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1., INTRODUCTION

In his unfinished manuscript, The Theory of Automata, von Neumann

introduces an unusual space obtained by iterating a 29-state automaton to

form an infinite 2-dimensional array. The 29-state automaton is so chosen
that the resulting space is computation-universal ("logical-universal'):

given any computation, there is a pattern of initial states which will cause
that computation to be carried out in the space. Although particular examples
and classes of computation-universal spaces have been considered since [Burks,
1960; Church, 1957; Holland, 1960-a; Moore, 1962; Myhill, 1962] our knowledgec
of the role of these spaces in the study of automata and computation remains
meager,

In spite of this lack, there can be little doubt of the possibilities
offered by universal spaces. Von Neumann's particular usage shows just how
far-reaching and unusual these may be: By using his space as a framework
within which to represent the construction of automata from simple elements,
he was able to give the first careful treatment of self-reproducing automata.
In a different vein, computation theory offers several appealing opportunities
for the use of universal spaces. For instance, a universal space can serve
as a uniform formal context for comparing computation procedures as to complex-
ity and efficiency. The usual approach via Turing machines fixes "work sauare",
""description', and similar conventions at the outset, typically with metalevel
statements; thus effects of changes in convention are placed beyond the theory's
reach. In contrast, the conventions associated with different computation
procedures can be dealt with explicitly in a universal space. This is an
important gain since changes in convention drastically affect the procedure

employed (the machine required) to carry out a computation.



The present paper seeks to bring the possibilities of universal spaces
into sharper focus. It begins (Compositions of Finite Automata) by characteri-
zing the automata which can be built up from an arbitrary finite or countably
infinite set of automata. The general idea of representing (or embedding) the
structure of one automaton in another is then examined (Embeddings and Compu-
tation Procedures). Finaily a general class of universal embedding spaces is
defined, some important subclasses are distinguished and several properties of
the subclasses apropos to studies of computation and construction are investi-
gated (Universal Compositions).

In treating construction, one cannot escape a preliminary commitment
to definition of automata in terms of "connected" sets of component automata.

A straightforward way to accomplish this is to treat an automaton as a device

for transforming sequences into sequences: the two finite functions used to
define an automaton, the transition and output functions, can easily be extend-
ed to functionals mapping sequences into sequences. (This contrasts with the
usual treatment based upon acceptance of finite strings.) "Connection' then
amounts to using the output sequence of one automaton as the input sequence of
another. A function, called a "composition function" in part 2, can be used

to specify which input sequences are to be identified with which output sequences.,
By restricting the class of composition functions appropriately, it can be
assured that:

(1) the composition of a finite set of automata is an automaton;

(i1) the composition of a countably infinite set of automata effectively

defines a unique output sequence for any component automaton for each

choice of free input sequences and assignment of initial states (free
input sequence = an input sequence not constrained by the composition

function).



Von Neumann's space is an example of a composition on a countably infinite
set of copies of a single 29-state automaton, Part 2 gives these ideas a
more rigorous formulation. Functionals, of a restricted kind mapping sequences
into sequences, become the mathematical objects of study corresponding to the
component automata, From the mathematical point of view, then, the composi-
tion function induces a set of simultaneous equations on the functionals,
These equations correspond to the constraints imposed by the identification of
sequences. (In effect, the automaton corresponding to a given composition
function is defined by imposing constraining equations on a set of functionals
corresponding to a ''free'" product-automaton.,) A composition function is
considered admissible only if it satisfies a requirement of 'local effective-
ness'; this requirement assures a unique solution to the (possibly infinite)
set of simultaneous equations. The unique solution defines a new functional.
If the set of components is finite, there will exist some finite automaton
with transition and output functions extending to this functional. That is,
the result of composition in this case is again a finite automaton,

Von Neumann's interest in construction procedures set three important
requirements on the space he defined:

(1) it had to be possible to represent (or embed) an automaton in

that space as a connected set of components (that is, the represen-

tation had to be "structural" as well as "behavioral' so that one

could study processes whereby simpler automata are connected (or

composed) to produce more complex automata);

(2) the space had to be homogeneous (so that the same component could

be represented in the same way at any position in the space —- an

important consideration if construction procedures were not to be

dependent upon their location in the space);



(3) given any computation, it had to be possible to represent in

the space some automaton capable of carrying out that computation

(to avoid a priori restrictions on the procedures which could be

represented and, hence, studied),
By defining similar properties for compositions one can characterize a
fairly general class of computation-universal spaces. The generalization
of property 1 to compositions depends in an essential way upon the notion
of embedding — mapping one composition (the object composition) into another
(the image composition) with preservation of structure and behavior, Speci-
fically, for a mapping from one composition to another to be an embedding it
must satisfy two conditions: the functionals corresponding to a component of
the object composition and its image under the mapping must be the same; the
images of sequences identified by the composition function of the object
composition must be identified by the composition function of the image com-
position. With this definition homogeneity, property 2, becomes a requirement
that, if a composition can be embedded at all, the same embedding procedure

must serve mutatis mutandis to embed that composition anywhere in the image

composition., Finally, property 3 becomes a requirement that, given any
computation, some composition capable of carrying out that computation must
be embeddable in the image composition (in what follows this requirement will
be restricted to computations which can be carried out by finite automata — a
weakening not altering essential points of the discussion), Part 3 of the
paper develops these concepts,

The above properties can be combined, as indicated, to define the set,
U, of homogeneous, computation-universal compositions. It can easily be shown
(part 4) that each member of this set is a composition over a countably infinite

set of copies of a single automaton (a single generator) and that the elements



of the composition can be located in a regular fashion in an n-dimensional
cartesian coordinate system, A natural subclass, Ud’ can be defined by
adding as a requirement one further property of the von Neumann space -- a
requirement that inputs of the generating automaton affect its outputs only
after a non-zero "delay". In other words, the generating automaton is re-
quired to be of the Moore type., The subclass Ud includes the natural
n-dimensional generalizations of von Neumann's two-dimensional space [von
Neumann, unpublished] and counterparts of Church's potentially-infinite
automata [Church, 1957]; it excludes "most" of the iterative circuit computers
[Holland, 1960-a] although these fall within the class U, A second sub-class,
Ug, of U can be defined by strengthening property 3 to a requirement that
all finite compositions be embeddable; i.e,, elements of U, must be composi-
tion-universal and homogenenus. Certain of the iterative circuit computers
belong to the class Ueo

