THE UNIVERSITY OF MICHIGAN
COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS

Computer and Communication Sciences Department

Technical Report
HIERARCHICAL DESCRIPTIONS, UNIVERSAL SPACES
AND ADAPTIVE SYSTEMS

John H. Holland

ORA Projects 01252 and 08226

supported by:
Department of Health, Education, and Welfare
National Institutes of Health
Grant No. GM-12236-03
Bethesda, Maryland
and
U.S. Army Research Office (Durham)

Grant No. DA-31-124-AR0-D-483
Durham, North Carolina

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1968

HIERARCHICAL DESCRIPTIONS, UNIVERSAL
SPACES AND ADAPTIVE SYSTEMS

John H. Holland

The power of an adaptive system depends critically upon its ability
to exploit common factors in successful techniques. If the system has
meager means for analyzing elements of its repertory, this ability will
be sharply curtailed, no matter how extensive the repertory. Contrari-
wise, if the system has a great many different ways of describing (or
representing) the same device, i.e., if it has a rich variety of ways to
decompose elements of its repertory, chances of detecting common factors
are greatly enhanced. Each time a device is tried, information accrues
about components of each of the potential decompositions. Thus, the richer
the variety of decompositions, the higher the effective sampling rate.

Of course, to exploit this information about components, the adaptive sys-
tem must use it to infer the performance of untried devices. And these
inferences must, in turn, be used to plan which devices should be generated
and tried next. At each stage, the flexibility and success of the pro-
cess depends upon the flexibility and richness of the system's analysis

and synthesis procedures--qualities ultimately depending upon the defini-
tions of structure employed by the system.

In attempting to supply a rich set of representations (with attendant
analysis and synthesis procedures), it helps to look at procedures actually
exploited by successful adaptive plans. Among the most important are:

(1) Substitution--components common to several highly-rated devices
are substituted in other related devices.

(2) Abstraction--by a process of abstraction, highly-rated devices
are used to provide schemata (patterns for substitution) for the develop-

ment of related devices.

(3) Refinement--new ''cues'" for reacting to the environment are pro-
vided by refining the input alphabet or time-scale, adjusting internal
processing accordingly.

(4) Modeling--the environment is approximated by some part of the
internal structure with the intention of checking predictions of this
model against observed outcomes and modifying it accordingly.

(5) Change of Representation--new primitives and operations are intro-
duced so that problems presented by the environment are more easily modeled
and related to previous models, outcomes, or stored information.

(6) Metacontrol--rules for employing the preceding techniques are im-
plemented in the device and they in turn are subject to the same techniques;
additional levels are added as required.

By searching for structural traits which will give these techniques
broad scope, we obtain suggestions for requirements on the structural
formalism. These requirements will be briefly described here, and then
each in turn will be discussed at length.

1. Hierarchical Description. Substitution and abstraction can be
greatly facilitated if the devices used by the adaptive plan have many
alternative descriptions in terms of '"block diagram' hierarchies. A great
variety of schemata can then be formed from a single device by simply
deleting the contents of one or more blocks in different ones of its hierar-
chical descriptions. Any device which satisfies the input-output inter-
face of such an "empty'" block becomes a candidate for substitution therein.

Refinement proceeds most easily if alphabets and time-scales of blocks
in the hierarchical description can be changed without requiring overall
structural reorganization. The minimal constraints possible are those
imposed by interfaces with other blocks and by identifications with parts

of higher-level blocks.

-3-

2. Self-Applicability. The operations for connecting blocks should
themselves be defined by exactly the same hierarchical descriptions as
the objects to which they are applied (permitting new operations to be
introduced as needed). Operations should apply equally directly to
blocks at any level in the hierarchical descriptions (permitting any
block to be treated as primitive). Taken together these provisions per-
mit the adaptive plan to add new levels of control as required.

3. Incorporation of Models. Primitives and operations should be
such that models of the environment can easily be implemented, used,
and altered by the overall adaptive plan. There should be a clear means
of designating the control exercised by active portions (cf. active sub-
routines) of the model. There should also be natural structural provisions
for making and recording predictions based upon the model. These pro-
visions permit the adaptive plan to check predictions against outcome and
make corresponding modifications of responsible parts of the model (a

technique used to great advantage by Samuel).

'""Some Studies of Machine Learning, Using the Game of Checkers", and
'""Recent Progress'

Beyond these requirements, there is a further structural considera-
tion which greatly aids study of the interaction of adaptive plan and
environment. Because of von Neumann's unfinished work (See Burks' 1967

edited version)

Theory of Self-Reproducing Automata, Edited and completed by A. W. Burks

we know that it is possible to represent any mechanistically or computa-

-3.1-

tionally definable adaptive plan/environment combination in a uniform
format--a format akin to the '"space'" of physics with its regular geometry
and uniform laws. Such a '"space" permits a uniform and rich characteriza-
tion of both environments and plans. Of greater importance, in this
"space' all actions are of the same kind, whether of the plan on itself,
or within the environment, or between plan and environment. This and
additional advantages will be developed in the discussion of self-appli-

catility (Section 2).

1. Hierarchical Descriptions

An approach to hierarchical descriptions first requires a notion
of the devices or systems to be so described. Discussion here will be
limited to systems constructed from finite-state components. That is,
admissible components will be those for which relevant behavior can be
determined in terms of a finite number of states. The formal counterpart

of such a component is the finite automaton defined here by the quintuple

a=<I, S, 0, f, u»
where

m
I =TI Ii’ where each Ii is a finite set
i=1

S is a finite set

n

0O = II 0., where each O, is a finite set
=1 J J
J

f: IxS-S

u: I xX»0.

Under the intended interpretation, Ii is the set of signals possible on
the ith input (line) to the component, Oj is the set of signals possible
on the jth output, and S is the component's set of internal states. If
I(t) = [Il(t),...,Im(t)] designates the (ordered) set of signals on the
inputs at time t, and S(t) designates the internal state at time t, then

the set of output signals at time t, O(t) = [Ol(t),...,on(t)], is given by

0(t) = u[I(t), S(t)].

Similarly, the next state of the automaton is given by

S(t+1) = £[I(t), S(t)].

A complete input history of the finite automaton, [I(0), I(1),...,

I(t),...], is an element of the set IN of all infinite sequences over I.
If we know the initial state S(O) and a complete input history, it fol-
lows from the definition of f and u that we can determine the complete
sequence of internal states and the complete sequence of output signals,
elements of SN and ON respectively. That is, f and u can be extended

to yield the functions

F: INXS —>SN

and
U: INXS —>ON
N
where, formally, N = {0,1,2,...} and I = {2_1 It N~ I}, etc.
Our interest will be centered on devices which can be constructed

by various means from copies of some intially chosen finite set of automata,

G = {gl,...,gk}, which will be called a set of generators (or primitives).

Let {aa ? a ¢ A} be a finite or countably infinite set of copies of elements
drawn from G and indexed by the ordered set A. The elements of the quin-
tuple corresponding to a, will be designated Ia, Sa’ etc.

We obtain the most easily understood of the systems constructed from
the (entire, possibly infinite) collection {aq} if the collection is
treated as a single automaton composed of the noninteracting automata a -

In this automaton the state history or output history of any given com-
ponent is independent of the histories of all other components. This

"free product', or unrestricted composition, A, on {aa} is defined by

the quintuple <I,, S ., O,, f Here

Ar Oar a0 Tas Uy

A second (equivalent) definition of SA as a collection of functions

S, = {s: A>US_ » for all acA, s(a) €S }
A a o o

provides a convenient notational device; for instance, if s is the state

of the automaton A, then the state of the set of components indexed by

A'CA is simply the restriction of s to A', s|A'. Similarly

m
a
I, = 0LIEIA i1’=I1 Iu’i = {i: X>UI sxeX and 1(x)z—:IX}
where X = {(a,i) » o e Aand 1 51 g ma},
Ny
= n = M
and 0, ugA 521 Ou,j {o: Y+¥Oy;er and o(y)eOy}

where Y = {(a,j) 3 aeA and 15j$na}.

f,: I, xS, » SA satisfies the requirement
£,(1,8) (@) = s'(a) = £_[i(a), s(a)]

where

iel,, s and s'eS,, and i(a) = [i(a,l),...,i(a,ma)].

A’ A’

That is, fA when applied to an input state i and an internal state s

of A yields a new state s'; i(a), s(a), and s'(a) are the values of these

states at the component a,s since the components do not interact we can

determine the value of s'(a) from i(a) and s (o) alone, using fa'

Similarly

-7-
u,: I, xS, >0, satisfies

A" A A A

u,(,8) (@) = o(®) = u [i(a), s(a)].

[FIGURE 1.]

