THE UNIVERSITY OF MICHIGAN

COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS
Department of Philosophy

Technical Report

ITERATIVE CIRCUIT COMPUTERS

Jolin Hollend

UMRI Project 2794

under contract with:
DEPARTMENT OF THE ARMY
U. S. ARMY SIGNAL CORPS

CONTRACT NO. DA-36-03%9-SC-T78057
FORT MONMOUTH, NEW JERSEY

administered Dby:
. THE UNIVERSITY OF MICHIGAN RESEARCH INSTITUTE ANN ARBOR

May 1960

This research was supported by the U.S. Army Signal
Corps through contract DA-36-039-SC-78057, and by the
National Science Foundation through grants G-4790 and
@-11046. The paper was written while the author was a
member of the Institute of Science and Technology at
The University of Michigan.

SUMMARY

The paper first discusses an example of a computer, intended as a prototype
of a practical computer, having an iterative structure and capable of processing
arbitrarily many words of stored data at the same time, each by a different sub-
program if desired. Next a mathematical characterization is given of a broad
class of computers satisfying the conditidns just stated. Finally the char-
acterization is related to a program aimed at establishing a theory of adaptive
systems via the concept of automaton generatorsQ

INTRODUCTION

Computers constructed of hundreds of millions of logic and storage elements
will require an organization radically different from present computers if the
elements are to be used efficiently in computation. It should be possible to
process arbitrarily many words of stored data at the same time, each by a dif-
ferent sub-program if desired. In addition the structure of the computer should
be iterative or modular in order to allow efficient use of template techniques
in its construction.

The present paper contains a mathematical characterization of a broad class
of computers satisfying these conditions. This class, with appropriate inter-
pretation of the symbols, includes representatives structurally and behaviorally
equivalent to each of the following types of automata:

(1) Turing machines (with 1 or more tapes) 12,9

(2) Tessellation automata (Von Neumann, Moore)lu:7

(3) Growing logical nets (Burks—Wang)Q}l

(4) Potembtially-infinite automata (Church)?
1

The class also contains automata which, in various senses, are generalizations
of each of these four types.

Ultimately, for the designer, the value of such a characterization depends
upon whether or not it can actually suggest designs for solid-state computer.
Section IT of this paper discusses a possible abstract prototype for such a com-
puter—it is one of many alternatives which can be defined and investigated with
the help of the characterization. (A similar computer is discussed in greater
detail in the Proceedings of the 1959 Eastern Joint Computer Conference)>.
Section III summarizes the mathematical characterization and considers its inter-
pretation. Section IV relates this paper to a program (begun by the author in
1958) which has as its objective a theory of adaptive systems.

IT

AN ITERATIVE CIRCUIT COMPUTER

The computer outlined in this section is presented primarily to suggest
something of the class of computers included in the characterization summarized
in the next section. At the time, however, the order code, addressing schemes,
ete. were chosen to reflect their counterparts in present computers. In this
sense, the computer can also be thought of as a prototype of a practical com-
puter—assuming that the large numbers of components required can be provided
economically. Because the computer can execute an arbitrary number of sub-
programs simultaneously, and because the sub-programs are spatially organized,
its operation is of course considerably different from present computers.

The computer can be considered to be composed of modules arranged in a
2-dimensional rectangular grid; the computer is homogeneous (or iterative) in
the sense that each of the modules can be represented by the same fixed log-
ical network. The modules are synchronously timed and time for the computer
can be considered as occurring in discrete steps, t =0, 1, 2,

Basically each module consists of a binary storage register together with
associated circultry and some auxiliary registers. At each time-step a module
mey be elther active or inactive. An active module, in effect, interprets the
number in its storage register as an instruction and proceeds to excute it.
There is no restriction (other than the size of the computer) on the number
of active modules at any given time. Ordinarily if a module M(i,j) at coor-
dinates (i,j) is active at time-step t, then at time-step t+1, M(i,J) returns
to inactive status and its successor, one of the four neighbors M(i+l,j),
M(i,3+L1), M(i-1,3), or M(i,j-1), becomes active. (The exceptions to this rule
occur when the instruction in the storage register of the active module spec-

ifies a different course of action as, for example, when the instruction is the
equivalent of a transfer instruction).

