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Estimating the Power of Variance Component Linkage Analysis
in Large Pedigrees

Wei-Min Chen* and Gongcalo R. Abecasis
Department of Biostatistics, University of Michigan, Ann Arbor, MI

Variance component linkage analysis is commonly used to map quantitative trait loci (QTLs) in general pedigrees. Large
pedigrees are especially attractive for these studies because they provide greater power per genotyped individual than
small pedigrees. We propose accurate and computationally efficient methods to calculate the analytical power of variance
component linkage analysis that can accommodate large pedigrees. Our analytical power computation involves the
approximation of the noncentrality parameter for the likelihood-ratio test by its Taylor expansions. We develop efficient
algorithms to compute the second and third moments of the identical by descent (IBD) sharing distribution and enable
rapid computation of the Taylor expansions. Our algorithms take advantage of natural symmetries in pedigrees and can
accurately analyze many large pedigrees in a few seconds. We verify the accuracy of our power calculation via simulation
in pedigrees with 2-5 generations and 2-8 siblings per sibship. We apply this proposed analytical power calculation to 98
quantitative traits in a cohort study of 6,148 Sardinians in which the largest pedigree includes 625 phenotyped individuals.
Simulations based on eight representative traits show that the difference between our analytical estimation of the expected
LOD score and the average of simulated LOD scores is less than 0.05 (1.5%). Although our analytical calculations are for
a fully informative marker locus, in the settings we examined power was similar to what could be attained with a single
nucleotide polymorphism (SNP) mapping panel (with >1 SNP/cM). Our algorithms for power analysis together
with polygenic analysis are implemented in a freely available computer program, POLY. Genet. Epidemiol. 30:471-484, 2006.
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INTRODUCTION

Variance component linkage analysis is com-
monly used to search for quantitative trait loci
(QTLs) using pedigree data, in data sets that range
from sibpairs to very large extended pedigrees.
The likelihood-based variance component linkage
analysis [Amos, 1994; Almasy and Blangero, 1998]
can offer more power and flexibility than the
Haseman-Elston method [Haseman and Elston,
1972]. Although the normality assumption can
lead to inflated type I error rates [Allison et al.,
1999], the disadvantage of distributional assump-
tion can be overcome by various robustness
techniques [Chen et al, 2004, 2005]. Power
calculation is the key for study design, both for
linkage studies and for association studies where
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one wishes to apply “causality” tests [Fulker et al.,
1999; Cardon and Abecasis, 2000].

Analytical power calculations have been used to
evaluate different study designs in quantitative
trait linkage analysis and to show, for example,
that large sibships provide more power per
individual than smaller ones [e.g., Dolan et al.,
1999], to demonstrate the power of multivariate
trait QTL linkage analysis [Evans, 2002] and to
compare variance component analysis to alter-
native approaches [e.g., Visscher and Hopper,
2001]. An accurate and efficient method of power
calculation for general pedigrees is crucial for
the analysis of variance component models.

Williams and Blangero [1999] proposed an
analytical approach to calculate the power of
variance component linkage analysis. They also
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472 Chen and Abecasis

demonstrated the analytical power of variance-
component based discrete trait linkage analysis
for relative pairs [2004]. Rijsdijk et al. [2001]
presented a general expression for the “exact”
power calculation for the variance component
linkage analysis and provided approximations
to the power calculation for small pedigrees. Tang
and Siegmund [2001] derived the power calcula-
tion formulas for a score test that is derived from
the variance component model.

Despite these advances, a number of limitations
remain in existing methods for power calculation.
First, almost all current approches for analytical
power calculations are limited to small or moder-
ate-sized pedigrees. When pedigrees are large,
existing strategies are not feasible. In this study,
we present efficient algorithms that can be
applied to arbitrarily large pedigrees. Second,
many of existing approaches of analytical power
calculation were not accurate. Rijsdijk et al. [2001]
point out Williams and Blangero [1999]’s formula
does not give the correct noncentrality parameter
(NCP) for many types of relatives. Unfortunately,
Rijsdijk et al’s [2001] improved approximation
can only be evaluated for small pedigrees. An
accurate and efficient approach to compute
the analytical power for general pedigrees
is presented here. Third, since the variance
component test statistic does not always
follow a noncentral chi-square distribution,
comparing the average of test statistics alone
may not be sufficient to evaluate analytical
power formulas [Yu et al., 2004]. Hence, we
evaluate the performance of our approximation
in terms of both the analytical statistical power
and the expected LOD (ELOD) scores, and
compare our results to computationally intensive
simulations.

In the following sections, we first propose
several efficient methods to analytically compute
the power of likelihood-based variance compo-
nent linkage analysis in unascertained pedigrees.
Then we assess the accuracy of our algorithms via
computer simulations. Finally, we apply our
analytical power calculation to a data set with
6,148 phenotyped individuals in which the largest
pedigree includes 625 phenotyped individuals
[Pilia et al., 2006].

METHODS

Variance component models [Hopper and
Mathews, 1982; Lange and Boehnke, 1983; Amos,
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1994] allow maximum likelihood estimation of
the contribution of genes and environment to
variance, under the assumption that trait values
across the pedigree follow a multivariate normal
distribution. Let Q denote the covariance matrix
for trait values. Assume the covariance matrix
under the null hypothesis of no linkage is Q. Let
o2 and o? denote the additive genetic variance
due to the major QTL and the total variance,
respectively. In an additive model, the covariance
between measurements for individuals 7 and j in
a given non-inbred pedigree is (Qo); + (m;j —
2¢;)o; [Chen et al, 2005], where ¢; and m;
denote the kinship coefficient and the expected
proportion of alleles shared identical by
descent (IBD) for individuals i and j, respectively.
Let k index families and vector y; denote trait
values of all phenotyped individuals in the kth
family. Without loss of generality, we assume the
trait mean is 0. The test statistic for likelihood ratio

test (LRT) is
TLRT — Z ln |Qg€)| + Zy;((gg{))ilyk
k k
=2 Q¥ =) y@") My
k k

where all parameters are evaluated at their MLEs.
This LRT statistic is distributed as a 50:50
mixture of 0: x°(1) under the null hypothesis of
no linkage, and approximately a noncentral chi-
square under the alternative hypothesis of linkage
[Williams and Blangero, 1999]. If the NCP is
known, the statistical power can be calculated
directly from the distribution of the noncentral
chi-square [e.g., Chen and Deng, 2001]. The
expected LOD, or ELOD, which is one measure
of the power to detect linkage, can be calculated
analytically as