Other systems or compositions over the collection {a } are obtained
by imposing restrictions on the '"free product" A --restrictions resulting
from the identification (connection) of selected inputs with selected
outputs. Under these restrictions the state or output history of a given
component will, in general, depend upon the histories of other components.
The identifications determining the restrictions on A can be specified

by a function vy, the composition function, satisfying the conditions:

(1) y: Y'" > X' from Y' C Y, 1-to-1 onto X'C X;

ii) o C1 for all yeY'.
(i1) y y y

(y)

Thus each yeY' designates a particular output which is to be connected
to a particular input y(y)eX'; (ii) specifies that the output signals
be identifiable as signals on the input y(y) -- any encoding or decoding
must be carried out by components via their functions f and u. Identi-
fication of an input with an output requires the histories of the two

to be identical over all time:

Uy La,s) = Ly

where Uy is the function that gives the output history of y = (a,j)
when supplied with the initial state s and the input history la of the

component o to which y belongs. Note that Ea = (Ea,l""’la n) and

5

may in turn be constrained by identifications specified by y. It may

A={l, 2, 3}

1 2 3
1,1) (2,1

~a
ﬁ‘—'(l,l) (2,1)->—D-0q< (3,10} (3,1)

e
(1,2)

Sl = {0} Sz

(z,2)

= {0,1} 53 = {0,1}

wn
"

{0} x {0,1} x {0,1}

{(0)010), (OJOJ]‘)J (0)1,0), (011’1)}

{s’s: {1,2,3} - {0,1}} = {so, 515 Sy SS}

where sz,for example, is given by o SZ(G)
1 0
2 1
3 0

I, and O, are treated similarly, with i

A A for example, given by

7,
(0,5) | i,0a,3)

(1,1) 0
(1,2) 1
(z,1) 1
(3,1) 1

If SA(t) = s, and IA(t) =1, then

SA(t+1)(l)

£,000,11,0) = 8, (t+1) = 0

and S, (t+1)(2) = £,(i,,5,)(2) = f2<[i7(2,1)],s (2)>

£,([1],1) = S, (t+1) =1

Figure 1. An Unrestricted Composition.

-9-

even be that y(y) = (a,1) in which case the output feeds back directly
to one of the inputs of the component, yielding the equation

U(oc,j)((—I-oc,l“"’—I-oc,i""’la,Ma)’s> = -I-Oc,l .

This amounts to a kind of fixed point requirement on the function U

s

a requirement which may or may not be satisfiable. (See Figure 2.)

[Figure 2.]

In the general case we get a set of simultaneous equations, one for each
element of Y', which may or may not be consistent (i.e., satisfiable). Only
if the equations are consistent will there exist a quintuple correspond-

ing to the product automaton constrained by y. The consistency of y will

be assured if it satisfies an appropriate "local effectiveness" condition

in addition to conditions (i) and (ii). This condition can be developed
along the following lines:

A sequence of output indices
y1 = (a’l)jl)’ y2 = (QZ,JZ)J A] yk = (ak’Jk)
will be called connected, and of length k, if

(1<h <)@ [yl = (o,;,b)].

y will be called consistent with respect to seS, if, for each aeA, there

A

is an integer 2 o such that every connected set of output indices of length

5

zs which ends at a contains some Y = (§,j) for which ug j(i,s) depends

>

only on unconstrained inputs, i.e.,

-10-

The logical net

——-D——-b@—b
has the fixed point 1 =101010... since U(L,0) = 101010...

The logical net

D

has no fixed point since for I = 6, 6 6, ..., U(L,0) = Eb 5, §

where 6. =1 - §..
]]

Figure 2. Examples of Satisfiable and Unsatisfiable
Cases of the Fixed Point Requirement.

-11-
(i eI [XXD) D ug S (8),5(8)) =
us 1 (1,(8),5(8)].

The inputs of the product automaton indexed by the set X - X' are uncon-
strained by y and hence may be arbitrarily specified at each time t.
For this reason, the set

o vy :
I A {i]X-X") 2 i ¢ I}

plays the role of the set of input states of the constrained automaton.

Similarly the elements of

0

A {o](Y-Y") 3 0 ¢ 0,

play the role of output states.

Modifying an algorithm of Burks and Wright,

"Theory of Logical Nets"

one can prove

Lemma 1.1. If y is consistent with respect to s ¢ SA, then there is a
unique correspondence us:Iy,AIA such that, for every i in the range of

U and all y € Y', uy(i(a),s) = i(y(y)). Thus, for any input state of th
constrained automaton, when y is consistent, there exists a unique assign-
ment of states to the constrained inputs x e X' such that the values
u :), computed for the corresponding constrained outputs y—l(x), are

Y X

in fact identical as required.

y will be called a locally effective composition function with respect

-12-

to s, abbreviated LECF(s), if (i)y is consistent with respect to s, and
(ii) the consistency of y with respect to any s' ¢ SA implies that vy is
consistent with respect to f,(u_,(i),s') for every i ¢ I .

A*"s v,A

We obtain as a corollary to Lemma 1.1.

Corollary 1.1. If y is LECF(s), the correspondence Mo of Lemma 1.1 can

be extended to a unique correspondence M I$ A Ii such that for every

I in the r f and all Y', U(I s) =1 .
I in the range of yu_ y € y(—a,) Ly

For each LECF(s) associated with the product automaton A, the com-

position A is defined by the quintuple <I , S , O , £ ., u >
- Y 1 P Y,A Y:A Y;A Y:A Y’A.

where I and O are as above
Y,A Y,A

S {s € S, » y is consistent with respect to s}

Y,A ~ A

fy,A(i’s) = fA(us(i),s) for i ¢ IY,A and s € SY,A

uy,A(i’S) = uA(uS(i),s).
When particular compositions are discussed, the subscript A will be
dropped where no confusion can arise. The set of compositions, {éy ? A
is an unrestricted composition and y is an associated LECF(s) composition
function},will be the set of devices or systems for which we will develop
hierarchical descriptions. The set includes representatives of many well-
known devices including logical nets, Turing machines with multiple heads
and multi-dimensional tapes, and variants of von Neumann's cellular automaton.
In the case of devices such as Turing machines and cellular automata, the
index set A is countably infinite. When A is infinite the local effec-
tiveness condition assures a critical property--one which permits investi-

gation of finite parts of the overall system with knowledge only of the

states of components in a finite 'meighborhood" thereof:

Lemma 1.2. Given any AW’ o€ A, and t e N, SY (t)|o can be callulated from

-13-

SY(0)|B(a,t) and Iy(0)|B(a,t), ce, IY(t)lB(a,t), where B is a computable
function and B(o,t) is a finite subset of A containing a.

We now have a formal definition of the structures which will be candi-
dates for hierarchical description. A given finite composition will have
hierarchical descriptions much like a cross-referenced set of increasingly-
detailed block diagrams--the kind of diagrams used to describe almost any
very complex organization. The highest-level block diagram divides the
system into several large, interacting parts. The guiding principle in
making this division is a concern that the parts exhibit a "natural' func-
tional coherence in terms of intended use or overall function. It is
apparent that different intended uses or different views of the overall
function can lead to different highest-level diagrams of the same device.
We can thus expect each device to have many distinct hierarchical descrip-
tions. Once the highest-level diagram is set, each of its parts is treated
in turn as a system to be further subdivided. The process of subdivision
is repeated, generating successive levels of refinement, until parts are
reached simple enough not to repay further subdivision. By way of example,
a hierarchy of 11 levels in which each block is divided into 10 lower-
level blocks would contain 1010 lowest-level blocks (about the number of
neurons in the human brain). If each of the lowest-level blocks contained
a single two-state device, the overall device would have 21 0 states.

Even for a device with as many as 1010 components, one need only make a
selection at each of 10 levels to uniquely locate any given component,
And, assuming a relevant functional division, much will be learned of the
effect of that component by observing the use or function of the blocks
involved. In contrast, an explicit description of the device in terms of

a state transition diagram is not even a possibility; the number of states

-14-

involved vastly exceeds the estimated number of atoms in our galaxy.
Moreover, presentation in terms of states can be misleading when we study
various operations important to adaptation. A state reduction from
1,000,000 to 500,000 states looks impressive, but it may result from the
elimination of a single two-state device from a connected set of 20-two-
state devices. It may seem impossible to begin with a set of 101000 states
and give them any very significant organization and yet, in terms of com-
ponents, this is achieved almost routinely. Even a small digital computer
has a much larger number of states. For dévices of this complexity,
hierarchical descriptions offer almost the only avenue to detailed under-
standing.

It will be convenient to define each hierarchical structure formally
via a directed tree. Following our previous discussion, each vertex in
the tree corresponds to a block in the hierarchical structure. Two
vertices, o, and a

1 2?

in case the block corresponding to o, is a part of the block corresponding

are connected by a directed edge from a. to o, just

1

to o The tree has a root (distinguished vertex) with only outgoing
edges, representing the whole device. It also has a set of terminal ver-
tices, representing the blocks at the level of finest detail. Otherwise,
vertices have one incoming edge and one or more outgoing edges. The

vertices connected to a vertex by its outgoing edges will be called its

successor set; each successor set will be ordered. By listing in order

the ordinals of vertices in the unique path from the root to any given
vertex, we obtain a unique index for each vertex. Thus, the second vertex
in the successor set of the root will have the index 1.2, and the first ver-
tex of the successor set of 1.2 will have the index 1.2.1, etc.