The successor is specified by bits si, spo in M(i,j)'s storage register. If
we define the line of successors of a given module as the module itself, its
successor, the successor of the successor, etc., then a given sub-program in the
computer will usually consist of the line of successors of some module. Since
several modules can be active at the same time the computer can in fact execute
several sub-programs at once. We have noted parenthetically that there are orders
which control the course of action—there are also orders equivalent to store
orders which can alter the number (and hence the instruction) in a storage reg-
ister. Therefore, the number of sub-programs being executed can be varied with
time, and the variation can be controlled by one or more sub-programs.

The action of a module during each time-step can be divided into three succes-
sive phases:

(1) During phase one, the initial phase of each time-step, a module's stor-
age register can be set to any arbitrarily chosen value and its auxiliary registers
to any desired condition. The numbers and conditions thus supplied are the com-
puter's input. Although the number in the storage register can be arbitrarily
changed at the beginning of each time-step, it need not be; for many purposes the
majority of modules will receive input only during the first few moments of time
("storing the program") or only at selected times ti, ts, ... ("data input™). Of
course, some modules may have a new number for input at each time-step; in this
case the modules play a role similar to the inputs to a sequential circuit.

(2) During phase two, an active module determines the location of its op-
erand set, the set of storage registers upon which its instruction is to operate.
This the module does by, in effect, opening a branching path (sequence of gates)
to the operands. The path-building action depends upon two properties of modules:

First by setting bit p in its storage register equal to 1, a module may be
given special status which marks it as a point of origination for paths; the module
is then called a P-module.

Secondly, each module has a neighbor, distinct from its successor, designated
as its predecessor by bits gqi, 9o in its storage register; the line of predeces-
sors of a given module M, is then defined as the sequence of all module [My, My,..,
Mg, ...] such that, for each k, My is the predecessor of Mg-; and M- is the
successor of M. DNote that the line of predecessors may in extreme cases be in-
finitely long or non-existent. The line of predecessors of an active module or-
dinarily serves to link it with a P-module (through a series of open gates).

During the initial part of phase two the path specification bits Jos«++s¥pn and
do,...,d3 In the storage register of an active module M,, are gated down its line
of predecessors to the nearest P-module (if any) along that line. The path speci-

fication bits are then used by the P-module to open a branching path to the op-
erand set of the active module.

Fach path must originate at a P-module. The modules belonging to a given
path can be separated into sub-sequences call segments. FEach segment consists
of y modules extending parallel to one of the axes from some position (i,j
through positions (i+by, J+bs), (i+2by, j+2bs), ..., (i+(y-1)by, j+(y-1)bs),
where by = + 1 or O and by = + (1-b;); the module at (i+yby, j+ybs) will be
called the termination of the segment. Each module possesses four *-registers
and if the module belongs to a segment in direction (bl,bg) the appropriate
-register, (by,bp), is turned on gating lines between (i,j) and (i+by, Jj+bs).
Since each *-register gates a separate set of lines, a module may (with certain
exceptions) belong to as many as four paths. Once a *-register is turned on
it stays on until it is turned off; thus a path segment, once marked, persists
until "erased".

Each segment of a path results from the complete phase two action of a
single active module; however, since a path may branch, more than one segment
may result in one time-step from the action of a given active module. After
the digits yn,...,¥0, day...,do are gated to the nearest P-module along the
line of predecessors of the active module, new segments are constructed at the
termination of each branch of the path originating at the P-module. Note that,
because of the branching, there will be more than one path termination.

Branching is controlled by the digits ds,...,dy. To each of the four
digits ds,...,dg corresponds one of the four neighbors at each branch termi-
nation. If di = 1 then, when the path is extended, at each existing path
termination a new branch will be sent through the ith neighbor parallel to
the axis.