ELOD = (1 + ZNCPk> / 21o0g(10).
k

Thus, the calculation of NCP of each pedigree
is crucial in the power analysis of the variance
component models. Rijsdijk et al. [2001] show
NCP of LRT for one family is

NCP = In |Q| — E[In |Q]] 1)

where E[InlQI] is the expectation over all
possible realization of allele-sharing coefficients
at a fully informative marker closely linked to the
QTL of interest. Note that, when marker data are
not fully informative about IBD sharing, NCPs
will necessarily be smaller than those given in (1).
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Although our analytical derivations focus on the
setting of full information about IBD, we contrast
our analytical results with settings with incom-
plete information about IBD using Simulations.
When the size of pedigree is small (e.g.,, <~14
individuals), E[InIQI] can be computed by
enumerating all possible inheritance vectors,
which is known as “exact” calculation [Rijsdijk
et al, 2001]. When the pedigree is large, exact
evaluation of E[In|Q1] is not feasible because the
size of inheritance vector space increases at an
exponential rate with pedigree size. One possible
solution is to break large pedigrees into many
smaller families. Although computationally con-
venient, this solution discards information from
more distant relative pairs and could lead to
substantial underestimates of the power of linkage
analysis. Our strategy to simplify the computation
of E[In| Q1] for large pedigrees is to approximate
ElIn1Q1] by its Taylor expansions.

SECOND-ORDER APPROXIMATION

A Taylor expansion of InlQl to the second
order yields
0ln |Q]
dc2

o;=0 02—’_2 dc?

o
=1In|Q| + Tr(acg 01>c§

oQ .00
Tr(a 2901@901>03
a

4

In|Q| =~ In |Qy| + ——— 52=00,

where off-diagonal element (i, j) of matrix 0Q/dc?2
is m; — Em;; and all diagonal elements are 0. To
simplify notation, we use f;; to denote m;; — Em;.
Note E[ft;j]=0 leads to E [0Q/0c2] = 0. Thus,
according to equation (1), the NCP can be

approximated as
- GQ
0 ! aGZ :| > 0:11

Nep ~ 3 1r(E[ ooy
—Tf<[ e

S0 Y (Efafea)( Q) )pe( Q) o

ab,c,d

I\JH

where notation Tr(-) denotes the trace function
which sums up all diagonal elements of a matrix,
and (Q, "), denotes element (b, ¢) of the inverse of
matrix Q. This algorithm (denoted as Approx 2)
involves the calculation of Ef,ft,, or the covar-
iance of two allele-sharing coefficients, and thus

the computation of analytical power converts to
the computation of the covariance of allele-
sharing coefficients. Although formula (2) gives
identical results to the “exact” power calculation
of Williams and Blangero [1999], it is important
to note that it corresponds to a second-order
Taylor approximation of the NCP. In fact, this
formula and the approach of Williams and
Blangero [1999] can produce inaccurate results in
some settings [Rijsdijk et al., 2001] and should not
be treated as exact.

The calculation of the covariance of allele-
sharing coefficients can be accomplished using
generalized kinship coefficients [see Lange, 2002].
Our method can be extended to accommodate any
type of pedigree, but for simplicity, we restrict our
attention to non-inbred pedigrees. Our implemen-
tation and the formulas presented here apply to
any non-inbred pedigree, with or without
marriage loops and multiple matings. We define
an ordering for individuals in the pedigree
where a>b implies person a is not an ancestor
of person b. We assume that individuals are
ordered such that a>max(®b, ¢, d) and c>d.
Further, we let p and q be parents of person a.
Then we apply the following iterative procedure
to estimate Eft ;T 4:

(1) If m,p (or ) is a constant (e.g., if 2 and b are a
parent-offspring pair or are unrelated), then
Enabncd =0

(2) If a>c, then Eftypfteg = (ERppRea + EftgpRea)/2

(3) If a = ¢, then

EftapTtas = (Eﬁpbﬁqd + Eﬁ:qbﬁpd)/4

+ (bpbd + (bqbd - d)pb(bpd - (I)qb(qu

where ¢, is the kinship coefficient for individuals
p and b, and ¢,y is the probability that three
alleles drawn at random from each person in the
set {p, b, d} are IBD, and can be calculated using
standard procedures [see Lange, 2002 or Appen-
dix A]. Note that steps (2) and (3) are recurrence
rules where individual 2 is replaced by its parents
in further evaluations. The proof of the above
algorithm is given in Appendix B.

FURTHER SIMPLIFICATION
FOR SIBSHIP DATA

In the case of sibship data, where any two
distinct allele-sharing coefficients are uncorre-
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lated, the NCP approximation based on formula
(2) can be simplified. Suppose the size of a sibship
is s and the correlation between any two siblings is
p. Let | denote a matrix consisting of 1’s, and
I denote an identity matrix. The inverse of the
covariance matrix under the null hypothesis of
no linkage is

Q' =((1-p)+p))"/c?

1 p
= - p)o? <I_ T+ pGs 1)])
i.e., element (u, v) of Q lis
1+ p(s—2)
(1-p1+ p(Sp —1)o?
(1+p(s = D)1 - p)o?
otherwise. Since Eft,.y equals 1/8 when (a, b) =

(c, d) and 0 otherwise, for the case of sibships,
formula (2) simplifies to

NCP ~ 63y~ Ef, (a5 iy + (5 HZ)

a>b

when u = v and

(©)

_s=D(A+6=2p)*+p) (o ( )
16(1 = p?(1+(=Dp?* \o?/

Formula (3) for sibship data has been reported

previously [e.g., Tang and Siegmund, 2001].

