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SUMMARY

We have presented a new likelihood-based approach for constructing con�dence intervals of e�ect size
that are applicable to small samples. We also conduct a simulation study to compare the coverage
probability of the new likelihood-based method with other three methods proposed by Hedges and
Olkin and Kraemer and Paik. Simulation studies show that the con�dence interval generated by the
modi�ed signed log-likelihood ratio method possesses essentially exact coverage probabilities even for
small samples, although the coverage probabilities are consistently but slightly less than the nominal
level. The methods are also applied to two examples. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In biomedical research, examining statistical signi�cance may not be the best way to review
�ndings from a comparative experiment where an innovative treatment is compared with a
control (placebo or standard treatment). A very small, even trivial, di�erence can turn out to
be statistically signi�cant in a very large study. Instead, a more relevant question is whether
an observed di�erence is large enough to matter.
The most common index of e�ect magnitude is e�ect size, de�ned as the di�erence

between means of the treatment and control groups divided by the standard deviation [1].
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It provides a simple but useful measure of how valuable a treatment really is. Many in�uen-
tial medical journals speci�cally request to include the estimated e�ect size and its con�dence
interval in a manuscript as one of the prerequisites for publication [2].
Because the e�ect size is a standardized mean di�erence, it is a dimensionless measure-

ment of e�ect magnitude. In particular, it facilitates the comparison of di�erent innovative
treatments. For example, if, under similar experimental conditions, treatment A has an e�ect
size of 0.5 on an e�cacy measure, and treatment B has an e�ect size of 0.8 on the same
e�cacy measure, it is believed that treatment B is more e�cacious than treatment A on that
e�cacy measure. Furthermore, e�ect size is extensively employed in a meta-analysis for ex-
pressing and for combining the results of studies that assess the e�ectiveness of an innovative
treatment.
Point estimates of e�ect size have been derived and widely applied [1, 3, 4]. Although large

sample asymptotic con�dence intervals have also been proposed, they may not be su�ciently
accurate for small samples. Exact con�dence intervals have also been explored by using
the exact distribution of an e�ect size estimator, but the e�ect size appears in the non-
centrality parameter of a non-central t-distribution. As a result, it is computationally intractable
to calculate an exact con�dence interval for the e�ect size.
The primary goal of this article is to develop a new likelihood-based approach for construct-

ing con�dence intervals of e�ect size that are applicable to small samples. Moreover, these
con�dence intervals can be implemented without much di�culty. In Section 2, we revisit the
currently available approaches for constructing con�dence intervals of e�ect size. In Section
3, we explicitly derive new likelihood-based interval estimators. In Section 4, we examine
two examples. In Section 5, we report some simulation results to compare the small sample
performance of the proposed methods to competing approaches. The determination of sample
size is given in Section 6, and the article concludes with some discussion in Section 7.

2. APPROXIMATE INTERVAL ESTIMATORS

Suppose, in a comparative, parallel-group study, x1; : : : ; xn are observations from experimental
units receiving an innovative treatment, and they are independently and identically distributed
as N(�1; �2); y1; : : : ; ym are observations from those receiving a control, and they are inde-
pendently and identically distributed as N(�2; �2). An e�ect size of the treatment relative to
the control is de�ned as

�=(�1 − �2)=�

A natural estimator of the e�ect size � is g=( �x− �y)=s, where �x and �y are the sample means for
the treatment and control groups, respectively, and s is the pooled sample standard deviation.
It is, however, a biased estimator.
An unbiased estimator is d= J (N − 2)g, where N = n + m and the correction factor J (s)

is a constant that is tabulated in Reference [4, p. 80]. For a large value of s, J (s) can be
approximated by

J (s)=1− 3
4s− 1
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In this article, the above approximation is used for the calculation of d. It has been known
that d has the asymptotic normal distribution with the mean � and variance [4]

�2∞(�)=
n+m
nm

+
�2

2(n+m)

Hence the variance of d can be approximately estimated by

�̂2(d)=
n+m
nm

+
d2

2(n+m)