Path extension takes place only when bit y, = O; then bits yp-1,...,Y,
determine the common length of thenew segments and bits ds,...,dy determine
their directions. If yy, = 1 then final path segments, if any, in the direc-
tions specified by da,...d, are erased (bits Yn~1s-+-s¥o Dot being used in
this case). In order to prevent interference of one path with another, or with
itself, a set of priority and interlock rules are required. These rules will
not be specified here but the interested reader can see a complete set of such
rules for a similar computer in the 1959 E.J.C.C. paper cited previously.5

(3) During phase three, an active module executes the instruction contain-
ed in its storage register. This involves the following modules: +the active
module itself holds the order code in bits ip, 1, iy of its storage register;
the storage registers of the modules terminating the nearest path contain the
set of words to be operated on (the operand set); finally there must be a mod-
ule which serves as arithmetic unit. 1In order to serve as an arithmetic unit,
bits (p,a) in the storage register of a module must first be set to the value

(0,1), giving the module special staus— A-module status. (Note that this means
a module in P-module status, p = 1, cannot be an A-module). If M(i,j) is an
active module then the first A-module along its line of predecessors serves as
the arithmetic unit.

A short, though representative, set of orders follows:

(i) Execution of OR/ADD causes the following sequence of actions; first the
numbers stored at the modules in the operand set are transferred down the branches
of the path toward the P-module; as these numbers meet at branch-points a result-
ant is formed equal to the bit-by-bit disjunction of the incoming numbers (i.e.
bit j in the resultant is 1 only if at least one of the incoming numbers has 1
at position j); when the final resultant is formed at the P-module it is trans-
ferred along the line of predecessors to the nearest A-module; there the number
is added to whatever number is in the storage register of the A-module. Note
that this sequence of actions takes place wholly within phase three of the time-
step in which the instruction is executed.

(ii) Execution of AND/ADD’proceeds Just as OR/AND except that a bit-by-bit
conjunction (output bit is 1 only if all corresponding input bits are 1) takes
the place of bit-by-bit disjunction.

(iii) Execution of STORE causes the number in the storage register of the
nearest A-module to be transferred to the storage registers of all modules in
the operand set.

(iv) Execution of TRANSFER ON MINUS depends upon the number in the storage
register of the nearest A-module. If, in this number, y, = O then at the end of
phase three the active module becomes inactive and its successor become active.
If y, = 1 then each of the modules in the operand set, rather than the successor,
become active.

(v) NO ORDER causes the execution phase to pass without the execution of
an order.

(vi) STOP causes the active module to become inactive without passing ac-
tivity on to its successor at the next time-step.

With the exception of the TRANSFER and STOP orders, the active module be-
comes Inactive and its successor becomes active at the conclusion of phase
three. Just as in the case of phase two some rules are required to prevent
interference of active modules and to provide for cases where there is no near-
est A- or P-module along the line of predecessors (the reader is again referred
to the 1959 E.J.C.C. paper)>.

The storage register of each module in the present formulation consists of
n + 14 bits labelled in the following order:

bit number:
n+14 n+13...14 1312111098765 L4321

label:
Yn Yp1e+4¥o dz dz2 dy dg iz 13 15 81 82 91 a2 P @

The function, in the active module, of each bit group has already been discussed.

I1T

MATHEMATTICAL CHARACTERIZATION OF ITERATIVE CIRCUIT COMPUTERS

One purpose of the mathematical characterization summarized here is to define
the class of iterative circuit computers precisely enough to allow mathematical
deduction to be used in their study. This property of the characterization will
be used in later work in an attempt at establishing a theory of adaptive systems
(see the next section). At the same time the characterization can be used to
generate a wide range of computer prototypes, each with different structural and
operational characteristics. Thus, the characterization can also be of help in
the design of solid-state computers. '

The characterization is made up of the following parts:

(1) The positions of the modules are indexed by the elements of a finitely-
generated abelian group, A. The particular group chosen determines the "geom-
etry" of the network; for instance, by choosing the appropriate group, the mod-
ules can be arranged in a plane, or a torus, or an n-dimensional cube, etc.