THIRD-ORDER APPROXIMATION

We can further improve the accuracy of NCP
approximation by considering higher orders of the
Taylor expansion. The Taylor expansion of In| Q|
to the third order is

o0Q
1r1|Q|%InIQQ|+T1’<a 5 51>ca2

0,00
Tr(a 2% 5 )

0Q ;00 0Q
"3 Tr(a % 52N 52 ™ ) Oa
and the NCP (Approx 3) is

1 .. _ _
NCP ~ E 63 a;d (Enabncd)(Qo 1)bc(Qo 1)da

o8 > (ERaftafe) QD@ e
ab,cde,

Q=

4)
Again, we assume that individuals are
ordered such that a>max(b, c, d, ¢, f), c>d, e>f,
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and let p and g denote the parents of person
a. E[fgpftefty] can be calculated recursively as
follows:

(1) Tf map,meq OF Tpf is @ constant, then E[ftgpfteaTer] = 0

@ If a>c and a>e, then E[fipfiafty] =
(E[RppReatter] + E[ftgpReatter]) /2

(3) If a=c>e, then

E[RapTtaatter] = (E[RppTgatter] + E[ftgpRpatter]
+ E[Rppatte] + E[Rgpatter]) /4
— (E[ftppTter]dpa + ElftgpTter]dyq + Elftpatter]dyp
+ ElRgatter]bgp) /2
(4) If a=c=e, then

E[ftapRaaTtar] = (E[Mppamer] + E[Tgpaty]

+ E[mtppemtga] + E[Tgprmpa)

+ E[mtparmgn] + Elmgarmpn]) /8 + Gppar + Sgpar

= DapPaa P

— (E[apftad]dap + Elftaaftar]day + E[RapTar]Paq) /4

where the definitions and algorithms for
ERtgpcRtge and the kinship coefficient ¢,4c4 are given
in Appendix A. The proof of this algorithm is
given in Appendix B.

HIGHER-ORDER APPROXIMATION

The kth-order (k>3) approximation of the NCP
can be obtained via the following formula:

1 s e _
NCP = o Y (Efaftea)( Q% pe( Q) Daa
ab,c,d

1 L. . _ _ _
- 5 Gg Z (Enabncdnef)(go 1)bc(QO 1)de(QO l)ﬁz

ab,cd,e,
+ ...
(-1 2k Efti i, Risi, - Ry i)
+ ) ( Tiyip iz TC’Zk—l’Zk
i1,ig -+ iok_1,l2k
(@) ~-<Q—1)~ 2 @)
0 /i3 0 Jigg—2lpk—1\""0 Jigkiy*

In practice, the computation of higher-order
moments for IBD coefficients becomes progres-
sively cumbersome. Thus, although these higher-
order approximations should be more accurate,
in this paper, we only consider second and third-
order approximations of the NCP. Because of the
nonnegative definite property of the covariance
matrix Q, when genetic effect of the QTL is small
enough, the exact NCP in expression (1) should be
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between approximations (2) and (4), so that,
power calculations based on the second-
order Taylor expansion will overestimate the
power, and the power calculations based
on the third-order Taylor expansion will under-
estimate the power. To further improve the
precision, it should be possible to construct
an estimate of the NCP that is intermediate
between the second- and third-order Taylor
expansions. This approximation could be defined
as (Approx 3'):

1 N
NCP ~ 503 > (Eftafted) Qg ie(Q o
ab,c,d

—Kob > (Eftayfteate)( Q5 e (e
ab,cde,

©)

Here, K should vary between 0 (which gives
the second-order approximation) and 1/3 (which
gives the third-order approximation). In the
settings we examined, K=1/4 appears to
perform well in comparison to power estimates
derived from simulation, but we cannot guarantee
that this factor will be appropriate for every data
set. In the results, we present empirical data to
support our choice of K and consider other choices
for K.

EFFICIENT ALGORITHMS
FOR POWER CALCULATION

Both accuracy and efficiency in terms of
computer running time are crucial for a practical
power calculation algorithm. Here we summarize
strategies to further improve the computational
efficiency of our proposed power calculation. To
simplify the presentation, we detail strategies for
improving evaluation of the second-order approx-
imation in equation (2). Nevertheless, the strate-
gies are general and can be applied to higher order
approximations.

First note that for the purpose of power
calculation, € ! the inverse of the variance-
covariance matrix under the null hypothesis of
no linkage, only needs to be computed once. Thus
the majority of computational effort is expended
on the summation over allele-sharing coefficients
among different individuals. One simple way to
improve the efficiency of power approximations
is to rearrange elements in the power calculation
formulas (2), (4) and (5). Formula (2) for the

second order NCP ~ becomes

1 .. _ _
E O-;l Z (Enubncd)(QO l)bc(QO 1)da
ab,c,d

=013 > (Efea) (05 e i+ a5 )

a>b c>d

=0t (B (255 i+ Q1)

a>b

1208 3 (B fea) (@5 i@ it +(Q5 adl 5 e )
a>b,c>d
(a,b)>(c,d)

(6)

The efficiency gain of expression (6) over (2) is
roughly 4-fold. Similarly, this algebra applies to
the third-order approximation (4) and (5) and
there the efficiency gain can be as large as 48-fold.
Excluding relative pairs with constant allele-
sharing coefficients (such as parent-offspring
pairs) in the above calculations further reduces
the amount of computation. This strategy is
general and suitable for any pedigree.

