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ABSTRACT

The maintenance of kinetic energy and vorticity balance
in the stationary disturbances over the Northern Hemisphere
is investigated on the basis of wind statistics data, as
published by Crutcher (1959). It is found that these
disturbances feed kinetic energy to the large-scale transient
disturbances at a rate which is of the same order of magni-
tude as the rate of energy dissipation due to small-scale
friction. The effect of kinematic as well as mechanical
(mountain torque) interaction between the stationary distur-
bances and the basic zonal current appear to be relatively
small. The main process compensating for the energy loss due
to transient disturbances and small-scale friction seems to
be the conversion of available potential energy into kinetic
energy -

Observational analysis of the time-averaged vorticity
equation shows that in the free atmosphere an air particle
moving along with the time-mean flow tends to conserve its
absolute vorticity. At the same time, however, the kinematic
forcing effect of large-scale transient eddies is important

in the vorticity equation and largely determines the vertical

vii



velocity field in the stationary disturbances. Non-linear
terms in the vorticity equation for stationary disturbances

are relatively small compared with the linear terms except at

high latitudes.
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1. INTRODUCTION

This report is concerned with the so-called stationary
disturbances, which together with the zonally averaged mean
motion form the time-mean flow pattern in the atmosphere.

The existence of these disturbances can formally be ascribed
to three principal factors: the deflecting effect of mountains
on the zonal current, the longitudinally non-uniform stationary
heating and the forcing effect of large-scale transient
disturbances. The relative importance of these factors is

not yet established and despite several theoretical studies
(e.g. Charney and Eliassen, 1949; Smagorinsky. 1953;

Saltzman, 1963) an adequate theory of these disturbances is
still missing.

One way of getting insight into the maintenance of a
certain mode of motion in the atmosphere is to make diagnostic
observational studies of important dynamic quantities, such as
energy, momentum and vorticity, for that mode. This can be
done by evaluating from the data the different terms in the
relevant equations. On this line, Murakami (1963) investi-
gated the energetics of stationary disturbances. Using the
data from the year 1950, he found that stationary disturbances

fed kinetic energy into both the transient disturbances and



the zonally averaged mean motion and were maintained by baro-
clinic processes converting available potential energy into
kinetic energy. Saltzman (1962), also using the data for
1950, computed empirical forcing functions to represent the
effects of transient disturbances on the maintenance of the
potential vorticity field of the stationary disturbances.
These functions appeared to be of the same magnitude as
those required to account for the observed conditions and
therefore should be included, along with the mechanical and
thermal forcings, in the general theory of stationary dis-
turbances.

In the present study, the observational approach is
again used. In section 2 the maintenance of kinetic energy
of stationary disturbances is discussed with a few additional
aspects compared to the paper by Murakami (1963). Section
3 deals with the dynamics of these disturbances as revealed
by the analysis of the vorticity budget. The source of
wind data for the present investigation has been the "Upper
Wind Statistics Charts of the Northern Hemisphere" (Crutcher,
1959), which in most areas is based upon wind observations
from a period of five years or more; temperature data were
taken from Goldie et al. (1957) and supplemented for the lower
troposphere by isobaric height data from Jacobs (1958) and

Hennig (1958).



The most steady mean flow in the atmosphere is probably
obtained by taking a time-average of different quantities over
an ensemble of several years. Therefore, the main discussion
in the present report deals with the stationary disturbances
as observed on such an annual mean flow. However, attention
is also given to normal conditions in winter (January-February)
and summer (June-August), for which the steady-state assumption
also roughly applies.

The following notation is used:

A = horizontal area

a = radius of the earth

F = frictional force per unit mass

f = Coriolis parameter

g = acceleration of gravity

h = elevation of the earth's surface
k = kinetic energy per unit mass

k = a unit vector in the vertical direction
P = pressure
p_ = pressure at the earth's surface
t = time

u = zonal wind component

v = meridional wind component

V = horizontal wind vector
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2. KINETIC ENERGY BALANCE

In this section, the amount and distribution of kinetic
energy of stationary disturbances in the atmosphere over the
Northern Hemisphere is discussed briefly. The emphasis,
however, is put on an observational analysis of different
physical factors which affect this kinetic energy.