We will now examine a simple set of hierarchical descriptions. This

-15-

prototype, though simple, adequately illustrates the use of the tree for-
mat and will give a concrete background for later discussion. Much more
sophisticated descriptions can readily be constructed on the same pattern.
Still, the prototype descriptions exhibit the essential property of
progressive refinement of the description as levels are added to the hie-
rarchy. That is, as levels are added, the fineness of the time-scale
generally increases and constraints are added to the input and output
alphabets and to the transition function. From the behavioral viewpoint,
this means that an adaptive system employing these descriptions can refine
its responses by simply adding levels to the hierarchy describing its
current plan. Moreover, in the formation of schemata, the plan can con-
trol the range of substitution instances by controlling the level at which
blocks are deleted.

Each block in the hierarchical structure will be treated as a com-
position, although elements of its associated quintuple may be specified
only when other parts of the hierarchical structure are specified. The
parts of a block may thus be interconnected (by a LECF composition function)
leaving only a subset of their inputs (outputs) free. (Recall that the
successor set of the vertex associated with a given block designates the
parts of that block). The free inputs (outputs) of the parts must be
identified, in some order, with the free inputs (outputs) of the block.

In effect, subsets of the free inputs (outputs) of the parts will be '"cabled"
and identified with some free input (output) of the block. Formally, a
direct product will be formed of the alphabets of each '"cabled" subset

(in the order imposed) and this new alphabet will be associated with the
designated line of the block. To present this information in precise for-

mat labels are attached to each vertex of the directed tree as follows:

-16-

Let o be the index of an arbitrary vertex and let o = a'.k so that
the vertex is the kth vertex in the successor set of a'. The block asso-
ciated with o will have m, inputs and n outputs; accordingly the vertex

o will be labelled by two vectors,

Va © (Va,l’ ’Va,ma)
Wo 7 (wa,l’ ’wa,na)
where
vy = (43 if v 1e,i) = (o, i), that is if input j of
o 1s connected to output j1 of block a'.2 which is also
a part of block a'
- (i . - . . C e s . K
(Jo)h if Iu,j proj, Ia',JO’ that is if input j of bloc
o 1s component h of a ''cable'" identified with input jo
of block a'.
_ . . SN e .
wOL,j - (’Q”Jl) if Y(OL:J) - (O' '2231)

= (Jo)h if OOL,j = PTojy OO",jO
See Figure 3.
[Figure 3.]

To allow arbitrary relations between the time-scales (the internal
clocks) of different blocks--for example, to allow one block to execute
several operations on receipt of each signal from another--we must extend
this formalism. So that there will be no absolute limit to the refinement
of time-scales, it is preferable to specify block time-scales in relation
to one another, rather than in relation to some absolute. To accomplish

this, let us adopt the convention that the elements of any input alphabet

-17-

The logical net

——4:

has as one of its hierarchical descriptions the diagram

(1), (1.2,1)] [(1.1,2)]
[(1),,(1.2,1)] [(1.1,2)]
— ~>
(1)}, (2)] [(1.1.1,1)]
[(1.1.2,1)] (1)}, ()]

on R

where inputs and outputs are ordered from top to bottom (in each block) and

and vertices are ordered from left to right (at each level).
(Note that cabling and rates are not exemplified).
Deletion of the two lowest level vertices in the hierarchical description

yields a schema which can be represented as the incompletely specified

7

Fo,

Figure 3. Example of a Hierarchical Description.

logical net.

-18-

I, j may in fact be a set of strings of some fixed length ku i Treat
b s
output alphabets similarly. Then relax the requirement 0 , C:-I .
a,) = Y(OL.»J)
. T
to the requirement that, for some r, [Oa,j] c Iy(a,j) or else

T . .
0, .C[I . ; that is, the elements of I ., are strings of length
0,j = Uy, il ’ v(@,) e e
rk, ; formed by concatenation of strings in Oa j or vice-versa. With
3 s 3
this convention, r time-steps in o will be required to generate a single
input symbol for the input line y(a,j) or alternatively, one time-step

in o will generate r input symbols for y(a,j). In compositions, relative

rate will be indicated by labelling each output (a,j) with the value

]I‘

R

6(a,j), where §(a,j)= r when [O c1I .y and, by convention §(a,j) =
o y(2,]) '

b

when 0, j g;[xy(a j)]r. These values will be indicated in the hierarchical

description by augmenting v, j and W, j; thus

) L

_ N N . o
V(l,j - ((Q‘:Jl):;> if Y (a,J) = (a 'Q/’Jl) and OUtput Y (a’J)
has < as its rate indicator, that is O c [I
Yy (a,3)
All other cases are treated similarly.
There are rate assignments which make inconsistent requirements on
the time-scales of blocks in the hierarchy; however, there exists a con-
venient necessary and sufficient condition for assuring consistency. It
can be developed as follows:
Let 61, 62, ceey Gk be the rate indicators associated with an arbi-
trary connected set of output indices Yy = (al,jl), oo Vi T (ak,jk),
With each connected sequence we can associate the product 6h. Consistency
h
of time-scales requires:
(i) Any two connected sequences which start at the same block and

end at the same block must have the same value for their associated

products.

-19-

(1i) Any cycle (a connected sequence which begins and ends at the

same block) must have the value 1 for its associated product.
These conditions must be satisfied even for connected sequences which
are "hidden" (implicit) in 'cables".

Consider now a directed tree with labels v, and W, s as just defined,
assigned to its vertices. The result is a kind of organizational skeleton
which can be fleshed out by assigning specific procedures to the terminal
vertices. In the present context this is simply accomplished by assign-
ing to a terminal vertex B any composition with the number of inputs and
outputs required by Vg and Wo If one or more terminal vertices in the
directed tree are left with no composition assigned, the result will be
called a description schema. If all terminal vertices have compositions
assigned, then we must determine whether the result in fact describes a
composition. To do this we must first determine a composition function
from the hierarchical description. This can be done recursively:

Assume that the composition functions Vo1’ Yol b have been deter-
mined for parts a.l,...,a.ba of block ¢. Let (Bl,kl) beuan arbitrary

output line identified as component h. of line (u.ll,jl) and let (Bz,kz)

1
be an arbitrary input line identified as component h2 of line (a.QZ,jZ). Then
the composition function for block o is determined bv the following condi-
tion on pairs of input and output lines. Ya(Bl’kl) = (Bz,kz) if and only

if

(1)

Bl,kl) = (Bz,k), i.e., the lines are already connected

Y“'Ql(
in part acfys

33 — 3 = 3 " " 1 -
(ii) Va.zl = H@.lz,Jz),r] and h) = h,, i.e., the "cables" contain

ing the lines are connected at this level and the lines occupy

corresponding positions in the two cables.

-20-

(A1l lines (B,k) not belonging to the domain or range of Yy will per-
force be identified by some Vi g OT W, , as components of some line of q).
The recursion is started at the terminal vertices by using the composi-
tion functions of their assigned compositions. The end-result of the
recursion is the composition function Y1 obtained for the root vertex

at the end of the recursion.

Not every composition function derived in this way is LECF. Of
course if the description is of an extant finite composition the derived
composition function is that of the extant composition. But the descrip-
tion may be obtained by substitution of arbitrary compositions at the
terminal vertices of a schema. Then whether or not the derived function
is LECF depends upon the particular compositions assigned; if the function
is LECF then a composition is indeed described, otherwise not. There are
various sufficient conditions for assuring the LECF property. Perhaps
the simplest is an addition to requirement (ii) for time-scale consistency:
Each cycle must contain an element with delay (an element such that the
output function, u, is a function of S only, i.e., u: S > 0). Later,
when we discuss self-applicability, we will come upon a more important
technique for assuring the LECF property. We will see that hierarchical
descriptions can be "embedded" in certain compositions, of countably infi-
nite index, generated by a single element--the counterparts of von Neumann's
cellular automaton. Moreoever 'construction" operations for modifying
the descriptions and substituting in schema can be embedded in the same
composition. When this is appropriately carried out we will find that no
sequence of construction operations can yield a hierarchical description
without the LECF property.

The class of hierarchical descriptions just presented, though

-21-

simple, has several valuable features. Many of these features follow
directly from the definition of the underlying compositions: All "inter-
face'" transformations, such as fan-in, fan-out, encoding, decoding, match-
ing of cable components, and change of relative clock rate, are represented
explicitly in the descriptions. Thus, fan-out--the sending of the same
output signal over several lines--is accomplished by an explicit composi-
tion with one input line and several output lines; each output line y

has the same associated function, u, which simply places each input signal,
i, on the output line, i.e., uy(i,s) = u(i,s) = i, independent of s.
Encoding--for example, to transform the output signals of one device to
form acceptable by another--is accomplished by a composition which takes
as argument the signal to be encoded, o, and yields as value the encoded
form, c(o), i.e., u(o,s) = c(0). One device can be required to operate

at k times the clock rate of another by using an "interface" composition
which has an input alphabet of strings of length k over the output alpha-
bet of the controller and an output alphabet identical to the input alpha-
bet of the controlled device. Similar procedures hold for other interface
requirements. The advantage of this explicitness becomes apparent when

we wish to compare and manipulate descriptions or the underlying devices.
Devices constructed independently can be made compatible, for use in some
larger device, by addition of explicit interface devices. More will be

said along this line presently,

_22-

2. Self-Applicability

In preparation for a discussion of self-applicability of hierarchical
descriptions, let us preview the uses of description schemata.