Additional efficiencies are possible in large
pedigrees, where we might have to calculate
moments of allele-sharing coefficients for many
sets of 2, 3 and 4 individuals. In this case, many
sets of individuals will have identical moments
of allele-sharing coefficients. For example, in the
pedigree in Figure 1 there are four cousin pairs
(7-9, 89, 7-10 and 8-10) and the moments of
allele-sharing coefficients are the same for all four.
In fact, although there are ’C, = 21 distinct pairs of
individuals in the pedigree, they can be organized
into five equivalence groups (corresponding
to sib-pairs, parent-offspring pairs, grand-parent
grand-child pairs, avuncular pairs and cousin
pairs, respectively). Identifying equivalent sets of
individuals and calculating the moments of allele-
sharing coefficients for only one representative for
each group of equivalent sets can produce large
computational savings, and still produce identical
results for power calculations.

Identifying all equivalent subsets of 2, 3 and
4 individuals is challenging to do in general
pedigrees, but we have implemented a recursive
algorithm that can identify many equivalent
subsets of individuals in tree-like pedigrees
(pedigrees where all matings except one are
between a founder and a nonfounder, such as
the pedigrees in Figures 1 and 2). We skip the
detailed algorithm due to its complexity. Although
our implementation might not be optimal and
does not identify all equivalent subsets of

Genet. Epidemiol. DOI 10.1002/ gepi
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A Cousin Pedigree

Fig. 1. Structure of the cousin pedigree.
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Fig. 2. An extended pedigree with three generations and six siblings in each sibship.

individuals, it already results in substantial com-
putational savings and the savings increase with
pedigree size. Results remain identical to those
using a naive implementation of Formula (6).

The benefits of the tree-based algorithm increase
for pedigrees with larger sibships and/or more
generations. Figure 2 shows a tree-like pedigree
with three generations and six siblings in each
sibship. For the example of this large pedigree
with 50 individuals, our tree-based algorithm
requires calculation of 252 Efyf, and 4,739
EftgpTteaTtes taking less than 1 second, while a naive
implementation of formula (6) requires calculat-
ing 18,573 Eft,pfics and 2,423,570 Eft,pficafty taking
about 4min. Note that, our implementation can
handle all pedigrees, and automatically selects the
optimizations available for each pedigree auto-
matically.

SIMULATION STUDY

We conducted extensive computer simulations
to verify the accuracy of our proposed analytical
power calculations for general pedigrees.

We consider a variety of pedigrees with differ-
ent sizes and structures. We first consider small
pedigrees with sibships of sizes 2, 4, 6 and 8, as
well as cousin pedigrees (Fig. 1), cousin pedigrees
with three siblings (cousin 3) and four siblings
(cousin 4) in each sibship in the third generation.
We also consider more extended pedigrees with
3-5 generations, and 2-6 siblings in each sibship.
A quantitative trait was simulated with a single

Genet. Epidemiol. DOI 10.1002/ gepi

major, diallelic QTL, with minor allele frequency
0.3 and explaining 10% of the total phenotypic
variance, plus 10 additive, unlinked diallelic
polygenes, each explaining 7% of the total
phenotypic variance. Individual-specific environ-
mental effects account for 20% of the phenotypic
variance. A single fully informative marker
was simulated to be completely linked to the
QTL. The number of families simulated
was chosen so that, analytically, the variance
component method would have ~80% power (at
level 0.01) to detect the QTL. Simulations were
repeated 10,000 times for each pedigree config-
uration, and the average of LOD scores and the
distribution of P-values for the likelihood-ratio
test were summarized.

Power calculations for small pedigrees are
shown in Table I. Simulated power as well as
analytical power based on exact NCPs (Exact),
and second- (Approx 2) and third-order approx-
imations (Approx 3 and Approx 3') are presented.
All pedigrees in Table I can be analyzed using the
Exact approach. Evaluating the largest pedigree
(with size 14) takes >1 hour using the Exact
analytical power calculation, but less than 1 sec for
all approximate analytical power calculations. Our
results show that both statistical power and ELOD
can be approximated reasonably well by their
analytical estimates, assuming the alternative
distribution of the likelihood-ratio test statistic is
a noncentral chi-square. As expected [Yu et al,,
2004], when sibships are very large (e.g., with >8
sibs) the analytical estimate of statistical power is
somewhat inflated. However, the analytical ELOD
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TABLE I. Comparison of power calculations in small pedigrees

ELOD

Statistical power

Analytical calculation

Analytical calculation

Approx 2 Approx 3 Approx 3 Simulation

No. of
Pedigree Size family Exact Approx2 Approx 3 Approx 3’ Simulation Exact
Sib2 2 4869 240 2.39 2.39 2.39
Sib4 4 714 2.40 2.49 2.38 241
Sib6 6 272 2.39 2.58 2.35 2.40
Sib8 8 144 2.39 2.69 2.31 2.40
Cousin 10 487 2.39 2.47 2.38 2.40
Cousin3 12 259 2.40 2.53 2.37 241
Cousin4 14 160 240 2.60 2.34 241

2.39 0.800 0.799 0.799 0.799 0.794
2.42 0.800 0.818 0.796 0.802 0.797
2.40 0.799 0.835 0.790 0.802 0.789
2.38 0.799 0.852 0.782 0.801 0.777
2.40 0.800 0.814 0.796 0.801 0.794
243 0.800 0.827 0.794 0.802 0.790
243 0.800 0.838 0.789 0.802 0.787

Note: 10,000 simulations were performed, where one major gene and 10 polygenes explain 10% and 70% of the total phenotypic variance,

respectively.