Part 4 investigates and compares U, U4, and U.. It is proved there
that "most" finite compositions can not be embedded in a composition of class
Ug, even if the notion of embedding is considerably weakened., This is so
even though every computation can be realized in the space by some embedded
compositicn, The theorem turns on the failure of Kleene's representation
theorem [Kleene, 1956] for the embedded compositions. It is a consequence
of the theorem for Uy that two compositions which are embeddable in a space
of type Uy may be further composed (interconnected) in such a way that the
resulting composition is no longer embeddable (assuming a common "input rate"
for all images). Stated in another way: Various construction procedures
will not be realizable in spaces of type Ug unless "input rates" are permitted
to go to zero as the complexity of the embedded compositions increases. A

further consequence: Several different computation procedures may employ a



common subroutine, realizable by a single composition, and yet in a space of
type U, the embedded compositions corresponding to the different computations
will not have a corresponding common part,

Since there do exist compositions which are not only computation-
universal but composition-universal as well, the classes Uyq and Uc must be
non-empty and disjoint. Hence for a composition to be composition-universal
it is necessary that its generating element be of the Mealy type - it must
have states for which the input-to-output delay (lag-time) is zero. As a
consequence compositions of type U.» though locally effective, may in some
states exhibit arbitrarily long (finite) connected sequences of elements with
zero lag-time,

Part 5 provides a closing commentary on definitions and results. Two
plans for studying computation and construction procedures are contrasted:
One may identify the class of '"realistic" universal spaces with the class Ugo
restricting the admissible realizations of finite automata (by requiring a
less than exponential '"fan out" in compositions) so as to retain universality,
Alternatively one may identify the class of universal spaces with the class
U.» permitting channels with zero delay. It can be shown that any space of
type Uy can be embedded in a space of type U.: thus either approach can in

fact be implemented via the spaces Ue-



2. COMPOSITIONS OF FINITE AUTOMATA

This study of computation-universal spaces is based upon the possibility
of defining an automaton in terms of a 'connected" set of component automata.
Hence, the first task is to characterize the automata which can be defined by
connecting elements of an arbitrary, finite or countably infinite, set of
finite automata., A composition function will specify the connections in each
case; thus we must characterize the automaton corresponding to each composition
function. Since composition is to be defined over arbitrary sets of automata,
the sets may include automata of the Mealy type. That is, the output of some
component automaton, in some states, may depend upon its current input. (The
logical nets of Burks and Wright [Burks and Wright, 1953], which are defined
over a set of primitives including 'non-delay" switches, are examples of such
compositions). In order that the behavior of the resulting compositions be
effectively defined it is necessary to restrict the class of composition func-
tions by a requirement of "local effectiveness'. Roughly, a composition is
locally effective if the state of each component automaton at any time is uniquely
determined by the transition functions of automata in some finite '"neighborhood"
of the component. That is, the state of a component at time t+l can be com-
puted from the internal states and states of free inputs (inputs not constrained
by connection), at time t, of a finite, connected subset of elements of the
composition — a subset which may in general change with time, In the defini-
tions below most of the complications come from this requirement. However,
unless the class of compositions is to be unduly narrowed (excluding thereby
"most" logical nets), the requirement cannot be avoided, It will be shown that
the behavior of each component of a locally effective composition is uniquely

and effectively defined.



Compositions will be defined for any indexed set of elements
{aa > a € A} satisfying the following conditions:

A is a finite or countably infinite ordered set

Ay 7 da’ Sa’ Oa’ ta’ Yo’
m
I =1% I . , acartesian product on finite sets I ;
¢ i=l 1 a,l
Sa, a finite set 5
n(l
0 =1 0 . , a cartesian product on finite sets 0 R
o j=1 ©»J o)
fOl Ia X Sa + S ;
u, Ia X bu > Oa .

X and Y will designate the (lexicographically ordered) sets of all pairs of

indices used to specify sets Ia i and Oa j respectively:
) ’

n

X={(0,i1)3 a e A and i = m,}

HA

Y = {(0,j) 3 a € A and j

n } .
Each quintuple a, with attendant conditions constitutes one of the standard
definitions of a finite automaton: the elements of Ia,i being interpreted as
the states of the ith input of a s the elements of S, as the internal states
and the elements of O . as the states of the jth output. The quintuple is

>
used to define recursively two families of functionals Fyq and Ua (parametrised

by Sa) from infinite. sequences on I, (input sequences) to infinite sequences

on Sa and 0 respectively (intcrnal state sequences and output sequences):
a

F : INxs >N
(a4

o a Q
u : Nxs »oN , N=1{(0,1, 2, ...}
o Q a o
where IN = {I 3 1 N1}
o ~-Q - Q
N - jc . .
sa {ga > S, N > Sa}
N _
o= (0,3 0y 1N >0}



The functions _I_a, §_a, _O_Q are interpreted as infinite sequences. The recursive
extension of fa and u, to F  and U, can be given as follows:
F (1,(0),s) =
F (L (t+1),8) = £ (L (1), F_ (I (1),s))

U (1 (8),5) = uy(L,(8), Fy(Ly(t),s)) seS,,teN .

v

An unrestricted composition, A, on {aa} is a quintuple <IA’ Sps OA, fA’ u,>

such that:

s£\_=naeASa= {s : A+gsaaaeAmds(a) eSa}
m
= o = = {i : 3 i
IA HaeA Hi:l Ia,i erx Ix {i: X~ Hlx > x e X and i(x) € Ix}
0, =1 Mo 0 , =1 0 = : Y >~ U0 3 Y and 0
T IIj=1 i = Tyex Oy T lo s ¥ 2000 ye Yand oly) e O]

Under interpretation, i : X - UIx is a particular input state assignment to
X

the inputs indexed by X, and IA is the set of all possible input state assign-

ments (functions); Sa and 0, are interpreted similarly. The transition function

fA : IA X SA > SA is thus a functional, from assignment functions into assign-

ment functions, satisfying the requirement:

£0(1,5) (o) = s'(a) = £,(i(a), 5(a)
B where 1 ¢ Il_\-, s,s' ¢ Sf\_
i(a) = (1(0,1), i(0,2), soey i(a,ma)) .
Similarly uy : I, x S, + 0, satisfies
T @90 s o@ = uyl), sW@)

Each composition over {aa} will be defined in terms of a composition
function y satisfying the following conditions:

(1) dorﬁain, Y'cC Yy

(ii) range, X' C X

(iii) y : Y' > X', 1-1 onto
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(iv) Oy C IY(Y) .
Under interpretation the function y determines which inputs of automata in
set {aa} are connected to outputs of automata in the set., Property (iii) is
a requirement that every output be connected to at most one input = "junc-
tions" or "fan-outs" must be represented by a component automaton with multiple
outputs. (Note that {aa} may include "fan-out" elements with no delay:
uy(i,s) =1iforys=s (a,l),...,(a,nu), where uy =4f projy ua(i,s)). Property
(iv) assures the compatability of the symbols of the output of index y with
the symbols of the input of index x -— all encoding and decoding procedures
must be carried out explicitly by component automata. Each x ¢ X' in the range
of y selects an input of the unrestricted composition A which is to be con-
strained by the requirement

(vt) [I,(t) = Qwul(x)(t)] .

