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Interaction between stock indices via changepoint analysis
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SUMMARY

Stock market indices from several countries are modelled as discretely sampled diffusions whose
parameters change at certain times. To estimate these times of parameter changes we employ both a
sequential likelihood-ratio test and a non-parametric, spectral algorithm designed specifically for time
series with multiple changepoints. Finally, we use point-process techniques to model relationships between
changepoints of different financial time series. Copyright © 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The world-wide stock market crash in October of 1987 caused a surge of interest in the
interaction between national stock markets. Since then, technological advances such as the
spread of the Internet have made notions of a ‘global marketplace’ ubiquitous; however, there is
much uncertainty as to how exactly marketplaces are global. In [1] it is suggested that stock
markets are more closely correlated following an increase in volatility. Further evidence of this
is found in [2], where the authors examine the U.S. and Japanese stock markets. Using
instrumental variables, the authors in [3] find evidence of relations between national markets but
only with the U.S. affecting other markets. Examining impulse responses from a vector
autoregression leads to a similar result in [4]. Hypothesis tests for ‘common features’ are used in
[5] on quarterly output time series for G7 countries and the authors find that the observed
international comovement, the term used in econometric literature to refer to the relationship
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between stock markets or between national output across countries, is consistent with a
common synchronized business cycle. Additionally, there is the possibility that many situations
in which we see long-range dependence are actually instances of structural change, as
investigated by Diebold and Inoue [6].

In this paper we explore the notion that changes, resulting from shocks to the fundamental
nature of the countries or markets, i.e. technology, politics or natural disasters, in the stock
market of one country are transmitted, over time, to others. In contrast to the above papers, we
attempt to capture this effect by using changepoint detection methods on underlying
continuous-time diffusion models. In Section 2, we review likelihood-based estimation
procedures for continuous-time diffusions and discretely observed diffusions. These are of
interest in their own right but are also an important part of the changepoint detection
algorithms employed here. In Section 3.1 we review classical likelihood-based changepoint
detection schemes for single changepoints as well as their modifications designed to detect the
presence of multiple changepoints. In Section 3.2, to avoid making the parametric assumption
of geometric Brownian motion (GBM), we present some non-parametric changepoint detection
algorithms. In Section 4, we employ point-process techniques to model the relationship between
the estimated changepoints in different national markets. Finally, in Section 5, we present our
findings.

2. LIKELIHOOD ESTIMATION

We begin by modelling each index as a discretely observed diffusion solving the following
stochastic differential equation:

dX[:a(t:XhGl)dl+b(taXI>92)dBl‘ (1)

observed at times f, ¢, ..., t,, where 0, and 6, are unknown parameters and B, is a standard,
one-dimensional Brownian motion, and where «(-) and b(-) may be different for different indices.
This is a very general set-up which includes, as special cases, many commonly proposed models
in finance such as the Vasicek, Cox—Ingersoll-Ross, Brennan—Schwartz and GBM. There are
numerous approaches to estimating 6; and 6,. One can form a continuous-time log-likelihood

(T at X0 1T a(t,X,,Bl))2
logL(G))_/o [b(z,X,,ez)]de’ 2/0 (b(t,Xt,Hz) & @

where we use ©® to denote the vector (0, 6,). This can be maximized analytically to obtain
continuous-time maximum likelihood estimates (MLEs) for 6, and 6,, which will be stochastic
integrals with respect to the semi-martingale X,. These integrals will have to be approximated by
sums with evaluation at the observed time points. Alternatively, one could approximate (2) with

at,-_,X.l,H 1 al;_,X.fl,G 2
Z ( l = ])2 (Xfi - Xli—l) - E Z (b( l X[l 01)> Ati (3)
i <T [b(li—laXti,lagz)] u<T (Zi*l, ti—1» 2)
Aty =t; — 1 4)

and maximize numerically. Examples and comparisons of these techniques can be found in
[7,8]. Another way of constructing the likelihood for discrete observations utilizes the Markov
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property of solutions to (1):
log L®) = > logp(X,, | X, ,) (5)

4<T
where p(X, | X,,_,) is the density of the conditional distribution of X,, given X, _,, called the
transition density of X,;. There are numerous methods for finding or approximating the
transition density, e.g. see [9, 10].