TABLE II. Comparison of power calculations in extended pedigrees

ELOD

Statistical power

Analytical calculation

Analytical calculation

No. of No. of No. of

generation sib Size family =~ Approx 2 Approx 3 Approx 3’ Simulation Approx 2 Approx 3 Approx 3 Simulation
3 3 17 140 2.676 2.410 2.477 2.464 0.850 0.803 0.816 0.800

3 4 26 60 2.968 2.423 2.559 2.528 0.891 0.805 0.831 0.807

3 5 37 33 3.444 2.449 2.698 2.763 0.937 0.810 0.854 0.839

3 6 50 20 3.885 2.275 2.677 2.894 0.963 0.774 0.851 0.855

4 2 22 180 2.955 2.758 2.807 2.791 0.890 0.863 0.870 0.863

4 3 53 30 2.744 2.211 2.345 2.351 0.861 0.759 0.789 0.772

4 4 106 9 2.946 1.779 2.071 2.230 0.889 0.639 0.724 0.738

5 2 46 60 2.591 2.332 2.397 2.378 0.837 0.787 0.800 0.784

Note: Each pedigree structure is uniquely determined by the number of generations and siblings in each sibship. 10,000 simulations were

performed, where one major gene and 10 polygenes explain 10% and 70% of the total phenotypic variance, respectively.

is still very accurate. Second, consistent to the
theory, the third-order approximations are more
accurate than the second-order approximation,
and the power predicted by the analytical
approaches Exact and Approx 3’ is in between
Approx 2 and Approx 3. Approach Approx 3’
is almost as accurate as the Exact analytical
approach.

Power calculations for extended pedigrees are
shown in Table II. An exact analytical power
calculation cannot be conducted for these pedi-
grees. For all eight extended pedigrees with 3-5
generations in Table II, the differences between
simulated ELODs and ELODs from Approx 2,
Approx 3, Approx 3’ range between 0.164 and
0.991, 0.033 and 0.619, and 0.016 and 0.217,
respectively, and the difference between simu-
lated powers and the analytical powers from
Approx 2, Approx 3, Approx 3’ (with K=1/4)

are between 0.027 and 0.108, 0.000 and 0.099, and
0.004 and 0.024, respectively. We conclude that an
analytical power calculation based on the third-
order of Taylor expansion (Approx 3 and Approx
3') is always more accurate than an analytical
power calculation based on the second- order of
Taylor expansion (Approx 2). In the settings we
examined, Approx 3’ performed best among the
proposed approximation approaches, especially
when sibships are large. Table II also demonstrates
larger pedigrees (especially with larger sibling
size) provide greater power per genotyped in-
dividual than smaller pedigrees.

Analytical power calculations provide tremen-
dous computational advantages over power cal-
culations via simulation for large pedigrees. For
example, for all pedigrees with three generations
and 3-6 siblings in each sibship in Table II, each
computer simulation took 2—-4h, while the analy-

Genet. Epidemiol. DOI 10.1002/ gepi
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tical approach employing the algorithm for
tree-like pedigrees required less than 1 sec.

When markers are not fully informative or there
are missing data, the power of linkage analysis
will decrease. To assess the impact of marker
informativeness on estimates of power, we simu-
lated and analyzed both microsatellite and single
nucleotide polymorphism (SNP) marker data
[Abecasis et al., 2002]. Four alleles with equal
frequencies were simulated for the microsatellite
markers and two alleles with equal frequencies
for the SNPs. We simulated 1,000 data sets, each
with 487 cousin pedigrees (Fig. 1) for each of three
different data missing patterns: (a) no missing
genotype or phenotype information, (b) no geno-
types or phenotypes available for grandparents
and (c) no genotypes or phenotypes available
for parents and grandparents. We consider the
same genetic model used for Tables I and II.
Simulation results are presented in Table III,
together with the corresponding analytical power
estimates. Table III shows that power provided by
a dense SNP map closely reflects estimates given
by our analytical approach, even when data for a
large proportion of individuals is missing. In
contrast, microsatellite markers at ~10 cM spacing
provide considerably less power than a fully
informative marker.

In order to consider different choices for K in
implementing Approx 3’ (equation 5), we com-
pared simulated ELODs and analytical ELODs
using Approx 3’ for different values of K. Note
that K=0 corresponds to Approx 2 and K=1/3
corresponds to Approx 3. Figure 3 shows an
analytical approach with K> ~1/4 tends to under-
estimate the power by a modest amount, and an
analytical approach with K close to zero can
overestimate the power by a large amount. Except
for the case of three generation pedigree with six
siblings per sibship (Fig. 2), the difference between

the simulated ELOD and the ELOD of Approx 3'
with K=1/4 (equation 5) is very small. A slightly
larger K could be even more accurate for the small
pedigrees we examined, but it would also result in
a large underestimate of the ELOD for the largest
pedigree we examined. Clearly, there appears to be
no uniformly “best” choice for K.

REAL DATA EXAMPLE

Pilia et al. [2006] conducted variance component
polygenic analysis to dissect heritabilities for 98
quantitative traits in a cohort study of 6,148
Sardinians. The sample includes 4,933 sib pairs,
4,256 parent-child pairs, 4,014 first cousins, 6,400
avuncular pairs in addition to other more distant
relative pairs. The largest pedigree in the cohort
connects 625 phenotyped individuals in five
generations. No inbreeding was present in the
pedigrees we analyzed. We continued the poly-
genic analysis using the same data by predicting
ELOD scores for a hypothetical future linkage
study.

We estimated the power of linkage analysis for
each of the 98 quantitative traits, for a simple
additive genetic model as well as for a household
model. In the additive genetic model, variance
was partitioned into a polygenic component o2
and an environmental component 2; so that, the
variance of trait for person i was (Q);; = 0§+0§
and the covariance between measurements for a
pair of individuals i and j with kinship ¢; was
(Qp);j=2 ¢;; o2 In the household model, we also
allowed for shared sibling environment, c2. Let
Isini j be an indicator variable with value 1 when
individuals i and j are full sibs, and value 0
otherwise. Then (Qy);; = c§+c§+6§ and (Qp); =2
bij G§+Isih(i,j)ﬁg-

TABLE III. Power of cousin pedigrees with partially informative markers

Everyone genotyped

First, second

First generation untyped generation untyped

Marker map ELOD Power ELOD Power ELOD Power
Microsatellite, 10 cM, QTL in the middle 1.875 0.657 1.056 0.354 0.531 0.133
Microsatellite, 10 cM, QTL at a marker 2.154 0.739 1.202 0.417 0.566 0.146
SNP, 1cM, QTL in the middle 2.308 0.774 1.385 0.493 0.772 0.238
SNP, 0.2cM, QTL in the middle 2411 0.801 1.486 0.525 0.859 0.264
Ideal map (with analytical calculation) 2.401 0.801 1.500 0.542 0.865 0.275

Note: 487 cousin pedigrees were simulated 1,000 times with the same genetic effects as before. The last row gives the analytical results

for the three missing data patterns using Approx 3’ approach.
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Fig. 3. Performance of ad hoc approximations of analytical ELOD (Approx 3') for different choices of K in Taylor expansion of NCP.

