J. R. Black, Research Engineer
Engineering Research Institute
University of Michigan

Ann Arber, Michigan

J. S. Needle, Assistant Professor
Department of Electrical Engineering
University of Michigan

Ann Arbor, Michigan

Bell Telephone Laboratories
Murray Hill, New Jersey
ATTENTION: S. Millman

Microwave Research Laboratory
University of California
Berkeley, California
ATTENTION: Professor D. Sloan

Air Force Cambridge Research laboratories
Library of Geophysics Directorate

230 Albany Street

Cambridge, Massachusetts

ATTENTION: Dr. E. W. Beth

Air Force Cambridge Research Laboratories
Library of Radiophysics Directorate

230 Albany Street

Cambridge, Massachusetts

Collins Radio Company
Cedar Rapids, ITowa
ATTENTION: Robert M. Mitchell

Columbia Radiation Laboratory
Columbia University
Department of Physics

New York 27, New York

Department of Physics
Cornell University

Ithaca, New York

ATTENTION: Dr. L. P. Smith

Industry and Science Department
Enoch Pratt Free Library
Baltimore 1, Maryland



- 38 -

Vacuum Tube Department

Federal Telecommunication Laboratories, Inc.
500 Washington Avenue

Nutley 10, New Jersey

ATTENTION: A. K. Wing, Jr.

General Electric Co.

General Engineering Laboratory Library
Building 5, Room 130

1 River Road

Schenectady 5, N. Y.

General Electric Research Laboratory
Schenectady, New York
ATTENTION: Dr. A. W. Hull

General Electric Research Laboratory
Schenectady, New York
ATTENTION: P. H. Peters

Mr., A. C. Gable

Ind. and Trans. Tube Dept.
General Electric Co. (Bldg. 269)
Schénectady, New York

Mrs. Marjorie L. Cox, Librarian
G-16, Littauer Center

Harvard University

Cambridge 38, Massachusetts

Cruft Laboratory

Harvard University

Cambridge, Massachusetts

ATTENTION: Professor E. L. Chaffee

Electron Tube Laboratory

Research and Development Laboratory
Hughes Aircraft Company

Culver City, California

ATTENTION: G. R. Brewer

Electron Tube Laboratory

Department of Electrical Engineering
University of Illinois

Urbana, Illinois

Mr. R. Konigsberg
Radiation Laboratory
Johns Hopkins University
1315 St. Paul's Street
Baltimore, Maryland



_59_

Department of Electrical Engineering
University of Kentucky

Lexington, Kentucky

ATTENTION: Professor H. Alexander Romanowit

Gift and Exchange Division
University of Kentucky Libraries
University of Kentucky
Lexington, Kentucky

Mr. R. E. Harrell, Librarian
West Engineering Library
University of Michigan

Ann Arbor, Michigan

Department of Electrical Engineering
University of Minnesota
Minneapolis, Minnesota
ATTENTION: Professor W. G. Shepherd

Document Office - Room 20B-221
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge 39, Massachusetts
ATTENTION: John H. Hewitt

National Bureau of Standards Library
Room 203, Northwest Building
Washington 25, D. C.

Dr. D. L. Marton

Chief, Electron Physics Section
National Bureau of Standards
Washington 25, D. C.

Mr. Stanley Ruthberg
Electron Tube Laboratory
Bldg. 83

National Bureau of Standards
Washington 25, D. C.

National Research Council of Canada
Radio and Electrical Engineering Division
Ottawa, Ontario

Canada

Dr. 0. S. Duffendack, Director
Phillips Laboratories, Inc.
Irvington-on-Hudson, New York

Polytechnic Institute of Brooklyn
55 Johnson Street

Brooklyn 1, New York

Attention: Dr. E. Webber



- 4o -

Department of Electrical Engineering
Pennsylvania State College

State College, Pennsylvania
ATTENTION: Professor A. H. Waynick

Radio Corporation of America

RCA Laboratories Division
Princeton, New Jersey

ATTENTION: Fern Cloak, Librarian

Mr. C. L. Cuccia

RCA Laboratories Division
Radio Corporation of America
Princeton, New Jersey

Radio Corporation of America
RCA Laboratories Division
Princeton, New Jersey
ATTENTION: Mr. J. S. Donal, Jr.

Radio Corporation of America
RCA Victor Division

415 South 5th Street
Harrison, New Jersey
ATTENTION: Hans K. Jenny

Raytheon Manufacturing Company
Research Division

Waltham 54, Massachusetts
ATTENTION: W. M. Gottschalk

Magnetron Developement Laboratory
Power Tube Division

Raytheon Manufacturing Company
Waltham 54, Massachusetts
ATTENTION: Edward C. Dench

Magnetron Development Laboratory
Power Tube Division

Raytheon Manufacturing Company
Waltham 54, Massachusetts
ATTENTION: W. C. Brown

Sanders Associates, Inc.

135 Bacon Street

Waltham 54, Massachusetts
ATTENTION: Mr. James D. LeVan

Sperry Gyroscope Company
Library Division
Great Neck, Long Island, New York



- 41 -

Department of Electrical Engineering
Stanford University

Stanford, California

ATTENTION: Dr. S. Kaisel

Sylvania Electric Products, Inc.

T0 Forsyth Street

Boston 15, Massachusetts

ATTENTION: Mrs. Mary Timmins, Librarian

Sylvania Electric Products, Inc.
Woburn, Massachusetts
ATTENTION: Mr,. Marshall C. Pease

Westinghouse Engineering Laboratories
Bloomfield, New Jersey
ATTENTION: Dr. J. H. Findlay

Department of Electrical Engineering
Yale Universit;r

New Haven, Connecticut

ATTENTION: Dr. L. P. Smith

J. A. Boyd, Assistant Supervisor
Electronic Defense Group
Engineering Research Institute
University of Michigan

Ann Arbor, Michigan






