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PREFACE

My curiosity concerning systems having complex patterns of feed-
back was firsf‘arqused during an earlier study of the action of the
centrelinervous system (Rochester, N., J. H. Holland, L. H., Haibt, and
W. L. Duda, "Tests on a Cell Assembly Theoryrof the Action of.the'Brein?

Using a Large Digital Computer", I. R. E, Transactions on Information

Theory, IT-2,3: 80-93 (1956)). The possibility of s:tudying feedback
by means of an aﬁstract deductive system wasAfirst suggested by a
remark occuring in a paper by Arthur Burks and Hao Wang (Burks-Wang [1],
p. 292 ; retferences are nuzbered in alphabetical ofder in Part T of

this paper). The present paper indicates soﬁe effects of complex feed~
'back patterns upon the behavior of an abstract class of discrete 8YyS=
tems (logical nets). I hope that the study will suggest some properties
and points for investigation of feedback in more general systems,

I would 1like to thank the Logic of Computers Group at The University
of Michigan for providing the opportunity to carry out this research
and for discussions with its other rmenbers, especially Arthur Burks and
Jesse Wrigﬁt,-on nany topicsbrelatedvto this paper. I would also like
to thank Arthur Burks for his help in reading the first draft of this
paper.,

The possibility of presenting this thesis within an appropriate
framework is one result of the efforts of the Committee on Communication .
Sciences in establishing the Communication Sciences as a discipline in
their own right.

The steps in carrying the original manuscript to an approved final

form were nicely handled by Ruth Lewis.
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l. Introduction

Feedback is a prominent structural teature of most systemsywhich
exbibit complex behavior, In fact, some systems are actually defined
in terms of the role feedback is to play. It is not simple, however,
to see Just what conditions a giﬁen feedbaék pattern imposes upon a
system's behavior. The problei is an example par excellence of ‘an
important c;ass of problems arising in the investigation of automata -
the class of analysis problems. The dbjéct of the usual analysis
problem for automata is to derive from selected structural féatures of
a system - feedback patterns in the present case - conditions on the
system's behavior. The customary way to begin the analysis 1s to make
é suitable abstiraction of the systéms involved; that is, the analysis
procedure is defined over some broad .class of abstract systems, If
this is done properly we achieve the important result that statements
about the stfucture logically imply statements about system'behavicr,
Deductions about behaviof will then hold true of any system (concrete
or abstract) fér which the structural statements hold, It is the
purposé of this paper to study feedback by using the methods of logic
in this way.

The study will be carried out by using the theory of logical nets
to abstract the structural and behaviéral properties'of interest
(Burks - Wright'[zl, Burks - Wang [1]), Thus the study will apply
mainly to systems for which (at least as an approximation) time can be
considered discrete and the structure as well as the number of states

fixed and finite, Within this formalism structure will be represented



by the logical net diagram or the corresponding_set of recursive
equations, Feedback loops will be represénted by cycles-in the net
diagram, The behavior of the logical net will be associated witﬁ
properties of the state transition graph or the corresponding transe
ition matrix, The form of this graph can in general be deduced from the
recursive equations describing the structure. Thus the theory of
logical nets satisfies the criterion of being able to make deductions
about behayior from structural statements,

Two kinds of behaviorél properties will play an important part
in the development. Properties of the first kind depend upon the
fact that the net-state sequence of é logical net 1s periodic if its
input-state sequence is periodic (Burks - Wright {2], Theorem I).
Properties of the second kind deal with various characteristics of
state cycles in the state transition graph. Relating changes in
these two kinds of properties to changes in the complexity of struc—
tural cycles will be one of the specific objectives of this paper.
The overall purpose of the paper will be to producevan integratéd
series of definitions and éperations useful for both~forma1 and
experimental investigations of the behavior of discrete systems with

feedback,



2. Underlying Concepts

The theory of logical nets now has a fairly large literature
and there exist several alternative formulations of its basic ideas
(comparg, for example, Burks - Wright [2], Kleene [4], Moore [6],
Mealy [5], Burks - Wang [1], Copi- Elgot - Wright [3]). Thus most
of the concepts undérlying this ﬁarticular study have several alter-
native forms. In this section, I will give a brief sketch of the
form used here and then cite a paper containiiy the detailed develop-
ment.,. In addition, whene.er one of the underlying éoncepts is not
in the literature, or when s new variant is required, the complete
definition will be given,

The iogical nets considered in this paper will be constructed of
two types of elements - switching elenents and delay elements. E#ch
switching element has a fixed nurber, k » 1, of inputs and each delay
element has exactly one input; each element has exactly one output.
At any roment of time, t = 0,1,2,... , each input and each output
has just one of two states associated with it: 1 ("active“) or
0 ("inactive"). For a given k-input switch let the state of the
output at time t be g(t). Let the state of the ith input at t be
pi(t). Then each of the 2K ordered k-tuples (polt), Pl(t)"‘°’pk-2(t)’
pk_l(t))will be ah argunent for which q(t) is uniquely determined,
Hence g(t) can be presented by means of a truth table with k

argument colurms and 2K rows:

polt) -« pkp(t) py_y(t) | alt)
0 seo 0 0 €0

o e e o l el

0 oo 1 o €2

l .0 l l €2k—l

Fig. 1 Truth Table of a k-input Switch

3



The output state of a delay element at time t is just'the state of
the input at‘time t - 1. This infinite class of primitive elements
is essentially that discussed by'Burks and Wang in part 2.3 of their
paper, "The Logic of Automata", [1].

Logical nets will be constructed from the elements by identifying
(connecting) the outputs of some elements with inputs of others. Thus,
- if an input pj is identified with an output qjs the sﬁate of p; is
identical at all times with ihe state of qj: py(t) = qj(t).

Element inputs not identified with element outputs in the construction
process will be called net inputs. An elemént input which is not a

net input will have its state determined at each moment by the element
output'yith which it is identified, The staté of a net input, on the
other hand, is not determined by any of the net elements and must be
assigrned arbitrarily at each time t, The output state of each element
is determined, of course, as indicated in the previbus paragraph.

This paper will be concerned only with well~formed nets as
defined by Copi, Elgot and Wright in part 4 of their paper, "Realiza-
tion of Events by Logical'Nets", {31 (or, essentialiy, as defined by
Burks - Wright [2]). Well-formed nets. can be characterized briefly as
nets satisfying the following two conditions: .

1) the net contains no subcycle (definition to follow}
consisting only of switching elements,

2) no two distinct elements of ﬁhe net have their outputs
identified.

As indicated in the introduction, the purpose of this paper will
be to investigate the role of cycles in logical nets. The exact

definition of cycle proceeds from the concept of Qhe element of a net



driving another. An element E; directly drives an element Eeﬂ E1d BEop,

if and only if the output of E, is identified with one of the inputs of

'EQ. A sequence of elements Fl,..,,Fh is a drive séquence from F, to Fj

1
if and only if FJQ.FJ+1 for j = 1,...,n-1. An element E; drives an

vlement Eo, E1D Ep, if and only if there is a drive sequence from E; to
Er. DNow, an element E] belongs to a cycle if and bnly if E,D Ej. .This
cycle consists of the set of all elements, EJ’ such that both,ElQ_EJ
and EJQ.El. Or, more formally, & set of ‘elements, C, in a net is &

' giglg_if and only if; for all E4, EJ in C, (1) EiQ.EJ and EjQ_Ei and
-(2) no element of the ne£ not in C satisfies condition {(1). A set of
elements, C*, is a subcycle if and oniy if, for all Ey, EJ in C?*,

. of (1) all elements

J
of the defining drive sequence are elements of C!., It is an. immediate

(1) ED Ej and EjD By and (2) for each relation E;D E

consequence of these definitions that each element of a net belongs to

at most one cycle, although it may belong to several subcycles,

NET INPUTS s
he b, hyhy
| .

l

-3+ DELAY

—O-+~ SWITCH

;.- --a ENCLOSES

= ENCLOSES
L.—.1 suscycre

Fig. 2 A Logical Net with Cycles Marked



Note that the cycles in a well-formed net can be ranked as
follows: A cyclé is of rank O if none of its inputs is driven
by an element of another cycle., A cycle is of igg&;g if at least
one of its inputs is driven by an element of another cyclevof
rank r-1 and none of its inputs is driven by elements of other
cycles of rank greater than r-l.

Each cycle can be reduced to a normal form which has at most
one switch "between" each delay and its "predecessors". We can
arrive at fhis normal form in thé following way: A drive sequence
in which all elements, other than the first and last, are switches

will be called a drive sequence of switches, If there is at

least one drive sequence of switches from an element El to an

element E, it will be said that E; drives E, via switches, Ey s Ep.

The set of all switches belonging to drive sequences of switches

from E; to Eo will be called the set of switches from El to Ea;

Since we are dealing with well-formed nets and since the deléy Do

has but oﬁe input, there must be.one and only one switch output
identified with the input of D, when Dy s Dp (excluding the case

D) d Dp). The set of switches from D; to D2 will heve a total
number,'k, of inputs, Pg,...,Pg_7, Which are not’identified with-b
the output of any other switches in the set or with the output of

Dy. It can easily be seen that each assignment of states to these

k switch inputs uniquely determines the input state of Do when the
output state of Dy is given. Thus we can replace the set of switchés
from Dl to D2 by a single k + 1 input switch.with.k inputs identified
in just the same way as the k switch 1nputé, po,.,.,pk_l,‘and the

other input.identificd with the output of D,, The output of this



swirch is then identified with the input of Dp. Consider now the
complete set of delays belonging to a given cycle. Lef the delays be
ordered and labelled, Dy, Dy,...,D,.; (prefersbly with the relation
Dj-l E-Dj holding for as many delays as possible). For each given J,
consider all Dj in the cycle such that Dy §-Dj° (There must be at
least one such Dy, otherwise D; would not be a menber of the cycle. )
Among all the switches belonging to one or more of the sets of switches
3 from D12
total of‘k switch inputs not identified with the output of any other

from Dil to D to DJ,.,., or from Dim to Djf there will be a
element of these_sets or with the outputs of Dj,, Die”"’Dim' Now,

in just the same way as before, a single k + m input switch can be
constructed +0 replace the given switches, Of the inputs to this new
switch, k will be identified just as the k selected inputs of the

given switches, and the other m will be identified with the oﬁtputs

of D3 5...,Di . The output of the new switch will be identified with
the input of Dj' Once this is done for each Dj, the normal form of the

cycle results,

CYCLE NORMAL FORM

ren-—

| ENCLOSES SWITCMES
L}
———d

FROM D, T0O B,

Fig. 3 A Cycle and its Normal Form



It is an immediate consequence of the construction method that
the normal form 6f any cycle with n delays will have no more than n
switches, Furthermore, each cycle vinput (the net inputs of a cycle
when it is taken as the whole net) of the original cycle will drive
via a switch exactly the same délays in the normal form as in the
original form. Finally, at any time t, the input and output state
of each delay in the normal form will be that of the same délﬂy in
the original form.