A 100(1− �) per cent con�dence interval (�L; �U) for � is therefore given by
�L =d− z�=2�̂(d); �U =d+ z�=2�̂(d) (1)

where z�=2 is the 100(1− �=2)th percentile of the standard normal distribution.
Because the variance of d depends on the unknown parameter �, one can use a variance-

stabilizing transformation of d as follows [4]:

h(d)=
√
2 sinh−1 d

a
=

√
2 log

(
d
a
+

√
d2

a2
+ 1

)

where sinh−1 is the inverse hyperbolic sine function, and

a=
√
4 + 2(n=m) + 2(m=n)

For simplicity of notation, let h= h(d) and �= h(�). It is known that
√
N (h − �) has an

approximate standard normal distribution. Therefore, a 100(1−�) per cent con�dence interval
(�L; �U) for � is given by

�L = h− z�=2=
√
N; �U = h+ z�=2=

√
N

The con�dence limits �L and �U can be inverted to produce a con�dence interval (�L; �U) for
� by �nding the values �L and �U that correspond to �L and �U as follows:

�L = h−1(�L); �U = h−1(�U) (2)

where h−1(x)= a sinh(x=
√
2).

Another variance-stabilizing transformation was suggested by Kraemer and Paik [5] and
Kraemer [6]. Let

r=d=(d2 + �)1=2; �= �=(�2 + �)1=2

where �=N (N − 2)=(nm). It has been shown that the variate
√
N − 2u=(1− u2)1=2

has an approximate Student’s t-distribution with N − 2 degrees of freedom, where u=
(� − r)=(1 − r�). The con�dence limits �L and �U can be obtained based on uL and uU
as follows:

�L = (uU − r)=(uUr − 1); �U = (uL − r)=(uLr − 1)
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Finally, we can obtain the con�dence interval for � by transforming �L and �U back to �L
and �U as follows:

�L =�L
√
�=(1− �2L)1=2; �U =�U

√
�=(1− �2U)1=2 (3)

3. LIKELIHOOD-BASED INTERVAL ESTIMATORS

Let ‘(�)= ‘(�; x; y) be the joint log-likelihood function based on observed samples
x=(x1; : : : ; xn) and y=(y1; : : : ; ym), where �=(�; 	), with � being a scalar parameter of
interest, and 	 being a vector nuisance parameter. It is also well known that the signed
log-likelihood ratio statistic

r≡ r(�)= sgn(�̂− �){2[‘(�̂)− ‘(�̂�)]}1=2 (4)

is asymptotically distributed as the standard normal distribution, where �̂=(�̂; 	̂) is the max-
imum likelihood estimator of �, and �̂�=(�; 	̂�) is the constrained maximum likelihood esti-
mator of � for a given �. Therefore, a 100(1− �) per cent con�dence interval for � based on
the signed log-likelihood ratio statistic is given by

{� : |r(�)|6z�=2} (5)

Note that this method has the �rst order of accuracy only, and hence it can be quite inaccurate
when the sample size is small.
In this paper, we consider a modi�ed signed log-likelihood ratio statistic, also known as

the r∗-formula, which is introduced by Barndor�-Nielsen [7, 8] and has the form

r∗ ≡ r∗(�)= r(�) + r(�)−1 log
{
u(�)
r(�)

}
(6)

where u(�) is a statistic based on ‘(�). It has been shown that r∗(�) is approximately dis-
tributed as the standard normal distribution with a higher order of accuracy [7–9]. Hence,
a 100(1− �) per cent con�dence interval based on r∗(�) is

{� : |r∗(�)|6z�=2} (7)

In general, the statistic u(�) can be hard to obtain. However, it has been shown that if
the log-likelihood function ‘(�)= ‘(�; x; y) can be written as ‘(�; t), where t is a minimum
su�cient statistic with the same dimension as �, then

u≡ u(�)= |‘; t(�̂)− ‘; t(�̂�) ‘	; t(�̂�)|
|‘�; t(�̂)|

{
|j��(�̂)|
|j		(�̂�)|

}1=2
(8)

where the sample space derivatives are de�ned as

‘; t(�)=
@
@t
‘(�; t)
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the mixed derivatives as