First, note that elimination of any subtree or set of subtrees from
a hierarchical description automatically produces a schema; each unassigned
vertex so-produced indicates a place for substitution. The substitution
instances are of two kinds--those which produce descriptions of composi-
tions, and those which yield new schema. 1In both cases the substitution
instances must satisfy the interface requirements imposed by the remainder
of the hierarchical description. In the case of instances of the first
kind, these requirements are restrictions on the number, ordering and
alphabets of input and output lines, and restrictions on the relative
clock rate. The admissible substitution instances of the first kind
are the compositions, or henceforth their descriptions, which satisfy
the restrictions at the unassigned vertex. Of course, an otherwise unsuit-
able composition may be modified by interface devices which transform
inputs, outputs, and rates, sufficiently to meet the requirements. Sub-
stitution instances of the second kind are schemata which meet the inter-
face requirements at the unassigned vertex, insofar as they apply. A
substituted schema refines the original schema by the addition of new
structural features. The refined schema thus admits only a subset of the
substitution instances of the original schema.

The schema's particular significance for adaptive plans emerges
when we assign a measure of performance to each device-environment com-
bination. As a result, given any environment from the set of posibilities,
each substitution instance of a schema is assigned a numerical value. If

now there is a probability distribution over the substitution instances we

-23-

can determine an expected value for the (instances of the) schema. The
distribution corresponds to a kind of preference ordering on the instances--
instances assigned a high probability, by the distribution, being favored.
In the context of adaptation, then, this distribution plays a role quite
analogous to simplicity orderings in inductive logic. That is, in the
usual presentation of inductive logic, there exists an infinite set of
incompatible hypotheses agreeing with any finite presentation of evidence.
However, the evidence is taken to confirm the hypothesis which is sim-
plest (according to the ordering) and that hypothesis is held (tentatively)
until further evidence is gathered. It is as if the hypotheses were
"tested" one by one in the order given, each being rejected in turn,
until one is encountered which satisifies the evidence. In applied situ-
ations, the tentative hypothesis will be a source of predictions (conse-
quences) which will, in turn, influence the actions taken to gather new
evidence. In the case of schemata, the distribution over instances (sto-
chastically) sets the order and intensity with which the various schema
will be tested. If we think of the schemata as hypotheses about useful
organizational principles, then such hypotheses will be tried and (pro-
visionally) "confirmed" or ''disconfirmed" in the (stochastic) order imposed
by the distribution. That is, as instances of a schema are tested, an
estimate can be made of its value; by making the distribution conditional
on this estimate, the probability of particular future tests can be altered
accordingly. The overall effect is that of 'accepting" or '"rejecting"
the hypotheses corresponding to the schemata, future action being based
on the high-valued ("accepted') schemata.

There will be much more to say about the generation of distributions

both later in the discussion of self-application and still later in the

-24-

discussion of modelling. For now the central point is the possibility of
ranking schema according to estimates of their expected performance, once
a distribution is given.

Estimates of the expected performance of given schemata provide an
adaptive plan with a natural basis for inferences about untried schemata
and devices. These inferences can in turn guide the plan in its selection
of devices (and schemata) to be tested next. (If the device selected for
test is presented by a hierarchical description, the result of the test
provides a sample point for each of the schemata which can be derived from
the description). For instance, the plan may take several samples of refined
versions of a schema having a high performance estimate relative to
other schemata tested. Such refinements are obtained, as indicated earlier,
by substituting new schemata at the terminations of the given schema. If
the performance measure varies significantly over instances of the given
schema, then restriction of samples to an appropriate subset of instances
will yield a higher expected performance. That is, there is a reason
for testing refinements of the given schema, searching for one which
restricts the instances appropriately. The schemata constitute a (highly
redundant) covering of the set of devices; the refinements of a given
schema constitute a (highly redundant) covering of its instances. In
these terms, the object of refinement is to search out elements of the
cover progressively converging on devices of high performance. Refine-
ment, however, is only one possible procedure. To give one other example,
the plan may "step" from one element of the cover to another by first
deleting part of a schema and then substituting a new part. There are
many other modification procedures, each appropriate to particular sets

of sample outcomes. The procedures to be applied in given situations

-25-

must be decided, at a higher level, by the adaptive plan. Recalling
our earlier discussion, this amounts to modification of the probability
distribution over substitution instances.

How is the adaptive plan to exert the higher-level control implicit
in the selection of procedures for selecting (modifying) devices? The
introductory remarks suggested a direct route: Make the hierarchical
descriptions self-applicable. Then certain of the devices employed by
the plan can control the selection of other devices to be tested against
the environment. Moreover, additional levels of control can be supplied
as needed, in exactly the same way. But how do we enable devices, hierar-
chically described, to operate on descriptions and schema?

One way to assure self-applicability is to '"embed" the adaptive plan,
including the descriptions of the devices it employs, in a common 'logical
space'". This possibility is a direct consequence of von Neumann's work
on cellular automata. To examine it we need a definition of the ''logical
spaces'" and of the process of "embedding'" descriptions in these spaces.
The required '"logical spaces" can be defined as particular compositions
of countably infinite index, generated by a single element. However,
in order to distinguish the appropriate compositions, a prior definition
of "embedding'" is necessary. To specify the manner in which one device
(the object) is embedded in (is simulated by) another (the image) is to
supply a mapping whereby actions in the image device can be reinterpreted
as actions of the object. Since our purpose is to embed detailed des-
criptions, we wish to preserve in the image not only overall behavior,
but also local details of the action. That is, in the image, we wish to
find a counterpart of every detail of the object's structure; and we wish

to be able to determine from these counterparts everything that could be

-26-

determined from the original parts. This can be accomplished for compo-
sitions as follows:

Assume composition éy is to be embedded in composition D,. Then the

—

image of AW under the embedding is to be a subcomposition where

B of 2,
subcomposition is defined by the requirements
(1) {bB > BeBC {d; 26 eD}
(2) ¢ = EIYB, where Yy = {y e Y' 3 Y' is the domain of &, projly
e B, and proj1 E(y) € B}. (When no confusion can arise the sub-
composition will simply be denoted ngB.)
Let A, X, Y and SY, IY’ OY be the index and state sets, respectively,

of the object composition AY and let B, Xl’ Yl and SC’ IC’ OC be the cor-

responding sets for the image subcomposition B . An embedding will be de-
p g g p 2 ing
fined by a mapping ¢ from the sets A, X, Y and SY’ Iy, OY to subsets of

B, Xl’ Yl and the sets SC’ I , O, respectively, satisfying:

A A
(1) Distinct {indices, states} map onto distinct {sets of
indices, states}:
o # o0 > ¢(a)(\¢(ul) = null set, etc.

(2) Each index of a {free, bound} {input, output} of a given
element maps onto corresponding indices of the image subset:

proj; ¢(x) C ¢(proj x)

x e X-X' = ¢(x) C:X1 - X' and similarly for y
(3) If x = y(y), then the same must hold for all indices in ¢(x):

oly(¥)] = cloe(M].
(4) If an element a, of éy is assigned the same state by two
states of the composition, then the same must hold true in the
image:

s(@) = s;(a) 3 ¢(s) (0 = 9(sp) ¢(a)

and similarly for i, i, ¢ I and o, o, € O .

1 1

-27-

(5) The transition and the output functions of the image of each
element a, of éy must faithfully represent the transition and
output function, respectively, of a_:
£y (8 [6(a),005) [0(0)] = of [i(a),5()],

where f¢(a) is the transition function of the subcomposition
indexed by ¢(a), and similarly for u¢(a).
One final requirement assures that the image subcomposition is immune to
disturbances via signals over unassigned inputs in the image. i e[IC|¢(x) -
¢(IY)|¢(X)] (an "illegal' signal on an assigned line) is still permitted
to cause aberrant behavior:

(6) When the state of §€ is the image of a state of éy, then

fé and u, do not depend upon the states of unassigned inputs:

Hlo(-x =i lo(x-X1) > £ [i,0(s)] = £,[1,,605)]

where s ¢ SY and i, i, € I_, and similarly for u_.

1 Y 4

See Figure 4.
[Figure 4.]

It should be noted that, under this definition, several connected elements
in the image may be used to represent a single element in the object. We

shall have use for a stricter notion: An isomorphic embedding of éy on

E@ is an embedding such that, for all elements in A, X, Y, SY’ Iy, OY and
B, Xl’ Yl’ SC’ IE’ O;’
@ = ¢(a), x * ¢6(x), y = , S =38 I =1 ,0 =0
where "=" indicates set isomorphism.
We can proceed now to define the "logical spaces" suggested by von Neumann's

work on self-reproducing automata. Our object is a single composition

with two basic properties: (i) "universality", in the sense that any finite

-28-

. .1
proJl q)(xll) = projl X42=

{84}C2{81,B4} = ¢(u1) = ¢(projlx11), etc.

oIy (] = 805) = xgp = v, (y,) = vy [0y,)], ete.

Figure 4.

Example of an Embedding.