Note that we can always, at least formally, obtain a normal
fprm of a cycle in which D}-lnodn s Dj mod n for all j. Tbdo this,
when D351 mog n 3 Dj moq n 1n the given cycle, simply add an
additional input to the switch constructed by the earlier method.
The action of the switch is to be independent of this new input, i.e.,
the output of the switch is still uniquely determined by the k‘+ m
inputs initially obtained. However, formally we have a k + m + 1

input switch and can identify the output of D 3 with the

-1l mod n

newly added input, This modified normal form will simplify some .of

the proofs to follow,

q(t) = £,(4,(t1) q () = £,(4,1)

Fig. 4 A Cycle and an Equivalent Normal Form
with Dj_1 mod n £ Dj mod n



The definitions and discussion up to this point»have been
concerned with the structure of logical nets; The remainder of this
section will concern the state-transition graph and behavioral proper-
ties of losical nets,

At a given time, by knowing the output state of each delay
element in a net together with the state of each net imput, one can
determine the state of every element input and output of the net.
That is, a complete description of the state of the net at any time
can be obtained from knowledgé of the net structure énd-the current
states of the net inputs and delay outputs; Now, let us éssume the
net has k ® O net inputs. To»each of these net inputs, one of two
states can be assigned at each time t; thus there are 2K possible
distinct assignments, of which one is to be chosen at each time,
-Any such assignment will be called an input state, If the nef iﬁ-
puts are ordered and labelled, say hps+..,hx.] - and throughout the
paper this will always be assumed the case -~ we can represent each
input state by a k-tuple of ones and zeros, The délay outputs,
ordered and labelled, can be treated in a similar way,‘the result
in this case Eeing called a net state. (See Burks - Wang [1] or
Copi - Elgot - Wright [3] for detailed versionms,)

The state-transition graph, as a means of picturing the be-

havior of a logical net, is made possible by the following fact: The
net state succeeding the net state present at a time t is determined
by the input state at time t. (If there are no net inputs each net
state has a single invariant successor.) This transition from net
state to net state under the influence.of successive input states

is the basic behavior of the lcgical net, The state-transition
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graph exhibits the possible transitions and the input states (or

inpuﬁ state successions) which accomplish them, Assuming the net

has n delay outputs, there will be 20 vertices to the graph, labelled
to correspond to the 2" net states., An edge conmects vertex Si to
vertex SJ Just in case one or more input states, {Ih} » cause a
transition from 5; at time t to Sj at time t + i; the edge is labelled

vith the set {Ih‘ (cf. Moore [6]).

loE (ha‘ 0)
Ig ' 1|=__—_. (ho")

Fig, 5 A Cycle and its Trensition Graph

Let a segquence {S(t)} be said to have a period p if and only if,
for all t greater than some positive integer a, S(t) = S(t!) if t = ¢!
mod p. If there is no p' € p for which the precedirg statement holds

then the state sequence will be said to have a proper period p. A

property of logical net behavior which plays é. considerable role in
parts of this paper can now be stated: If a net's input sf,ate

sequence is periodic, then the net state sequence will also be periodic
(cf. Burks - Wright [2] Theorem 1I). The result follows from the
observation that, if the input states recur with period m and there

are 2% net states, the net state/input state combiration occuring at -
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any time t»m.2" must repeat at t + cm, for some c < 2. Therefore

the net state at time t + c.m+l must repeat the net state at t+l |
(since each is uniquely determined by the same preceding net'state/input
state combination); and the input state at t+cem+l must repéat-the

input state at t+1 (since both occupy the same relative positién in the
periodic input sequence, i.e., t+l = t+cem+l mod m); etc, for

t+emt2, t+em+3,... « Thus the net state seqpenée has a period cm,

Often when studying the behavior of logical nets it will prove useful to
relate the spectrum of input state proper periods to a resultant .

spectrum of net state periods (not necessarily proper).



3. Simple Cycles

A hint of the role of cycles in logical nets comes from the
following observation: For a net with n delays and no cycles, the
net state at time t is totally determined by the sequence of input
states from t-n to t-1 - the net state at time t is compleﬁely in-
dependent of any net state preceding time t-n+l, Thus a net without
cycles can only record the detection of an input event for at most
n time-steps, In other words, if a logical net is to have "memory"
or storage it must include cycles.

Upon noting the‘function of cycles as memory elements, one of_the
first questions which presents itself is: Can the full range of
logical net behavior be obtained from nets using cycles of 1imited
complexity? More precisely, in the class of well formed nets, 1is
there a'proper subset, defined in terms of some limitation on the
cycles allowed, whiqh can exhibit the full range of logical net be-
havior? It is fairly obvious that the number of cycles cannot be
limited; this would contradict the existence of nets with arbitrarily
large numbers of memory units, A possible first step would be to
consider nets using only cycles with minimal feedback, i.e., cycles
with no proper subcycles, A cycle of this type, which I will cail

a simple cycle, can be directly defined as a cycle in which each

deday drives via switches exactly one other delay in the cycle,

The normal form of such cycles is particularly simple.

Fig. 6 Normal Form of Simple Cycle

12
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The conjecture, then, with respect to simple cycles would be that for
each logical net there is a net with, at most, simple cycles which
behaves the same.‘ The conjecture is plausible on the view that the
simple cycles provide "delay line" or "reverbratory" storage of various
periods while the rest of the net provides encoding, switching, de-
coding, and other logical operations.
Theorem 1, If the sequence of input states of a simple cycle has a
proper peribd m and the simplé cycle has n delay elements, then the
sequence of ﬁet states of the cycle has a proper period 2 l.c.m,(m,n)
or a divisor thereof.
Proof':
1) 1Let I(t) be the input state to the simple cycle at time t. ‘Let
I5 = I(Jj) be the input state at time t = j, j = O,1,...,m-1. Then,
since the input states repeat.with proper period m, I(t) =‘Ij ifvand'
only if t = j mod m;
2) Now reduce the simple cycle to normal form and label the delay
and switch outputs as in Figure 6, Let N§§§2(5) be fhe sfate of the
switch output labelled % md n when its input from thé cycle (delay
output dj pog p) is in state 5 and the net inputs are in state
It mod me If dj(n)(t) is the state of delay output d; g , at time t,
then for any 1

G52 (m) (8 = Q1n)(E) = By im(dg () ()
by the'delay equation and definition of szgg.

More generally,

dan(n) (t+h) = Moo 2 inbinoafa). . w8 a1 (n) (£)).

Letting by = l.c.m(m,n) we have

U () (ttho) = A (o) (bhg) = NYROTHEY Lot (ay o (4))



1k

-1(m) t- t(m)
-lgn)Ni-ﬂ 3 Ni(n)(d1(n)(t))

since bO mod n = bo mod m = O,

Letting T = NY3f2..ont

{g; it follows that

A3 (n) (t+kbg) = T(ay () (t+(k-1)og)) = T T{dy () (++(k-2)bg))

= Tk(di(n)(t))

Note that successive applications of the operator T give the states of
delay output di pog p at times t, t4bg, t+2bg, ete. Furthermore, if
T(di(n)(to)),= di(n)(to)» for some tq, then by definition we must have
= T(d1(n)(tg)) = di(n)(to). In other words, Tz(di(n)(to)) = di(n>(t0)
and, in general, Tk(di(n)(to)) = dj(n)(to), once T(dj(n)(to)) = di(n)(ty)
for some tge |

3) For any given i and t the form of the T operator is fixed and can

be given by a table of the fellowing form:

o) T
0 z(0) where T(5) =. < °
1| 7(1) ~;

L) AIf T(0) = 0, T(1) = 1 then we must have T(di(n)(t)) = di(n)(t)
whatever the state of delay 6utput d at time t, Hence,

, i mod n
Tk(di(n)(t)) = di(n)(t) and the state of d; )3 , at time t must
repeat at least every bO time~steps thereafter,
5) If T(0) = 0, T(1) = O then T(dl(n)(t)) = 0, although for ty < by
di (n)(to) may equal 1. However, T (di(n)(to)) T(0 )) = 0. gence,
T(8i(n)(t0+bo)) = si(n)‘(toﬂcbo) and, again, the state of dy ;.4 ., after
at most bo time-steps repeats with period bge

6) A similar argument holds for T(0) = 1, T(1) =
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7)  Finally, if T(0) = 1, T(1) = 0, we have -Te(di(n)(t)) = di(n)(t)
and in general Tgk(ﬂi(n)(t)) = di(n)(t). Hence, the state di(n)(t)
repeats with period Ebo in this case,

8) - The full argument obviously holds for any t and any i, Thus the
state.sequence of each delay output in the cycle and hence the net
state sequence repeats every 2bp unite of time, If 2b0 is divisible
by b, it is possible that dy(n)(t) = d;(5)(t+Jb) for all j such that

Jbo € by and for all i, In such case, the proper period of the net
state sequeﬁce would be b, a division of 2by. Thus 2by = 21.c.m. (m,n)
or a divisor thereof is the net state period of the cyéle, irrespecti?e

of the switching elements used,

= O,l,...,n-l

. . . . . i
Since in T we find for each pair i
9) p ( ’J)) O,l,...,m-l,

J.
exactly one occurence of Nf, it is easy to show (by giving the rule

for constructing the corresponding truth tables) that there in fact
exist switching elements which will yield propef net state period 2bg.
In nets constructed with more than one simple cycle there can be
subnets having no cyclesv"between" the simple cycles, The follbwing
definitions are intended to give a precise interpretation of this
statement. A drive sequence from an element F1 to an element Fp will

be called an n.c,-drive sequence if none of the elements in the

sequence other than the first and last, belongs to a cycle, A set of
elements, A, n,c.-drives a set of elements, B, if there is at least
one.n.c.-drive sequence from some element of A to some element of B,
The net consisting of all elements, other than'elements~§f A and B,

belonging to n.c.-drive sequences from A to B is the n.c,~net from

A to B.