More formally the composition function induces a set of equations of the form

Uy(_]_:_a,s) =1 . (%)

=Y (y)
(For y = (a,j), Uy(la(t),s) =4f PTOj y Ua(zu(t),s), an infinite sequence over
Oa.j; lw(y) is defined similarly).

Not all functions y satisfying conditions (i)-(iv) will yield a con-
sistent set of equations: it may be impossible for the sequences Oy(t), yeY',
to satisfy both the equations induced by y and the equations defining the 0
in terms of the functions ue That is, y may specify the equivalent of a cycle
of switches without delay, e.g. a negation element with its output connected
to its input., Or, if {aa} is countably infinite, y may specify a two-way in-
finite line of switches, none of which involves delay. To assure the consistency

of the equations (x), y must satisfy a further requirement which imposes "local

effectiveness" on the equations. This can be accomplished as follows:
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A sequence yl, cees ¥, such that % € Y', 1 =hs 2, will be called
connected if, for h < &, prOj1 Y(Yh) = projl Yhe, (Where proj1 y = a if
y = (a,j)). IX proj1 y1 = q, proj1 Yg = w and % < », the connected sequence
will be called a sequence from a to w of length &, A connected sequence may
also be infinite, either because an infinite number of distinct elements of
Y' are involved or because there exists, say, a sequence yl, ceer Yy such that
proj1 y(yg) = proj1 y1 (such as would be generated from elements connected in
a cycle by y, cf. [Holland, 1960])., A connected sequence p = {yl, coes yl}
will be called acyclic if h # h' implies proj1 Yy # proj1 Yo s 1 Sh, h' § g,
y will be called consistent with respect to s ¢ SA if, for each a ¢ A,

there is an integer Lo N such that every connected sequence to a of length
]

S o depends only on the state

2 contains an element yh = (8,j) such that u
’

8s]

of aé, s(8), and composition inputs of aG, (6,i) € X-X'. The requirement that

u(S j depend only on the state and composition inputs of a, can be stated more
»

formally as:

(Vil,iz € Ié) [iIIX-X' = izlx-x' = u, j(il(é),s(d)) = us’j(iz(é),s(é))]

’

By composition input states (and composition output states) we mean possible

state assignments for inputs (and outputs) not constrained by v:

-
n

s (1] XoX? 3
YA {i]|X-X >iel,}

%

0

- ' 3 o
Y,A {o]Y-Y' 3 0 ¢ OA}

Theorem, If y is consistent with respect to s e S, then each i' ¢ I A has a

-— »

unique extension to an i ¢ IA satisfying equations ().

Proof outline:

Let Rs o be the set of all finite acyclic sequences to a,
»
{yl. seer Ypo ovd yl}, such that uy , y1 = (8,j), depends only on s(§) and
1
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composition inputs to Y (6,1) € X-X', while each uyh, 1>h2 2, depends
upon at least one input indexed by x € X'. (Under interpretation, the first
element of each sequence involves a ''delay" while the remaining elements are
"non-delay" switches, when A is a state s.)
If vy is consistent with respect to s then no sequence in Rs,a is of
length greater than 2S,u and every connected sequence to a contains some se-
quence in R, ~as a final sub-sequence, Note that Rg o is finite and can be

’ ’

effectively determined in this case,

Let B, = {B B = proj1 y for y an element of some sequence of Rg 0L}.
S, ,

B 4 indexes the set of automata having outputs belonging to sequences in Rg e
’ ’

For any i' ¢ I and for each x such that proj x ¢ B, , the equations
YsA P 1 a

S,
induced by y determine i(x) uniquely, using just i'lBs.a and SlBs,a‘ Moreover,
if proj1 X € Bs,g’ B # a, the value for i(x) determined from Bs,B is the same
as that determined from Bs,a° All of this follows readily upon modifying the
algorithm of Theorem X, [Burks and Wright, 1953], so that it applies to the
sets Rs.ao

Since for every x e X' there exists at least one set BS o such that

’

proj1 x e B, ., i' can be extended to i ¢ I, as follows:
’

s —
i'(x) if x e X=X'
i(x) =

the unique value, u (i(proj x), s(proj x)),
ey : :

determined by the Burks-Wright algorithm if

x e X! .
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For y consistent with respect to s, let us(i') € IA denote the
extension of i' guaranteed by the above theorem,

y will be called a locally effective composition function (LECF) if

the following conditions are satisfied:

(i) there exists a computable function s € S, for which y is

A
consistent, -
(ii) if y is consistent for s ¢ SA then, for every i' ¢ Iy,A' y is
consistent with respect to fA(us(;}),s). B
For y a LECF define: B
SY:A = {s ¢ SA 3 vy is consistent w.r.t. s and s is computable}
£, A0S = £,(,(1),9)
u ,Git,s) = u;(us(i'),s) fori' el uscS 4 .

,—- —

For each LECF y and unrestricted composition A the corresponding composition

éy, on {aa} is the quintuple <IY:A’ S f >, (Where no

A Ty, A OY._{\_’ YA’ uv.ﬁ

confusion can arise the subscript A will be dropped, i.e., IY will denote
IY,A’ etc,). Thus the set {fw 3 A is an unrestricted composition and y is
LEdE over A} will be the set of all (finite and countably infinite) composi-
tions (see AN and EW1 of Fig., 1 as examples). The definitions given earlier
for finite automata will be used for all compositions; thus S$ = {§_Y 3 §_Y : N~ SY}
etc.