OBJECT A,
= (-
X' = {xps X595 Xg9) Y'= Ay v, ¥ay!
y | 11 Y22 Y31
v(y) I 21 *s1 *n2
%] %2 Y1 OLS
X1 / _
y
? > Vi1 x21-"D—< T—__E » 731
X P Yy X51
12
IMAGE B
o oo L1 11 . 1 1 1
L X110 %210 %320 %410 %61 1 Y117 Y210 Y320 Y410 Y510 Ye1
R 1 1 1 1 1
y | Yuu Y21 Yz Y41 Ys1 Vel
1
vy, (y)| 1 1 1 1 1 1
1 21 X110 *a1 X1 Xe1 %32
r-- ¢lag) ------- ar--¢(0g) - ----- ar- ¢(@)) ~—-=-=c—-- -
| Bl o 82 o BS 1
! D | X V31 !
| |
! 1. 11 1. 1,1 I 1 !
=t } |
! @“‘“Xu b o Iy o V55 X31
1 ~
I y ; L _____________ H ! Xz I
] 11 | t
i / I r—-—=—-—=-=-=-=-=-=-=---= i |
} 1X : | 1 |
! i
. NG L s Be _Ye1 |
] I |
|1 vl 1 1 1
! X42_’®“’ YT . X5 > V5] %61 »Ye2 !
; '.] l
b oo e e - I 4
L 1 1
¢(a;) = {8,,8,} 9(x;1) = %45 o0y q) = Ja ¢(Su1)CS 1>< S
- 1 - -
¢((X2) - {63585,B6J ¢(X12) = Xll ¢(Y21) = Y62 etc.
¢(a3) = {62} etc etc etc.

B

4

-29-

composition can be embedded therein, and (ii) 'homogeneity', in the sense
that, given any two '"regions" in the composition, any embedding procedure
which works in one region will work in the other. A more precise state-
ment of the latter property can be based upon the notion of one embedding
being a "translate'" of another:
Given a composition 26 having a single generator, an embedding ¢'
of év in 26 will be called a translate of an embedding 6 of AN in 96 if
(1) There is an isomorphic embedding 6, of the subcomposition
indexed by ¢(A) on the subcomposition indexed by ¢'(A), such that
66 = ¢',
(2) for all a, o' € A, any & € ¢(a), &' € ¢(a'), and any con-
nected sequence p {from £ to &'} {from £ to 6(&)} there exists

a connected sequence p' {from 6(&) to 6(£')} {from &' to ¢(£")}

such that proj2 p = proj2 p'.

A composition v, will be called universal and locally homogeneous
(for the embedding of finite compositions) or, briefly, universal if:

(1) Given any finite composition AN there is an embedding ¢ of

A into V_.
= -V
(2) If ¢ embeds éW in Yw then, given arbitrary a € A, & ¢ ¢(a),

and £' ¢ V, there exists a translate ¢' embedding AN in Yw so that
6(¢) = &'; i.e., the same embedding procedure can be used to place

the image anywhere within Yv‘

A subset of the class of iterative circuit computers

Holland, Iterative Circuit Computers'.

satisfies the above definition, and hence establishes the existence of

-30-

of universal compositions. Certain necessary conditions for a composition

to be universal also follow immediately from the definition:

Lemma 2.1. If Yw is universal then
(1) V must be countably infinite,
(2) Yw must be generated by a single element g for which the
output function u depends properly on both I and S (i.e., the
generator is a proper Mealy automaton),
(3) strings over output indices must be 'commutative', i.e.,
if p is a connected sequence from a to o', ¢ = projzp and o' is
any permutation of o, then there exists a connected sequence p'
such that projzp' =q'.
Part (2) of the lemma follows from the observation that there exist com-
positions with arbitrarily long connected sequences. The definition of
an embedding requires that the image of any such composition contain a con-
nected sequence at least equally long. (Note again that more than behavioral
equivalence is required of the image). However, if the output function u
of the generator g of V,, depends only upon S, a "delay" is imposed between
input and output. As a consequence, in the image, the number of time-steps
required to effect the transition function of the connected sequence will
depend upon its length, which is unacceptable. Part (3) of the lemma
follows from part (2) of the definition of a universal composition. By
using a two element image and an appropriate translate of it, one can
show that all strings of length two are "commutative'; induction on length

then establishes (3).

Corollary 2.1, A universal composition can be 'co-ordinatized" so that

its elements appear at the intersections of a discrete (integer)

-3]-

cartesian k-dimensional grid (where k 2 n . the number of outputs of
the generator).
(The proof of the corollary follows easily from part (3) of the lemma.)
In terms of this corollary the second requirement in the definition assures
that any translation of an image over the grid is also an image of the
same object. As a consequence properties of the image, such as its connec-
tion scheme, can be made independent of its location in the grid.

While von Neumann's cellular space suggested the class of universal
compositions, it is not itself a member of the class. The space is gen-
erated by a Moore-type automaton (u: S - 0) contradicting condition (2)
of the lemma. It might seem that condition (2) could be relaxed enough
to admit the von Neumann space if the compositions to be embedded themselves
used only Moore-type elements. But this is not so even if a weakened

form of embedding, a b-slow embedding, is used. A b-slow embedding lets

input signals to the image occur at the reduced rate of once every b time-
steps, i.e., at times bt; the states of elements and outputs in the image
are then required to occur at the reduced rate of once every b time-steps,
after an arbitrary finite initial transient period (which may vary from one

composition to another), i.e., at times bt+c.

Theorem. Given any composition Hw generated by a Moore-type element,
any finite set of automata G sufficient to generate all finite automata,
and any integer b 2 0, there exist finite compositions éw generated
by G which cannot be b-slow embedded in Ew.
Proof outline:
The proof turns on the limited '"packing density' of universal spaces,

which in von Neumann spaces causes a rapid increase in propagation time.

-32-

As a consequence, for object compositions sufficiently large, the transi-
tion rate in the image falls behind the input rate.

It is easily established that, if a composition is to be universal for
b-slow embeddings, all of the necessary conditions established in Lemma 2.1
apply, with the possible exception of the requirement that the single
generator be a Mealy-type automaton. To show that this last requirement
also applies, a contradiction will be developed from the assumption that
the single generator can be a Moore-type element having a delay between input
and output (a 'lag-time') Tg > 0.

Definition. The separation of two elements in a composition is the
length of the shortest connected sequence between them.

Definition. The diameter of a composition is the maximum separation
of its elements.

For any A there exists an % such that some ('most') compositions of
diameter ¢ or greater can only be embedded in a subcomposition of Hw of
diameter at least £ + A.

Given any set G sufficient to generate all finite automata, there
are compositions of diameter % with at least 21+1 - 1 elements.
Lemma 2.1 applied to Nw implies that it can be co-ordinatized
by a cartesian grid of some given dimension n. But then less
than (SL')n distinct elements can belong to any subcomposition
of diameter &' in Ew.
Choose % so that 22+1 -1z (£+A)n.

Among the compositions with the property just described, there exist

some (again, 'most') having a cycle which is both functionally dependent

upon every composition input and only embeddable in Hw with diameter greater

33

than 2+A.
An example is a composition having a cycle of diameter & which

includes all the elements in the composition. (See Figure 5.)
[Figure 5.]

The diameter of the cycle's image is 2 2+A since there exists a
pair of functionally dependent elements in the image of separa-
tion 2+A (because of the diameter of the image subcomposition)
and both belong to the cycle.

Because of the functional dependence, the composition can not be
embedded as two separate (independent) subcompositions; all ele-
ments in the image must be functionally connected.

Let 7. be the maximum delay ('lag-time') associated with any element

G
bKTG

of the generating set G and choose #%3(&+A) > ; this condition on %

can always be satisfied because £ is a 1ogarith§ic function of A.

Select a composition éy satisfying all the foregoing conditions and
in éW select a pair of elements o) and o, such that the images thereof
have a separation at least %+A. From the set of object sub-cycles contain-
ing this pair, select the one which yields the shortest image sub-cycle.
o will have (a unique) input x and output y belonging to the connected
sequence defining that sub-cycle.

The required functional dependence in AY assures that IY(t)]x depends
in a non-trivial way on Oy(t‘)ly for some earlier t'. Since the object
sub-cycle can be no greater than £ in diameter, the total delay from y
to x over the connected sequence, t(y,x), can be no greater than QE.
(Briefly, the 'lag-time' between y and x cannot exceed h%). Hence IY(t)]x

depends upon Oy(t’)ly for some t' = t-21,

-34-

F’ tree of 'depth' % {
%
.
. =
[
0
—>
.
. .
’
14
[4
L}
‘e
.
—P
o
1]
[]
L]

Figure 5. A Composition of 22 - 1 Elements with
Cycle of Diameter 2.

-35-

(i) By the definition of a b-slow embedding, ¢[IY](bt+c)|¢[x] must
then depend upon ¢[Oy](t')]¢[y] for some t' - b(t-275) + c.

(ii) However, the image subcycle has a diameter 2 2+A yielding a
total delay t[¢(y),o(x)] 2 (2+A)rg; hence ¢[IY](bt+c)|¢[x] cannot depend
upon ¢[OY](t')|¢[y] for any t' - (bt+c) - (2+A)Tg > bt+c - blTG =
b(t-QTG) + C.