Fig. 7 An N.C.-Net

Theorem 2. If the sequence of input states to a net without cycles
(e.g., an n.c.-net) has a proper period m, then the net state

sequence of the n.c,-net has a proper period m or a divisor thereof,
Proof

1) In order to simplify the proof let each element in the net
without cycles by given a rank as follows: (1.1) if all the inputs

of the element are net inputs of the given net, its rank is zero,
(1.2) if an input of the element is identified with the output of an
element of rank r-l, and no input is identified with the output of an
element of rank higher than r-1, then the‘element is of rank r., Since
an p.c.-net contains no cycles each element hés a unique rank,

2) Now, the states of thé inputs of each element of rank zero must
repeat with period m since these states are merely components of the
net input state. Therefore, since the output statg of a switch is
uniquely determined by the set of input states, the output state of
each switch of rank zero repeats every m unité of time, The switch
may, of course, repeat its oufput state more frequently; e.g., the
switch output state may be 1 for any input argument, in which case,

its output state would repeat with period p = 1. Thus the output state
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sequence of a switch of rank zero has a period m or a divisor
thereof. It follows directly from the delay equation that the

output state of a delay of rank zero repeats every m units of‘time.

3) If the output state of each element of rank r' € r repeats with
period m, then, by the same observations as in the case of rank zero,
the output state of an element of rank r repeats with period m. Thus,
by induction, the output state of any element of a net without cycles
repeats every m units of time. Hence, the net state sequence of a
net without cycles has a proper period m or a divisor theréof.

We can now proceed to the genefal case with respect to the cpn-
Jecture mentioned at the outset of this section; that is, the‘case of
nets in which all the cycles are simple cycles.,

Theorem 3. A net in which all of the cycles are simple, having
Ny,...,n delay elements, respectively, with a sequence of input
states of proper period m, will have a net state seguence of périod
2rotl l.com. (m,ng,...,n.), where rg is the maximum of the cycle ranks,
Proof:

1) To begin with,note that'eyery element of a net, N, is driven by
one or more of the net inputs of N, except those elements beionging
to a cycle having no cycle inputs (i.e,, the cycle, considered as a
net, has no net inputs).

2) Let Ag be the set of elements satisfying the following two
corditions: (2.1) at least one input of the element is a net input
of N, (2.2) the element does not belong to a.cycle. Let C be the set
of elements belonging to a given cycle of rank O (see Part 2). Any
element driving an element of C must be driven by an element of Ag

because C 1s of rank O and hence no element belanging to a cycle can
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drive an element of C. Let P be the net consisting of the n.c.-net
from Ap to C together with the elements of Ag. The net includes all
elerents of N which drive elements of C. Since the net inputs'of P
are'just the net inputs of N, the net state sequence of P must be of
period m by Theorem 2. Thué the input state.sequenée of the cycle in-
puts to C must be of peéiod m, Since C is a éimple cycle the results
of Theorem 1 apply - the net staie sequence of C has a proper period
2 l.c.m.(m,yn), or a divisor thereof, where n is the number of delays
belonging to C.
3) Now, define inductively a set of nets Njs for § =-1,0,1,...,rq,
where rpy is the maximal rank of the cycles in the net N, The net Nj
consists of the following elements with their inputs identified as
in N:

3.1)jall elements of Nj-1 (where N_l‘is the set Ao),

5.2) all elements belonging to n.c.-nets from N.

j=1 to cycles

of* rank j,

3.5) all elements belonging to cycles of rank Je
L) Consider the net Ng. If the ko simple cycles in Ny have
90’°'°:nko-l delays, respectively, then as shown abovg‘the ith cycle
will have a net state seéuence of period 2 l.c.m.(m,ni), 1=20,...,ky-1.
Each associated P net will have a net state period m, It fbllows
directly that the proper net state period of Ny will be a divisor of

l;c.m.(h, 2 l.c.m.(m,no),..., 2 l.c.m.(m,nko.l))

=2 1.c.m.(m,n0,...,nko_l)
5) Let no"'"nko-l’nko"'”nkl-l""’nkj—l be the number of delays
belonging, in order, to each of the simple cycles from rank O through

rank j.
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6) Assume the net Nj-1 has a net state sequence of period
p =2 1l.c.m. (m,no,...,nkJ l‘l) By substituting Nj.3 for Ag and p
for m in step (2) we see that a cycle C; of rank j must have a net
state sequence of period
2 l.c.m, (p,n;) = 2 l.c.m, (291.c. m.(m,no,...,nkJ l'l)’ ny)
= 2J+1l.c.m.(m,no,...,nkj_lml,ni)
Applying the reasoning of step (4) we see then that the proper net
state period of Nj will be a divisor of
l.c.m.(m,2j+ll.c.m.(m,no,...,nkj_l)
7)  Thus by induction on j, the net N, when the input states repeat
with period m, will have a proper net state period which is a divisor
of

+1
p = 2'0

l.c.m.(m,no,...,nk).
Again, for reasons similar to those noted at the end of Theorem 1;
there exist combinations of switching clements and cycles giving N a
net state_sequence of proper period p.
Corollary Let it be required‘ﬁhat a net be in a chosen net state So
if and only if the number of occurences, p, of a dlstlngulshed input
state IO satisfies the equation p = 0 mod j. (Simply, the net is
required to "count", moduloqj, the cccurences of input state IO.) ‘For
netsin which all cycles are simple, j must equal 2P for some positiQe
integer b. (Such nets can only "count" modulo a power of 2.)
Proof

Let the distinguished input state repeat with a proper period m,
Then, since the net is to be in a unique net state Sy for each J
occurences of the distinguished input state, it must have a net state
which repeats~with proper period p = jm for all m, Or, by Theorem 3,

D =Jm= 2r0+11.c.m.(m,no,...,nk),
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This equation can only hold for all m if j = 2r0+l, since if m
is chosen equal to k(l,c.m.(no,...,nk)) the above equation reduces

to

2r0+lm.

Jm

i

If this result is not surprising, it at least shows the over-
simplification present in the idea that the main function of cycles
in a system is to provide "membry“ or storage of information., Here
we have systems with any number of cycles of arbitrary lengths
(arbitrary recycling times) which have a very limited range of be-
havior, not because we restrict the complexity of the switching
elements used, but because the .cycles are limited in the complexity

of their feedback patterns.



L. Input-Independent Cycles

The results of Part 3 show the Behavior of a logical net to be
severely restricted if the complexity of the net cycles is sufficiently
limited. Moreover, the limitation on complexity need not concern the
number of cycles or the number of delays in a cycle, but only the
nunber of feedback loops (subcycles) per cycle, The effect of in-
creasing the number of feedback loops in a cycle thus becomes a salient
point of the study of cycles in logical nets, |

In the present section, I will start out by relating properties
of the state-transition graph to changes in feedback in a class of
input-independent cycles called locally-balanced cycles, Just as
cycles are important features of net structure, so cycles in the trans-
ition graph are important to net behavior. To distinguish the two
kinds of cycles, I will speak of net cycles and state cycles, respective-
ly. The relation between locally-balanced cycies and the resulting'
state cycles will be a key to the behavior of more general net cycles,

Locally-balanced cycles can be defined in the following way: 1In
the truth table corresponding to a switching element let rows 2j and
2341, for j = o,l,..'.,eﬁ-l-g, be called simply the jth pair. Let the
function values determined by the two arguments of the jth pair be
€pj and €234 respectively. A switching‘element vili be called

locally-balanced if 523‘= géj+l for all pa;rs, J =0,1,..., on-1_ o

A locally balanced cycle satisfies the following conditions:

1) One switching element occurs in the cycle and that element is
locally-balanced.,

2) There are n » O delay elements in the cycle, The output of

21
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the switch is identified with the input of delay dy. The output of

ISE J=0,...,n-2,

delay dj is identified with the input of delay d
3) The switch has n inputs. The j'® input of the switch (the
3% column of the associated truth table) is identified with the

output of delay dj> J = 05.0.y n-l,

?®

€1
€
€5

‘l_ l co e l 0 €2n_2‘
1 1 ... 1 1 ezn_l

Fig. 8 A Locally-Balanced Cycle

and the Truth Table of Its Switch
Theorem 4, The state-transition graph of any locally-balanced cycle
consists only of disjoint cycleés of states.
Proof':
1) Consider, at any given time t, the ordered n-tuple
(ro{t),...,pn-1(t)) of the states of the n inputs to the switch in
a locally-balanced cycle. By definition of a locally-balanced cycle,
this n-tuplé 1s identified with the ordered n-tuple of.delay output
states at time t, (dp(t),...,d,.1(t)). Thus eéch of‘the 20 net
states of the cycle is represented by the argument part of a line of;he
switching element truth table.
2) If the net state of the cycle at t is given by the JtB 1ine of
the truth table, then the net state of the cycle at t+l is simply

given by the ordered n-tuple with €; as its first digit and the value
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of py(t) as its 141'P aigit, That is:

(89(t+1), 4+, 1 (842)) = (€ ;,P0t), -0 ,Pp_(E))
where the argument of line j has in effect been “shifted one to the
right", €5 being "shifted in", pn_l(t) being 'shifted out". The truth

table, thus extended, becomes derived transition table for the

locally-balanced cycle:

s(t) | s(t+1)

do(t)=| .o fay n(®)=fa _(t)= || an(t+l)=]ad (t+1)=}... fa, _(t+l)=
0 n-2 n-1 0 1 n=-1
po(t) Pho(t) | p,_1(t) a(t) po(t) Pn.g(t)

O oo O X o €O O LY 0

o |- 0 1 €1 0 cos 0

0 | ees 1 o € | o ces 1

O LI X l l | €3 O LIC l

Soe } [ X X-)
l soe l O € l “se l
L 1 1 22 1 N |
en.i

where s(t) is the net state of the cycle
at time t.

Fig. 9 The Derived Transition Table
of a Locally-Balanced Cycle

3)  Now, the jth pair of the locally~balanced switch gives rise to
a pair of successor n-tuples, 5p5(t+1) = (€2j,p0(t),...,pn_2(t)) apd
sej+l(t+l) ==@2j+l,po(t),...,pn_Q(t)). 523 and 82j+1 have identical
digits in the last n-1 places by step (2); furthermore no other pair
of successors has the same ordered set of digits in the last n-1
places. The first digit of 523 is the binary éomplement of the first
digit of 52j+l since 623 = €é3+l by definition of g locally-balanced
switch. Therefore the argument states of the JtB pair map into
distinct n-tuples, s2j and 523+1’ which occur nowhere else on the

right of the derived transition table. In other words, the derived
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transition table is a 1 - 1 mapping of the 2D net states onto them-
selves. Such a mapping is a permutation on the net states and, by
elementary group theory, perrmuations can always be reduced tb a |
product of disjoint permutation cycles. These permutation cycles
correspond directly to disjoint state cycles of the transition graph,
Note that the state-transition graph of an input-independent
cycle consists only of disjoint state cyéles just in case the cycle
is backvards deterministic in the sensevof Burks - Wang [1; p.286].
Using this fact, and no?ing that eej = €2j+l implies 523 = sej+1’ we
can restate Theorem 4 in a stronger form:
Theorern 4*, Let C be an n-delay cycle with one (arbitrarily chosen)
n~input switch which is connécted Just like the switch in a locally-
balanced cycle., C will be backwards'déterministic if and only if the
switch is locallebalanced.

