THE UNIVERSITY OF MICHIGAN

COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS
Department of Philosophy

First Quarterly Progress Report

1 November 1960—31 January 1961

A THEORY OF ADAPTIVE SYSTEMS
I. A LOGICAL THEORY OF ADAPTIVE SYSTEMS INFORMALLY DESCRIBED

(Precis)

J. H, Holland

ORA Project oha7h

under contract with:
DEPARTMENT OF THE ARMY
U. S. ARMY SIGNAL SUPPLY AGENCY

CONTRACT NO. DA 36-039 SC-8717k4
FORT MONMOUTH, NEW JERSEY

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

May 1961

1. INTRODUCTION

There has been increasing interest in the relationship between automata
and human mental processes: also, very recently, the relationship between
automata and biological growth, development, reproduction, and evolution has
begun to interest researchers. Attempts are being made to formalize the study
of these relationships: theories of machine adaptive systems are being de-
veloped. This paper will present one such theory of machine adaptive systems.
The theory will be developed within the framework of a theory of growing
automata; the particular theory will be that of "iterative circuit computers.”
These are computers composed of iterated modules (which contain logic and
delay elements) arranged in geometric arrays.

The adaptive system theory will here be presented in four stages. (1)
The basis (the iterative circuit computers briefly described above); (2) the
generation of automata in the geometric space of iterative circuit computers;
(3) interaction of automata embedded in the space along with ranges of en-

vironments also embedded in the space; (4) evaluation and accumulation of

methods and adaptations.

2. BASIS

The theory of adaptive systems described here has as its base the class
of systems called iterative circuit computers. The iterative circuit com-

puter is not itself the adaﬁtive system; the computer is the "space" in which

the adaptive system is embedded. Each iterative circuit computer is con-
structed of a single basic module which is iterated to form a regular array
of modules. Each module has exactly the same pattern of connections to 1ts
neighbors; each module is capable of a finite number of states; each module
can control the information that flows through it from its neighbors; each
module can have an input to it from outside the computer. The details of
the working of such computers are given in "Iterative Circuit Computers"

[J. H. Holland, Proc. 1960 Western Joint Computer Conference, 259-265 (1960)].

The important characteristics for a theory of adaptive systems are: (1) the
structure and arrangement of the modules of any particular class of iterative
circuit computér can be completely determined by specifying certain condi-
tions, (2) sub-programs can be written and stored at different locations
throughout the computer, (3) any given growing éutomaton can be simulated
by & connected set of sub-programs in the iterative circuit computer, (L)
sub-programs can shift themselves within the computer; they can combine to
form larger programs; they can produce copies of themselves in adjacent sets
of modules, (5) there are methods by which any sub-program possible for a
particular computer can be generated (for example, there are ways of insur-
ing the eventual construction of any automaton) , (6) relative, as opposed
to absolute, addressing can be employed, (7) interpenetration, or "over-

writing," of programs can be excluded if so desired.

3. RANDOM MIXING OF GENERATORS

In the theory of adaptive systems presented here, adaptation depends

upon the controlled generation of methods appropriate to the enviromment con-
fronting the adaptive system. The generation procedures to be described here
depend upon modulation of a parallel random process whereby many programs

are being generated and tested simultaneously. A simple form of random pro-
gram generation, mixing, and connecting will occur when the computer is set
such that (1) there is a fixed probability that the generator contents of

a module will shift to one of the four neighboring modules, (2) provision

is made to eliminate "conflicts" such as when a generator attempts to shift
to a module already containing a generator, or two generators attempt to
shift to the same module, (3) generators in adjacent modules may become con-
nected, and afterwards shift about randomly as a unit. Since the modules
themselves are completély deterministic, the "impulse" for random behavior

must be set into the module from the "outside."

L. CONDITIONS FOR CONNECTION

The connection of generators is to be a function of (1) valence, and
(2) activation. For any given generator the valence will be a fixed quan-
tity throughout its history; valence specifies the "stfength“ and configura-
tion of the connections the generator is permitted to make. Unlike valence,
the activation associated with a generator changes with each contact made
with another generator. If the sum of the activation values falls within
a range fixed by their valences, then a connection is to result. By con-
trolling the distribution of activation, the connections among generators

can be controlled.