‘�; t(�)=
@
@�′ ‘; t(�)

j��(�)= − @2‘(�)=@�@�′ is the observed information matrix, and j		(�)= − @2‘(�)=@	@	′ is
the observed nuisance information matrix [10]. In recent years, various adjustments to r(�)
have been proposed to improve the accuracy of the signed log-likelihood ratio method. Reid
[11] gave a detailed overview of this development. The modi�ed signed log-likelihood ratio
statistics have been widely used in small sample statistical inference. In particular, this method
has been applied to life data analysis in Reference [12], ratio of two independent normal
means in Reference [13], and ratio of means of two independent log-normal distributions in
Reference [14].
Once we have r∗, we can obtain a con�dence interval of � from (7). Note that the amount of

calculations involved in obtaining r∗ from (6) is not substantially more than that in obtaining
r from (4). The extra calculation required is simply about u(�) that involves the sample
space derivatives and mixed derivatives. These derivatives can be obtained analytically when
‘(�; x; y)= ‘(�; t).
For the case studied here about e�ect size, the log-likelihood function ‘(�) can be

written as

‘(�)= − (n+m) log � − 1
2�2

t3 + n
(
�
�
+
�
�2

)
t1 +

m�
�2
t2 − 1

2�2
{n(��+ �)2 +m�2}

where �=(�1−�2)=�, �=�2, 	=(�; �), and t=(t1; t2; t3)= ( �x; �y;
∑
x2i +

∑
y2j ) is a minimum

su�cient statistic with the same dimension as �=(�; �; �). It can be shown that the maximum
likelihood estimator �̂=(�̂; �̂; �̂) is

�̂= t2

�̂2 =
1

n+m
(t3 − nt21 −mt22)

�̂= (t1 − �̂)=�̂

Furthermore, for a �xed value of �, the constrained maximum likelihood estimator 	̂�=(�̂�; �̂�)
is de�ned by the following equations:

n��̂� + (n+m)�̂� = nt1 +mt2

(n+m)�̂2� = t3 − n��̂�t1 − (nt1 +mt2)�̂�
and the sample space derivatives ‘; t(�)= @‘(�; t)=@t and mixed derivatives ‘�; t(�)=
@2‘(�; t)=@t@�

′
are given by

‘; t(�)=
(
n
(
�
�
+
�
�2

)
; m
�
�2
;− 1
2�2

)′
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and

‘�; t(�)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n
�

n
�2

−n
(
�
�2
+
2�
�3

)

0
m
�2

−2m �
�3

0 0
1
�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The observed information matrix is given by

j��(�)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n
n
�

n(t1 − �)
�2

n
�

(n+m)
�2

j��(�)

n(t1 − �)
�2

j��(�) j��(�)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where

j��(�) =
1
�3

{2(nt1 +mt2)− n�� − 2(n+m)�}

j��(�) =− 1
�4

{(n+m)�2 − 3t3 + n(2��+ 6�)t1 + 6m�t2 − 2n��� − 3(n+m)�2}

4. TWO EXAMPLES

We illustrate the methods discussed in this paper using two existing data sets. The �rst
example is a study on systolic blood pressure, whose data were given in Reference [15] and
are reproduced in Table I for the pre- and post-data from experimental and control groups.

Table I. Systolic blood pressure data on pre and post experimental
and control data from 40 hypertensives.

Experimental group
Pre 134 135 135 136 145 147 148 150 151 153

153 155 156 158 162 165 167 168 179 180
Post 130 131 135 136 136 138 124 126 104 142

114 166 153 169 127 130 120 121 149 150

Control group
Pre 139 140 141 143 151 152 152 153 153 154

154 159 160 160 162 163 165 169 175 176
Post 130 131 144 146 128 156 161 162 160 131

158 166 150 186 188 153 144 147 169 170
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Table II. Two-sided 95 per cent con�dence intervals of �
using various methods for the �rst example.

Method 95 per cent CI Length

1 (0:308; 1:618) 1.310
2 (0:326; 1:646) 1.320
3 (0:300; 1:728) 1.428
r (0:351; 1:667) 1.316
r∗ (0:320; 1:635) 1.315

Table III. Lamb’s worm counts data.