In what follows, a pair will be said to be normally oriented if

A pair will be said to be inversely oriented if

€25 = 1, €341 = 0. The simplest localiy—balanced cycles result when

the'pairs associlated with the switch are either all normally oriented

or all inversely oriented. When this is the case the output of the
switch, g(t), is independent of all argurent colﬁmns except the last,
pn_l(t). ‘Thus in effect the cycle is an input-independent simple

cycle. The next theorem gives some properties of the state-transitioh
graphs of these simplest locally-balanced cycles,

Theorer 5. Let L be a locally-balanced cycle with n delays. If all

the pairs of the switch are normally oriented, a state~cycle with

exactly p states occurs if and only if p = 1 or, for p » 1, g.c.d.(p,n)=n

There will be two state-cycles with p = 1 and, for p » 1, there will be
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Y
p which is the length of a state-cycle, If all the pairs of the

state-cycles, where p' is the next number smaller than

switch are inversely oriented, a state-cycle with exactly p states
occurs if and only if g.c.d;(p,an) = p and p does not divide n. The
number of state-cycies having p elements is again given by nye.
Proof : |
1) The sequence of states in a state-cycle C of an n delay locally-
balanced cycle can be represcnted by a binary sequence of the
following fofm:
1.1) the sequence is doubly infinite,
1.2) any set of n consecutive digits from the sequence
85’5j+1""’aj+n-l represents a state 5; of the state-cycle C,
1.3) given a set of n consecutive digits, Bj’sj+l’sj+n-l’ which
represent state S 3 the set of digits Bj+l’8J+2’;“’6j+n
represents the successor, sj', of sj in the state-cycle C.
That such a sequence exists follows from the form of the transition
téble as derived in Theoren 4 (the right-hand entry of a line in the
table being related to the left-hand entry just as in condition (1.3)
aone, but with ordef reversed).
2) Consider first the éase where the switching element in the
locally-balanced cycle has all of its pairs normally-oriented. Then
in the binary sequence associated with any one of the dis joint state-
cycles we have Sj = aj+n because, in the derived transition table for
the normally oriented case, p,_;(t) = q(t) (see Theorem 4, step (2)).
Furthermore, if u is a multiple of the number of elements in the

state-cycle then Bj =5 Finally, if u is the length of a state-

Jjtru*

cycle (and not a multiple thereof) then 8jo¥ 630*“0 for each uo‘ u and

in each case, a jg < u-u.
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3) Combining the three requirements of step (2) we have
3.1) 835 = B3 4u =-gdo+uo+.1u s 3=0,1,...
3.2) 530 = Bj5+n =-530*J'n > ' = 0;1,...
These equations can be satisfied if and only if,
3.3) ugtju # j'n , for any u 'u and any j » J°
6r g.c.d. (_ ,_) # 1 for any u0| u
4) Consider the alternatlves (4.1) g.c.d.(n,u) = u and (4.2)
g.c.d.(n,u) = u' ¢ u:
h.l)rg.c.d.(n,u) =ué&d n = bu for some integer b, whence
bu
g.c.d. (& ,._) = g.c.d, (u ) Eb for any u 'u-
therefore g.c.d.(n,u) = u =% u is a state-cycle length
(and not a miltiple thereof).
4,2) g.c.d.(n,u) =u'<u = u'l u =§ for uy =
g.c.d. o ’iI) = 1 and therefore the eqpatiogs (3.1) and
3.2) are satisfied by u" u, whence u is a multiple of the
state-cycle length,
5} Thus, for a locally-balanced cycle with n delay elements and a
normally-oriented switch, p is the length of.a state-cycle if and only
if g.c.d.(n,p) = p, That is p must be a factbr of n.
6) 1In order to determine the nunber, s of state-cycles,of length p
we note that there are 2P binary sequences of length p. Howevef, 2p'
of these sequences will have been assigned to cycles.of length p*' or
divisors thereof, where p' is the number next smaller than pbsuch that
g.c.d.(p',n) = p' or, in other words, p' is the next smaller state-
cycle length, Therefore there are 2P - pP' binary'sequeﬁces which

correspond to state-cycles of length p. However, for each state=-cycle

of length p there are p binary sequences whibh represent the cycle
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(obtained by shifting any one representative j places to the right,

-op'
for 0 € j< p). Thus n, = 2852_ .

) For the case with all the pairs of the switching element
inversely oriented the proof procedure is much the sa@e except that
5 = §3+n in this case. Thus equation (3.3)becomes

up +ju £ n + j'2n, for any uy| v and any j,J'.

This equation is satisfied if, and only if

u and u‘p

ny

g.c.d.(u,2n)
ny+l ]
or u=2 n' where n = 2 ~» N, n" ne, and ny is the highest power
of 2 in the prime factorization of n. The number of state-cycles of
length p is again given by np = 2P_2p' (the same reasoning as before
P
applying in this case - p' being the next smaller state-cycle length
w.r.t.p).

The state-cycles of the locally-balanced cycle with a normally-

oriented switch, which I will call normal state-cycles, figure basically
in the present study. Part of the reason for this lies in the
following operation: an inversion consists in changing a given pair
of a locally-balanced switch from normally-criented te inversely-
oriented or vice versa, The result of an inversion is & new locally-
balanced switch produced from the given one. It follows directly from
the definition of a 1locally-balanced switch that anyAlocally~balanced
switch can be transformed into any other by & succession of inversions.
Thus, for example, any locally-balanced switch can be produced by
using a succession of inversions on a normally—oriented switch, The
next .five thcorems will explore the relations between normal state=-

cycles, inversions, and the transition graphs of localLyAbalanced‘cycles.

In the proofs and at other points from here on the state represented

by a given binary n-tuple will, where convenient, be labelled by the
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decimal equivalent of the corresponding binary number. Thus
(0,0,...,0) becomes 0, (0,...,0,1,0) becomes 2, and (1,1,...,1)
hecomes 20.]1,
Theorem 6. Let E; be the switching element of a locally-balanced
cycle; let E, be the switching element derived from El by an inversion
on the j' pair, 1.e. on (€2J,€2J+l); and let sy; and Bpj4+1 be the
argunents of the jth pair, If 5o and 52341 belong to different
state-cycles, Cl and C2’ in the transition graph w.r.t. E;, then
the transition graph w.r.t. E2 will be the same as that for El except
that C, and Co will be united into a single state-cycle consisting
exactly of all of the states belonging to C, and Co. If 523 and 52J+1
belong to the same state-cycle, C, in the transition graph w.r.t. El’
then the transition graph w.r.t. E5 will be the same as that for Ey
except that C will be separated into two disjoint»state-cycles which
together include all of the states belonging to C.
Proof':

The transition table for a locally-balanced cycle, as derived
from the switching element's truth table, 1s unchanged by an inversion
except for the lines corresponding to the inverted pair. let S and
52J+l be the left-hand entries of these two lines and 5'23’ 5'25+l
their respective successors (right-hand entries) before the inversion.
After the inversion the successor of 53 will be 5'23+1 and the successor
of s2J+l will be S'QJ' From Theorem 4 one of two cases must hold for
spj and 523+1’ either they belong to different state-cycles or else
they belong to the same state-cycle,
Case 1) 523’ s2J+l belong to different state-cycles Cl’ C2'

After the inversion the succession from S'QJ to 52J within Cl

1s unchanged, thus each element of C) appears in turn (since there were
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no elements of Cl between 523 and s* 2j all are present in this
succession), However, the successor of Séj is 8'5j,) which belongs
to CQ‘ The succession from Sl2j+l to 52 j+1 is undisturbed and every
element of 02 appears in thils succession. Finally the suCcessor of
£2j+1 is S'2j which completes the new cycle (since we began the

succession with S'QJ)' All elements of Cy and Cp belong to the re-’

sulting state-cycle.

INVERSIONS DERIVED TRANSITION TABLE TRANSITION GRAPH
dg d; dpf ap |4y d, |
NONE D)
0 0 0}e =00 O
PAIR O 0 6
0 0 1]e=1j0 © 4 N
2 3
pamy © L 0e=ol0 1 \
1 0 o0fey=0[1 o 12ED)
PAIR 2 , o es=1{1 0
1 1 O ]es=0l1 1
PAIR 5 1 1 er~1ll 1

PATR 1 AFTER INVERSION OF PAIR 4 \OC 6

INVERTED 1 DERIVED TRANSITION TABLE 2 3
IS THE SAME EXCEPT €5 = 1
A.ND €3=O' i s
1D

PATRS 1 AND AFTER INVERSION OF PATRS 4 .\o.('_)_/ 6
2 INVERTED 1 AND 2 TRANSITION TABLE IS /

3
THE SAME EXCEPT €r = 1, €5 = o, ‘(”,—"‘—‘
€)+=1,AND€5=O, 2‘\—\—'
L 5
<O

Fig. 10 Effects of Inversions on the Transition Graph
of a Locally-Balanced Cycle

Case 2) 505 .Spj+1 belong to the same state-cycle C,
Let the segment of C from 523 through Spj+1 be Dy and the other

segment from.s23+l through spj be Dp. The first element of D, 1s
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s'23 and the last 5341 After inversion the succession in Dl is

unchanged but s'2J becomes the successor of 523+l‘ Thus Dl becomes
a state-cycle, Similarly D, becomes another, disjoint, state-cycle.
The effect of the inversion has been to "pinch"™ the original cycle

in two at SEJ, SEJ+1-

Theorem 7., In any transition graph containing normal cycles, there
are at most two inversions which can; individually, connect a given
pair of normal cycles (Cy, Co). There are no inversions which can
separate a given normal cycle into two state-cycles.

Proof :

1) Let ... 835 Bj41se0es Bj+n-l’ ®y4ns--- De the binary sequence
'associated with the state-cycle Cy of the hypothesis and

.ee 8'3, 6'j+l,..., 5'j+n-l"'° the sequence associated with C2 (see
step (1) of Theorem 5). Since C, and Cp are normal cycles they will
each be of length n or a divisor thereof by Theorem 5. Consequently

in the above sequences &, = 8

j j mod n and B'J =5

'j mod n°
2) If there is an inversion connecting Cl and C2 then there 1s a

mapping V(Sj) = V(s such that &, = V(SJ),

J
except for 'some one k) € n and Jy such that J;p mod n = kl for which

— [}
Jj mod n) =5 (j+hl)mod n

5,

C, and C, we must have the state (&), Bko15-+,80 BpseessByyy) OF

= 5kl = V(Skl! = 8'kl+bl. That is, for an inversion to connect

C, belonging to the same pair as the state (V(8y),..., V(8y41)) of
Co (see case (1) of Theorem 6). This means that V(6j) = &4 except
V(dy) ='§k (see the last sentence of step (1) of Theorem 5).

