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1. INTRODUCTION

This paper describes a universal computer capable of simultane-

ously executing an arbitrary number of sub-programs, the number of such

sub-programs varying as a function of time under program control or as

directed by input to the computer. Three features of the computer are:

(1)

(3)

The structure of the computer is a 2-dimensional modular
(or iterative) network so that, if it were constructed,
efficient use could be made of the high element density
and "template" techniques now being considered in re-
search on microminiature elements.

Sub-programs can be spatially organized and can act
simultaneously, thus facilitating the simulation or di-
rect control of "highly-parallel" systems with many points
or parts interacting simultaneously (e.g., magneto-hydro-
dynamic problems or pattern recognition).

The computer's structure and behavior can, with simple
generalizations, be formulated in a way that provides a
formal basis for theoretical study of automata with chang-
ing structure (cf. the relation between Turing machines

and computable numbers).

The computer presented here is one example of a broad class of universal

computers which might be called universal iterative circuits. This class

can be rigorously characterized and formally studied (the characterization

will be published in another paper). The present formulation is intended

as an abstract prototype which, if current component research is success-

ful, could lead to a practical computer.
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2. GENERAL DESCRIPTION

The computer can be considered to be composed of modules
arranged in a 2-dimensional rectangular grid; the computer is homoge-
neous (or iterative) in the sense that each of the modules can be
represented by the same fixed logical network. The modules are syn-
chronously timed and time for the computer can be considered as occur-
ring in discrete steps, t =0, 1, 2, ...

Basically each module consists of a binary storage register
together with assoclated circuitry and some auxiliary registers (see
Figure 1). At each time-step a module may be either active or inactive.
An active module, in effect, interprets the number in its storage regis-
ter as an instruction and proceeds to execute it. There is no restric-
tion (other than the size of the computer) on the number of active
modules at any given time. Ordinarily if a module M(i,j) at coordinates
(i,j) is active at time-step t, then at time-step t+1, M(i,J) returns to
inactive status and its successor, one of the four neighbors M(i+l,j),
M(i,5+1), M(i-1,3), or M(i,j-1), becomes active. (The exceptions to
this rule occur when the instruction in the storage register of the
active module specifies a different course of action as, for example,
when the instruction is the equivalent of a transfer instruction).

The successor 1s specified by bits s7, sp in M(i,j)’s storage
register. If we define the line of successors of a given module as the
module itself, its successor, the successor of the successor, etc., then
a given sub-program in the computer will usually consist of the line of
successors of some module. Since several modules can be active at the
same time the computer can in fact execute several sub-programs at once.
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We have noted parenthetically that there are orders which control the
course of action - there are also orders equivalent to store orders
which can alter the number (and hence the instruction) in a storage
register. Therefore, the number of sub=-programs being executed can be
varied with time, and the variation can be controlled by one or more
sub-programs .

The action of a module during each time-step can be divided
into three successive phases:

(l) During phase one, the input phase, a module's storage
register can be set to any number supplied by a source external to the
computer. The input phase will be discussed in Section 5.

(2) During phase two, an active module determines the loca=-
tion of the operand, the storage register upon which its instruction is
to operate. This the module does by, in effect, opening a path (a se-
quence of gates) to the operand. Phase two, called the path-building
phase, will be discussed in Section 3.

(5) During phase three, the execution phase, the active module
interprets and executes the operation coded in its storage register.

The execution phase will be discussed in Section 4.



%. PATH-BUILDING

An active module determines the location of the storage regis-
ter upon which its instruction is to operate by, in effect, opening a
path to it. The path-building action depends upon two properties of
modules:

First, by setting bit p in its storage register equal to 1, a
module may be given special status which marks it as a point of origina=-
tion for paths; the module is then called a P-module.