Drug-treated sheep 18 43 28 50 16 32 13

Untreated sheep 40 54 26 63 21 37 39

The change from baseline (post–pre) for experimental and control groups will be used to
estimate the e�ect size.
The Shapiro–Wilk test for the normality of the change from baseline data gives a p-value

of 0.12 for the experimental group and a p-value of 0.17 for the control group, respectively.
It presents evidence that the change from baseline data from both groups follow normal
distributions. Since the F-test for equal variances gives a p-value of 0.22, the equal variances
assumption is plausible.
In practice, if an increase represents an improvement, the e�ect size � and its estimates

are de�ned and calculated as in previous sections. However, if a decrease represents an
improvement, � and its estimates are de�ned and calculated as −1 times those in previous
sections. Here, a decrease in systolic blood pressure represents an improvement. Therefore, the
unbiased estimate of � is 0.963. The 95 per cent con�dence intervals of � based on methods
1, 2, 3 as speci�ed in (1), (2), (3), respectively, r and r∗ are presented in Table II. All �ve
methods give similar 95 per cent con�dence intervals but the con�dence limits obtained by
methods 2 and r∗ are much closer.
The second example is a study presented in Reference [16]. A sample of 14 worm-infected

lambs was randomly divided into two groups. Seven were injected with an experimental drug
and the remainder were left untreated. After a 6-month period, the lambs were slaughtered and
worm counts were recorded as shown in Table III. The Shapiro–Wilk test for the normality of
worm counts data from the drug-treated and untreated groups gives p-values of 0.75 and 0.51,
respectively. It demonstrates that data from both groups follow normal distributions. Since the
F-test for equal variances gives a p-value of 0.92, the equal variance assumption is plausible.
Here, a decrease in worm counts represents an improvement. Therefore, the unbiased estimate
of � is 0.744. The 95 per cent con�dence intervals based on methods 1, 2, 3, r and r∗ are
presented in Table IV. The con�dence limits obtained by methods 2 and r∗ are much closer
than those obtained by methods 1, 3 and r.
From both examples, we observe the following �ndings. Hedges and Olkin’s [4] interval

in (2) and the r∗-interval are almost identical, while Hedges and Olkin’s [4] interval in
(1) shifts to the left side with the shortest interval length among the �ve intervals and the

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:639–651
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Table IV. Two-sided 95 per cent con�dence intervals
of � using various methods for the second example.

Method 95 per cent CI Length

1 (−0:340; 1:827) 2.167
2 (−0:313; 1:903) 2.216
3 (−0:376; 2:133) 2.509
r (−0:235; 1:955) 2.190
r∗ (−0:311; 1:877) 2.188

r-interval shifts to the right side. Kraemer and Paik’s [5] interval in (3) covers all other four
intervals with the largest interval length. These observations motivate us to study the coverage
probabilities and other performance measures of the �ve methods in small samples through
Monte Carlo simulations.

5. SIMULATION STUDY

In this section, we carry out simulation studies to compare the performance of the �ve ap-
proximate methods: con�dence intervals as speci�ed in (1), (2), (3), and con�dence intervals
based on the signed log-likelihood ratio r as speci�ed in (5), and the modi�ed signed log-
likelihood ratio r∗ as speci�ed in (7), for constructing a two-sided 90 per cent con�dence
interval for the e�ect size � in small samples. The performance of a method is judged using
the following criteria:

1. Coverage probability: the percentage of a true parameter value falling within the
intervals.

2. Coverage error: the absolute di�erence between the nominal level and coverage proba-
bility.

3. Upper=lower error probability: the percentage of a true parameter value falling
above=below the intervals.

4. Average bias: the average of the absolute di�erence between upper and lower error
probabilities and nominal levels.

The desired values for the coverage probability, coverage error, upper and lower error
probabilities and average bias are 0:9, 0, 0:05, 0:05 and 0, respectively. These values re�ect
the desired properties of the exact coverage probability, accuracy and symmetry of the upper
and lower error probabilities.
The sample sizes considered are (n;m)= (5; 5), (5,10) and (10,10), and the standard de-

viation � ranges from 4 to 0.2. We set (�1; �2)= (2; 1), and hence � ranges from 0.25 to
5.0. For each parameter con�guration, we generated 10 000 random samples from the nor-
mal distribution. Because the nominal con�dence level of the con�dence intervals studied in
the simulations is 0.9, the standard error of the simulated coverage probabilities on 10 000
random samples is 0.003. The simulated coverage probabilities, coverage errors, upper=lower
error probabilities and average biases for each method are given in Tables V–VII, where the
simulated average lengths are also given for each method.
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Table V. Coverage probabilities, coverage errors, error probabilities and average biases and lengths of
two-sided 90 per cent con�dence intervals for various methods with (n; m)= (5; 5).