3) If there is a second inversion connecting the two state-cycles

then there is a second mapping V'(BJ) =8 , with
n

1
(J+bp) mod
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bs f b, and V'(SJ) = 8j'except V'(Skz) = 8k2 for some one ky< n
and kﬂ f kl'

4) Let B = g.c.d. (lba-bl',n) and form equivalence classes

{ B(Jﬁ +u) mod n} for 0¢€ u<Bgand j=0,1,2,... . For u such
that neither kl nor k2 belongs to the equivalence class selected by

u we must have all elements of the class equal. This can be seen by

noting that &, = 5'(u+bl) mod n = 5'(u+b2) mod n’ under V and

V', and that 5(u+b2 = 5'(u+b2) mod n wader V' whence it

-b1) mod n

follows &, and, by repeating the procedure,

- 6(u+b2'bl) mod n

Bu = d(yu+ r(bo-by)) mod n for any r, which can be reduced to the form

5. =8 . . Now consider the equivalence class which includes
(u+jB) mod n

By the reasoning of the preceding line and the fact that

- ) = d

® (kp+r(by-by)) mod n = ®(ky+(r+1)(bp-b;)) moa n » fOF BL1 T such that
r{(bo-b1) # O mod n, unless (kl+r(b2-bl)) mod n = k, for some r.

That is, unless k) and k, belong to the same equivalence class, we

btai =5 =
obtain 6kl a(kl-(bQ'bl)) mod 1 Skl mod n

Thus kl' and k2 belong to the same equivalence class. The above

which is a contradiction.

. relatioens can be used directly to construct binary sequences satis-

fying them. Therefore, some state-cycles satisfying the conditions of

the hypothesis can be connected by either of two inversions.

5) If there were a third inversion connecting the two state-cycles,
n . - ! » . " . =

then V (sJ) 8 (j+b5) rod 0’ by # by, b3 # by and V (53) 5

except V"(akj) = 5k3 for some k3 £ ki, k. Now ks must belong to

one of the equivalence classes above. We can agsume, without loss of

generality, that k) < k2'< kj <n, If k3 beliongs to { a(jB+u) mod n}

which does not contain ky; and ko we obtain 8, ='§u; a contradiction.
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But if k5 belongs to the class containing kj and kp we have

k2
k3

k1

='gi which is again a contradiction. There-
1

(k

Lt rl(b24bl)) mod n

(i + rp(bpby)) mod n

(k3 + rB(be-bl)) mod n

whence b =B
ky Tk

fore a third inversion connecting the two cycles is impossible, and

= 6k3

hence, there can be at most two inversions able to connect the two
cycles.

6) The éecond part of the theorem follows immediately from the Qb-
servation that all the states of a given normal cycle have exactly the

- same nunber of digits equal %o 1 in their binary representations.

Since the second argument of any pair must, by definition, always have
one nore digit equal to 1 than the first argument, the two arguments of
a pair can never belong to the same normal cycle. Therefore, because
the conditions of case (2) of Theorem 6 are not satisfied, no single
inversion can separate a normal cycle into two'state-cycleg.

Theorem 8. There is a locally-balanced cycle having a transition graph
in which all 2" net states belong to a single state—éycle; i.e., the net
will have a net state sequence of period 2B,

Proof:

1) By Theorem 4 we know that the transition graph of any locally-
balanced cycle consists only of disjoini cycles of states, For the
purposes of this proof, a state-cycle C will be said to be composed
only of pairs of states if one argument‘of a pair of the ewitch occurs
as a state in C just in case both arguments of the pair occur in C., In
order to prove the present theorem we shall first show that any state-

cycle composed only of pairs of states must include the states (O), and(l).
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Assume there is at least one state-cycle composed only of pairs. Let
(2§, 23+1) be one of the pairs occuring in this state-cycle. By the
'definition of a locally-balanced cycle (see the derived transition
table of Figure 9) either (2j) or (2j+1) must have an element of ‘the
pair (2[%], Q[g] + 1) as a successor state, where {g] is the integral
part of g, Since the state—cycle is supposed to be composed only of
pairs, both arguments of the pair (2[%]) 2[%] + 1) must belong to the
state-cycle. Continuing this line of reasoning we see the states
([g]), ([gJ),,.s,(l), (0) must be elements of the étate-cycie.

2) From the preceding paragraph it follows that the transition
graph of any given locally-balanced cycle contains at most one state-
cycle composed only of pairs of states. That is, any state-cycle
composed of pairs must contain(O)and(lL but this pair can belong to
at most one state-cycle.

3) Consider now the n delay locally-balanced cycle, LO, having a
switching element with all of ité pairs normally oriented. Invert
the pair having arguments (0,1). By Theorem 5 the elements of the
first pair belong to two different state-cycles. Thus by Theorem k&
the result of the inversion will be to Join these two state-cycles to
form a single new state-cycle, Ci. The transition graph of the
locally-balanced cycle,Ll, obtained by the inversion will thus have
one less state-cycle.

L) If the new state=-cycle, Cy»> is not composed entirely of pairs,
then there must be a smallest pair (25, 23+l) such that one of its
elements belongs to a state-cycle disjoint from Cy in the transition
graph for Ll' But then an inversion on this pair ﬁill‘yield a new

staté-cycle Co and a locally-balanced cycle, L2,/which'has one less
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state-cycle than Ll' The process can be continued until one first
reaches a state-cycle, Cj’ formed for Lj: which 1is composed’only of
pairs,

5) But C; will be composed only of pairs Jjust when C. contains all

J J

2 states of Lj. Otherwise there would be state-cycles of L. disjoint

J
from Cj' These state-cycles would not be composed wholly of pairs

(see step (2)). Therefore, we could apply the same process of suc-
cessive inversion that was originally applied to Cl’ to pairs belbnging
to these state-cycles (pairs not belonging to Cj). Cj will be undis-
turbed since none of these pairs contains any of its elements. Further
‘more the process cannot terminate at any stage in another state-cycle
composed only of pairs, since this would give a loﬁally-balanced

cycle with two state-cycles composed only of pairs. But then the
process must continue until all elements of the cycles disjoint from

Cj are joined in a cycle C!
of pairs -~ the pairs not belonging to Cj. This again contradicts

K But in that case C'k must consist only

step (2); hence there can be no state~-cycles disjoint from Cj' Cj’ as

constructed, contains all 20 states of the locally—balanced cyclé Lj.

The next theorem begins a direct investigation of the effect of
increasing the number of fecdback loops in a cycle, The theorem
basically concerns'input-independent locally-balanced cycles in which
some of the feedback loops to the switch have been omitted, i.e., cycles
in which the switch receives k < n inputs from the cycle.

Just before Theorem 5 I mentioned that, in a locally-balanced
cycle, use of a switch with all pairs normally oriented or all pairs

inversely oriented, in effect, converts the cycle to a simple cycle,

This observation can now be generalized: A switching element will
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be said to be of order k if and only if there are k numbers, O $I%)<...
...<1, & n-1, such that all arguments with the same values for
Pigre-Piyg determine the same output value, q(t), for the switch.

If this is true for k and for no kl € k the switch will be said to be

properly of order k. The output state, q(t) of a switch properly of
order k depends only on the state of inputs pj_o,...,p1k l; thus in a
cycle the switch could be replaced by a switch with k € n inputs

identified with delay outputs dio,...,dik N

TRUTH TABLE OF A LOGICAL NET WITH GIVEN SWITCH
SWITCH OF PROPER ORDER 2

r-'-‘

Po 1Py Py |9,
0 re=1
o ,0 oljo 1)
o ;0 I : ) :. "
0O 11 04 \ ==
o Hi i ! 0 ENCLOSES
COLUMNS USED
P 30 1 |
' : | o: 1 9.
P 1) \ 0
A |
L -

Fig. 11 A Switch Properly of Order 2

For a locally-balanced switch,1y = n-1. This is the case

because, in each pair determined by giving values to Pgs-e+sPn 05
q(t) = €pj when p_ _, = 0 and a(t) = €241 = €2 when p;_ 1 = 1. That
is, different values of Y give rise to different values of q(t).
Using these facts the definition of order can be recast for locally'-

balanced switches in terms of oricpytation of pairs: A locally-balanced

switch i1s of order k if and only if there are k-1 numbers,
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0£1iy¢ ... ¢4, _, < n-1, such that all pairs with the same values
for piO""’pik-g have the same orientation.

| The proof of Theorem 9 will describe some of the changes occuring
in the transition graph of a locally-balanced cycle as.the order of its
switch is increased (i.e., as the number of feedback in the cycle 1is
increased). The statement of this theorem as well as that of some
succeeding theorems can be considerably shortened by making the

following definition: The state-cycle partition of a net N with n

delays is a partition of the set of 2" net-states satisfying the»
following conditions:
l) one subset of the partition consists just of those states
which do not belong to a state-cycle in the transition
graph of N.
2) the rermaining net-states are separated into subsets such
that two states belong to the same subset if and only if
they belong to the same state-cycle in the transition graph
of N.
Theorem 9. The set of state-cycle partitions associated with the set
of locally-balanced cycles having n delays and a switching element
of order k properly includes the set of state-cycle partitions
associated with any collection of locally-balanced cycles having n
delays and switching elements properly of order k' < k.
Proof:
1) Ve begin by noticing again that all of the states in a given normal
state-cycle have the same nurber of ones in their binary represeﬁtation.
Thus the set of normal state-cycles associated with a locally-balanced

cycle can be classified according to the number of ones in the binary

representations of their states.
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2) For a locally-balanced switching element to be properly of order
1l € j & n there must be at least one set of inversely oriented pairs
among the sets of pairs specified by the definition of a jth order
switching element (i.e., among the sets of pairs defined by the sets
of 28-J+1 pinary n-tuples, (p04°'°’Pn-2)» which can be formed fcr

each fixed assignment of values to the j-1 components pio,;..,pij_z).
3) Consider a switching element properly of order j which has ex-
~actly one set of inverted pairs and let the set be the one obtained
by setting pio = pil = L., = pij-z = 0. As we range over the argu-
ments of fhese inverted pairs, the number of digits equal to 1 in

any given argument will range from éero to n-j+l. For this switch

no inverted pair will have an argument with more than n-j+l components
equal to 1. Thus a locally-balanced cycle, L, using the given switch,
will have a transition graph in which each state-cycle having u state
with more than n-j+l1 ones in its binary représentation will be a
normal state-cycle. Furthermore, for the given switch, there will be
one and only one inverted pair whose 2nd argument has n-j+l components
equal to 1. For this reason the state-graph of L will have one staté-
cycle consisting of a normal cycle of n-j+l ones connected to a
normal cycle of n-j ones (which in general will be connected with
other normal cycles). Thus one of the normal state-cycles with

n-j+l1 ones in the binafy representation of its states will not be
present as a state-cycle among the set of disjoint state-cycles of L

(rather it will be part of a larger state-cycle).