In order to verify the accuracy of our analytical
power calculation for real data, we conducted
computer simulations for eight representative
traits, including cholesterol and HDL for blood
analysis, height and weight for anthropometric
measures, IMT and PWV for cardiovascular
function and NEO N and NEO O for personality
measures. For each simulation, a quantitative trait
was simulated with a single major, diallelic QTL,
with minor allele frequency 0.5 and explaining
10% of the total phenotypic variance, plus 10
additive, unlinked diallelic polygenes with equal
effect sizes so that the total genetic variance was
the same as the heritability estimated from the
polygenic analysis. A nonshared environmental
effect was simulated independent of genetic
effects using parameters estimated from poly-
genic analysis. A single fully informative marker
was simulated to be completely linked to the QTL.
10,000 simulations were performed and LOD
scores from each simulation were averaged. The
average of simulated LOD scores serves as the
standard for evaluating the analytical ELOD.

Table IV shows analytical and simulated ELODs
for eight traits at a QTL that explains 10% of the
total phenotypic variance. The number of pheno-
typed individual ranges from 5,657 for the two
personality measures to 6,146 for trait HEIGHT. The
overall heritabilities in the second column were
estimated from the polygenic analysis [Pilia et al.,
2006]. For all eight traits, the difference between
an analytical ELOD (Approx 3) and the
simulated ELOD was always less than 0.046
(1.4%), while analytical power approximation Ap-
prox 3 underestimated the ELOD by as much as
0.140 (3.2%), and approximation Approx 2 over-
estimated ELOD by as much as 0.257 (8.1%). In
general, traits with higher heritability have higher
ELODs. One exception is that although the herit-
ability estimate of trait NEO O is higher than that of
the two cardiovascular traits in the table, the power
estimate for NEO O is actually lower. One reason is
that trait NEO O has a smaller sample size than
other traits. The exceptions such as this show
it is useful to carry out power analysis individually
for all 98 traits in our data.
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TABLE IV. Simulated and analytical ELODs for eight illustrative traits in Sardinia data

Additive model

Household model

No. of Approx 2 Approx 3 Approx 3 Simulated Household  Approx3
Trait individuals Heritability ELOD ELOD ELOD ELOD Heritability effect ELOD
Height 6146 0.801 4.767 4.282 4.403 4.422 0.771 0.100 5.229
Weight 6144 0.498 3.466 3.180 3.251 3.233 0.439 0.094 3.522
Cholesterol 6142 0.424 3.293 3.031 3.097 3.070 0.374 0.067 3.233
HDL 6142 0.487 3.433 3.152 3.222 3.176 0.471 0.028 3.288
IMT 6080 0.187 2.967 2.750 2.804 2.776 0.132 0.062 2.874
PWV 6048 0.226 2.954 2.738 2.792 2.766 0.224 0.002 2.794
NEO O 5657 0.329 2.769 2.571 2.621 2.623 0.285 0.063 2.713
NEO N 5657 0.258 2.700 2.511 2.558 2.561 0.211 0.059 2.627

Note: Heritability of each trait is estimated from the polygenic analysis of the Sardinia data. The household model incorporates a common
environmental variance component or a dominant polygenic genetic effect only shared by siblings, and the proportion of variance that the

household effect explains is shown in column “Household Effect”.

Our proposed power calculation framework
allows rather flexible modeling of the variance
components. Table IV also gives the powers of the
eight traits under a household model where an
additional household variance component (due to
both common environmental effect and dominant
polygenic genetic effect) is only shared by
siblings. The magnitude of the household effect
was estimated from the polygenic analysis [Pilia
et al., 2006] and given in Table IV. It is interesting
to observe that the ELOD for some traits is much
higher for the model incorporating a household
variance component than under the basic additive
genetic model.

An analytical power computation is much faster
than a power computation via simulations. It took
2 weeks to obtain an empirical ELOD via efficient
simulations for each trait, while it only took 6h
to calculate ELODs for all 98 traits (see online
supplementary table). The proposed tree-based
algorithm which works for tree-like pedigrees
could be extended to more complicated pedigree
structures like our real data example, and thus
it is possible that the analytical power analysis
of all traits in our data set could be accomplished
in minutes.

DISCUSSION

Variance component linkage analysis has been
routinely used to detect QTLs in general pedi-
grees. As the key for study design, estimating the
power for variance component linkage analysis is
very important. The trend towards larger data sets
in terms of both the pedigree size and the number

Genet. Epidemiol. DOI 10.1002/ gepi

of traits introduces more computational chal-
lenges for statistical genetics. To our knowledge,
no efficient and accurate algorithms of power
analysis have been developed for large pedigrees.
In this study, we propose algorithms of analytical
power calculation for large pedigrees based on
approximating the noncentrality of LRT statistic
using Taylor expansion theory. The accuracy and
efficiency of these algorithms were verified
by computer simulations using simulated pedi-
grees of a variety of sizes as well as a recently
collected large data set.