Thus, for a computer with the modules arranged in a 2-dimensional rectangular
grid 1000 modules on a side, A would be the abelian group with two generators
a;, as satisfying the relations

1000 a,
1000 ap

non
o O

where e 1s the identity element of the group.

The group, A, is restricted to being a finitely-generated abelian group for
several technical reasons. One reason is that the elementary theory of such
groups is decidable. When taken with the rest of the definition of iterative
circuit computers, this implies that the operation of the computer is effectively
defined. Also any such group can be decomposed into a direct product of cyclic
subgroups. Thus the elements of the group can be represented uniquely as n-tuples
on the basis of certain sets of generators of the group (in other words, the mod-
ules are arranged in a "regular" fashion).

(2) In order to determine the immediate neighbors of a module we must spec-
ify a finite set, A° = (ai,...,ax), of elements selected from the group A. Then
the set of immediate neighbors of the module at Oe{A} are the modules at aj(q) =
¢ + a; for all aje A°, where + is the group operation. For example, if we have
a module at coordinates (i,j) relative to generators a1, az and we wish its
immediate neighbors to be at coordinates (i+l, j), (i, j+1), (i-1, §j), and (i,j-1)
then we could choose A° = {a,,ap,ajl,as"1}, where aj-1 is the group inverse of aj.

(3) The state of each module in the computer at each time t must be drawn
from a finite set, S, of allowable states. S = X8Y, the cartesian product of
the sets X and Y. X can be any finite set of elements—the elements will be
called "storage states"; Y =y Y;, a cartesian product of the sets Y;=R={ay,

$)8...8 (ax,4). i=1

In what follows the notation S& will be used to denote the state of the
module at position & at time t. A similar convention will be used for the com-
ponents of S. Note that the elements of Y can be though of as k by k matrices.
The matrix Ya which holds for the module ¢ at time t 1s called the connection
matrix of o at time t. The iH row Y&, K&i = (Yailf Ygi2,...,Ygik), specifies
which of the k immedilate neighbors of « are connected through ¢ to the module
at a;-1(o); if Y&ij = aj then the module at aj(c) is connected through o to the
module a;-1(c) otherwise not.

(4) Changes in the k rows Yi,...,Y of the connection matrix Y from one
time-step to the next, Y5: to YUfl, are determined by a set of k projections:
P; : S>R={a;,$)®...8 (g, #).

The way in which these changes are effected will be described in terms of the
transition equations to be given shortly.

(5) Change in the storage state from one time-step to the next, X& to
t+l is determined by a function
J

k
f+:pm 5-+>X
i=1

which will be called the "sub-transition function". Again f can be best ex-
plained in terms of the transition equations.

A particular selection for each of the five parts described in 1) through
5), (A A°, X, {P;}, £), determines a particular iterative circuit computer. In
addition a function B : {A} {t} -+ S may be effectively defined for some pairs
(a,t) ; B& gives the input to o at time t, when B is defined for (o,t). Once a
particular iterative circuit computer is specified (and its initial state is
given), the transition equations together with the function B determine the op-
eration of the computer.

The transition equation for the connection matrix Yg in terms of its el-
ements, Ygij’ is:

ygI% =4 , if Pgij = ¢ ("erasure")
_ vt s t = g. t =
Ydij , if Paij aj and Qaij 0
("no change")
= pU. . if PE.. =a, and Qb,, = 1
oiJ ’ aij J oAy

("construction")

t 3 sth G
where Prij is the J*0 component of P;(S%)

aqb.. =&qb,, . v
and Qus 5 (an(@)Jl;"-;an(@)Jk)
t et t
qBij =0, if YBij = ¢ and PBij = aj
_ et
=1, if Pgyy = !

t
Haay(p) 51,...,%4(p) 7

otherwise
defining &(cy,...,cp) =1, if all oy =1

0, otherwise.