5. MODULATION OF CONNECTION RATES

The valence-activation combination provides the beginnings of a mechanism
for favoring or selecting certain programs from among those which might be
generated. The level of activation required for connection is completely
specified by the valence of the two generators. Connections will not be di-
rectly manipulated. Instead an indirect method of control of connections is
to be employed. This method of control depends upon the introduction of
special strings of generators which facilitates the connection of other
generator strings.

For several reasons it is important that a disconnection procedure must

also be provided. If this is not done, short programs would become more and
more rare, rearrangements of sub-programs of a program would be impossible,
and useful "competition" between programs would be eliminated. Accordingly,
rules specifying probabilistic conditions for disconnection are to be es-

tablished.

6. GENERATION TREES

In the preceding sections, the means of producing and controlling the
population of programs has been discussed; in this section the exercise of
these controls is discussed. The programs which are generated witﬂin the
automaton portion of the computer are to be used in attempts to solve prob-
lems presented by the enviromment portion of the underlying computer. These

programs will be called trial programs to distinguish them from the progrems,

such as the special strings of generators, directly introduced to control
the population of programs.

A "generation tree" can be employed to exhibit in detail the process
whereby random movement and connection generate an unlimited variety of trial
programs. The distribution of number and kind of trial programs can be skewed
by introducing and producing strings of generators. The production of these
strings amounts to the modulation of the parallel generation process, and
has an effect far out of proportion to the number of strings produced. One
reason for this is that each string takes part in connection processes re-

peatedly without itself being altered (a catalytic effect).

7. WELL-DEFINED PROBLEMS

Adaptation takes place relative to an automaton and its environment.
Boﬁh the adapting-automaton and its environment are embedded in an iterative
circuit computer. What should the environment consist of, and how is it to
be presented in terms of the basic equations of the iterative circuit com-
puter? The environment should consist of well-defined problems: a well-
defined problem is presented by means of a set of initial statements and an
algorithm for checking whether a purported solution is in fact a solution.
These conditions are expressible within the iterative circuit computer, and
if desired, can be retained there for indefinite periods not subject to alter-
ation or internal analysis by the adapting-automaton portion of the computer.
For example: let the initial statements specify an axiom system and a theorem

to be proved in the system., A tentative solution will be any sequence of

statements which purports to be a proof of the theorem. The checking algo-
rithm will be the usual routine which checks that each statement in the se-
quence follows from previous statements by the allowed rules of inference,
with the last statement being the one to be proved. It is obvious in this
case that a complete knowledge of the checking procedure in no way yields a
solution to the problem.

By embedding the well-defined problems in the space defined by the
iterative circuit computer, in a manner analogous to the embedding'of the
trial progfams, it is possible»to carry parallel processing one step further.
We can embed a whole population of problems in the space, In addition, the
connected sets of generators representing the problems can be given a random
motion (using the random input sequence). Thus the enviromment will consist
of a population of well-defined problems diffusing randomly among the other
connected sets of generators. (As a matter of course this random motion
may be constrained in various ways by the trial programs in order to "filter
out" certain problems and "process" them.) Assuming a broad enough distri-

bution of problems, this procedure has the advantage that a more or less

steady flow of results can be expected.

8. SUPERVISORY PROGRAMS AND DIFFERENTIAL SELECTION

A supervisory program can be introduced and adjusted to produce distri-
butions of trial programs appropriate to a population of well-defined prob-
lems. The supervisory program is intended as a device to gather the threads

of control at a single point; it produces a given distribution of generator

6

strings, and as indicated earlier these strings will modulate the generation
of trial programs. Thus, the supervisory program serves as an implicit de-
finition of the distribution of trial programs at any specified time. Changes
in the supervisory program will of course result in changes in the population
of trial programs, and this leads in turn to the idea of differential selec-
tion of supervisory programs. The more "successful" a supervisory program
is, in terms of the ability of its trial programs to produce solutions, the
more predominant (in numbers) it is to become in a population of supervisory
programs. If differential selection can be incorporated then the result will
be an alteration of the rates of connection in the generation tree, providing
a "better adaptation” of the generation process to the environment. Useless
deviétions within supervisory programs would, because of the disconnection
rules, gradually disappear from the population. Useful deviations should by
the rules, be incorporated in an ever larger proportion of supervisory pro-
grams, and would eventually be propageted throughout the computer. To imple-
ment these above notions, (1) supervisory programs must be able to duplicate
themselves in order to provide successive generations to be acted upon by
the selection principle, and (2) the selection principle must relate the rate
of duplication of a supervisory program ‘to the effectiveness of the trial
program it produces.