The horizontal wind velocity at an arbitrary point in

space and time can formally be expressed as
v = [V] + v+ v,

where the terms on the right-hand side denote the velocity
associated with the zonally averaged mean motion, stationary
disturbances and transient disturbances, respectively. The
kinetic energy of horizontal motion, averaged zonally and with

respect to time, can then be expressed as

2
kml/2[v]—kz+ks+k,

T
where

k, = 1/2([31% + [919).

Ky = 1/2([a*%] + [9+°])
and kp = 1/2([2751 + [;T—])o



Here and through the rest of the paper, the subindices Z, S and
T are used to refer to the energy of the zonally averaged
motion, stationary disturbances and transient disturbances,
respectively.

The average values of k, kZ, kS and kT north of 15°N and
between 100 mb and 1000 mb are given in Table 1, which also
shows the partitioning of these energies into contributions
from the zonal and meridional wind component. It is seen
that the kinetic energy associated with the stationary
disturbances is relatively small, being only about four per
cent of the total kinetic energy in the annual mean condi-
tions and eight per cent in winter and in summer. Most of
Table 1. Average amount of kinetic energy and its different

components in the atmosphere between 100 mb and

1000 mb north of 15°N. (1) total, (2) contribution
from the zonal wind component and (3) contribution

from the meridional wind component. Unit:
joules kg'l.
k
k kZ kS T

1 2 311 2 311 2 3 1 2 3

Annual mean 147 105 42 | 48 48 0 6 4 2 93 53 40

Normal winter
(December-February) | 213 159 54 | 95 95 0 | 17 12 5| 101 52 49

1Normal summer
(June-August) 83 54 29|20 20 0 6 4 2 57 30 27




the kinetic energy of the stationary disturbances and practi-
cally all of the energy of the zonally averaged mean motion
is associated with the zonal wind component while an
approximate equipartitioning of energy between the two wind
components prevails in the transient disturbances.

The meridional distribution of the kinetic energy of
the stationary disturbances for annual mean conditions is
shown in Fig. 1. The maximum of energy is found close to
40°N and is due mainly to the zonal wind component. The
kinetic energy of the meridional wind component in these
disturbances is seen to have a primary maximum between 50°N
and 55°N and a secondary maximum close to 20°N.

The planetary scale of the stationary disturbances is
clearly seen from Fig. 2, which shows, for annual mean condi-
tions, the kinetic energy in these disturbances as a function
of zonal wave number: the first three wave numbers account
for about 90 per cent of the total kinetic energy in the
six analyzed harmonics. The kinetic energy has relative
maxima at wave numbers one and three. This feature arises
primarily from the zonal component of motion; the energy
associated with meridional wind component is seen to have only
one maximum at wave number three.

A normalized energy spectrum (energy in each harmonic
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Fig. 1. The meridional distribution of the average kinetic
energy of the stationary disturbances (heavy line)
between 100 mb and 1000 mb for annual mean condi-
tions. The contributions from the zonal and meri-
dional wind components are given by the dashed and
dotted lines, respectively.
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Fig. 2. The average kinetic energy of the stationary

disturbances (annual mean conditions) between

100 mb and 1000 mb north of 15°N as a function

of the zonal wave number. The contributions from
the zonal and meridional wind components are given
by the dashed and dotted lines, respectively.



divided by the sum of energies in all the six harmonics) for
stationary disturbances in normal winter and summer conditions
is given in Fig. 3. It is seen that in winter the wave
numbers one and three dominate in the spectrum whereas in
summer the kinetic energy decreases smoothly with increasing

zonal wave number.