Coverage Coverage Upper error Lower error Average Average
� Method probability error probability probability bias length

0.25 1 0.9125 0.0125 0.0422 0.0453 0.0063 2.1439
2 0.8981 0.0019 0.0513 0.0506 0.0009 2.1926
3 0.9253 0.0253 0.0352 0.0395 0.0127 2.5207
r 0.8421 0.0579 0.0722 0.0857 0.0289 2.1753
r∗ 0.8959 0.0041 0.0527 0.0514 0.0020 2.1729

0.5 1 0.9121 0.0121 0.0423 0.0456 0.0061 2.1685
2 0.8981 0.0019 0.0542 0.0477 0.0032 2.2177
3 0.9273 0.0273 0.0336 0.0391 0.0137 2.5834
r 0.8428 0.0572 0.0643 0.0929 0.0286 2.2138
r∗ 0.8966 0.0034 0.0511 0.0523 0.0017 2.2105

0.75 1 0.9108 0.0108 0.0472 0.0420 0.0054 2.2085
2 0.8969 0.0031 0.0467 0.0564 0.0049 2.2586
3 0.9316 0.0316 0.0372 0.0312 0.0158 2.6841
r 0.8437 0.0363 0.0570 0.0993 0.0282 2.2697
r∗ 0.8954 0.0046 0.0511 0.0535 0.0023 2.2651

1.0 1 0.9074 0.0074 0.0420 0.0506 0.0043 2.2630
2 0.8957 0.0043 0.0575 0.0468 0.0054 2.3144
3 0.9365 0.0365 0.0290 0.0345 0.0183 2.8193
r 0.8415 0.0585 0.0516 0.1069 0.0293 2.3487
r∗ 0.8950 0.0050 0.0509 0.0541 0.0025 2.3422

2.0 1 0.8903 0.0097 0.0436 0.0661 0.0113 2.6042
2 0.8847 0.0153 0.0651 0.0502 0.0076 2.6633
3 0.9544 0.0544 0.0234 0.0222 0.0272 3.6195
r 0.8357 0.0643 0.0341 0.1302 0.0481 2.8310
r∗ 0.8954 0.0046 0.0487 0.0559 0.0036 2.8138

5.0 1 0.8445 0.0555 0.0443 0.1112 0.0334 4.2767
2 0.8547 0.0453 0.0726 0.0727 0.0226 4.3738
3 0.9751 0.0751 0.0186 0.0063 0.0376 7.0456
r 0.8215 0.0785 0.0152 0.1633 0.0740 5.0375
r∗ 0.8978 0.0022 0.0464 0.0558 0.0047 4.9843

Method 1: Hedges and Olkin’s [4] interval in (1); method 2: Hedges and Olkin’s [4] interval in (2); method 3:
Kraemer and Paik’s [5] interval in (3); the highlighted values are those which exceed three standard errors.

From Tables V–VII, we observe that the signed log-likelihood ratio method is liberal. Its
coverage probabilities are lower than three standard errors below the nominal level (0.90) for
all cases in the simulation study. Also, it has the largest coverage errors and average biases
in all cases. Its error probabilities can be extremely inaccurate and asymmetric (0.015 versus
0.16) for large �.
In contrast, method 3 is conservative. Its coverage probabilities are greater than three stan-

dard errors above the nominal level for all cases. Also, it has the second largest coverage
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Table VI. Coverage probabilities, coverage errors, error probabilities and average biases and lengths of
two-sided 90 per cent con�dence intervals for various methods with (n; m)= (5; 10).

Coverage Coverage Upper error Lower error Average Average
� Method probability error probability probability bias length

0.25 1 0.9042 0.0042 0.0482 0.0476 0.0021 1.8393
2 0.8947 0.0053 0.0547 0.0506 0.0026 1.8671
3 0.9123 0.0123 0.0441 0.0436 0.0062 2.0297
r 0.8605 0.0395 0.0639 0.0756 0.0197 1.8502
r∗ 0.8929 0.0071 0.0524 0.0547 0.0035 1.8494