As mentioned in (3) above, row 1 of the connection matrix Yg can be inter-
preted as specifying a set of modules a (o) connected through o to a;-*(a); for
each such j, row J of the connection matrix Yaj(a) may speclfy other modules
ahaj(a) connected, via aj(a) and then o, to a;-1(Q); appropriate rows of the
matrices Yaha.(a) may specify still others; etec. In other words the matrix Yt
tells how information is to be channeled through B to its immediate neighbors,
the matrices for these neighbors tell how the information is to be sent on from
there, etc. In this way each module serves as the base of what may be a com-
plex branching tree channeling information to it. It will be seen (in the transi-
tion equations for Xg) that modules belonging to the tree for ¢ pass information
to o without a time-step delay.

The transition equation for Y5 can now be given the following interpreta-
tion: Broadly, P%; (i.e. Pi(S&)) specifies changes in row i of the connection

matrix,X& WhiletQ&i = (Q&jl""’Qgik) prohibits certain of these changes. More
specifically, Qji; = O prohibits construction of a new connection from aj(a)
through @ to ai-lga) at time t. Q&ij = 0 just in case construction of a new
connection is indicated somewhere in the tree for . Some thought will show
that this rule (others, at least superficially more general, could have been
chosen) implies the following desirable conditions:

(i) & cycle of connections without delay cannot be formed (operation of
modules belonging to such a cycle would in general be indeterminant—consider

the analagous case of a set of one-way,.non-delay switches arranged in a cyecle) .

(ii) the tree for any given module ¢ never includes more than a finite
number of modules (even if, for theoretical purposes, the group A is infinite).

The transition equation for Xa is:

X = £ (835009, (8) s Sha(o), (8- +» Sky(a) ,(8)

éxw=§ ir Yo = (4,...,9)

B,y1 B’ Bl
and 3;+l not defined
=%ﬂ,if%f=(ﬁ“v@
and Bg+l €S
t+1
= f ! ... !
N ANONUEEEE R
1r Y1 £ (4, ,9)
If Yt+l -

51 é then define S%(B), 3

p . t+ .
SaJ(B), if Baj%ﬁ) not defined

t+l .
= Baj(B)’ otherwise.

Under interpretation the transition equation for Xa specifies the storage
state, t+l, in terms of the states at time t, SB’ of the modules B belonging
to the connection tree for o. Note that, because of the recursive definition
of 8'(t), f may be iterated several times in the determination X§+l——compare
this to the determination of the output of a tree of switches without delays.

Iv

TOWARD A THEORY OF ADAPTIVE SYSTEMS

As already mentioned, the work reported here is part of a larger effort
which has as its goal a theory of adaptive systems. The effort is an indi-
vidual one and, of course, reflects particular biases of the author. This
section will discuss the relation of the present paper to the broader program.

The first step of this program was the description of a computer which
could simulate the operation and, in certain respects, the structure of any
automaton (growing or fixed). The second step summarized here in part III,
consisted in giving a general and formal description of computers like the one
first obtained—the iterative circuit computers. The resulting mathematical
characterization represents a broad class of machines, of arbitrary geometries,
etc.; by an appropriate choice of (4, A°, X, (Py}, £) it is possible to repre-
sent directly not only the behavior but also the changing structure and local
operation of any given potentially-infinite automaton, tessellation automaton,
n-tape Turing machine, or growing logical net. (In this respect note, for
instance, that the class of iterative circuilt computers properly contains A.
Church's class of potentially-infinite automata—any two modules in an itera-
tive circuit computer may eventually become connected so that either affects
the other in a single time-step, whereas in a potentially-infinite automaton
the corresponding delay, in time-steps, increases with increasing separation
and is a constant for any given separation).’

For an iterative circuit computer the ideas of sub-program and automaton
are, in an important sense, interchangeable. TFor any automaton, a sub-pro-
gram can be written which not only has the same behavior but also the same
changing structure and local operation. On the other hand, a given sub-pro-
gram will in general occupy a finite number of modules in the computer and
will have its action (or state) determined by bordering modules and the input
function B. Thus, as a survey of the characterizing equations will show, an
automaton or growing logical net can be constructed which mimics the sub-
program.