Secondly, each module has a neighbor, distinet from its success-
or, designated as 1ts predecessor by bits d1, 92 in 1its storage register;
the line of predecessors of a given module My is then defined as the se-
quence of all modules [My,M;,...,M.,...] such that, for each k, Mg is the
predecessor of Mg_] and Mg.; is the successor of Mk (see Figure 2). Note
that the line of predecessors may in extreme cases be infinitely long or
non-existent. The line of predecessors of an active module ordinarily
serves to link it with a P-module (through a series of open gates). Dur-
ing the initial part of phase two the path specification bits yg,...,¥n
and dy, dp, in the storage register of an active module My, are gated
down its line of predecessors to the nearest P-module (if any) along that
line. The path specification bits are then used by the P-module to open
a path to the operand (the storage register addressed by the active module).

Each path must originate at a P-module and only one path can
originate at any given P-module. The path originating at a P-module is
gated by means of a sequence of auxiliary registers called *-registers.
Each module possesses 4 *-registers and if the module belongs to a path

in direction (by, bp) the appropriate *-register, (by, bp)*, is turned
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on. When (bl, bg)* is on it gates lines (to be described) from the
module M(i,j) to its neighbor M(i+bl, j+b2) permitting certain signals
coming into M(i,j) to be passed on to M(i+bl, j+b2) and vice=-versa.
Since each ¥-register gates a separate set of lines, a module may (with
certain exceptions) belong to as many as four paths. Once a *-register
is turned on it stays on until turned off; thus a path, once marked,
persists until erased.

The modules belonging to a given path can be separated into
subsequences called segments. Each segment of the path is the result
of the complete phase two action of a single active module. A segment
consists of y modules extending parallel to one of the axes from some
position (i,j) through positions (i+by, J+bp), (i+2by, J+2bp), ...,
(i+(y-1)by, J+(y-1)by), where by =+ 1 or 0 and by = + (1 - [by|); the
module at (i+ybl, j+yb2) will be called the termination of the segment
(note that the termination of the segment is not a member of the seg-
ment). The segments are ordered so that the first segment constructed

th

has as its initial module the P-module. The k™ segment constructed as

part of the path has as its initial module the termination of the k-1%8
segment. If the path consists of n segments, the termination of the
nth segment (the last segment constructed) will be called the path
termination (see Figure 3).

As noted, the path specification bits yp, ---, Yo and dy, do
are gated down the line of predecessors from the storage register of the

active module to the nearest P-module at the start of phase two. If

yn = 0, bits yp-1, ..., yo and dy, dp determine the length and direction,
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respectively, of the new segment. The total number of digits yp.1,..:»
Yo equal to 1 gives the length of the segment - if J of the digits are
equal to 1 then the segment will be Jj modules long. The digits dl’dE
turn on and set an auxiliary register, the direction register, in the
initial module of the new segment. This gives the direction bl,b2 of
the segment. The direction registers of the other modules belonging

to the segment are all off, but each of the modules belonging to the
segment (including the initial one) has its (bl,bg)*‘register turned on.

When y,=1, the final segment of the path originating at the
P-module is erased. That is, the direction register in the initial module
of the last segment is turnedoff and, as a consequence, all ¥*-registers
marking the last segment are turned off. If the path consists of a
single segment or none at all the effect of yn=l is to turn off the
direction register in the P-module thereby making the P-module the termi-
nation of the path. That is, in this latter case, the path has no seg-
ments but it does have a termination - the P-module itself (note that the
status of the P-module is unchanged).

The following additional rules apply to paths:

(1) Wnen a given module is the termination of several paths
and direction register on=-pulses arrive over more than one path at the
same time, t, the result is no action - the direction register is not
turned on and none of the paths are extended.

(2) Only one path can proceed through a module in which the
direction register is on. Whenever the direction register of a given
module M is turned on or given a new setting, any paths already running

through that module will now have it as their termination. Furthermore,



for each such path, the portion lying between M and the previous path
termination is at once erased - the ¥-registers and direction registers
marking that portion of the path are turned off.