Under interpretation, a composition is so defined that there is at
least a unit delay in every cycle of elements and in every infinite non-re-
peating sequence of elements; note that the delays need not appear at the

same position each time and that they may, for instance, become less and less

"dense'" in the space with time.
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Theorem, If A is over a finite set {a,} then, for any LECF y over A, AW

is a finite automaton.

Theorem, If A is over a countably infinite set {aa} then, given any t e N
and any a € A, §q(t)|“ can be calculated from §y(o)|B(a,t) and ly(o)|B(a,t),
cees lq(t)|B(a,t) where B is a computable function and B(a,t) is a finite
subset of A containing a,

(Under interpretation, this theorem says that the state of any element a, of
the composition at any time t can be determined from the initial state and
composition input sequence up to time t of a finite portion of the composition,
indexed by B(a,t) - B(a,t) will in general be an unbounded function of time.
Repeated use of the Burks-Wright algorithm enables determination of B(a,t)

for any a and t.)

Theorem. The property LECF is decidable for all y over finite A.

(The proof of this theorem follows from a variant of the algorithm for deter-
mining admissible states of a finite automaton, cf. [Burks and Wright, 1953]).
Theorem. The property LECF is not decidable for all y over all A.

(The proof of the theorem depends upon the representability of all Turing
machines in particular A constrained by y: There exist vy and A such that,

if as goes into state s*, y is not consistent for any sY for which sY(a) =8s*,
Moreover, y can be so selected that deciding whether ag takes on state s*
depends upon a solution of the halting problem, Thus, decidability of LECF
for y would yield a decision procedure for the halting problem).

For some extensive sub-classes over countably infinite sets {aa}, such as

the class of iterative circuit computers, it can be proved that all associated

y are LECF,
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The following definitions will be useful:

{al, .o+, 3} will be called a set of generators for ﬁy if {aaa a e A}
consists only of copies of elements of {al, ceey ak}.

B over {b,d B e B} will be called a subcomposition of A over

-y 8 -y
s .. . i} , —
{a,y ae A} if: (1) {bB} S {a }, (1) y' = leB where Y, = {y ¢ Y' 3 proj v B

and proj1 vy(y) € B} .
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3. EMBEDDINGS AND COMPUTATION PROCEDURES

The central objective of an embedding is to mark out, in some (image)
composition, a sub-composition which will exhibit the same local behavior as
a given (object) composition. For every element in the object composition
there must be distinct part (a sub-sub-composition) of the image which defines
the same functionals (over images of the free input sequences). Among other
things, this amounts to complete preservation of local properties of the infor-
mation flow, Thus one can study such properties in the embedding. If many
compositions can be embedded in a single image composition, various comparisons
and interactions can be implemented and studied., Note that only part of the
inputs (or outputs) of the image sub-composition may be required for the embed-
ding; also it may be that several inputs (outputs) of the sub-composition
will be required to "encode" a single input (or output) of the object composi-
tion. This "encoding' causes problems when one tries to reflect the connection
scheme of the object composition in the image sub-composition, The definitions
are cumbrous largely on this account,

We will consider first a strict notion of embedding which preserves
all local behavior on the original time-scale, Afterward this notion will
be weakened so that the object composition can be partitioned and only behavior
of and connections between elements of the partition need be preserved and this
only on a dilated time-scale,

Let éﬁ be a composition with associated index sets A, X, Y. Let qu
with associated index sets Al, Xl, Y1 be a sub-composition of E”z‘ Let ¢ be

a mapping from A, X, Y and Sy, IY’ 0Y to subsets of Al, Xl, Yl, SYI, v,

respectively (i.e. ¢(a) C Al, $(x) C Xl, etc.). ¢ will be called a strict
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embedding of éq in EY (on EY ) if the following conditions are satisfied:
2 1

(i) Distinct {elements, inputs, outputs} map onto distinct sets of
{elements, inputs, outputs}:

af o =9 Nola) =h x#Fx =>0(x)Nox) =4, ,
and y # y = ¢(y) N ¢(Y1) = A, where A is the null set.

(ii) Each {input, output, composition (éw) input, composition (Ay)
output} of an element of index a maps onto a set of {inputs, outputs,
composition {Ewl) inputs, composition (qu) outputs} of the subset
of elements in qu indexed by ¢(a):

prozi1 ¢(x) C <1>(p1"0j1 X), projl ¢(y) C <b(pr03'1 y)

X e X-X' = ¢(x) C Xl—X;, y € Y=-Y' => ¢(y) C.YI-Y; .

(iii) If y is connected to x by y then all outputs in ¢(y) must be
connected by yl to all inputs in ¢(x);

e(v(y)) = Y1(¢(Y))~

(iv) If two {internal, input, output} states of éy assign the same

state to {element a, input x, output y} then the images of these

states must assign the same state to {¢(a), ¢(x), ¢(y)}:

s(a)
i(x)

oy) = o () = $(0) [ (y)

5 (o) => ¢(s) | ¢ (a) ¢(s1)|¢(a)
"’“1)'“"’

¢(ol)l¢(y) .

i) = o(1)|o(x)

(Note that not all states of Eﬂ need be images of states of éy)'
1
(v) When EN is in state ¢(s) the state transition function, fY ,
1 1
depends only on ¢(s) and states assigned to images of composition in-

puts of éq :
i'e(X-X') = i'|o(X-X") => £ (i', ¢(s)) = £ (i}, ¢(s))
1 Y1 Yl 1
where i', i' ¢ I .
1 Yl
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(vi) The state transition function of the image of a acting upon
images of input and internal states of a must yield the image of
the successor state produced by the transition function of a, fa H

similarly for u, :

£y () P [0(0), () [0(a))
(o(1)[¢(a), ¢(s)]¢(a))

¢fa(i|a1 s|a)

Yy (a) ou (ifa, s|a)

where f is the transition function of the sub-composition

¢(a)

indexed by ¢ (o) and similarly for u¢( ) .
o)

Conditions (v) and (vi) assure that, for every pair of local transformations

(Fa,Ua) in the object composition, there is a sub-composition of the image

with transformations (F¢(a), U¢(a)) which can be restricted so as to be the

same as (Fa,Ua). Conditions (i)-(iv) assure the proper composition of these

transformations in the image. Figure 1 presents an example of a strict embedding.

If ¢ satisfies the following weakened requirements it will be called

a weak and b-slow embedding or, briefly, an embedding:

[weak]

(i)-(vi) All requirements for strict embedding stand except as altered
by (vii) and (viii).