0.5 1 0.9030 0.0030 0.0480 0.0490 0.0015 1.8576
2 0.8938 0.0062 0.0561 0.0501 0.0031 1.8857
3 0.9149 0.0149 0.0423 0.0428 0.0075 2.0722
r 0.8585 0.0415 0.0602 0.0813 0.0207 1.8503
r∗ 0.8915 0.0085 0.0534 0.0551 0.0042 1.8495

0.75 1 0.9007 0.0007 0.0512 0.0481 0.0016 1.8879
2 0.8912 0.0088 0.0507 0.0581 0.0044 1.9164
3 0.9177 0.0177 0.0427 0.0396 0.0089 2.1418
r 0.8600 0.0400 0.0544 0.0856 0.0200 1.9122
r∗ 0.8916 0.0084 0.0522 0.0562 0.0042 1.9105

1.0 1 0.8986 0.0014 0.0474 0.0540 0.0033 1.9295
2 0.8901 0.0099 0.0600 0.0499 0.0050 1.9587
3 0.9238 0.0238 0.0367 0.0395 0.0119 2.2360
r 0.8582 0.0418 0.0511 0.0907 0.0209 1.9651
r∗ 0.8905 0.0095 0.0529 0.0566 0.0047 1.9625

2.0 1 0.8894 0.0106 0.0467 0.0639 0.0086 2.1941
2 0.8868 0.0132 0.0619 0.0513 0.0066 2.2272
3 0.9451 0.0451 0.0291 0.0258 0.0226 2.8043
r 0.8561 0.0439 0.0354 0.1085 0.0366 2.2957
r∗ 0.8942 0.0058 0.0509 0.0549 0.0029 2.2884

5.0 1 0.8646 0.0354 0.0455 0.0899 0.0222 3.5274
2 0.8716 0.0284 0.0665 0.0619 0.0142 3.5807
3 0.9723 0.0723 0.0188 0.0089 0.0362 5.3095
r 0.8478 0.0522 0.0208 0.1314 0.0553 3.8886
r∗ 0.8969 0.0031 0.0479 0.0552 0.0037 3.8655

Method 1: Hedges and Olkin’s [4] interval in (1); method 2: Hedges and Olkin’s [4] interval in (2); method 3:
Kraemer and Paik’s [5] interval in (3); the highlighted values are those which exceed three standard errors.

errors and average biases in all cases. Its error probabilities are lower than the nominal level
(0.05) and average biases are relatively large.
Meanwhile, methods 1 and 2 both perform well in terms of coverage probabilities and

symmetric error probabilities for sample sizes exceeding 5 per group and e�ect sizes up to
1.0. Their average biases are also relatively small.
Not surprisingly, the modi�ed signed log-likelihood ratio interval excels among the �ve

studied here. It has nearly exact coverage probabilities, or equivalently, nearly zero coverage
errors, and has the smallest average biases among the �ve methods in all the cases studied. In
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Table VII. Coverage probabilities, coverage errors, error probabilities and average biases and lengths of
two-sided 90 per cent con�dence intervals for various methods with (n; m)= (10; 10).

Coverage Coverage Upper error Lower error Average Average
� Method probability error probability probability bias length

0.25 1 0.9086 0.0086 0.0446 0.0468 0.0043 1.4957
2 0.9012 0.0012 0.0508 0.0480 0.0014 1.5126
3 0.9141 0.0141 0.0419 0.0440 0.0071 1.6067
r 0.8749 0.0251 0.0583 0.0668 0.0125 1.5010
r∗ 0.8990 0.0010 0.0503 0.0507 0.0005 1.5006

0.5 1 0.9058 0.0058 0.0461 0.0481 0.0029 1.5126
2 0.8997 0.0003 0.0523 0.0480 0.0021 1.5297
3 0.9174 0.0174 0.0392 0.0434 0.0087 1.6444
r 0.8756 0.0244 0.0539 0.0705 0.0122 1.5210
r∗ 0.8983 0.0017 0.0503 0.0514 0.0008 1.5204

0.75 1 0.9073 0.0073 0.0491 0.0436 0.0037 1.5404
2 0.8987 0.0013 0.0474 0.0539 0.0033 1.5579
3 0.9219 0.0219 0.0414 0.0367 0.0110 1.7056
r 0.8759 0.0241 0.0489 0.0752 0.0132 1.5543
r∗ 0.8988 0.0012 0.0491 0.0521 0.0015 1.5533