Theée two requirements can be satisfied by a copying procedure included
as a sub-program of the complete supervisory progrem. If the duplicsation is
carried out by means of the introduced strings of generators, then the connec-

tions would require activation, and this in turn will "cost." It is through

this "cost" that the selection principle operates. Each embedded problem
will have allocated to it certain activation. If a solution (or partial
solution) is obtained, it can be arranged that the activation is released,

and channeled to the successful supervisory program.

9. PARTTAL SOLUTIONS AND AUTOMATIC GENERALIZATION

It may happen that a trisl program will present a partial‘solution to
a problem posed by its enviromment; in such an eventuality a partial release
of activation can be provided for. The rules governing such partial release
of activation can be incorporated in the checking routines of the problems.
Such adjustments of the properties of activation released when a partial
solution is obtained allows the weighting of partiel solutions in relation
to other partial solutions. Such adjustments can also be used to emphasize
the importance of the solution of certain sets of problems over other sets.

Employing such means of adjustment and reward automata generalization
becomes a characteristic of the adaptive systems here described., In all
cases, the adaptive system will be "trying" continually to form a hierarchy
of methods which enable it to handle larger and larger collections of prob-

lems by means of ever more general supervisory programs.

10, RICH ENVIRONMENTS

Automata generalization is accelerated when the environment is "rich":

when it is composed of graded sequences of problems. The problems at a given

level include problems of the next lower level as particular instances. In
the natural world, such "rich" environments are not rare, and in both the
natural world and in the adaptive system described here they allow the solu-
tion of problems by stages and approximations: a "leap" to a solution is

not required.

11. SUBGOAL GENERATION

Subgoal generation occurs when the adaptive system divides problems into
sequences of sub-problems whose solutions will contribute to the solution of
the given problems. This will require that the adaptive system itself enrich
the problem enviromment, end supply checking routines for subgosls. There
are available several methods for obtaining this behavior in the system and
then rewarding 1t for forming and satisfying the relevant subgoals. Thus,
an adaptive system (composed of a hierarchy of programs) which spends a sig-
nificant amount of time on problems it cannot solve will be displaced by more
selective (but otherwise identical) hierarchies. Programs which can solve»
problems will accumulate activation at an advantageous rate, and will dis-

place less efficient programs.

12. CONCERNING THEOREMS

It was indicated earlier (Section 2) that the structure and arrangement
of the modules of any particular class of iterative circuit computers can

be completely determined. By varying certaln constraints we can change the

class of iterative circuit computers under consideration. Statements about
classes of iterative circuit computers become easier to prove or disprove
as the constraints are increased and the class of computers becomes smaller,
The following (familiar) strategy is suggested: apply enough constraints to
allow various key statements about desirable characteristics to be proved
in a relatively straightforward fashion. Then relax constraints somewhat
and attempt to generalize the theorem., For example, we can consider random
mixing of generators in the absence of introduced generator strings and other
controls, and then proceed to cases with only one kind of template-generator-
string, and so on.

Some problems on which theorems might be possible are: (1) what kinds
of constraints are sufficient to secure equilibrium or stable composition
of programs? What kinds of constraints are sufficient to assure this cannot
happen? (2) When new factors are added to stable population, under what
conditions will the population again reach equilibrium?

Meny other problem areas (and thus areas for theorem-proving) exist.

13. GENERAL COMMENT

The theory outlined here makes considerable use of probabilistic and
random processes, It seems likely that these probabilistic processes are
not absolutely necessary, and that deterministic processes would suffice.

Random procedures do, however, greatly simplify the formulation.

10

DISTRIBUTION LIST

(one copy unless otherwise noted)

0ASD (R and D), Room 3E1065
The Pentagon

Washington 25, D. C.

Attn: Technical Library

Chief of Research and Development
0CS, Dept. of the Army
Washington 25, D. C.

Chief Signal Officer (2)
Department of the Army

Washington 25, D. C.