Statements (i) and (ii) contradict each other; hence compositions
such as éy cannot be b-slow embedded in Hw' It is not difficult to see

that most compositions of sufficiently large diameter satisfy the condi-

tions on éy'

This theorem places strong restrictions on the use of von Neumann
spaces for studies of self-applicable hierarchical descriptions and higher-
level control in adaptive plans. The restrictions are emphasized by the

following

Corollary. Given any finite composition éy and any integer b 2 0 such
that éﬁ can be b-slow embedded in Hw as above, 'most' compositions
containing éy as a subcomposition cannot be b-slow embedded in Ew.

Thus, given a set of computation procedures with a common "subroutine'", it

will in general be impossible to embed them in W so as to preserve the

common subroutine.

The von Neumann space is, however, a member of a broader class, the
computation-universal compositions, obtained by weakening condition (1) of
the definition of universal compositions:

(1') Given any computable function T there is an embedding ¢ into YM

of a composition éy capable of computing T.

-36-

See Thatcher, '"Notes on Turing Machines and Self-Description and on
von Neumann Machines and Self-Reproduction' in Programming Concepts,
Automata and Adaptive Systems, for an example of a definition of '"computable'
tailored to the present context.

In a universal space an embedded device is represented at any moment
by a pattern of states assigned to a (usually contiguous) set of elements of
V . If the object device is a finite automaton, the set of elements will
be indexed by a finite subset D of the index set V and will constitute a
finite subcomposition !vID of Yw' The pattern of states assigned to !v[D
will change to reflect changes of state in the object. But, if no single
pattern in the image represents the structure of the object, how are we to
modify this structure? The problem is complicated because several quite
distinct devices can be embedded in any finite subcomposition of Yw'

Formally, aspects of the structure can be extracted by constructing an

appropriate equivalence class over the set of all states SvID of the sub-

composition_KvID. Define

D

for s.,s, ¢ Sv| 1D’

~(s,,s,) s s and 1 G 1
P2 E, 1] 1’52 [

if there exist sequences oy and g, over I such that fle(ol,sl) = fv|D(02’52)'

it

Then

~(

if and only if s, , s. , ..., s. ¢ S
1 72 Ik

S, S, forh=1, 2, ..., k-1, and s. =s.,s. =s,. If1I

Jh’ Jh+1)[fv|D’I], 1 I Ik 2

is the image of the input alphabet of the object device, then a unique element

S.,S such that
() 2)[fle,1] v|D

of the equivalence class can be associated with each initialization (initial
state assignment) of that device. That is, for any state accessible from
the initial state, the associated element of the equivalence class will

contain an image state satisfying all conditions for an embedding in !vID’

-37-

Moreover, any initialized device which can be embedded in Yw with I as

|D
the image of its input alphabet can similarly be associated with some
element of this equivalence class. A change in I will yield a different
equivalence relation and a different equivalence class. Given any possible
embedding of an initialized device in YMID’ it can be associated with an
element of an appropriately chosen equivalence class. In these terms changes
of structure can be associated with transformations between elements of
(possibly different) equivalence classes.

How are these transformations to be managed within the space? From
the requirements on embedding, we know that changes of state in the image

are independent of signals on all input lines to Yw except those lines

|D

which are images of the object's lines. Thus, changes of structure must
be effected by signals on the image lines, but signals which are not
images of object signals. More precisely: Let ¢(X-X') designate the
indices of images of input lines to the object device. For an embedding

it is only required that ¢(IX) G 19 for each xe X-X'. Thus it can easily

X)

be arranged that

IC = xEQ—X' [Iq)(x) - ¢(IX)]

exists and produces desired transformations. Given any embedding in Vle,

the set IC contains the set of all signals capable of modifying the struc-
ture of the image. Such a modification may, of course, alter the set of

input lines capable of affecting the state transitions in !w --this amounts

ID

to a transformation from an element of one equivalence class to an element

of another (distinct) equivalence class.

-38-

3. Incorporation of Models

From the foregoing it is apparent that the signals from one embedded
device may control the construction or modification of another embedded
device. It is only necessary that the signals from the controlling device
belong to the set IC of the device to be modified. When this condition is
satisfied, the controlling device can control the construction operations
in much the same way a finite automaton controls operations on the tape

of a Turing machine. Examples of embedded constructing automata can be

found in Thatcher's paper referred to on page 36.

See also Codd, Propagation, Computation, and Construction in Two-
Dimensional Cellular Spaces.

These devices, because of their essentially serial, step-by-step opera-
tions, are (relatively) simple in conception, though not in implementation.
Parallel construction procedures, mimicing highly-parallel biological
construction such as the chromosome-controlled development of a cell, are

also easily conceived and (less easily) implemented.

See Burks, "Computation, Behavior and Structure in Fixed and Growing
Automata'; Holland, '"Outline for a Logical Theory of Adaptive System,";
and Myhill, "Self-Reproducing Automata" in Programming Concepts, Automata
and Adaptive Systems.

There will be more to say about construction procedures shortly, with
special reference to hierarchical descriptions, but before that it will
pay to take a closer look at the advantages of universal spaces for studies
of construction.

When used to study embedded devices, a universal space is an analogue

-39-

of the '"spaces" used in physics to study its various '"mechanics". With a
physical space we associate a geometry (e.g. Euclidean geometry) and a
set of state-transition laws holding without change at each point in the
geometry (e.g. Newton's laws). It is the task of the theoretical physi-
cist to derive the properties of structures embedded in this space (e.g.
motions in a central field). From Corollary 2.1 we know that the univer-
sal space can be co-ordinatized, thus giving it a (discrete) geometry.
By Lemma 2.1 we know that the space must be generated by a single element;
thus the transition and output functions of the generator apply at each
point, determining behavior accordingly. The result is a kind of discrete
physics enabling us to concentrate on the information-processing properties
of the embedded devices (in contradistinction to the physicist's primary
interest in energy transformations).

One immediate value of this space, mentioned earlier, is an assurance
that structures embedded in the space are LECF. Just as the laws of a
physical space insure consistency of physical transformations so the
transition rules of a universal space insure that any sequence of con-
struction operations executed within the space preserve consistency of the
image composition functions. This follows immediately from the requirement
that the universal space be a composition--its behavior, and hence that
of anything embedded therein, must always be well-defined by the definition
of composition. Thus, any sequence of construction operations which can
be carried out in the space must transform a device (composition) into a
device (composition).

It is a consequence of the geometry of a universal space that only a
limited number of modifications and additions can be made per time-step on any
given (embedded) device. The limit is set by the number of elements (copies

of the space's generator) occupied by the device and potential additions

-40-

That is, the amount of construction which can be carried out is depen-
dent upon the size of what is already there--this contrasts sharply with
a definition which would permit a construction sequence to be an arbitrary

effective (recursive) function over the set of finite automata.

See Wang, '"Circuit Synthesis by Solving Sequential Boolean Equations."

Tying the construction process to available resources has important conse-
quences for adaptation. For example, substitution instances for schemata
must be drawn, primarily, from a "pool" of already constructed devices or
from limited modifications thereof. This requirement amounts to a '"sim-
plicity'" ordering on the instances tried out by the adaptive plan--an
ordering underlying that described earlier. As mentioned there, simplicity
orderings play a central role in inductive inference, which is after all
the adaptive plan's main task.

The geometry, by assigning each schema to a volume in the (n-dimensional)
universal space, has another less desirable consequence. Suitable empty
regions must be allocated or prepared to receive the devices which com-
plete the schema. This raises problems of ''shape' and "fit" which may
be of interest only in quite detailed studies. It is possible to tackle
these problems directly; one can set up control devices which, when neces-
sary, change the size of the empty "substitution'" regions in the embedded

schema, etc.

See Newell, "On Programming a Highly Parallel Machine to be an
Intelligent Technician."

-4]1-

However for many purposes, both practical and theoretical, it may be
simpler to code the hierarchical descriptions first as a string and then
operate thereon. (This is reminiscent of the encoding of three-dimen-
sional protein molecules as one-dimensional strings on the chromosomal
helices). 'Making room" in a string for the insertion of another string

is a much simpler operation than the corresponding operation in two or more
dimensions. (The ''genetic' operators such as crossover, inversion, etc.,
provide a ready repertory of string manipulators suited to the present
requirements). Any of the standard techniques for embedding a tree

structure in a sequential array

See McCarthy, '"Recursive Functions of Symbolic Expressions and their
Computation by Machine, Part I."

will serve for reducing the skeleton of the hierarchy to a one-dimensional
form. The labels of vertices, other than the terminal ones, are already
strings. The terminal instances will either be drawn from the list of
primitives or from the pool of descriptions of already constructed devices.
Thus if the primitives can be given in string form the whole hierarchical
description can be given as a string. This requirement can be met in any
of several ways; for example, the primitives can be specified by subroutines

for a universal Turing machine or some other general-purpose device.

See Holland, "Outline for a Logical Theory of Adaptive Systems'.

(There are of course procedures for making this coding better attuned to

genetic operators, but this is a lengthy subject not central to the present

-42-

discussion).