J-
= 0, then some normal state-cycles of more than

Uh) If we consider an assignment of values to pio,...,pi 5 other

than pio = ... = piJ_2

n-Jj+l ones will be connected to another normal cycle. Hence the switch
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specified in step(3) is the only switch properly of order j which will
yield a locally-balanced cycle for which all state~cycles having
states with more than n-j+1 ones invtheir'binary representation are
normal while some of the other statebcycles are not normal.

5) For switches of order O < j'< j some normal cycle of n=-j'+l »n-j+l
ones will be connected to another normal c&cle. For switches of ordef
0 all state-cycles are either normal or else all are non-normal.

" Therefore there is a switch or order J which, in a locally-balanced
cycle, produces transition graph different frém any produced by
switches of order j' « j. (Actually this can be generalized: Let

T;, represent the subset of thé partition of normal state-cycles which
contains all normal state-cycles of h ones. Then only switches of
order j or greater will yield state-graphs, for any choice of c¢<&}j,
where all cycles other than those in Tes T, +i,...,Tc +n-j41 &re normal

while some cycles in T, Toyyse--T

c4n-j+1 BTE connecte@ by inversions.)

6) Since the set of switching elements - of order j includes
all switches of order j' € j, the set of state-graphs produced by
switches of order j in a locally-balanced cycle properly includes the

set of state-graphs produced by switches of order j'< J.

Let a pair be called unbalanced if €25 = €j+1° Starting from
the normally-oriented n-input switch any n-input switch can be produced
by unbalancing selected pairs aftef carrying outva properly chosen set
of inversions. Using this fact Theorem 10 and its corollary extend the
results'of Theorem 9 to every input-independent cycle with one switch,
Theorem 10. The set of state-cycles for a given input-independent cycle L
with one switch, Ei, of order k is a subset of the set of staté-cycles

of an associated locally-balanced cycle with a switch,Ee, of order k' 2 k,
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No locally-balanced cycle with a switch of order less than k' includes,
as a subset, the set of state-cycles of the cycle with switéh E;.

Proof:

1) Consider the derived transition table (cf. Theorem 4, step(l)) of

a net cycle with a éingle switch., vJust as in the case of a locall&-
balanced cycle, all digits of the successor state in each row, excepting
the first digit €j, are determined independently of the switeh used.
Only €J is determired by the switch output.

2) Now consider the unbalanced pairs, if any, of the switch E;. In
an unbalanced pair both arguments, éo.and él’ have the same successor
state, s', in the derived transition table. Thus one of the two
arguments, say Sg» cannot belong to a State-cycle; otherwise some other
state in the state-cycle would have to have two successors in the
derived transition table, an impossibility for inpgt—independent cycles,
The other of the two arguments, Sy, may or may not belong to a state-l
cycle, If sl'belongs to a state-cycle orient the corresponding pair

in the locally-balanced switch, E2, so that sy has the same successor s'.
(B.g., if s, is the first argument of the'pair and the first digit of

s!' is 623 = 1, then the pair in the locally-balanced switch Ep should
be inversely oriented.) If’sl does not belong to a cycle, the
corresponding pair in Eo can have either orientation and still satisfy
the first part of the theorem; however, in step (5) we will see that
sometimes one of the two orientations will have to be specified in order
fo satisfy the second part of the theorem.

3) For each balanced pair in El the cqrfesponding pair in Eevshould
be balanced with the'sﬁme orientation,

4) The switch E. 1s fully specified once the instruction of step (2)

or step (3), whichever applies, has been carried out with respect to
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each pair of E,. Each argument of E; which belongs to a state-cycle
also belongs to a state-cycle of the locally-balanced cycle with'
switch E2 and in both cases the successor state is the same. Thus the
set of state-cycles with respect to El must be a subset of the sef of
state—cyéles with respect to E2.

5) Consider the j'h pair of Ey. Let Pigs« =+ sPiy be the smallest
set of digits in the first argument of the Jth pair such that all
other pairs with the same values for these digits in their fifst argu-
ment also have the same values for (€2j’ ezj+ﬁ' If this jth pair is
balanced then so must be the other pairs with the same values for

P; ,...pib and they must have the same orientation., All correqunding

0
pairs in E, by definition will have the same orientation. In this
case the values of €23, €2j+l) for E2 will also be determined by the
digits pio,.;.,pib. If the jth pair of E; is unbalanced then so must

be the other pairs specified by pio,...,p If all of these pairs

iy®
either have the same argument, e.g., the first, belonging to a cycle
:or else neither argument belonging to a cycle tﬁen all of the cor-
responding pairs in Eo can be given one orientation. Then,as before,
all pairs in E5 with same vglues for digits pio,...,pib will have the

- same orientation and hence the same values for(egj, €23+l). Finally,
some of the given unbalanced pairs in El may have their first argument
belonging to a cycle and some the second. Then the corresponding pairs
in E5 will not have the same orientation (sce step (2)). Thus for E,
additional digits pib+l""’pib+a will bg necessary in this last case
to specify Just those pairs with the same orientation. Thus we see
that E2 will in general have a proper order k' ¥ k. Furthermore it

follows directly from the preceding argument that no locally—balanced

switch can have proper order less than that of E, and still satisfy
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step (4).
Corollary The set of state-cycle partitions associated with the set
of input-independent net-cycles each having n delays and one switch

of order k properly includes the set of state-cycle parﬁi-
tions associated with any collection of input—independent-nétféycles
each having n delays and one switch properly of order k' < k,
Proof :
1) Consider a switch properly of order k, with at least one unbal-
anced pair; inserted in an input-independent cycle with one switch,
By the first two lines of step (2) in Theorem 10, the transition graph
of such a cycle will contain at least one state which does not belong
to a state-cycle. Thus the transition graph of step (2) of Theorem 9,
since it consists just of state-cycles, cannot occur for any switch,
balanced or unbalanced; of proper order k' <€ k,

2) Since the set of switching elements of order k includes

all switches of order k' < k, the corollary follows.

Let a net-cycle of order k be defined as a net-cycle whose normal

form contains at least one switch of order k and contains no
switch properly of‘order k' > k, Using this definition Theorem 11
extends the results of the last two theorems to all input-independent
cycles.

Theorem 11. The set of state-cycle partitions of the set of all n-delay
net cycles of order k properly includes the set of state-cycle parti-
tions'of any collection of n'-delay, n' € n, net-cycles of order k' < k.
Proof:

1) Note first that,with respect to net-cycles having n delays, there

1s only one normal state-cycle containing a state with n ones in its
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binary representation. Furthermore this normal state-cycle has

but one element, namely (1,1,...,1).

2) Consider a switch Ey which, when used in an input independent
net-cycle with one switch, causes the state (1,1,1.,,1) to have &
successor state with fewer than n digits equal to 1, (Since the
ﬁet-cycle has but one swit;h, the successor Vill clearly have to be
(0,1,...,1)) Thus in the transition graph of the net-cycle using Ey
no normal state-cycle with n ones will appear,

3) Now consider the set of all n-delay net-cycles, in normal form
(see Part 2), which have E, as one of the switchés, The normalistate—
cycle with n ones will not be present in the transition graph of any
of .these net-cycles ~ this can be deduced as follows: The state
(1,1,...,1) is the oniy elex}xent of the normal state-éycle- with n

ones; therefore the succéssor of (1,1,...,1) will have to be (1,1,00051)
if the normal state-cycle with n ones is to be present in a transition
graph. When the net-state, s(t), is (1,1,...,1) the output state of
.each delay in the net-cycle is dj(t) =1, J = O,.;.,n-l. If the out-
put of E, is connected to the'input of delay 4, %hen él(t+l),= 0
since the output state of E, is qo(t) = 0 when the argumenf is
(1,1,...,1). The output state of a switch whose output is identified
with the input of delay dj, J = O,2,3,.,.,n-l, can be either

qj-itl= 0 or gy1(t) = 1. 1If qj_i(t)= O then d;(t+l) = 0; if gy3(t) =1
then d3(t+1) = 1. The net-state s(t+l) = (dg(t+1), ay(t+1) - 0000,
d,_7(t+1)) can at best have one less 1 than the.net-state

'(do(t) =1, d;(t) = l,0..,d,.(t) - 1). Tﬁerefore no n-delay net-cycle
including in its normal form a switch such as E; will have the normal

state-éycle,with n ones present in its transition graph,
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L) Let E, be the switch of proper order k which gives the transition

graph described in step (3) of Theorem 9., All state-cycles having

states with more than n-k+l ones in their binary representation will dbe

present in this transition graph as normal state-cycles. However, at

least one of the normal state-cycles with n-k+l ones, Ck.? will not be
present in the transition graph. That is, one state 32h+lvnormally
belonging to Ck will have as a successor Si2h+l’ a state not belonging

to Cx. By the construction of step (3) in Theorem 9, 8'opyy will have
n-k ones, positions d1,810415¢ e diy.o+1 being equallto zero, 1y _- € n-1.
For convenience I will assume ip =1, il = 25000510 = k~1. The proof
can be géneralized by inserting djqy for dj, etc. throughout steps (5) -QJJ.
5) Now consider the set of all n-delay net-cycles, in normal form, with
Ex as one of the switches and in which no switch is of order greater.than
k. The next six steps of this pyoof will show that no net-cycie in this
set has'a transition graph with the following property: The transition
graph consists only of state- cycles and each state-éyclé having an
elemént with more than n-k ones in its binary represeﬁtation.is a
permutation of a normal state-cycle,