(vii) Let fa be partitioned into a set of disjoint sub-compositions.
Each such sub-composition may be treated as a single element and be
embedded accordingly. Thus y need only be preserved over connections
between sub-compositions., More formally: Let éy be partitioned by

a partitioning, N,of its index set, A. Let {A, } represent the set

Y|yp

of induced sub-compositions. Then condition (iii) is to apply only
toy ¢ YP-Y;, P ¢ 1. All other conditions are modified similarly,
(Under interpretation, a weak embedding permits one to ignore all struc-

ture and information flow within the sub-compositions {AXIY }; only
P
preservation of the associated functionals, FY|Y and U v’ is required).
Y

p I P
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A B
-y —Yl
X' = {x , x } X' = {Ix , lx Ix Ix )
12° 21 ] 12 21 31 32
Y! = } y' = {ly 1 1 1
{y“, Y2 1 ¢ 11 12 22 32}
1 ) 1 | i
y lyu Y22 y I Yo Vi Y Yy
1 ] 1 | 1
X
() a1 12 YY) % %3 T
- _ ol 1 -
¢(a1) {81.62} ¢(y11) { Y 0 } ¢(x11) { x22}
= {8} = (! x )= {!x }
¢(02) {33 ¢(Y21) { Y31} o( 12) L
= {1 j = {Ix ,x }
¢(Y22) { Y32} ¢(X21) 51 55
¢(Su ) C SB X SB , etc.
1 1 2

1

1

Note: j = R 1 = , = = ¢(proj
[ pro;1 ¢(y11) prOJ1 { Y., y22} {B1 82} C {81.82} ¢(al) ¢ (1 Y

= = (1 | - 1 1 = ,
and ¢(Y(Y11)) ¢(x21) { X x32} {Yl( y11)’Y1( yzz)} Y1(¢()11))

etc., as required.]

Figure 1.

EXAMPLE OF STRICT EMBEDDING
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[slow] (viii) A b-slow embedding yie1d$ an image with a time scale t' = bt,
where t is the time index of AW' That is, if oy is the output state
of éy at time t, the output state of the embedded composition will
be ¢(°Y) at time bt, To accomplish this, input sequences are ''slowed"
by the "insertion' of b-1 "no-signal" states between signals, cf,
[McNaughton, 1962]. Formally, the definition depends upon an extension

of £ and u, to strings on IY in the usual way (cf. [Rabin and

Y Y
1 1 1
Scott, 1959]). Ib will denote strings of length b over I and, if
YI Yl
i* ¢ 1271, ¢(i) + i* will denote a string of length b with first

y
1
(earliest) element ¢(i). The following formal condition for a b-slow

embedding weakens requirement (vi):

For all i ¢ IY there exists a string i* ¢ 12'1 such that for all s ¢ SY
1

and y ¢ Y-Y' (with £ and u_ extended to ID )
Yl Yl Yl

£, (00 + 1%, 9(s))[e(e) = (£ (3,5) (o))
1

u, (e(d) ¢ i*, o(s))fe(y) = ¢(uY(i,S)(Y))
1

Thus the strings ¢(i) * i* of length b become the images of the input

states i, The conditions assure that, if ly = ¢(lY)’ then, for all
‘ 1

t, §W (bt) = ¢(§q(t)) and Qy (bt) = ¢(Qq(t)). (Under interpretation
1 1

the signal-processing rate of the image is 'slowed" by a factor b).
The reader can develop a considerable understanding of slow embeddings by a
close reading of McNaughton's discussion of '"slow automata' [McNaughton, 1962

and draft].
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The following additional definitions will be useful:

An isomorphic embedding ¢ of éy on EN is a strict embedding such that:
1

n
1

¢ (x) y = ¢(y)

QR
n

¢(a) X

¢ S¢(a) X I¢(x) OY - O¢(Y)

Two embeddings, ¢1 and ¢2, of AN in qu will be called identically
oriented if:

(i) there is an isomorphic embedding, 6, of the sub-composition indexed

by ¢1(A) on the sub-composition indexed by ¢2(A) such that 6¢1 = ¢2;

(ii) for all a,a’' € A and for any connected sequence p {from ¢1(a) to

¢1(a'), from ¢1(a) to ¢2(a)} there exists a connected sequence p' {from

¢2(a) to ¢2(a'), from ¢1(a') to ¢2(a')} such that proj2 p = proj2 p!

» esey 1 ) just in case yh =

)

(where pro;2 p = (11, ceey 1h

The characterization of homogeneous compositions (in the next section) will be
based upon this definition of identical orientation,

Prior to defining computation-universality for compositions we also
need a relevant definition of computation. The definition which follows is
related to that of Burks [Burks, 1960]:

Let Zj = {0 : N~ Ny 3 Nj =10, 1, euuy j }}o LetT :'Zi > L be a
functional from sequences into sequences, We wish to define a finite compu-
tation procedure for I' (of course, only some I will admit of such procedures).
Augment a composition éq by two mappings:

Al : Ni u {8} -» I; 1-1 onto, I; C IY

1\2 10y - N U {a} 1-1 onto, 0y C o,

The symbol 'Q' under interpretation determines the "non-signal" states, The mappings
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Al and Az are extended to infinite sequences ¢ ¢ L and OY € Og (treating
sequences as strings and allowing '"signals' to be se?arated by '"no signal"
sequences) as follows:

M@ =2 @, @ =tw) - a @), neN Ui

1 1 1 1 1 1

A (o:b,1,8) = (W@ A}:(c(l)) c @) sy, s es

A (0)=2x(0(t ¢« A (0 (t ' aee

2(_,\() 2(_,Y( 1)) z(—v( 2))

where Azcg”(t)) # Q just in case t = tj .

Séq’ Al, Az, s> will be called a b-uniform computation procedure for T and T

will be called (b-) uniformly computable if

Vo ¢ L, teN)(Ft' e N)[Azuykl(o,b,r,s) = I'(0)]
and [UYAI(o,b,r,s)(t) # Q just in case t = 1' + jb] .
That is, at the rate of one input (output) '"signal" every b time-steps, and
independent of elapsed time 1 before the first signal, AN must transform signals
corresponding to successive elements of ¢ into signals corresponding to successive
elements of I' (o).