A third method for constructing the likelihood is analogous to the deterministic case; a
recursive scheme for approximating a solution to (1) is given by Euler’s method:

Xin = Xi—nn + a((@ — DA, Xi—yn, 00)h + b((i — D, X i1y, 02V hZ;

fori=1,...,1,/h with stepsize & and Z; i.i.d. standard normal random variables.
This implies

Xiwn | Xo=x, ~ N(x; + a(t, x,, 00)h, [b(t, x,, 02)]217) (6)

which, in the context of (5), is a Gaussian approximation to the transition density of the Markov
process X;. From this we get the approximate log-likelihood conditional on X,,:

n

log L(®) = Z [—; log2n — log/At; b(ti—1, X1, 02)

i=1
(X, = (X, +altion, X, 00A0))
2 [b(ti-1, X, 0 A
We can improve the performance of the Euler scheme by transforming X, into a process with

constant diffusion coefficient; this makes the transition density ‘more Gaussian’ [11]. Consider
the transformation

(M

Y, = d)(t’ Xf)
Then by It6’s Lemma
op 1%¢ ) o
dY, = (E + Eﬁ[b(ts X, 02)] + a—xa(ta X, 01) dr+ a_xb(t’ Xis 62) dB,

Thus, if ¢ does not depend on 7 and
¢ (x)b(1,x,05) = 0, ®)
then
dY, = G ¢"(X)Ib(t, X, 02 + ¢ (Xpa(t, X,, 01)) dt + 0 dB,
In the case of GBM, a(t, x;,0,) = ux, and b(t, x,, 0,) = ox;, so (8) gives us
q’f(x)ax =0
which results in
P(x) = log(x)
and
dY, = (u—4c*)dt + o dB, 9)
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So the Euler scheme gives us

Y1 = Yt+,u_%o-2+o-zt
i . (10)
Y — Y~ N(ﬂ_%02302)

which is the typical difference of logs transformation. Looking at (9) we see that in this case the
Euler scheme will give us the exact likelihood. This is possible because the transformed drift
does not depend on Y;. From (10) we get MLEs conditional on the first observation:

RS 1
= [m; (Y1 = Y)

+§¥=
1 N-1 1 2
22
= — Y- Y, ————(Yy—Y
g N—l;(’“ t N—l(N 1)>

For the non-transformed process the Euler scheme would give us conditional MLEs:

1
L (Yy-Y)+=é
vy Y)+5¢

(11)

LN X
F=N"14L 7y,
=1
RO < Y TR
N-1=\ ¥,

The estimates obtained using the MLEs (11) for the financial time series studied in this paper
can be found in Table II. Note that for b(t, X,,0,) = 0,X] (which includes the Vasicek, Cox—
Ingersoll-Ross and Brennan—Schwartz models) the appropriate transformation is

P(x) =

X7

-9

which is analogous to the so-called Box—Cox transformation of linear regression.

3. CHANGEPOINT DETECTION

Typically, the motivation for changepoint detection is to decide how much of the data is
relevant: it is very easy to get financial data going back 20 or more years but it is not clear that
behaviour 20 years ago has anything to do with behaviour today. Indeed, the terms
‘changepoint detection’ and ‘segmentation’ are often used interchangeably and this is precisely
the idea: to divide the data into segments which are ‘similar’. In this paper, however, our
attention is focused on the changepoints themselves, since we are interested in the transmission
of shocks from one market to another.

3.1. Likelihood-based changepoint detection

Suppose for simplicity we have observations of X, at times ¢t =1,...,n. Our goal will be to
detect times at which the parameters 6; and 6, change. Intuitively, to decide if there is a change
at time k we can maximize the log likelihood on r=1,...,k—1 and on t=k,...,n and
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compare this to the maximized log likelihood on ¢ =1,...,n. If allowing a change at time k
increases the likelihood ‘a lot’ then we suspect there is a change. Indeed, this sort of procedure
enjoys optimality properties under a variety of circumstances, see [12,13]; however, these
optimality results are all for the case of a single changepoint. To deal with multiple
changepoints, modifications need to be made: typically multiple local changepoint tests or
stepwise procedures are used. For example, one could test for changepoints in a sliding window,
or test in a small interval and then slowly expand the interval until a change is detected as in [14],
or sequentially test the hypotheses of no change, one or more changes, etc. as in [15].