Attn: SIGPD-8bl

Chief Signal Officer
Department of the Army
Washington 25, D. C.
Attn: SIGRD

Director

U. S. Naval Research Laboratory
Washington 25, D. C.

Attn: Code 2027

Commanding Officer and Director
U. 8. Navy Electronics Laboratory
San Diego 52, California

Commander v

Wright Air Development Division-
Wright-Patterson Air Force Base
Ohio
Attn: WCOSI-3

Commander

Air Force Cambridge Research Center
L. G. Hanscomb Field

Bedford, Massachusetts

Attn: CROTR

Commander

Rome Air Development Center

Air Research and Development Command
Griffiss Air Force Base,

New York

Attn: RCSSLD

Commending Officer

U. S. Army Signal Research and
Development Laboratory

Fort Mommouth, New Jersey

Attn: Logisties Division

Commender (7)

Armed Services Technical
Information Agency

Arlington Hall Station

Arlington 12, Virginisa

Attn: TTIPDR

Commanding Officer

U, S. Army Signal Equipment
Support Agency

Fort Mommouth, New Jersey

Attn: SIGFM/ES-ADJ

U, 5. Continental Army
Command Liaison Office

U, S. Army Signal Research and
Development Laboratory

Fort Monmouth, New Jersey

Corps of Engineers Liaison Office

U, 5. Army Signal Research and
Development Laboratory

Fort Monmouth, New Jersey

ARDC ILiaison Office

U. S. Army Signal Research and
Development Laboratory

Fort Monmouth, New Jersey

DISTRIBUTION LIST (Continued)

U, S. Navy Electronics
Liaison Office

U. S. Army Signal Research and
DeVelopment Laboratory

Fort Monmouth, New Jersey

Marine Corps ILiaison Office

U. S. Army Signal Research and
Development Laboratory

Fort Monmouth, New Jersey

Commanding Officer

U, S. Army Signal Research and
Development Laboratory

Fort Monmouth, New Jersey

Attn: Director of Research/Engineering
Attn: Technical Documents Center

Attn: SIGRA/SL-ADJ

Attn: Technical Information Division (4)

Commanding Officer

U, S. Army Electronic Proving Ground

Fort Huachuce, Arizona

Attn: Automatic Data Processing
Depaftment

Chief Signal Officer
Department of the Army
Washington 25, D. C.
Attn: SIGRD-6B

Commanding Officer
U. S. Army Signal Research and
Development Laboratory
Fort Mommouth, New Jersey
Attn: Exploratory Research Division
"c", Jacob Borsuk

Signal Corp Liaison Officer

Rome Air Development Center (RAOL)
Griffiss Air Force Base,

New York

U. S. Air Force Security Service
San Antonio, Texas
Attn: Major W. W. Fries

(2)

Commander, Rome Air Development
Center

Air Research and Development Command

Griffiss Air Force Base,

New York

Attn: RCWID, I. Tuorno

Commanding Officer

U. S. Army Signal Research and
Development Laboratory

Fort Mommouth, New Jersey

Attn: Exploratory Research,
Dr. Reilly

Attn: Exploratory Research Math
Division, Dr. Babbitt

Attn: Engineering Sciences Dept.,
Mr. Hennessy

Director

National Bureau of Standards
U. S. Department of Commerce
Washington 25, D. C.
Attn: Dr, Alexander

Office of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Dr., Tavitz

Commander .
Wright Air Development: Pivision
Wright-Patterson Air Force Base
Dayton, Ohlo

Attn: Dr. Steele

Chief, Bureau of Ships
Washington 25, D. C.
Attn: Donald Rheem

Director

National Security Agency
Fort George C. Meade,
Maryland

Attn: RADE 32

DISTRIBUTION LIST (Concluded)

Commanding Officer

Army Pictorial Center
35«11 35th Street

Long Island City, New York
Attn: Mr. Erwin Oeller

Commanding Officer (6)

U, S. Army Signal Research and
Development Laboratory

Fort Monmouth, New Jersey

Attn: SIGRA/SL-NPE

Professor Heinz Von Foerster

215 Electrical Engineering Research Laboratory
University of Illinois

Urbana, T1linois

Director

National Security Agency

Fort George G, Meade, Maryland

Attn: CREF-141 (Room 2C087),
Miss Creswell