10

It is important to note that sub-programs can be set up which, for in-
stance, can shift themselves from one set of modules to another set, i.e.
from one position to another. Thus the underlying geometry of the iterative
circuit computer (given by A and A°) in effect determines the geometry of a
space in which the sub-program is embedded; the transition equations then
serve, in a sense, as the laws of this universe. For this reason the sub-
programs of a given iterative circult camputer will often be spoken of as
"embedded automata'". This view of the results of the second step leads dir-
ectly to the third step.

The central object of the third step is to provide formal apparatus for
the implicit definition of automata—definition by means of generators and
relations on these generators. Implicit definition of an sutomaton is anal-
ogous to the Implicit definition of an algebraic group. In the case of the
group, instead of giving an explicit listing of the elements of the group and
their interrelations, the group is defined (often quite compactly) in terms
of a set of generating elements and relations on products of the generators.
In a similar sense an automaton can be implicitly specified by an initial
set of elements and a set of growth rules.

The mathematical characterization of iterative circuit computers pro-
vides the apparatus needed for a precise formulation of automaton generstors.
Specifically, the generators will be sub-programs which can be thought of
as (relatively) elementary embedded automata having the following properties:

(i) movement—the generators will in general be capable of shifting as
a unit from one position to another (as specified by input B(c,t) or the state
of adjacent modules—note that motion may be random if the input sequences
B(a,t) are random),

(1i) connection—generators will combine under conditions specified
internally (within the sub-progrems) to form larger sub-programs capable of
moving and acting as units,

(i1i) production—generators can alter the state of adjacent modules
(note that a sufficiently complicated generator could directly duplicate
itself) .

The generators will act upon other generators or other sub-programs present
in the computer ("precursors") by connecting them or breaking them into com-
ponents. The generators will all be acting simultaneously and if a given
generator duplicates itself the duplicate will also in general be active.

So that any possible automaton cen be defined in terms of the generators
it is necessary to choose the set of generators so that any possible program
for the computer can be represented by an appropriate connected set of gen-
erators (cf. the process of picking a set of instructions sufficient for a

11

universal computer). Once this is done, the generation of particular automata
can be effected by controlling rates of production and connection, movement

and contact, the nature of precursors present, etc. That is, the relations on
the generators will consist of specifying the initial states and input sequences
which control such factors. TFor any given iterative circuit computer and set

of generators, the relations possible can be given an appropriate equational
form. Under one approach, the way in which the generators are initially connect-
ed and the nature of the precursors in the "enviromment" are sufficient together
to specify the generated automaton. Things become particularly simple if the
generators cannot interpenetrate when moving (a kind of "pilliard ball physics'") .

A given program, because of the loops or iterations, is much more com-
pact than the complete sequence of steps in the calculations it controls. In
the same sense the connected system of generators which specify a given autom-
aton will be much more compact than the automaton generated. Thus the autom-
aion can have scattered throughout its structure complete implicit descriptions
of its structure—such considerations play an important part in the study of
self-repairing automata.

In the implicit definition of an automaton certain feedback phenomend play
a crucial role. The feedback phenomena can be to some extent isolated by ob-
serving at what level a given generator system falls in the following succession
of categories (each of which properly includes its successor) :

(i) productive systems—the generator system produces other generators or
precursors,

(ii) autocatalytic systems—the generator system produces generators or
precursors which are used in its construction, i.e. the system produces some
of its own components,

(iii) self-duplicating systems—the generator system produces duplicates
of itself.

Such considerations lead directly from step three to step four and from work
in progress to work which lies in the future.