6) Assume that a transition graph with the propert& of step (5) is
possible., Let the output; qp of Ey be identified with the input of

delay d;. Then, in particular, the state Sopg) Of step (4) mustlhave

& successor state with n-k+l ones, At time %, for the net-state to be

n

Sop4p (t), we have dp(t) = 0,.00,dx1(t) = 0 and do(t) = 1 along with

lt) =1,...,a  1(t) = 1. Since qy(t)

i}

O we know that d)(t+l) = 0,
Thus s'ps . (t+1) can contain n-k+l digits equal to 1 only if

djo+l(t+l) = 1 for some 2 & j; £ k. But this means that switch QJO

 must produce an output state qu(t) = 1; furthermore this switch must be

~of proper order € k by step (5). Two possibilities present themselves:
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6.1) The switch 1, has an output state qJO(t) = dJo(t)
for all arguments with more than n-k+1 digits equal to
1 in the associated truth table,
SR
6.2) The switch 4j, bas an output state qJ‘O(t) = dJO(t)
for some argument with more than n-k+l digits equal to
1 in the associated truth table,
7) Consider first a switch of type (6.1). The next three steps of the
proof will show that a switch of type (6.1) requires the presence, in
the net cycle, of an additional switch drq which is of type (6.2).
That is, qro is required if the net-cycle is to have a transition graph
with the property given in step (5):
8)  For the argument s, . (t) =
(dp(t) = 1,4;(t) = 0,d5(t) = 0,...,3, 1(t) = 0,d)(t) = 1,...,4,_1(t) =1)
the switch qj, Must have an output state qJO(t) = djo(t) = 1 by the
first part of step (6); Note, however, that the switch 4, must be of
proper order kg € k by step (5). That is, the output state qJO(t)
must be the same for all arguments having the same values for a given
set, Oko’ of ko components of the argument (see the discussion of
proper order preceding Theorem.9). There are now two alternatives for
OkO:
8.1) The components dys...,dp_; are all included in Oko.
8.2) At lcast one of the components dy,...,d is not

k-1

included in Ok .
0

9) If (8.1) is the case then we look at a net-state s{t) chosen so

that 4, (t) = 0,...5d¢_1(t) = 0 and all other components are 1 except,

say, do(t) = 0. s(t) has a binary representation with n-k digits equal
to 1. The successor state s'(t) will have at least n-k+l digits equal

to 1 because of the action of Q3o unless there is a third switch qu
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in the normal form of the net-cycle. In other words;.unless there is
a thira switch qjl, one of the normal stéte-cycles'with n-k+l‘ones will
not be present in the transition graph. But if there is a switch qﬁl
we must start again from step (6) and determine whether qu is of type
(8.1), type (8.2) or type (6.2). If qjl is in turn of type (8.1) we
will require a switch qJa and so on‘until:
9.1) the allowed number of switches, n, is exceeded, in
which case the contention of step (5) is profed,
or 9.2) a switch q; is of type (6.2) or typé (8.2); if type (6.2)
the statement of step (7) is proved; if type: (8.2) we
apply step (10).
10) If (8.2) is the case, let d,, 1 & u's k-1, be the component not
belonging to Oko. Sinée d, does not belong to Oko we can set dg(t) =1
and still have qjo(t) = 1. But then,‘gg;ggg u = Jg, qjd(t)'= 1 ='53;f23

- for an argument with n-k+2 digits equal to 1, contradicting (6.1).

However, if u Jo the two arguments
s2h+l(t) = (do(t) = l, dl(t) .= O,...,djo(t) = O,...,dk_l(t) = O,

4 (t)

l""’dn-l(t) = l)

i

and 52v+l(t) = (d4(t) =1, §l(t) = O,...,djo(t) = l,...,dk_l(t) = 0,

dk(t) = l"“"dn-l(t) = l)
have the same successor state
s 2h+l(t) = (do(t) =1, dl(t) =0,...,d

a, (t) = 1,...5d o (t) = 1),

jo+l(t) =Ly g, (8) =0,

Thus a third switch Arg is required if the transition graph is to be
composed Jjust of state-cycles, If qro is chosen to change the successor
state of sop, the problem returns to step (6) and, as in step (9),
either the allowed number of switches is eventually exceeded or else we

must at some point introduce a switch of type (6.2). If qro‘is chosen
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to change the successor state of Sovsl then qu is automatically a
switch of type (6.2), Soy4l DAVIng n-k+2 digite equal to 1.

1i) From steps (7) - (10) we see that, if we are to satisfy the
hypothesis of step (6), a switch of type (6.2) must occur in the)net-
cycle. However, a switch of type (6.2) requires that a sﬁate Sou4l
with n-kq » n-k+l digits equal to 1 have a successor with a differenf
nunber of digits equal to 1. Thus yet another switch, qu, will be
required if the normal state-cycle containing Sow+1 1s to be present
in the state-transition graph. But now we can apply toqul the
reasoning from step (6) onward. Ultimately a set of switches qjo,
qjl""’qjm will résult. The last, qjm will perforce affect an argu-
ment with n digits equal to 1. But there is only one érgument with n
ones, (l,l,...,l),andlby step (3) no additional switches can correct
for the case in which (1,1,...,1) has a successor state with‘féwer
digits equal to 1. Thus we see that all cases lead to a contradiction
of the assumption of step (6). Hence the assertion of step (5) follows.
12) The theorem for n' = n and k' € k follows from the assertion of
step (5) by virtue of steps (4) and (5) of Theorem 9 and step (1) of
the Corollary to Theorem 10, To extend the theorem to n' € n ve note
that in an n-delay cycle, Né, the switches qi.,_fo£ i"= n'-1, n',
--+,0-2, can be chosen so that q;:(t) = O for all arguments. Then by
choosing 9n-1,905915-+-5971.p SO that they are independenﬁ of argument
columns pp1, Pnt4ls---5P,_1 e have, in effect, a cycle N', with n'
delays (togcther with a string of n-n' delays whose oﬁtput states are
aiways zero). The first n' digits of any net-state of Nc will be ex-
actly the digits of the corresponding net-state of N's. Thus there

is a state-cycle partition of an n-delay net-cycle of order k which can

be mapped directly on the state-cycle partition of an arbitrary n'-delay,
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n' £ n, net-cycle of order k' < k., The theorem for n'$nand k' <k

-~

follows.

Theorem 11 provides a basis for several comments on the effect of
increasing the number of feedback loops in a logicél net. Here I will
make just one comment, reserving others for the more general context of
Part 5: Consider the case of an experimenter presented with a black
box (cf. Moore's gedanken experﬁnents [6]) about which he is given the
foliowing information:

1) all elements in the box belong to a single input-independ-
ent net-cycle,
2) the box has one output for each delay element inside,
3) at any time the box can be set to an arbitrary "initial"
net-state and observed for as long as desired.
Theorem 11 tells us that there is a net with at most k feedback loops
throﬁgh each switch which will make the black box behave in a fashion
impossible for any net with n'€ n delays and k' € k feedback loops
through each switéh. Moreover, fhe set of behf;viors possible for such
black boxes when each switch receives at most k feedbacks properly
includes the set of behaviors possible for boxes having n'€ n delays

and k' € k feedbacks to each switch,



5. Cycles in General

The obJject of this section will be to relate the behavior of net-
cycies in general to the behavior of input-independent net-cycles.
The basis of this relation is the nature of the truth table of a
switching element in an arbitrary net-cycles

Let N, be an n-delay net-cycle in normal form having a total of
k distinct switch inputs identified with elements not belonging to Nes
i.e., net cycle inputs. The trufh table of each switching element in
N. can be regarded as héving a normal form with k argument columns
hp,...,hk-]1 corresponding to the k net-cycle inputs and n argument
colums POs«++sPy_j corresponding to the n net-cycle delay outputsi'
If a given switch in Nc has j € n inputs identified with delay outputs
diO”"’dij_l of N, then the truth table output q(t) will of course
depend only upon the j columns piO""’pij-l of the n columns PlsesesPp_ye
That is, with respect to the n columns‘pl,...,pij_l,_the norma¥ form
of the truth table will be of order j. Similarly if the given switch
hés b <k net-éycle inputs then q(t) will depend only upon b columns
by s-esBy,p OF the Kk columns h,...,hy ;. Each switch in the net-
cycle, regardless of thé number of its inputs, can thus be given a
standard truth table with k+n argument columns and one output column,

- Note that the k+n argument columns of the truth tablé of each

switch in N, are identical when they are given the order ho,...,hk_l,
PQse«++sPy.1- In‘the normal form of the net-cycle NC,,each delay in
the cycle, di, has its input identified with the output of one 6f the
switches, Q35 in the cycle so that d;(t+1) = q;(t). Furthermore
pi(t) = d;(t). If the n switch output colurms are'arranged in thé'

order qu_y,405915+..5Q-p @t the left of the k+n argument columns the

48
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result is a transition table where the transition from (do(t),..;,dn_l(t))
to (ap(t+1),...dy.1(t+1)) depends upon the value of the net-cycle

inpgt state (ho(t),...,hk_l(t)).

I(t) s(t) ‘ s(t+1)
‘ = = = PP +1 )=
ho(t) cee g () do(t) ees dpp(t) dO(tﬂ(i) dn_l(t(tg
‘ po(t) Pp-1(t) -1 4.0
O . O O LI N 3 0 en—l’o e e e en-e,o
0 v 0 0 . ne 1 en-l,l cee en_a’l
o ce e O l e l en_l,an_l . X en-e,zr]_l
0 ... 1 | 0 0 €n-1,20 en-e,en
1 cse . l , O eo e O En-l,2k+n—l eve en-2’2k+n_l
l e e l l e e o l en-l,2k+rLl ‘. e En_2,2k+n-l

Fig. 12 ‘Derived Transition Table
for a General Cycle with Input
Now fix a value, IO, for I(t) = (ho(t),...,hk_l(t)) and consider,
in the derived transition table for N., the 21 rows having the given
values for the arguments hg(t),...,h,.,(t). The 2" rows so selected
constitute the transition table of an n-deiay net~cycle NIO which has
n switches in normal form, each with n inputs. Of necessity, NIO is
an input-independent cycle in which the switch at position qy has, for
arguments po(t);...,pn_l(t), an output q;(t) = €i,x.pN4y, Where X = the
decimal equivalent of the binary number ho(t)-2k'l+,,..+hk_l(t)-20
and y = the decimal equivalent of pg(t)e2n-l+,,.4py_1(t)-20, That is,

at each position in NIO we have a switch whose output for an argument
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(po(t),.,.,pn_l(t)) is simply the value g;(t) given for the corresponding
n argument values of pj,...,p, in one of the selected 22 rows. - We see
that the effect on N, of a given net-cycle input state Ip is to select
an n-input‘switch at each position in N,, the result being an n-delay
input-independent cycle NIO° If I(t) = Iy then the behavior of the
cycle N, for that one moment of time will be exactly that of NIOf

The importance of the preceding observation lies in the relation
between the transition graphs of the various NI(t) and the transition
graph of the'cycle No. Let G be the transition graph of N, and let
the 2K ﬁossible net-cycle input states of N, (hO:"':hk-l): be labelled
Io» Il,...,I ok_1° Let GIj be the subgraph of G obtained by retaining
all of the vertices of G and only the edges of G labelled I (see Part 2).
Then GIJ is exactly the transition graph of the net-cycle NIJ’ th@
input-independent net-cycle selected when I(t) = IJ‘ Conversely, if
the 2K graphs GIJ’ J = O,...,2k-l are given, then the graph G can be
constructed, This is done by simply!superposing all the graphs GIj
so that vertices with the same label are identified and each edge for
each,GI‘j appears in the result, G, connecting the same.vertices. In
the process of forming G from the GIj-many of the properties common to

all the GIJ will reappear as properties of G.