1.0 1 0.9068 0.0068 0.0431 0.0501 0.0035 1.5786
2 0.9007 0.0007 0.0535 0.0458 0.0038 1.5965
3 0.9288 0.0288 0.0333 0.0379 0.0144 1.7882
r 0.8766 0.0234 0.0437 0.0797 0.0180 1.5998
r∗ 0.9012 0.0012 0.0478 0.0510 0.0016 1.5983

2.0 1 0.8983 0.0017 0.0427 0.0590 0.0081 1.8191
2 0.8943 0.0057 0.0576 0.0481 0.0048 1.8397
3 0.9488 0.0488 0.0259 0.0253 0.0244 2.2785
r 0.8721 0.0279 0.0350 0.0929 0.0289 1.8826
r∗ 0.8993 0.0007 0.0481 0.0526 0.0023 1.8782

5.0 1 0.8787 0.0213 0.0437 0.0776 0.0170 3.0040
2 0.8792 0.0208 0.0648 0.0560 0.0104 3.0379
3 0.9725 0.0725 0.0182 0.0093 0.0363 4.3901
r 0.8622 0.0378 0.0243 0.1135 0.0446 3.2301
r∗ 0.8992 0.0008 0.0464 0.0544 0.0040 3.2167

Method 1: Hedges and Olkin’s [4] interval in (1); method 2: Hedges and Olkin’s [4] interval in (2); method 3:
Kraemer and Paik’s [5] interval in (3); the highlighted values are those which exceed three standard errors.

addition, its upper and lower error probabilities are more symmetric and accurate than those
of the other methods in the most cases studied.
Overall, both methods 1 and 2 and the modi�ed signed log-likelihood ratio method perform

much better than the liberal signed log-likelihood ratio method and the conservative method 3.
Furthermore, the modi�ed signed log-likelihood ratio interval is superior to the other intervals
for all comparison criteria discussed in this paper. Therefore, based on the simulation results,
we recommend the modi�ed signed log-likelihood ratio method for use. Meanwhile, methods
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1 and 2 have simple analytic solutions for con�dence limits, and they also perform well for
sample sizes exceeding 5 per group and e�ect sizes up to 1.0. Accordingly, methods 1 or
2 can also be used for sample sizes exceeding 5 per group and e�ect sizes up to 1.0. As a
�nal note, the average lengths are very close for all methods except method 3 which has the
largest average length.
We have also carried out simulation studies for sample sizes exceeding 10 per group.

These results, though not reported here, essentially corroborate those of Tables V–VII, and
are consistent with the simulation results presented in Reference [4, p. 87].

6. SAMPLE SIZE DETERMINATION

In many clinical trials, one of the primary objectives is to evaluate the e�cacy of an innovative
treatment. The estimation of e�ect size is a useful tool to achieve this objective. To ensure
a certain degree of accuracy for e�ect size estimation, a su�cient number of subjects are
needed. If we want to be 100(1−�) per cent con�dent that the error will not exceed a speci�ed
amount E in estimating the e�ect size �, the required sample size can be approximated based
on Hedges and Olkin’s [4] interval in (1) as

n=
z2�=2((1 + 	)=	) + (�

2=2(1 + 	))
E2

where 	=m=n.

7. DISCUSSION

In this paper, we have presented a new likelihood-based approach for constructing con�dence
intervals of e�ect size that are applicable to small samples. Simulation studies show that the
con�dence interval generated by the modi�ed signed log-likelihood ratio method excels among
the �ve methods studied in this paper and possesses essentially exact coverage probabilities
even for small samples, although the coverage probabilities are consistently but slightly less
than the nominal level. The calculations involved are straightforward because all the involved
quantities can be derived explicitly. We recommend the con�dence interval based on the
modi�ed signed log-likelihood ratio method for use. It can be applied to randomized parallel-
group experiments, where the comparison of treatments is of primary interest. Meanwhile,
some con�dence intervals of e�ect size proposed by Hedges and Olkin [4], as in (1) and (2),
perform well for sample sizes exceeding 5 per group and e�ect sizes up to 1.0. Typically, e�ect
sizes rarely exceed 1.0. In addition, they have simple analytical solutions for con�dence limits.
Therefore, these con�dence intervals can be used for studies with sample sizes exceeding 5
per group and moderate e�ect sizes.
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