The central object of step four will be to define the term "adaptive sys-
tem" for embedded automata. Because of the formal nature of the definition,
it then becomes possible to investigate these adaptive systems deductively (and
by simulation). The beginnings of such a definition lie in the following cone
sideration: With the help of concepts such as autocatalytic and self-duplic-
ating generator systems it is possible to define such concepts as steady-state
equilibria and homeostasis for embedded automata. In fact one can go quite
far in this direction obtaining discrete state relaxation processes (Southwell),

12

morphogen standing-wave phenomena (Turing) and so forth.11,1> Automata exhibit-
ing these properties will usually have the desirable property that small changes
in structure result in small changes in behavior (at least over a certain range) .
Thus the behavior of a given automaton of this type gives some indication of the
behavior of all automata of similar structure ("hill-climbing" techniques become
applicable). If the generator system for such an automaton has a hierarchical
structure, then a small change in structure produces a small effect in propor-
tion to the "position" of the change in the hierarchy. That is, a generator sys-
tem may consist of autocatalytic or homeostatic systems, systems of thase (which
may or may not be autocatalytic or homeostatic), etc.; changes at the upper levels
of the hierarchy will generally have a grester effect than those at lower levels.
By. making changes first at the highest level and then at progressively lower
levels of the hierarchy, it should be possible to narrow down rather quickly to
any automaton in this category having some initially prescribed behavior.

Changes in the generated structure result when relations on the generators
are altered. The effect of such alterations can perhaps be more clearly seen
under the following interpretation. The generation of a particular automaton
can be looked at as if all possible generation processes are going on simulta-
neously but at different rates. Some will be going very slowly (infinitely
slowly in the limit) while others will be proceeding very rapidly. The way in
which these rates are changed in order to change the generated automaton will
have important consequences with respect to the adaptiveness of the overall sys-
tem (cf. A. L. Samuel's work on changing the weights of a "checker-move tree").

As a final point it should be noted that the enviromnment of an embedded autom-
aton can be made as simple or complex as desired. Since adaptation must be de-
fined in terms of the range of enviromments in which the automaton is to be embed-
ded, this is an important factor. It has already been noted that the environ-
ment may contain other sub-programs (precursors) or in fact other embedded autom-
ata. The latter case amounts to an implicit definition of the environment since
only the initial state and internal rules of each of the embedded automata need
be given. Contrast this with an explicit definition which would require a point-
by-point, time-step-by-time-step description of the state of the enviromment.

If the precursors in the enviromment are relatively elaborate and sophisticated
then the adaptation process will look similar to a heuristic learning system
(cf. Newell—Shaw—Simon):8 If precursors are absent or simply generators then
the adaptation process will look more like the processes considered by Fried-
berg.lL It seems likely that implicit definition of the environment will play
an important part in the development of step four.

13

10.

11.

12.

13.

1h.

BIBLIOGRAPHY

Burks, A. W., Computation, Behavior, and Structure in Fixed and Growing
Automata, Unlver51ty of Michigan Technical Report ONR Contract 122L(21),

1959.

Burks, A. W., and Wang, H., "The Logic of Automata," J. Assoc. Computing
Mach., 4, 195 218, 279~297 (1957).

Church, A., Application of Recursive Arithmetic in the Theory of Com-
puters and Automata, notes from summer conference course in Advanced

Theory of the Logical Design of Digital Computers, The University of
Michigan, 1958.

Friedberg, R. M., "A Learning Machine: Part 1," IBM Journal of Research
and Development, 2, 2-13 (1958).

Holland, J. H., "A Universal Computer Capable of Executing an Arbitrary
Number of Sub-Programs Simultaneously," Proc. 1959 Eastern Joint Com-
puter Conference.

Kleene, S. C., "Representation of Events in Nerve Nets and Finite Autom-
ata," in: Automata Studies, Annals of Mathematics Studies, no. BM
Prlnceton, 1956.

Moore, E. F., Machine Models of Self-Reproduction, Paper 560-52 at October
Meeting of the American Mathematical Society, Cambridge, Mass. 1959.

Newell, A., Shaw, J. C. and Simon, H. A., Empirical Explorations of the
Logic Theory Machine: A Case Study in Heuristics, Report P-951, Rand

Corporation, 1957.

Rabin, M. 0., and Scott, D., "Finite Automata and Their Decision Problems,"

IBM Journal of Research and Development, 3, 11L4-125 (1959).