For a particular data set, in order to predict the
power to detect linkage, one can choose from one
of the following methods: the “exact” analytical
power calculation (for example, as implemented
in Linkage Explorer [Chen et al, 2005]),
the approximate analytical power calculation
(for example, as implemented in POLY program
described here) or the power calculation based
on simulations (for example, as implemented
in SOLAR [Almasy and Blangero, 1998)).
When the pedigree size is small (say, <10)
and there are only one or a few traits to be
analyzed, both the power calculation based on
simulations and the “exact” analytical power
calculation are practical. When pedigrees are
large, when multiple traits need to be analyzed
or when a linkage test is time-consuming, our
proposed analytical power approximation is
highly accurate and efficient, and hence is
strongly recommended.

Our proposed algorithms for power calculation
can be easily extended to several other scenarios.
In a variance component framework, discrete
traits are typically analyzed by use of a liability
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threshold method [Williams and Blangero, 2004]
where computationally intensive integrations of
the underlying continuous traits need to be
computed for the linkage test. A simulation study
is not practical for the purpose of power analysis,
because of computational requirements for the
numerical integration procedure. In contrast, our
proposed approximate power calculation only
requires a one time evaluation of the test statistic
and thus could make power analysis feasible.
Furthermore, our proposed algorithms should
also be helpful for the power analysis in other
computationally challenging scenarios including
multivariate trait linkage analysis, quantitative
trait linkage analysis with multiple repeated
measures and even linkage analysis of thousands
of gene expression traits.

We present efficient algorithms to compute
moments of allele-sharing coefficients, up to
the third moment, relying on the pedigree
structure only. These algorithms should be useful
for the power analysis in other pedigree-based
studies. They could also potentially enhance other
stages of linkage and association studies. For
example, the covariance of allele-sharing coeffi-
cients needs to be calculated in two robust linkage
tests [Chen et al., 2005] and our algorithms enable
these tests to handle more general pedigrees.

We show our analytical power calculation for
variance component linkage analysis is highly
accurate when the marker is fully informative and
tightly linked to the QTL. When the marker data
are not fully informative, the power of linkage
tests could be overestimated by our calculation.
In some simple cases, our proposed analytical
power calculation could be modified to incorpo-
rate marker informativeness. For example, the
NCP calculation (3) for sibship data can incorpo-
rate marker informativeness by simply multi-
plying the empirical moment estimate of
variance of allele-sharing coefficient for any two
siblings times 8. Incorporating marker informa-
tiveness in a power calculation for more general
pedigrees remains an open question. Neverthe-
less, in the settings we examined by simulation,
we found that using an SNP linkage panel with
~1 SNP/cM resulted in only a small loss of power
and that with ~5 SNPs/cM provided nearly the
same power as a fully informative marker panel.
These numbers correspond to 3,000-15,000 SNPs
genome wide and are comparable to the density
provided by panels in current widespread use.
At 10 cM density, microsatellite panels resulted in
some loss of power, but the problem could be

attenuated by genotyping additional markers near
linkage peaks.

In this study, we only considered non-inbred
pedigrees. With slight modifications, our pro-
posed algorithms can be applied to nonstandard
scenarios such as linkage analysis in the presence
of inbreeding, parent-of-origin effects and sex-
chromosome linkage analysis.

Our power analysis conveniently incorporates a
variety of genetic models and covariance matrices,
as well as missing data patterns. All algorithms
for power calculation presented here have been
implemented in our polygenic analysis program
POLY. POLY runs on platforms where a modern
C++ compiler is available, including those
based on the Linux, UNIX, Windows and Mac
OS X operating systems. Both executables and
source code are freely available at our website.
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APPENDIX A

ALGORITHMS TO COMPUTE
HIGHER MOMENTS OF ALLELE-
SHARING COEFFICIENTS

We only consider the case of non-inbred
pedigrees. Assume a>max(b, ¢, d, e, f), i.e, no

Genet. Epidemiol. DOI 10.1002/ gepi

person in the set {b, ¢, d, ¢, f} is a descendant of
person a. Let p and g denote the parents of
person a.

The kinship coefficient ¢, is defined as the
probability that three alleles drawn at random
from each person in the set {a, b, c} are IBD. Then
bape can be calculated as follows:

(1) If a=b=c, then ¢, =1/4.

(2) If a is a founder and if a>b and/or a>c, then
d)abc =0.

3) If a is not a founder and a=b>c, then
Paae = (¢pc+¢qc)/4-

4) If a is not a founder and a>b>c, then

d)abc = (¢pbc+¢qbc)/2-

The kinship coefficient ¢4 is the probability
that four alleles drawn at random from each
person in the set {a, b, ¢, d} are IBD. ¢4 can be
calculated as follows:

(1) Ifa=b=c=d, then ¢z, =1/8.

(2) Ifais a founder and if a>b, a>c and/or a>d,
then d)ﬂbcd =0.

(3) If a is not a founder and a=b=c>d, then
d)aaud = (¢pd+¢qd)/8-

(4) If a is not a founder and a=b>c>d, then
Paaed = (¢pcd+¢ch)/4'

(5) If a is not a founder and a>b>c>d, then
Paved = (Dppeat Pgpea) /2.

Allele-sharing coefficient m,,. is defined as 4
times the probability that three alleles drawn at
random from each person of a, b, and ¢ are IBD
conditional on the genotype of each person.

Without loss of generality, we assume a>b>c
and d >e. Then the algorithm to calculate E[T 7]
is as follows:

(1) If my is a constant (e.g., when ¢, = 0 or 0.25),
or T4 is a constant (e.g., when ¢4 =0 or
=0.5), then E[ftaefize] = O.

2) If a=d and a>b, then

E[ftapcTae] = (E[fppcTige] + ElftgocTpe]) /4
+ 2(dppce T Pgpce — PpocPpe — PgvePye)-
(3) If a=b=d>c, then
E[ﬁ:aacﬁae] = (E[ﬁpcﬁqe] + E[ﬁqcﬁpe])/ 8
+ Ppee + Pgee = PpePpe — e Pe-
4) If a>d and a>b, then
E[ftapeRtae] = (E[fppeitae] + ElfgpeRael) /2.