(3) No P-module can belong to any part of a path other than
its origin. If a path in the process of construction reaches a P-module
then all construction ceases and the P-module becomes the termination
of the path regardless of the value of digits y,, yp.1, +++» Yo- Further
extension of the path will not be carried out unless the P-module's status

is changed (its p bit set to zero).



L, EXECUTION

Three modules play an important role during the execution phase
of an active module: the active module itself holds the order code in
bits 17, ip, 13 of its storage register; the storage register of the
nearest path termination contains the word to be cperated on (the operand);
finally there must be a module which serves as accumulator (see Figure 3).
In corder to serve as an accumulator, the storage register of a module must
first have bits (p,a) in it set to the value (0,1), giving the module
special status - A-module status. (ﬁote that this means a module in P-
module status, p = 1, cannot be an A-module). If M(i,j) is an active
module then the first A-module along its line of predecessors serves as the
accumulator. An A-module serves, in effect, to terminate a line of
predecessors, since it can have no designated predecessor (see the rules
at the end of this section).

In the present formulation there are eight basic orders:

(1) The arithmetic operation ADD. Execution of ADD causes the
number in the storage register at the nearest path termination (the operand)
to be transferred to the nearest A-module and there added to whatever
number is in the storage register of the A-module. (By using complements
and iteration all the arithmetic operations, such as subtraction and
multiplication, can be accomplished by means of this operation)°

(2) The storage operation STORE. Execution of STORE causes
the number in the storage register of the nearest A-module to be trans-

ferred to the storage register at the operand.
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(3) The transfer operation TRANSFER ON MINUS. Execution of
TRANSFER ON MINUS depends upon the number in the storage register in the
nearest A-module. If y, = O in this nunber then the active module, after
completing phase two, becomes inactive and its successor becomes active,

If y, = 1 then the module at the nearest path termination, rather than
the successor, becomes active.

(4) The index operation ITERATE SEGMENT. If y, = 0 in the
nearest A-module, execution of ITERATE SEGMENT (upon completion of phase
two) reduces the number in the A-module by 1 and the active module remains
active without causing its successor to become active. If y, = 1s then
execution of the order simply causes the successor to become active and the
active module inactive at the completion of phase one. This operation
provides a convenient means of building long paths in a given direction
since, if N is the number in the nearest A-module, the path building phase
of the active module is iterated N times.

(5) SET REGISTERS ceuses the first 9 bits of the number in the
nearest A-module to be used to set all 9 auxiliary registers at the nearest

h bit is a one

path termination, the jth register being set on 1f the jt
(see Section on Summary of Organization and Symbols). It is important that
the SET REGISTER order can give the operand module active status by
setting the appropriate auxiliary register. In this case the active module
gives rise to two active modules on the next time-step, its successor and

the operand module, By this means one sub-program can initiate activity

in another.
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(6) RECORD REGISTERS causes the state of the 9 auxiliary
registers at the nearest path termination to be recorded in the first 9
bits of the nearest A-mcdule (in the same order as used by the SET
REGISTERS instruction).

(7) NO ORDER causes the execution phase to pass without the
execution of an order.

(8) STOP causes the active module to become inactive without
passing on the activity to its successor at the next time-step.

With the exception of the STOP, ITERATE SEGMENT, and TRANSFER
orders, the active module becomes inactive and its successor becomes active
at the conclusion of the execution of an order.

It is possible for a given active module to have no nearest
P-module {or A-module) for any one of three reasons: (1) the module does
not have a line of predecessors, (2) none of the modules along the line of
predecessors is currently designated a P-module (or A-module), (3) there is
no P-module along the line of predecessors between the active module and
the nearest A-module. If there is no nearest P-module then there is neither
pathl building nor execution of instruction with respect to the active module
(regardless of the content of its storage register). If there is no
nearest A-module along the line of predecessors then the instruction of the
active module is not executed although the path building phase will be
carried out (assuming a nearest P-module).