LOGICAL NET N TRANSITION GRAPH GI.
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Fig. 13 An Example of the Selection
of Gr(y) By the Input-State I1(t)
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In the special case that a subgraph GIj of the transition graph
G consists Jjust of state-cycles, it can be conveniently rebresented by
an element of the group of permutations on 21! elements. To do this
we.make use of the fact that any permutation can be given by thé product
of a set of disjoint circular permutations: Let C; be the ith state-
cycle of GIJ (under some arbitrary ordering). Let si’o,'si,l,..,,si,ni
be the net-states belonging to Ci ordered so that Si,y+l succeeds
Si,y (and si,0 succeeds Si,ni) in Glj' The circular permutation
(Si,O si,l . si,ni) feprésents the state-cycle Ci and, thus, the
group element

g; = (SO,O 50,1 --- SO,DO)(SI,O ... Si,nl)'°~(sV,0 . sv,nv)
represents GIJ- Note that, if the state cycles C; are normal state-
cycies, the operation of inversion on the pair of states spp énd
Sopsl Can be represeﬁted by multiplying gj on the left by the trans-
position (52h 52h+l)- Thus, if thé switeh in a 1ocally-balanced cycle
is obtained by inversions on pairs ’ho,hl,...,hr of a normally oriented
switch, the resulting transition graph GIj will be represented by the
grbup elenent . |

8'y = (spny s2no+1)(s2ny sonj+1)--- (5o songq1) - 84
whére gj represents a trahsition graph consisting just of normal state~
cycles.

If G is the transition graph of a net-cycle N, with input and if
each subgraph GIJ of G consists just of state-cycles, then given an.
input state sequence of period m the resulting net-state period of Nc
can be determined by means of the group representétion, This is
accomplished by using the graphs GI(O)’ GI(l)"“’GI(m-l) specified by
input states I(0), I(1),...,I(m-1), where I(t) = I(j) if and only if

t=jmodm, j=0,...,m-1, If 8I(t) is the group element corresponding
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to GI(t)’ then the net-state period will be a divisor of the product
m - rg, where rg is the order of the group element
& = 81(0) ° 81(1) °-* Br(m-1)*

As a more general example of the way properties of the GIJ
reappear -in G; I will show how Theorem 11 can be applied to net-cycles
in general after the definition of a cycle of order r (given in Part L)
is extended appropriately. Let Ej be an arbitrary switching element
with b = n+k inputs. Let n of these inputs, Pgsee-sPn-l be identified
with the outputs of elements belonging to & cycle N.. Let k of the
inputs ho,a,o,hk_l be identified with the outputs of elements not

belonging to N.. Ey will be said to be of order r w.r.t. a cycle N,

if, ignoring the argument columns hg,...,hx_], it is of order r when
Just columns pg,...,p,.) are considered. A net-cycle N,, with or
without net-cycle inputé, will be an (nzr)-cxcle Just in case the normal
form of the éycle contains exactly n delays, at least one switch .of
order r w.r.t. the cycle N., and no switches ol proper order r' > r
w.r.t. the cycle. An (n.r)-cycle will, in effect, have no switch

which receives more than r distinct feedbacks from delays in the cycle
Theorem 12. The set of state-cycle partitions of the set of all
(n,r)-cycles properly inéludes the set of state¥cycle partitions of any
collection of (n',r®)-cycles with n' € n, r* < r.

Proof: |

1) In order to apply Theorem 11 to an arbitrary net-cycle, N, of order
r, consider first the transition graph Gy of N.. Each Grj will be the
transition graph of an input-independent cycle NIJ of order r (since the
switches of NIJ cannot have any cyclé feedbacks not present in N_).

Thus each GIj will be subject to Theorem 11 as applied to input-independent
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net-cycles of order r. The result will be that each GIJ can satisfy
the following three conditions:
1.1) GIJ consists just of disjoint state-cycles.
1.2) All normal .state-cycles with more than n-r+l ones
are present in GiJ.
1.3) One normal state-cycle with n-r+l ones is not present
| in GIJ,
2) It follows from step (1) and the discussion preceding this theorem
that there is a cycle N, of order r with the following properties for
its transition-graph G:
2.1) ‘All subgraphs GIj of G consist only of disjoint
| state—cyclés.
2.2) Far each state s with i » n-r+1 digits equal to 1
there'is a ﬁnique state s' with i digits.equal to 1l
which succeeds s no matfer what the input state I(t)
is. The cycle of states so.determinéd has n states,
or a divisor thereof, as elements.
2.3) There is a state sg ¥ith 15 = n-r+l digits equal
to 1 which, for some input staté IO, has a successor
étate 5'0 with'io—l digits equal to 1. The state-
cycle to which sg belongs has np » n elements.
3) Using the state-cycie partition (see the definition preceding
Theorem 9 - noting that a state-cycle in the transition graﬁh is defined
ahalogously to a net-cycle in a logical net) properties (2.1)-(2.3)
can be restated:

3.1) The state-cycle partition of G contains no subset of

elements not belonging to a.state-cycle.
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3.2) Each net-state with more than n-r+l digits equal
to 1 belongs to a subset of the partition which
.contains exactly n states or a divisor thereof..
5.3)' Sbme net-state with n-r+l1 digits equal to 1 belongs
to a subset with more than n states,
4) For an n-delay cycle N', of order r'<€ r no derived transition
graph G“Ij can satisfy all three conditions (1.1)-{1.3) that each
GIJ §atisfies. Hence no n-delay net-cycle of order r'<€ r can have
a transition graph satisfying the conditions (2.1)-(2.3). Thus, in
turn, no n-delay net-cycle of order r' € r can exhibit the state-cycle
partition of step (3).
5) The remainder of the proof follows the argument of step (12) of

Theorem 11.

Theorem 12 can be interpreted in Moore's framework in much the
same way Theorem 11 was. Let Bj(n,k) be a black box having the
following properties:

l) n observable outputs each of which is a delay element
outpﬁt,
2) k inputs (net inputs) whose states at t = 0,1,2,...
are specified by the observer,
3) an arbitrary number of elements in the box all belonging
to one and the same (n,r)-cycle.
The set of behaviors possible for the set of all BJ(n,k) which contain
an (no,ro)-cycle properly includes the set of behaviors possible for
any collection of Bj(ﬁ,k) which contain an (n),r;)-cycle such that
n} € ng and ry; € rg. In other words, no cycle with at most n delays or
k' inputs and less than r feedbacks to each sﬁitch éan imitate the bé-

havior of particular cycles with n delays, k inputs and r feedbacks to

one or morc switches.
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Comments and Conjectures

The central purpose of this paper has been to present a set

of operations and methods particularly suited to the investigation

of cycles in logical nets,

The outcome has been an interlocking

sequence of defin®tions and operations leading from the simplest

cycles to cycles of é.rbitrary complexity:

1)

2)

‘3)

)

5)

net can belong to at most one net-cycle.

Type of net-cycle

simple cycle with-

out input

lozally-balanced

cycle
input-independent
net-cycle with one

switch

general input-
independent net-
cycle

general net-cycle

with input

Definitions providing

Operations generating

for extension to next level extension to next level

locally-balanced switch;
derived transition table;
normal state=-cycle

order of switch
normal form of net-cycle;

derived transitidn table

for normal form

constant input subgraphs,

GIJ’ of transition graph G

25

inversion

unbalancing

finite induction 6#
number of switches in
normal form of net cycle
(1isting possible effects
of added switches on
derived transition table)
selection opefation

of input-state I(t)

(selects Gy(¢) from G).

vBecause of the way in which a net-cycle is defined each element in a

It follows from this that the
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cycles in a logical net can be ranked and therefore that the cas-
cading operation is sufficient to génerate any logical net (cf. Bﬁrks-
Wang [1] and Part 2 of the present paper). Hence an additional row
vcan be added to the table although the present paper does not spécifi-

cally consider the case (except for simple cycles in Part 3):

5) general net-cycle rank of net-cycle | cascading of net-
with input cycles and n.=-c. hets
6) logical nets in
| general
In this table the class of all net-cycles of a given type properly
includes preceding types of net-cycle. Generally, the operations
presented in the table and discussed throughout the paper are useful
in computing the behavior of particular net-cycles as well as in
proving theorems about the various types of net-cycle.
Using periodic input as a tool one can often prove theorems con-
cerning a giVen class of nets which would be difficult to prove in
any other way. For examplé, in Part 3 periodic input‘was used to show
that cycles iﬁ logical nets provide more than just storage. Incident-
ally results theré show that a particular case of a conjecture of
Burks-Wang [1;p.292] is true. The conjecture is: For any degree d,
there is some transformation not realized by any net of degree d -
a net is of degree d if it contains at least one cycle of degree d and
none of higher degree; a‘cycle is of degree d if it contains d delays,
We see thus, by Part 3, that there are transformations on periodic
Input-state sequences not accomplished by any net of degree 1. The
results of Parts 4 and 5 lend strong support to the followingvstrdnger

conjecture:
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For ény (n,r) there is some transformation not realized by
any net containing only (n,r)-cycles.
In fact it should be possible to construct a lattice of behavioral
transformations defined as follows: Let N(n,r) be the set of all
logical nets containing only (n,r) cycles. With each logical net in
N(n,r) will be assoclated a transformation which gives the net state
sequence produced by each input state sequence., Let B(n,r) be the
set of fransformations associated with the set N(n,r)° The lattice
shoﬁld satisfy the folloﬁing conditions:

1) B(p,r) Properly includes B(a',r') ifn'< nand r* & r

or if n"S nandr'€ r ;

]

2) g.1.b. [B(nl:rl)’B(HQ:rz)] = B(no,ro) where n, min(n; ,n,)

and rg = min (ry,rs);

3) 1.u.b. [B(nl:rl)’B(ng,ra)] = B(nj:rj) where nz max(pl,ng)
and ry = max(ry,rs).

It seems that the interrelations between pariodlc input and net state

sequences, net cycles, state cycles, and permutatlon cycles, as sketched

1n Parts 3,4, and 5, will provide most of the operations and methods

needed for the proof of this conjecture.
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