Let /;;(®) denote the log likelihood of observations i through j. Then for employing the
sliding window technique with window size 2w 4+ 1 we compute for each time ¢ the statistic

T, = mg.x Li—wi—1(®) + m@ax liiw(®) — m(gx li—w,1+(©) (12)

Alternatively, the slowly expanding window algorithm works as follows. Select a minimum
interval size m and a critical value ¢. Compute

Sim = max {max [ je—1(®) + max [ ,(®) — max ll,m(@))} (13)
I<k<m (€] (C] (©)

If S1,,=c then a changepoint is found at the time k; which maximizes (13), in which case
move on and compute Sk, x,+m- If S1,,<c then expand the interval, i.e. compute Sj,41.
Continue in this way until reaching the end of the data. In contrast to the sliding window
method, which provides an entire time series of the test statistic, the latter algorithm requires a
critical value to be set at the beginning and provides only locations of estimated changepoints.

3.2. Non-parametric changepoint detection

We consider two non-parametric methods of changepoint detection, both based on spectral
methods. Both methods work as follows: choose a window size, n. For each point in the series,
compute the spectrum based on the previous n data points, f 0, and also on the subsequent n data
points, f 1. Finally, construct a ‘metric’ to decide if the spectra are different enough to signify
that a change has occurred, where the most popular choices are given by the Kolmogorov—
Smirnov statistic, based on the cumulative periodogram (see e.g. [16]):

/ Foluw) du / 710 du

sup
2€[0,7]

and the metric based on the Kullback—Leibler discrimination information (see e.g. [17]):
Z fol) fM))
() fo(A)
On the data in question the two seem to indicate the same changepoints and so specific
examples will only be given for the latter case.

4. CHANGEPOINT COMPARISON

Both the likelihood-based and the spectral-based sliding window methods of changepoint
detection provide an entire time series of test statistics. To decide to what extent changes in one
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series lead or lag changes in another, a natural idea is to use the cross-correlation function
(CCF) between the two series of test statistics. The CCF is simply the correlation between one
series and lags of the other series. The expanding window algorithm provides only estimated

Table I. Indices investigated.

Index Symbol Country
Dow Jones DIJI U.S.
Standard and Poor GSPC U.S.
NASDAQ composite IXIC U.S.
CAC 40 FCHI France
DAX GDAXI Germany
FTSE 100 FTSE Great Britain
Hang Seng HSI Hong Kong
Straits Times STI Singapore
Nikkei 225 N225 Japan
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2

6 10IOO 20IOO SOIOO

Figure 1. All estimated changepoints using the likelihood-based method from (13).

Table II. Parameter estimates using the entire series.

Index [ G

FCHI 0.0003300 0.01342
FTSE 0.0002739 0.01033
IXIC 0.0006155 0.01559
STI 0.0002447 0.01258
GDAXI 0.0003944 0.01425
N225 —0.0001083 0.01412
DIl 0.0004415 0.00989
HSI 0.0005498 0.01606
GSPC 0.0004132 0.01007
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times of changes; thus we turn to point-process methods. Intuitively, a point process is just an
increasing sequence of non-negative random variables, typically representing times of events. A
central tool in the study of point processes is the intensity function, A(¢) defined by

b
E[number of events in (a,b]] = / A(t) dt (14)

If the point process is stationary and events cannot occur simultaneously then the intensity
function is given by

P(event in (¢, ¢+ h])

, (15)

(A = i
A1) /g{)l

In this paper, we are particularly interested in how the intensity changes conditional on a past
change: if there was a changepoint yesterday are we more or less likely to observe another
changepoint this week? More importantly, if there was a changepoint in the U.S. market, are we

1400 1

1200

1000

800

600

400

T T T
0 1000 2000 3000

0.06

0.04 ~

0.02

0.00 ~

-0.02

~0.04 -

—0.06 1

T T T
0 1000 2000 3000

Figure 2. Raw S&P500 data (top) and difference of logs transformed S&P500 (bottom) both with
likelihood-based changepoints marked with vertical lines.
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more or less likely to observe a changepoint this week in Japan? To address these questions
consider two point processes, X and Y, with event times 7;...7, and o, ...0,,. Then the auto-
intensity function, which measures the intensity given an event observed in the past, is defined as

. P(Y eventin (t,t+ h]| Y event at t —u
myy(@) = lim Sl ) (16)

and can be estimated, as suggested in [18], by the smoothed-histogram-like estimator:
#{j#k u—h/2<ty —t<u+h/2})
: 17)
hNy
where Ny is the total number of events for the process Y. The cross-intensity function of X and
Y, which measures the intensity of Y given an event of X observed in the past, is defined as

. P(Y event in (t,t+ h]| X event at t —u
(@) = lim 7 el ) (18)

ryy(u) =
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Figure 3. Estimated values of u (top) and ¢ (bottom) for the S&P500 index. The estimates are computed
separately between the changepoints, which are detected by a version of the expanding window algorithm
(similar to [14]).
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Figure 4. Spectral (top) and windowed likelihood (bottom) estimated changepoints for S&P500.
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Figure 5. Estimated auto-intensity of S&P500 index with upper confidence limit using the
estimator given in (17).
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and can be similarly estimated by
#{(. k) u—h/2<t —oj<u+h/2})
hNY

Note that for both of these estimators, just as with kernel density estimators, one needs to
specify a bin-size or bandwidth, /.