The set of finitely computable T' could be broadened considerably (and
naturally) by using A: : N? > Is and x; : 02 > N? in place of Al and Az. If,
under quite general conventions, some finite éN can compute I then one can
show that éW can be composed with an acyclic (encoding) composition EN so that

1
the resultant composition computes I via A* and A* , Thus the extended defini-
1

2
tion would serve well for the study of finitely computable I'. However, this
line will be avoided here because it is more complicated and because the theorems
and corollaries of part 4 hold for any class of finitely computable I' containing
the uniformly computable I' as a subclass,

Theorem: If T' is finitely computable in the sense of [Burks, 1960] then T is

uniformly computable.
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Theorem. Corresponding to each regular event over a given alphabet there is
a distinct uniformly computable T,

Note that the elements of Zj can be interpreted as representations of
fractional real numbers. With appropriate restrictions various non-trivial
uniformly computable T' can be interpreted as continuous real functions.

Lenma, Let ' : I, - Zj and T' : Ej > Zk be arbitrary b-uniformly computable
functionals except that the range of T is the domain of T''., Let <AN’ Al, AZ, s>
and <é;', A;, A;, s'> be arbitrary b-uniform computations for T and T'' respec-
tively., Then there exists an acyclic composition E”l such that:

(1) the composition outputs of AW can be identified in 1-1 fashion with

the composition inputs of qu and the composition outputs of qu can be °

identified in 1-1 fashion with the composition inputs of é;. to form

. . . . .
a new composition EN involving only ﬁw, AY" and E ,

dY
2 1
(ii) the output functional of C_ satisfies the equation
P =y q
2
u =u,u U ,
Y2 Y Yl Y
(iii) <CY , A, A', s">, for an appropriate s" ¢ SY , 15 a b-uniform
- 2
2 2

computation procedure for TI''T since
Vo e 2., 1 ¢ N U, U UM (o,b,1,8") =T'T(0 .
Vo ez, [ Uy Uy Uy, (00,7,5) (0)]

(Under interpretation the output of Ay can be connected to the input of ﬁ;,

via the combinatorial recoding E, so that the resulting composition computes

=Y,
the composition of the functionals T and T',)

Theorem, Let b(éﬁ, r) = minb {b> AN can b-uniformly compute T} undefined if

AN cannot b-uniformly compute I'. Given T', T', and E”z as in the previous

lemma, Eq can at best bo-uniformly compute I''T where bo = max{b(éﬁ,r), b(é;,,r')}.

2
(The "speed" of the faster computation procedure is wasted).

Theorem. If éq can b-uniformly compute T and if ¢(éﬁ) is a b'-slow embedding

of éq then ¢(éy) can b'b-uniformly compute T,
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4. UNIVERSAL COMPOSITIONS

Using the definitions thus far set down we can at last attain a
definition, fairly general and fairly concise, of the principal objects of
study.

A composition V., of index V will be called universal and homogeneous

for (uniformly)computable I or computation-universal if:

(i) for each (uniformly) computable T' there is an embedding ¢, into

Xw’ of a composition éq capable of (uniformly) computing I (It is

assumed that the class of computable TI', however defined, includes

the class of uniformly computable T.);

(ii) if ¢1 embeds éﬁ of index A in !w then, given arbitrary a ¢ A,

€& € ¢(a) and &' ¢ V, there exists ¢2 embedding éﬁ in !w with identi-

cal orientation so that

8(¢) = ¢

(where 6 is the isomorphic embedding specified by the definition of

identical orientation).
Condition (ii) assures that, if a composition can be embedded at all, it can
be embedded anywhere in the space with identical orientation. Thus, in a
sense made precise in the next theorem, all "translations" of the original image
are also images. As a result, properties of the image such as its connection
scheme can be made independent of the '"location' of the image. If the univer-
sal space is to be used to study growing automata and construction procedures
this requirement is critical,

A composition W of index W will be called universal and homogeneous

for finite compositions or, briefly, composition-universal if:




24,

(i) given any finite composition éy there exists an embedding ¢ of

A, in W_;

2y 1 -

(ii) as for computation-universal,

The work of von Neumann [von Neumann, unpublished] establishes the
existence of computation-universal compositions. It can also be shown that
there exist composition-universal compositions (the class of iterative circuit
computers [Holland, 1960] is an effectively defined class of compositions
containing a subset of composition-universal compositions)., Note that the

class of composition-universal compositions, U,, is a subclass of the class

of computation-universal compositions, U.

Theorem, The following conditions are necessary for a composition !” to be

computation-universal:
(1) the composition must be generated by a single element,
(ii) it must be over a countably infinite set of elements,
(iii) strings of output indices are commutative, i.e, if o = proj2 p
where p is a connected sequence from o to B, then for each permutation
o' of o there exists a connected sequence p' from o to B such that
o' = proj2 p'.

Proof outline:

For (i), let a, and ag be any two elements of V, and consider the
one-element composition Aq which is simply a copy of a,. Obviously there
exists ¢1 embedding AN at o in !w' Hence, by the second condition in the
definition of computation-universal, there must be an embedding ¢2 of AN at 8
and an isomorphic embedding 6 of ¢1(éﬂ) =a at B such that 9¢1 = ¢2. It
follows immediately that the quintuples <IB, SB’ OB’ fB’ ug> and

o 0,» fu, u > must be identical,
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(ii) follows at once from (i) and the existence, for arbitrary k, of
I' computable only by compositions éy wherein the cardinality of SY exceeds k.,

(iii) follows from the common cardinality of all input (output) index
sets (since !» is generated by a single element) and the following argument:
Let o = (yl,yz) be any two-element connected sequence in V, with, say, y1 =
(a,i), y2 = (B,j), and proj1 v(yz) = §, Let 6 be an identically oriented
isomorphic embedding of the sub-composition on elements «,B with 6(B) = §.
But then y2 constitutes a one-element connected sequence from 8 to § whence
by identical orientation there must be a connected sequence p1 from o to 6(a)
such that proj2 p1 = proj2 y2 = j. Moreover, since y1 constitutes a connected
sequence from o to B, there must be a connected sequence p2 from 6(a) to 6(B)
such that proj2 p2 = proj2 y1 = i, The sequence p' = (pz’pl) is connected,
from a to 6(B) = §, and proj2 p' = (j,i). Since proj2 o = (i,j), with 1,j
arbitrarily chosen, this proves commutativity of indices for arbitrary pairs,
From this, commutativity for arbitrary strings of indices can be established

in the usual way,

It is a consequence of this theorem that we can ''co-ordinatise'" the
computation-universal spaces in terms of a subset {nl, coes nk}, n £, ,
of the output indices of the generator: Define a non-oriented connected
sequence from a to B to be the same as a connected sequence except that, for
each Yp? either prOjl(yhﬂ) = 1r>r<>J'1 v(y,) or proj l(yh) = projl vy, is
permitted, Count an index occurence as -1 in the latter case. Choosing some
o as origin, the position of any a' is given by a k-tuple having its jth
component equal to the sum of the (signed) occurences of index nj in any non-

oriented connected sequence from o to &', The above theorem assures the
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uniqueness of this number; the resulting co-ordinatization is the usual
k-dimensional (integral) cartesian grid,