The following additional rules apply to active modules and

their action with respect to P-modules and A-modules:
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(1) 1f Mg belongs to the line of predecessors of My, if the
nearest P-module of My is also the nearest P-module of M, and if MO and
M; are both active, then the action of My proceeds normally but M's
action is as if it had no nearest P-module.

(2) 1f Mg and M; are situated as in rule (1) except that they
have the same nearest A-module, without sharing the same P-module, then
the action of MO proceeds normally but M; acts as if it were executing a
NC ORDER instruction.

(3) As mentioned earlier, a module can be given A-module status
by setting the pair of bits (p,a) to the value (0,1). This turns on an
auxiliary register in the module, the A-register. At the same time the
bits of another auxiliary register pair, the (Dl, D2)~ register, are set
to match the bits sy, sp in the module's storage register; i.e., when the
A-register is on the (Dl, D2)- register indicates the successor of the
A-module.,

Once a module is given A-module status i1t can be returned to
normal status only in one of two restricted ways. The first way requires
that a STORE order be executed by an active module which has the given A-
module as its operand module (nearest path termination). Then, if bit a
is 0 or bit p is 1 in the number being stored, the A-module reverts to
normal status and the word in its storage register is that specified by the
STORE instruction. Otherwise the A-module is unchanged, the STORE order
not being executed. The other way of returning an A-module to normal

status requires that the A-module receive external input during phase one



12«

(see Section on Input). The above restrictions prevent the A-module from
changing status when numbers are placed in its storage register during the
normal course of its operation as an accumulator., During the time a module
is an A-medule the bits in its storage register are not interpreted in any
way except as the digits of a binary number.

(h) A module in A-module status can become part of a path (or
several paths) so long as it is not to be the initial module of a path
segment., In this latter case the path building action, which would make
the A-module the initial module of a segment, is not carried out - the
A-module remaining the termination of the path.

(5) A given module can be acted upon simultaneously by 2, 3, or
even 4 STORE instructions if it is the termination of more than one path.
Some provision must then be made to resolve conflicts when the numbers being
stored are not identical. In the present formulation the conflict is re-
solved digit by digit: a 1 is stored at bit J in the storage register if
and only 1f at least one of the incoming numbers has a 1 at position J.

(6) When a STORE instruction changes the word in the storage
register of a module it is assumed that this change does not take place until
the completion of phase three. Thus, for example, there is no conflict when
the STORE instruction of an active module acts upon that module’s own
line of predecessors or, for that matter, upon the module itself.

(7) If an active module has an A- cr P-module as successor

then, at the next time-step, the successor of the A- or P-module becomes

active, rather than the A- or P-mecdule itself (unless, of course, the

instruction just executed specifies otherwise),



5. INPJT

During phase one, the initial phase of each time-step, a module's
storage register can be set to any arbitrarily chosen value and its auxil-
iary registers to any desired conditicn. The numbers and conditions thus
supplied are the computer's input. Although the number in the stcrage
register can be arbitrarily changed at the beginning of each time-step,
it need not be; for many purposes the majority of modules will receive
input only during the first few moments of time ("storing the program')
or only at selected times t1, tojso.. ("data input"). Of course, some
modules may have a new number for input at each time-step; in this case

the modules play a role similar to the inputs to a sequential circuit.
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6., SUMMARY OF CRGANIZATICN AND SYMBOLS

As noted in the general description of Section 2, each module
consists of a storage register plus some auxiliary registers. The dis-
cussions of Sections 3, 4, and 5 indicate that the auxiliary registers
required are:

1) the E-register, a one bit register which is on if and only
if the given module is active;

2) the A-register, a one bit register which is on if and only
if the given module i1s an A-mcdule (see rule (3) of Section 4 );

3) the D-register, a one bit register which is on if and only if
the given module 1s the initial module of a path segment;

4) the (Dy, Dy)-register, a register, with two bits of storage,
which indicates the direction (bl, bg) of a segment if and only if the
D-register is on and which indicates the direction of the module's
successor if and only if the A-register is on.