If the hierarchical description is encoded in string form, construc-
tion becomes a two-step procedure. First the string must be modified
to reflect the result of the construction operation. Then the resulting
string will have to be read off by an (embedded) 'computer" which can either
simulate the device described (in the fashion of a universal Turing machine)
or else translate the string into an embedded device (in the fashion of a
von Neumann constructor). Only in the latter case will there be an imme-
diate test of the modified description to see if it retains the LECF pro-
perty--if the string can be translated the result is perforce LECF since
it lies within the space.

There are two classes of construction operations on hierarchical des-
criptions: those which rearrange the hierarchical description to obtain
a new description of the same device, and those which yield a description
of a new device. Among the most important operations of the first type
(for the prototype hierarchies given earlier) are those for changing cable
configurations (splitting or coalescing cables and reordering wires within
cabels) and those for rearranging the hierarchical skeleton (by coalescing
levels or distinguishing new levels). Such changes have a strong influence
on the schemata likely to be generated and tested by the adaptive plan.
Among the most important operations of the second type are those which delete
vertices to yield schemata and those which substitute other descriptions
at terminal vertices (including devices which act as alphabet or time-scale
"translators", modifying interface conditions). The details of these con-
struction operations will of course depend heavily upon the class of hier-
archical descriptions and upon the encoding. There are several convenient

overall organizations, all more or less routinely implemented. (One of the

-43-

most interesting, following a genetic format, would employ hierarchies some-
what different than the earlier prototypes).

Rather than looking at a detailed (and rather routine) example at
this point, let us push on to some of the broader questions of implementa-
tion and usage.

When discussing substitution in schemata we talked of drawing upon
a pool of already constructed devices. Treated properly, this pool can
serve as the plan's repository of information about the outcomes and
evaluations of previous trials. For instance, the plan can use the pool
in such a way that it generates a probability distribution over schemata,
a distribution permitting inferences about the performance of schemata
(as discussed in Section 2). One way the plan can do this is to treat
the descriptions of devices in the pool as a population of individuals
undergoing a process of recombination. The plan as applied to the pop-
ulation can then take the following general form:

(1) In preparation for the recombination process, each description
1s copied a number of times determined by the corresponding device's past
performance. That is, each description can be thought of as producing
"offspring'" in accordance with its performance in the environment con-
fronting the adaptive plan. (As an example, the number of copies may be
a random variable having a mean determined by the performance measure).

(2) 1In the resulting population, descriptions are grouped in sets
(singletons, pairs, etc.) appropriate for the application of particular
recombination operators. The operators are then applied to these sets
to produce the corresponding exchanges and rearrangements of parts.

Of course, this plan could equally well be taken as a general descrip-

tion of the processes of population genetics. Looking to that analogy,

-44-

we see that it can easily be arranged that the pool of devices emerging
from step (2) has a negligible intersection with the pool of devices pre-
sented to step (1). (Barring identical multiple births, no two humans
have the same genetic description.) Thus the plan satisfies the desideratum
that it be able to proceed where necessary with negligible duplication
of trials. At the same time, various schemata will appear multiply, as parts
of several descriptions, and will be sampled accordingly. The proportion
of a given schema in the overall population will depend upon two factors:
the average performance of its instances and its dispersion or generality.
(Roughly, the dispersion of a schema increases with the brevity of its hier-
archical description. If the string descriptions are formed over a finite
alphabet of k letters and, for example, if all combinations of letters
are equally likely, then the probability of finding a given schema with
m letters in its description will be k™. While this factor will change
as the probability distribution is skewed from uniform, it is clear that
the lower the dispersion of a schema the rarer it will be in general.)
The net effect of this plan is a time-dependent probability distribution over
schemata, conditioned on past performance and generality. Thus, the pop-
ulation summarizes the history of the adaptive plan's confrontation with
the environment. In other words, the pool of devices available to the
plan at any given time constitutes the current state of its knowledge of
the environment, as intended.

If we are to use a universal space to study this plan, the plan must
somehow be put into effect within the confines of the space. How is this
to be accomplished? It is clear (bscause a universal space is countably
infinite and homogeneous) that any number of devices, acting simultaneously,

can be embedded in the space at any time. Thus the pool of devices (and

-45-

their descriptions) can be placed in the space.

It is perhaps less clear that arbitrary devices can be embedded so
that they can be shifted from point to point without disruption. Yet this
seems the most natural way to handle the groupings required by step (2)
of the plan (particularly if we want to execute each step of the plan in
a parallel rather than a serial fashion). The possibility of a "shift"
operation rests on the second requirement in the definition of a universal
composition: given two points in the space, and an embedded device arranged
around one of the points, there exists a translate of that device simi-
larly arranged around the other point. If the two points are adjacent,
then corresponding points in the two images will be directly connected
(by outputs of the same index). Now, let the generator of the space be
so chosen that the state of the generator can be transmitted over (some)
of its outputs (for some y e Y!, Oy 2 S). If each of the elements consti-

tuting the support

See Thatcher, '"Notes on Turing Machines and Self-Description and on
von Neumann Machines and Self-Reproduction" in Programming Concepts,
Automata and Adaptive Systems.

of the embedded device simultaneously receives a signal causing its state

to be transferred over output y, a kind of "shift" operation ensues. The
result is a translation of the image within the space. (With some care,

it can be arranged that the '"shift' signal originates internally when cer-
tain conditions are encountered on free inputs of the image subcomposition--
the embedded device is then "self-propelled"). Attaining simultaneity of

the "shift'" signal throughout the image is easily solved in certain iterative

-46-

circuit computer spaces

See Holland, "Outline for a Logical Theory of Adaptive Systems'.

although it leads to a pretty problem in von Neumann's space. (See Moore's discussi

See Moore, '"The Firing Squad Synchronization Problem."

of the "firing squad" problem; the problem arises in any computation uni-
versal space which is not universal). Once there is provision for shifting
images, it is no great problem to provide the groupings required by step (2)
of the proposed adaptive plan.
On this basis we can proceed to implement the remainder of the plan.
If the implementation is carried out in an iterative circuit computer,
the procedures required can be programmed much as one would write general
subroutines for a digital computer. One such version can be set up along
the following lines:
(i) The embedded set of descriptions is used to construct the cor-
responding pool of devices (as outlined on page 41).
(ii) The devices are tested against the environment and the descrip-
tion corresponding to each device is copied a number of times deter-
mined by its performance (as outlined on page 43--if performance is
determined by payoff and if the number of copies is to be a random
variable, then the payoff level is used to set the mean of an asso-
ciated pseudo-random number generator).

(iii) The descriptions undergo simultaneous random walks within some

-47-

region of the space set off by reflecting barriers. (This involves
the shift operation discussed on page 45, the direction being con-
trolled by a pseudo-random number generator associated with the
description).

(iv) After a period long enough to assure thorough mixing, the
descriptions are allowed to pair on contact (but no more) for a period
long enough to yield some expected number of pairs. (That is, steps
(iii) and (iv) together yield a set of randomly paired descriptions
together with a 'remainder'" set of randomly selected singletons--

more could be done, giving the grouping process a much more controlled
aspect, but this suffices).

(v) The descriptions, paired and unpaired, undergo recombination;
each description has an associated subroutine which (conjointly with
its partner, when it is paired) selects (perhaps stochastically) and
executes an appropriate recombination operator. (For example, a cross-
over-like process could only be executed on pairs--in its simplest
form it would amount to aligning the two strings, selecting randomly

a length less than the minimal length of the two strings, and exchang-
ing the initial segments of this length. Note that the recombination
subroutine could itself be attached as a description to the device
description, being used as in step (i) to yield the actual recombina-
tion subroutine. The recombination portion of the description could
then also undergo recombination, permitting selection of the associated
recombination operations on the basis of performance. This procedure
could in turn be compounded, automatically, to yield control hierar-
chies of whatever form proves advantageous vis-a-vis the particular

environment confronting the adaptive plan).

-48-

(vi) Return to step (i).

There are of course many specific ways of filling in this outline,
each replete with an overwhelming amount of detail. In those cases to
date in which the details have been filled in, they seem to contribute
little to a deeper understanding of the relations between hierarchical
structures, cellular spaces, and adaptation. (What understanding is
gained is primarily that gained in the working out, rather than in the
result; if the working out is a model programmed for simulation, the sumu-

lation itself can be quite suggestive of new paths.)

See Codd, Propagation, Computation, and Construction in Two-Dimen-
sional Cellular Spaces; Rosenberg, Simulation of Genetic Populations with
Biochemical Properties; Bagley, The Behavior of Adaptive Systems which
Employ Genetic and Correlation Algorithms for relevant results.

I will accordingly once again set aside the burden of detail in order to
pursue some more general issues.