The theorem also enables us to define simply one further class of
compositions:

Ud = {!N > !v is computation-universal with a Moore automaton

as generating element},
Elements of Ud are the most natural generalizations of von Neumann's "logical-
universal" space because each exhibits the '"propagation-delay" or non-zero
lag time which plays an important part in von Neumann's development. Refer-
ring to the definition of slow embedding, lag time can be more formally defined:
a composition éﬁ has lag-time b if (extending u to strings of length b+l):

(31, 4" e 1) (Vs e ) (Vix, is* ¢ 1:) [u (i*,5) = u (i**,5)

and uy(i'i*,s) # uY(i'°i*’s)] .

If XM € Ud has a generator with lag-time b and if the shortest connected
sequence from a to B8 in !N has length %, it will take at least b% units of time

for the output of element a, to be affected by an input to a .

B
The central result of this section establishes the set Ud as disjoint
from the set U, of composition-universal compositions; i.e. elements of Uq are
not composition-universal, It follows at once that the generating element of
any composition of type U, must be a Mealy type automaton. The result actually
shows that, given any finitely computable I', "almost none" of the compositions

capable of computing T can be embedded in a composition of type U This has

d.
several consequences, stated as corollaries and discussed thereafter, for the
study of computation (and construction) procedures in computation-universal

spaces,
In the following discussion: !v will be a composition of type Uq on

a generator g with n outputs and lag-time v, # 1; G will be a finite set of

g
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automata, arbitrary except that it contains at least one element with two or
more input-dependent outputs (every set of generators complete for all finitely

computable I must contain at least one such element); 1. will be the minimum

G
lag-time for elements of G having two or more outputs; [éw]B.l will be the
(unique) sub-composition of 5¥ consisting of all elements a, of 57 such that,
for some connected sequence p from g of length %, o occurs in proj1 p (i.e.
[éN]B,R is the sub-composition consisting of all elements belonging to con-
nected sequences of length & from B).

Theorem, Given any V,» G, and b € N there exists a composition é¥ generated
by G which cannot be embedded in Vy « (In fact for each V,» G, and b there
exists a constant c and a function e(&) such that the theorem holds for any
éy containing a sub-composition [éN]B,l s 2 z c, with at least e(R) elements;
the proof shows that e(2) and ¢ are such that "almost all" AN over G satisfy

the condition),

Proof outline:

Given !M and G there will be a positive integer k such that no composition

EN over G consisting of more than k elements can be weakly embedded in the
1
generator g of !w .

Because of commutativity of strings of output indices in X$ , fewer
than (2¢)" distinct elements can belong to any sub-composition [!”]B N of v,
’
(where n is the number of outputs of g),
But then any composition AN over G containing more than k(22)" elements
will have an image in V, under weak embedding with at least one acyclic con-
nected sequence of length > &,

There are compositions éw over G consisting of 2%*1.1 elements and

having no acyclic sequence of length > g,
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Since there exists < such that k(22)" < 2%*1.1 for ¢ 2 Cyo there
are compositions over G which can only be embedded in v, if some acyclic
sequence in the image has length £ + 21 > 2,

By simply increasing c_ we can show, in fact, that there exists c

0

for which, when & 2 ¢

>
(2+21) Tg = max(ltG,~b) s

]
(g]
-

thus for any AY over G consisting of more than k(2%2)™ elements, with & 2

the lag-time 1 of the image under an embedding ¢ must exceed both b and

¢(Ay)

the lag-time TAY of éN:

T > max(t b) .
A A?
¢(4)) -
Therefore, if AY as specified is to be embedded, the embedding ¢ must
be slow since other types of embedding (weak but not slow) preserve lag-time.

Let EN contain éy as a sub-composition in such a way that some
2
composition outputs of EN depend upon composition outputs of Ay. Since the
2

lag-time of ¢(éﬂ) will be 1t » the overall lag-time of composition

> 1
JCORE
outputs of cj)(_(z_Y ) must exceed that of EW . Otherwise the slow embedding re-

2 2
quirement that composition output values occur synchronously will not be satis-

fied. (Under interpretation: since signals through ¢(éﬁ) are unduly delayed,
the proper phasing of signals at the output can only be restored by delaying
the other signals accordingly.) The result will be an overall increase in the

lag-time 1 of <t»(_(_3_Y ) to at least Tt b.

>
(A )
2 -
Consider the image ¢(CY ) of—zY2 in V, under a b-slow embedding ¢,
=Y, =
For the moment assume 2b 2 1, Because t > b, <1>(§_Y (t)) can at best be deter-

2
mined in ¢(Cy ) at time (b-1)t + T > bt, even if (§.Y (t-1)) is available at
=Y, )

time (b-1)t. In fact, in order that q;(_S__Y (t-1)) always be determined by time
2
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bt, for arbitrary t, it is necessary that ¢(§Yz(t+l)) be determined directly
from ¢(§72(t-l)) rather than from ¢(§Yz(t)). This is only possible if the
transition function of the image, in effect, has images of §72(t-1), Lyz(t-l)
and lW (t) as arguments at time bt -~ a sufficient (and for particular gyz,
necesszry) condition for determination of ¢(§Yz(t+1)). ¢(ly2(t)) will be
available at time bt, but LY (t-1) will be available only if the set of

2

states of the image is the image of the set IY X SY . (Under interpretation:
2 2

new storage elements would have to be added to the embedded network to '"hold"

the image of ly (t-1)). This violates requirements (iv) and (vi) of the
2
definition of embedding. Yet all of this is necessary to preserve the function

U under ¢ (by meeting the requirement that the image of Oy (t) always occur
2 2
at time bt in yv under a b-slow embedding). Hence the assumption that g_Y ,
2
as specified, can be b-slow embedded in YV leads to a contradiction.

A similar argument requiring Sy (t-k_ ), I, (t-k ), I  (t~k +1), ...,
) 1 _72 1 _YZ 1
Lyz(t) applies when (k1+l)b 21> k b.