(19)

myy(u) =

5. DATA ANALYSIS

We examine the closing prices of the stock indices found in Table I over the period of 3635 days
from 26 November 1990 to 17 November 2004. Figure 1 shows all the estimated changepoints.
Table I shows the estimates for ¢ and ¢ under the GBM model for each index using the
entire series. Figure 2 shows the raw S&P500 data and the difference of logs transformed
data, as given by Equation (10), each with vertical lines at the estimated changepoints
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Figure 6. Estimated cross-correlation function (top) and cross-intensity (bottom) for the series of test
statistics and estimated changepoints for S&P500 and DAX.
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from the expanding window algorithm. Figure 3 shows the estimated pu and o for the
S&P500 series where the estimates are computed separately between the changepoints,
with the latter also being estimated by the expanding window algorithm. Figure 4 is
quite interesting; for the S&P500 series the changepoints estimated by the expanding
window algorithm (vertical lines) seem to coincide with the spikes in the series of test statistics
from both the likelihood and spectral sliding window algorithms. This holds for all the other
series as well.

For visual inspection of estimated cross-intensities between X and Y it is suggested in [18] to
plot the square root of the cross-intensities and use Ny/T + (hNy)_l/2 as an approximate 95%
confidence band for independent Poisson cross-intensities, where Ny is the total number of Y
events and T is the total time. This is to say that intensities within the confidence band are
consistent with independent Poisson processes. In all the plots that follow, the cross-intensity
lies so far above the upper confidence limit that the limit is not visible on the plot. Figure 5
shows a plot of the estimated auto-intensity function for S&P500. This plot is typical of the

i
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Figure 7. Estimated cross-correlation function (top) and cross-intensity (bottom) for the series of test
statistics and estimated changepoints from Nikkei and Hang Seng.
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Figure 8. Estimated cross-correlation function (top) and cross-intensity (bottom) for the series of test
statistics and estimated changepoints from S&P500 and Nikkei.

indices under consideration: the intensities seem to have a long memory, in the sense that
changes affect the intensity of changes far into the future, and are clearly not Poisson. Figures 6
and 7 show the CCF of the time series of test statistics from (12) and the cross-intensity; Figures
8 and 9 show the same for the statistic from (13). While it is not totally clear that the sample
CCF is the appropriate tool to use here, its ‘naive’ interpretation is in apparent agreement with
the cross-intensity analysis and together with the lack of an obvious alternative make it
worthwhile investigating. In Figure 6 we see a typical example of the relationship between U.S.
and European indices: changes seem to occur in Europe up to 20 days after the U.S. Figures 7
and 8 show the somewhat mercurial behaviour of Nikkei: despite the fact that all changepoint
methods seem to give the same changepoints, when comparing Nikkei to other indices, the
choice of method seems to change the apparent relationship. Nonetheless there does appear to
be some evidence of shock transmissions from the U.S. to Japan. Figure 9 shows a typical
relationship between European indices: there does not appear to be any clear lag between
change transmissions.
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Figure 9. Estimated cross-correlation function (top) and cross-intensity (bottom) for the series of test
statistics and estimated changepoints from FTSE and CAC.

6. CONCLUSIONS

Changepoint analysis seems to be an under-used tool in financial time series; there is a fairly
unanimously held opinion that markets are intimately connected and propagation of changes
provides one method of quantifying this relationship. As shown in Section 5, there appears to be
some delay in the transmission of shocks from U.S. indices to European indices and some delays
between the Asian indices. The European indices seem to change together, as do the U.S.
indices. A particularly attractive feature of the analysis is the lack of assumptions on the process
generating shocks to the markets. If the changes were due only to external events, one might
suspect the changepoints to be Poisson; our analysis suggests that this is quite far from the case.
Additionally, using the non-parametric changepoint techniques presented, no assumptions on
the indices themselves were necessary. Interestingly, the changepoints detected by methods
assuming GBM seem to coincide with those detected by methods identifying only changes in
spectrum.
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