Under the foregoing arrangement, information initially supplied to
the adaptive plan yields the set of schemata prominent in the initial
corpus. These are treated by the plan as primitives out of which to con-
struct better-adapted structures (schemata). Schemata which are success-
ful will persist (occur with substantially higher than average probability)
because of a higher than average duplication rate. Thus they have a greater
chance of serving as the components of more complex schemata. Generally,
the constructed schemata will appear in a significant number of still more
complex schemata only if they are more successful than their components,

A natural hierarchy emerges. The blocks at the lowest level of the tree

are schemata, or instances of schemata, formed by a relatively few operations

-49-

on the initial corpus and persistent under successive iterations of the adap-
tive plan. The higher-level blocks are those, formed in turn by relatively
few operations on lower-level blocks, which are also persistent under
successive iterations. Without the suggested hierarchical organization,

it would take much longer for devices of a similar number of primitives

and of comparable success to emerge. For example, assume as on page 44

that some description is at least m letters long on an alphabet of k letters.
Then, in the absence of the suggested hierarchical structure, the plan

can expect to construct k™ trials before it first encounters the device.
Stated in an intuitive but slightly misleading way: There is only time
enough for devices with hierarchical organization to emerge under the
adaptive plan's guidance. It is useful to compare this hierarchy to the
analogous natural hierarchies of stability in open chemical systems, and

to the organelle-cell-tissue-organ-organism-species-...hierarchies, paying
particular attention to the increase in half-life as one moves up the
hierarchy.

Perhaps the most significant feature of this plan is the fact that
established schemata, in effect, become new primitives based on the plan's
accumulated information about the environment. These new primitives give
the plan new ways of representing aspects of the environment. Such changes
in representation can be vital in taking advantage of regularities in the
environment; indeed such regularities often are revealed only when appro-

priately represented.

-50-

4. Concluding Remarks

The subject of the present discussion is only a preliminary to the
investigation of adaptive systems, and it should be recognized as such.
Parts of it may have intrinsic formal interest, but in my eyes it will have
failed of its objective if it offers no help in resolving questions about
adaptation. For such purposes a formal framework and its attendant appara-
tus are to be tolerated only if they enable answers to be obtained for
questions of prior interest--questions originating outside the formalism.
In the case of adaptation these questions all cénter upon the notion of
efficiency. At first sight, the concept of efficiency seems far removed
from the formal definition of structure, but some of the connections are
indicated in the last few paragraphs above. (''Persistence" and "enough
time ... to emerge' are concomitants of efficiency.) Answers to similar
questions were also von Neumann's ultimate objective in his unfinished
work: ''...can the construction of automata by automata progress from simpler
types to increasingly complicated types? Also, assuming some suitable
definition of 'efficiency', can this evolution go from less efficient to

more efficient automata?"

von Neumann, Theory of Self-Reproducing Automata.

Here, as elsewhere, the overall objective is a formalism sufficiently
oriented to reality to permit reliable inference, at least qualitatively,
about what would happen in the more complex real situations. (The situa-
tion is quite like that of the use of '"free fall', in Newtonian physics,
as a guide to more complex cases involving, say, atmospheric friction).

When so conceived, a formalism has striking advantages as a tool augmenting

-51-

empirical investigation. Unlike the real situation, actions within the
formal system are completely defined and available for deductive analysis
or simulation. The universal spaces are examples par excellence, yielding
completely defined universes within which one can embed models of adaptive
processes. This largely eliminates the great pitfall of informal theories:
placing too great a burden on some vague or ill-defined mechanism which
cannot bear the brunt (e.g. a mechanism which cannot possibly act con-
sistently as required). Once an adaptive plan is presented within the for-
malism its consistency is assured, along with its formal existence, and one
can test inferences about it under conditions admitting of no hidden con-

founding factors.

10.

11.

12,

13.

14.

15.

-50-

REFERENCES

Burks, A. W., "Computation, Behavior and Structure in Fixed and
Growing Automata" in Self-Organizing Systems, Pergamon Press,
1960, p. 282-311.

Burks, A. W. and Wright, J. B., "Theory of Logical Nets' Proc. IRE
ﬂl) 1953, 1357-1365.

Bagley, J. E., The Behavior of Adaptive Systems which Employ Genetic
and Correlation Algorithms, The University of Michigan Ph.D.
Dissertation, 1967.

Codd, E. F., Propagation, Computation, and Construction in Two-Dimen-
sional Cellular Spaces, The University of Michigan Ph.D. Disser-
tation, 1967.

Holland, J. H., "Iterative Circuit Computers) Proc. Western Joint
Computer Conference 1960, 259-265.

Holland, J. H., "Outline for a Logical Theory of Adaptive Systems',
J. Assoc. Computing Machinery 9, 1962, 297-314.

Holland, J. H., "Universal Spaces: A Basis for Studies of Adaptation"
in Automata Theory, Academic Press, 1966, p. 218-230.

McCarthy, J., '"Recursive Functiong of Symbolic Expressions and their
Computation by Machine, Part I, Comm. Assoc. Computing Machinery 3,
1960, 184-195.

Moore, E. F., "The Firing Squad Synchronization Problem" in Sequential
Machines: Selected Papers, Addison-Wesley, 1964, p. 236-237.

Myhill, J., "Self-Reproducing Automata" in Programming Concepts,
Automata, and Adaptive Systems, The University of Michigan Summer
Conferences, 1966.

Newell, A., "On Programming a Highly Parallel Machine to be an Intelli-
gent Technician', Proc. Western Joint Computer Conference, 1960,
267-282.

Putnam, H., Probability and Confirmation, Forum Lectures, Voice of
America, U.S.I.A.

Rosenberg, R. S., Simulation of Genetic Populations with Biochemical
Properties, The University of Michigan Ph.D. Dissertation, 1967.

Samuel, A. L., "Some Studies of Machine Learning, Using the Game of
Checkers I and II-Recent progress', IBM J. Res. and Dev. 3, 211-229
and 11, 601-617, 1959 and 1967.

Thatcher, J. W., "Notes on Turing Machines and Self-Description and on
von Neumann Machines and Self-Reproduction'" in Programming Concepts,
Automata and Adaptive Systems, The University of Michigan Summer
Conferences 1966.

-53=

16. Von Neumann, J., Theory of Self-Reproducing Automata (edited and
completed by A. W. Burks), University of Illinois Press, 1966.

17. Wang, H., "Circuit Synthesis by Solving Sequential Boolean Equations',
Zeitschift f. Math. Logic u. Grundlagen d. Math. 5, 1959, 391-322.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall teport ia classified)

1. ORIGINATIN G ACTIVITY (Corporate author) 2a. REPORT SECURITY C LASSIFICATION
Logic of Computers Group Unclassified

The University of Michigan 2b. GROUP

Ann Arbor, Michigan 48104

3. REPORT TITLE

HIERARCHICAL DESCRIPTIONS, UNIVERSAL SPACES AND ADAPTIVE SYSTEMS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical Report

5. AUTHOR(S) (Last name, first name, initial)

Holland, John H.

6. REPORT DATE 7#. TOTAL NO. OF PAGES | 7b. NO. OF REFS
August 1968 54 17

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
DA-31-124-AR0-D-483
b. PROJECT NO. 08226-4-T
c. 9b. g;route":cl:gpoaf NO(S) (Any other numbers that may be assigned
d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of This Document is Unlimited.

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
U,S. Army Research Office (Durham)
Durham, North Carolina

13. ABSTRACT The power of an adaptive system depends critically upon its ability
to exploit common factors in successful techniques. If the system has meager

means for analyzing elements of its repertory, this ability will be sharply cur-
tailed, no matter how extensive the repertory. Contrariwise, if the system has a
great many different ways of describing (or representing) the same device, i.e., if
it has a rich variety of ways to decompose elements of its repertory, chances of
detecting common factors are greatly enhanced. Each time a device is tried,
information accrues about components of each of the potential decompositions.

Thus, the richer the variety of decompositions, the higher the effective sampling
rate. Of course, to exploit this information about components, the adaptive

system must use it to infer the performance of untried devices. And these infer-
ences must, in turn, be used to plan which devices should be generated and tried
next. At each stage, the flexibility and success of the process depends upon the
flexibility and richness of the system's analysis and synthesis procedures--quali-
ties ultimately depending upon the definitions of structure employed by the system.
Among the many important procedures are those of: Substitution, Abstraction,
Refinement, Modeling, Change of Representation, and Metacontrol. A structural
formalism well-attuned to such procedures will exhibit three critical characteristi
Hierarchical Description, Self-Applicability, and Incorporation of Models. Formal-
isms with these characteristics are studied usine a broad class of automaton
representations, the class of compositions, which includes countably infinite
devices such as von Neumann's cellular space and iterative circuit computers.

DD .79, 1473 UNCLASSIFIED

Security Classification

IINCIASSTFTED

Security Classification

14.
KEY WORDS

LINK A LINK 8 LINK C

ROLE WwT ROLE WT ROLE wWT

Adaptive Systems
AutomatatonTheory
Cellular Machines
Artificial Intelligence

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
‘“Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title,

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal suthor is an absolute minimum requirement.

6. REPORT DATEZ: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count

shouid follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written,

8b, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) ‘“‘Qualified requesters may obtain copies of this
report from DDC.”’

(2) **Foreign announcement and dissemination of this
report by DDC-is not authorized.’’

(3) *“U. 8. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) “‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

"
.

(5) *‘All distribution of this report is controlled. Qual-
ified DDC users shall request through

”
»

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation cn the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

GPO 886-551

UNCLASSIFIED

Security Classification