Samuel, A. L., "Some Studies in Machine Learning, Using the Game of
Checkers," TIBM Journal of Research and Development, 3, 210-229 (1959).

Southwell, R. V., Relaxation Methods in Engineering Science; a Treatise
on Approx1mate Computatlon, Clarendon P Press, Oxford, 19L0.

Turing, A. M., "On Computable Numbers, with an Application to the
Entscheidungsproblem," Proc. Lond. Math. Soc. (2), 43, 230-265 (1936).

Turing, A. M., "The Chemical Basis of Morphogenesis," Phil Trans. Roy.
Soc., ser. B, 257, 37 £f. (1952).

Von Neumann, J., The Theory of Automata, unpublished manuscript.

UNITED STATES ARMY SIGNAL RESEARCH AND DEVELOPMENT LABORATORY

DISTRIBUTION LIST

CONTRACT NO. DA36-03%9 SC-78057

04SD (R and E) Room 3E1065
The Pentagon

Washington 25, D. C.

Attn: Technical Library

Chief of Research and Development
0CS, Department of the Army
Washington 25, D. C.

Chief of Research and Development
0CS, Department of the Army
Washington 25, D. C.

Attn: Dr. I. R. Hershner, Jr.

Director

U S Naval Research Laboratory
Washington 25, D. C.

Attn: Code 2027

Chief Signal Officer
Department of the Army
Washington 25, D. C.
Attn: SIGRD

Commanding Officer and Director
U S Navy Electronics Laboratory
San Diego 52, California

Director

U S National Bureau of Standards
Boulder Laboratories

Boulder, Colorado

Attn: Div 14-0, Library

Commander

Wright Air Development Center
Wright Patterson Air Force Base
Ohio

Attn: WCOSI-3

Commander

Alr Force Cambridge Research Center
L. G. Hanscom Fileld

Bedford, Mass.

Attn:; CROTLR-2

Commander 2
Rome Air Development Center
Griffiss Air Force Base

New York

Attn: RCSST-3

Comrnander 10
Armed Services Tech Info Agency
Arlington Hall Station
Arlington 12, Va.

Massachusetts Institute of Technology

Lincoln Laboratory
Cambridge 39, Massachusetts
Attn: W. Davenport, Jr.

Director

National Bureau of Standards
Washington 25, D. C.

Attn: Dr. S. Alexander

Commanding Officer

Office of Ordnance Research
Box CM, Duke Station
Durham, N. C.

Commanding General
Ballistics Research Laboratory
Army Proving Ground, Maryland
Attn: Dr. C. V. L. Smith

Ch, Computation Lab.

Moore School of Electrical Engineering
University of Pennsylvania
220 South 33rd Street
Philadelphia L, Pennsylvania
Attn: Prof. G. Patterson
Switching Theory Contract
Attn: Prof. S. Gorn

Army Mathematics Research Center 2
University of Wisconsin

Madison, Wisconsin

Attn: Dr. R. Langer

Commanding General 2
U S Army Signal School
Fort Monmouth, New Jersey

Commanding Officer
U S Army Signal R and D Laboratory
Fort Monmouth, New Jersey
Attn: NP (Dir Data Proc Fac Div) 2
Attn: NPT (Ch Data Transducer Br) 2
Attn: ¢ (Mathematics Div.

Mr. L. Leskowitz, Computation Ctr.)
Attn: XS (Mr.J. Borsuk, Explor Res Div S)
Attn: XS (Dir Explor Res Div 9)
Attn: N (Dir Systems Engrg Div)
Attn: ADTE (Evans)
Attn: NR (Dir Trans Fac Div)
Attn: RHA (Records Holding Area)

Attn: TN (Tech Info - For: 3
Brit and Can Covts)

Attn: DR (Ofc Dir of Res Opns) 5

Staff

Stanford Electronics Laboratories
Stanford University
Stanford, California

This Report is distributed by Office of Research Operations, Fort Mommouth, New Jersey

Telephone: Liberty 2-4000, Ext. 52335.