5) the (bl, bp )*-registers, each is a one bit register which is
on if and only if the given module is a member of a path segment with
direction (bl, 'bg)° For formal purposes we can symbolize the state of a
given register, X, at coprdinates (1i,3) and time t by the predicate
X(i,3,t) with X(4i,j,t)=1 if the given register is on at time t.

The storage register of each module in the present formulation
consists of n+l2 bits (see Figure 4) labelled in the following order:

bit number: n+l2 n+ll ... 12 11 10 9 8 7 6 5 L 3 2 1

label: yn yn_l o 0o yo dl d2 il i2 i3 Sl 82 q_l q.2 p a

-1h4-



=15~

The bits sy, so and g5 dp designate the successor and predecessor,
respectively, of the module. If bit p is 1 the module has P-module status.
If the pair of bits (p,a) are set to the value (0,1) as the result of

input or a STORE cperation, the module has A-module status. During the
path building phase bits ypn; oses Yo and dy, do in an active module are
interpreted as segment length and direction respectively. During the
execution phase bits 17, io, i3 in an active module are interpreted as the
operation to be performed. The word in the storage register of an A-module
is treated strictly as a binary number with y, being the sign bit and the
other n+ll bits being arranged as indicated with y, ; being the high order

bit and a being the low order bit.



7. COMMENT

A universal machine in which the programs have a spatial
organization has several properties over and above those usually associated
with Turing machines and their concrete counterparts. For example, cycles
in the program can actually be stored as cycles (of successors) in the
rectangular grid (see Figure 5). This, in effect, provides each cyclic
sub-program with an instruction address counter which counts modulo the
number of instructions in the sub-program (cf° an index register which can
be set to cycle modulo any base number). Furthermore, each sub-program can
be allcotted a certain area in the grid and this allows the spatial arrange-
ment of the sub-programs to match, for example, the structural organization
of a process which is being simulated - each subprogram in this case directly
simulating one of the components of the process.

Efficient programming of certain types of problem will reqguire
techniques similar to those required for asynchroncus operation. That is,
when several subprograms are operating simultaneously, each subprogram will
from time to time require results from other subprograms, however these
results will not in general be avallable at Just the time desired. In prob-
lems like this, usually arising in the control or simulation of "highly-
parallel” systems with many points or parts interacting simultaneously, the
programmer will employ many cf the techniques of the logical designer.

Problems such as the one Jjust discussed emphasize the desirability
of a computer formulation amenable to theoretical investigation. The present

formulation is one example of a broad class of computers which can be
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rigorously characterized and investigated by abstract deductive techniques.
Actuslly, the definition of this class of computers comes as part of an
effort to provide a formal basis for the study of growing automata. By
congidering the rectangular grid to be infinite (or potentially infinite)

in each of its dimensions (in analogy to the infinite tape of a Turing
machine) many problems of autometa theory can be expressed in a fcrmal
framework similar to that provided by Turing machines for problems of
computability. Thus, for example, models of various processes can be stated
zs programs, or classes of programs, for the machine and investigated both
directly and theoretically.

There are several variants of the formulation given here which
vield computers which are either more flexible or have simpler modules.

As a single instance, the path building procedure could be altered to make
branching paths possible; in this way the same subprogram could operate on
geveral storage registers simultaneously.

A final word about concrete realization of such a computer: a par-
tial rendering of the logical diagrams for a module in the described com-
puter indicates that a module with a L0 bit storage register could be con-
structed with approximately 1000 basic elements. If this is actually the
cagse and if switching is accomplished with micromodular densities, say 108
elements per cubic foot, then the basic portion of a computer with 100,000

modules should be realizable within a volume of a few cubic feet (exclusive

of input-output equipment, power supply, etc. ).
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