*

Note that "almost all" compositions on G as specified will include
a sub-composition LéY]B l,l 2 ¢, containing more than k(22)" elements.
H
Corollary. Given any finite composition éy and any b-slow embedding ¢ of

éY in space V,, of type Uy, there exists a composition A' , which contains A

'
as a sub-composition and which cannot be b-slow embedded in zv'

In fact, given any b € N, "almost all'" compositions containing éY
cannot be b-slow embedded in gv. Thus most schemes for composing év with

other compositions cannot be represented in V, using b-slow embeddings, even

when év itself is embeddable.
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Corollary. Given V ¢ U,, any b ¢ N, and any set of generators G as speci-
=o2022aty -V d

fied above, there exists an infinite sequence of functionals Tl, T2, ey Tj, oo

such that:

(i) each rj is b-uniformly computable by a composition [é_j]Y over G,
j
(ii) [éj]yj can at best be bj-slow embedded in V, where bj > bj-l

3

b, ¢ N.
J
Note that 1imj bj = » so that the computation rates of the images of

the [gﬁ] in yv must approach zero. If éY can b-uniformly compute I' then
Y-

J

a composition [gj , containing éy and [é_j]Y as subcompositions, can b-uni-

Iy,
formly compute I'' = I'.,T . However there is no b' € N such that all [gﬁ]y.
can be b'-slow embedded in yv . Hence, although éy can serve as a commonJ
"sub-routine" for computing all I'' , there need be no corresponding common sub-
routine for computations of the Pé in yv (assuming a minimal signal rate 1/b'
specified).,

The restrictions just noted do not hold for the composition-universal
spaces Uc' In fact there exist composition-universal spaces such that any
finite composition can be strictly embedded in the space. The spaces U, are
compositions and hence satisfy local effectiveness conditions; however, each
such space is generated by a Mealy-type automaton, and may exhibit arbitrarily
long (finite) connected sequences of elements with zero lag-time (cf. the
similar situation for logical nets).

Theorem. Given any composition V, € Uy there exists a composition QY € UC

in which V,, can be strictly embedded.

Proof outline:

As indicated earlier all compositions in U can be given Cartesian
coordinates; one can then determine a unique dimension for each. yv has a

single finite automaton as generator and that generator can be strictly embedded
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in a finite n-cube of some space QY € UC of dimension n. If the dimension
of yv is less than or equal to n,a set of image n-cubes can be arrayed in

gY with the same geometry as the elements of v,
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5. COMMENTARY

The central definitions of this paper are structural — involving no
statements quantified over time. Thus, the compositions are defined via a
composition function which specifies the graph of connections between com-
ponent automata, the behavior of the resulting structure being defined by
a set of simultanecus equations induced by the composition function. An
embedding selects a sub-composition of an image composition and constrains
certain of its state components. These constraints are invariant (hereditary)
under a natural restriction of the transition function of the image composition:
a restriction wherein input states tc the sub-composition are restricted to
images of the input states of the object composition. Only when the inputs
to the image depart from this condition will the embedding cease to reflect
the behavior of the object composition,

The full set of finite compositions may for some purposes be too
broad, containing "unrealistic'" elements. A natural way to achieve a
"realistic" subset is to admit only compositions over a selected set of
"realistic' generators. For example, a generator may be designated "realistic"
only if it has non-zero lag-time (the Moore type automata)., The results of
part 4 are intrinsic in this respect: No matter how one limits the set of
"realistic" elements by selection of generators, almost none of the composi-
tions over the selected generators will b'-slow embeddable, for any b' ¢ N, in

any Vo e U Thus, given any b' ¢ N, almost none of the b-uniform computation

dl
procedures over the generators can be embedded in V,, as b'b-uniform computation

procedures. Instead of a computation rate 1/b, almost all images will have
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a rate less than €, for any € > o — an undesirable consequence if the space
is to be used to study computation procedures, Two alternatives for avoiding
this consequence present themselves:

(1) One can accept the spaces U, as the only "realistic'" universal

d
spaces and avoid the above consequence by further narrowing the set
of admissible representations of finite automata, This can not be
achieved by selecting a set of 'realistic" primitives; it can only
be done by restricting the connection procedures. (The heart of the
difficulty lies in the unrestricted cascading of fanout elements.)
Such a restriction would considerably modify current notions of repre-
sentation and several theorems, such as the Kleene representation
theorem for regular events (Theorem 3 [Kleene, 1956]), would be lost.
(ii) One can use the spaces Uc with their concomitant of connected
sequences of elements exhibiting negligible delay. This introduces
no mathematical difficulty because the spaces U. are compositions and
hence satisfy strong local effectiveness conditions; nevertheless one
may question how "realistic'" such spaces are in allowing propagation
of signals with negligible delay over arbitrarily long channels,
The second alternative seems preferable to me: Criteria which argue for alter-
native (i) can be applied, via the last theorem of part 4, to restrict the tran-
function
sitionAof spaces of type U Thus such criteria can both be implemented and
studied under the second alternative, At the same time, therc are useful
restrictions of Uc not readily translatable to Ud'
In this context the study of construction procedures, or growing auto-
mata (leading to studies of self-reproduction, adaptation, etc.) becomes the

study of sequences of compositions, Such sequences become state sequences in

a universal composition — an embedding must transform structural features of
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the object composition into properties of the state pattern of the universal
composition. The fixed connection scheme of the universal composition can

only supply an invariant framework. Note that the state sequence correspond-
ing to a sequence of compositions must involve departures from the constraints
imposed by embedding., That is, the image of one composition can be altered to
that of another only by departing from the conditions set by the embedding. A
restriction of the transition function of the universal space will still be
involved; it will be similar to, but weaker than, that required for embeddings.
The restriction must be such that any state trajectory under this restricted
function corresponds to a sequence of compositions. Note that a construction
procedure involving structures that cannot be embedded will not be representable.
More than this, given a universal space, there will be construction procedures,
involving only embeddable structures, which still fail of representation. That
is, some recursive cnumerations of embeddable structures will not be represent-
able through a restriction of the transition function. This is not necessarily
undesirable: If it is assumed that the "size' of given composition in a con-
struction sequence is a function of the "size" of its predecessor, then most
recursive enumerations of compositions will not be construction sequences.
Questions related to characterization of the construction procedures repre-

sentable in various universal spaces remain open.
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