Power of Variance Component Linkage Analysis 483

(5) If a>d and a =, then
E[ﬁ:aacfcde] = (E[ﬁpcﬁde] + E[ﬁ:qcﬁ:de])/él-

APPENDIX B

PROOF OF ALGORITHMS FOR
HIGHER MOMENTS OF ALLELE-
SHARING COEFFICIENTS

Lange [2002] shows the allele-sharing coefficient
n can be equivalently defined as m,; =
2E[1(c,=G,}|Ma, M), where M, and M, are fully
informative markers for persons 2 and b, and G, is
an allele randomly drawn from person a. Follow-
ing notations by Lange [2002], we use { } for a
nonoverlapping block whose constituent genes
are IBD. Since an allele may be drawn at random
multiple times, we use G{' to represent the first
time of random drawing. Without loss of general-
ity, we assume a>max(b, ¢, d, ¢, f), c>d, e>f and
let p and g denote the parents of person a. Then

Elmapmea] = 4E[E[1(6,=6,)1(G.=G,) [Ma, Mp, M, Ma]]
= 4E[1(c,=c,) 1ic.=G,1]
= 4Pr(G = G",G? = GP)
= 40({G,G",G?,G?})
+40({GP, G}, {G?, GPY).
When a>b and a>c,
Elmme] = 40(GY, G, G2, G2))
+40({G = G,").{G? =GP
= 4{1/20((G", G, G2, G2
+1/20((G". G, G?, GP))
+4{1/20((G", G, (G2, G2
+1/20(GV, GV, (G2, G2))
= 1/2E[mypmeq] + 1/2E[mgpTeq]-
When a =,
Elranal = 40(GP, Gy, GP, G
+40((G" = G"L(GP =GP
= 4{1/20(G", G, G2, G
n 1/4(1)({(;[(11), Gg}l)’ G;f’, fo)})
+1/40((G,, G}, GPD+1/40((G,, G, GPD }
+4{1/40(G, G} (GP, GP)

+1/40((G{", G}, (G2, GPD |

= 1/4E[mppmga] + 1/4E[rgpmp]
+@((G,. Gy, G
+ ®({G,, GV, GPy).

Note G,, G;l) and Gf) are three alleles drawn in
different time. The generalized kinship coefficient
(I)({Ga,Gél),G{(jz)}) could be replaced by a simpler
notation ¢,py. The recurrence rule for the calcula-
tion of ¢y is standard [see Lange, 2002].

Now we consider the third moment of allele-
sharing coefficients. Since

E[RapTteaTter] = E[mapmeatter] — E[map]E[mteq] E[mef]
— Elftap ea] E[mtes] — E[ftap Teef ] E[ap ]
— E[ftapTer] E[med]
we focus on the calculation of E[mt,meim]-
E[mapmeame] = 8E[E[1(G,=G,) 1{G.=Gy 1G.=Gp} | Ma, My,
M., My, M, My]]
= 8E[lig,=c,1 1ic.=cn 116.=cp)]
=8Pr(G"=G,",G? =GP,G¥ =G
= 80({G{", G}",G?,GP,GY, G
+80({G", G, G, GPL (G, G
+80({GL", G}, (G?, G, GP, Gy
+80({G{", G}, G, G}, {G, Gy
+80({GL", G} {G?, G} {GP, G,

The boundary rule for the iterative procedure is,
whenever at least one allele-sharing coefficient
(e.g, between a and b) is a constant,
E[rapTeqmes] = TapE[meqmer]- We define
Tabe = 4E[1{GR=G;,=GC}|MasMb’Mc]- Then

E[naenz] = 80({GV, G, GV, G, GPY)
+80({G1, GV, G}, (G, G2y,

Now we show the iterative recurrence rule for the
calculation of E[m.pmeqmef]-
If a>c and a>e¢, then

E[rapmeamnet] = 1/2E[mppmeamer] + 1/2E[mgpmeamer].
If a =c and a>e¢, then
Elnamamey] = 40((GV, G, GV, G, G, G
+20({G, G, G, G, Gy
+20({G{", G}, G, G, G
+40({GP, G, G, GG, G
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+20((G, G, GPL G, G
+20((G", G, GPL G, G
+20((G, G,"). (G, GP,GP, Gy
+20((G", G,"1. (G, GP,GP, Gy

+20({G, GPL G, G, 6P, G

+ 2@({(;;71)’ Gt(il)}’ {ng), G2, Gf’), G}S)})
+20({GY, G {GP, GP1LAGY, G

+20({G{", G} (G, GG, G
= 1/4E[mppmgame] + 1/4E[Rgpmpamey]

+ 1/4E[mypamer] + 1/4E[mgpamer].

If a=c=e, then

E[Ttubﬂ:gdﬂ:gf] _ 6@({G£,1): Glgl), Ggl): G,(f)’ G](c3)})
+o((GP. G, GP.GPy)
+o((GP. G, GP. G
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4 (D({GS)’ Gz])7 G’(iz)}’ {Gf), G)(c3)})

+ (D({Gél)’ Gg), G§i2)}’ {GS’), G]E?’)})
4 (I)({GS), Ggl), G]EZ)}, {G‘;’), GEZB)})

+ @({Ggl), G(bl)’ G}Z)}, {G;f), ng)})
+0((G, Gy, G, (G, Gy

+ (D({Gfil), Gl(il)’ G](CZ)}, {Ggf), Gf)})
= 1/8E[mppamye] + 1/8E[mgpattyf]
+ 1/8E[m,pfmga]
+ 1/8E[rgprmpa] + 1/8E[mparmgp]
+ 1/8E[rgarmyp]
+ (D({G](Hl), GS), GEIZ)’ G}S)})

+ (D({Gt(il)’ G(hl)’ Gg)’ Gj@})'

We use ¢ppar to denote @({GS), Gg), Gﬁ,z), G}S)}), and

its calculation is standard [Lange, 2002].