T T T T T
05} _
04+ _—
0.3 .
02 -
Ol I -

Fig. 3. The normalized spectrum of the kinetic energy of

stationary disturbances (average between 100 mb
and 1000 mb, north of 15°N) for winter (heavy line)
and for summer (dashed line). The abscissa 1is
the zonal wave number.
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The equation for the balance of kinetic energy in
stationary disturbances is given in equation (2). The
corresponding equations for kinetic energy of the zonally
averaged motion and of the transient disturbances are written
down as equation (1) and equation (3), respectively. All
these equations as well as the expressions (4) to (16)
refer to the mass M of the atmosphere north of P = 15°N

and between the pressure surfaces p, = 100 mb and p, = 1000 mb.

oK

7 M
—4a = - - - + oo
ot 0 Fz Czs Czs CZT Wz + Dz (1)
éfﬁ =0=F_+C + C M C + W_+D (2)
ot S ZS 7S ST S S To
aKT
_SE— =0 = FT + CZT + CST + WT + DT eeo(3)
where
KZ = f kde
M
M
and
K = ¥ k _dm
T J T
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2T a cos N

_ 2 -2, -
F, = 3 J’z (1/2[V] [V])cpldp ... (4)
1

1
+ [ul[u*v*] + [v][v*v*]) dp ...(5)
a1
2T a cos @ e -5
F = - 1 j‘pz(l/z[v'z][?z] + 1/2[v'29%] + 1/2[v'3v']

P
. (6)
Crg = Jr ([ul( L _ab_ cosch[ﬁ*\—l*] + ‘a—%[ﬁ*(ﬁ*])
M a cos ¢
+ [’](;—gc'l';s—g 3¢ °° olv*?] + 5%[\7*03*]
- 2
+hl-:;ltan ) }dm ... (7)
c M_ T _..[.E.O_i_..__[' ah]A (8)
ZS —JAacoscp Py
Cop = | (15 5 cos”oluv'] + alue'])
M a cos ¢
- 3 DY y —
(9 (oo 3 00 91v )+ lve)

) [}

+ uau tan ¢)}dp ...(9)
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r o 1 -~ to. 0 1 _a__ 2 tot
c. = {[u*r( u'u' + cos“® u'v
ST JM a cos @ OA 2 coslo oI
a 1,01 - 1 ,_a_ 1ot
+ 85 u'w') + v*(a cos @ Oh u'v
l ] ] m— ] 1 'ul
2 cos 9 dp ©°S o v'v' + 5 ¥ w' + tan 9)]}dp
...(10)
_ ol alel
WZ = —J [V]a Bcp dm eo(ll)
M
W, = —JF [W* . Vd* ]dm .(12)
M
W, = _JF [V'.V®']dm . (13)
M
D, = Jf‘ [v].[Fldm ... (14)
M
r - -
D = [V*.F* ]dm .(15)
S JM
D = Jf’ [V'.F']dm. ... (16)
M

In equations (1) to (3). which are obtained from the
equations of motion, F-terms represent the flux of kinetic
energy northward across the latitude 15°N. (The vertical

flux of kinetic energy across the upper and lower boundary
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has been assumed zero). C-terms represent the conversion
between two different energy forms, denoted by the subindices.
W and D stand for the work done by pressure forces and
friction forces, respectively. The equations are essentially
the same as those derived by Murakami (1963) except for the
CZSM—term, which has not been considered in the earlier
investigation. This conversion term, which comes into

equation (1) from the first equation of motion, is taken to

be the product of the mean zZonal component of the surface

Po Sh

wind ([uo]) and the net zonal pressure force ([a cos © N

1)
which arises from pressure differences between the western
and eastern sides of mountains, at the same elevation. In
order to keep the total kinetic energy of the time-mean motion

unaffected by mountains, C has been introduced in equation

Zs
(2) with a sign opposite to that in equation (1). This

way of defining a new energy transformation function is some-
what arbitrary. It makes sense, however, when compared with
the way in which the effect of mountains is incorporated in
theoretical models of stationary disturbances. In these
models (e.g. Saltzman, 1965) the lower boundary is assumed to
be an isobaric surface Jjust above all mountain tops. The

energetics of the model is then affected by the mountains

through a forced energy flux across the lower boundary. This
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flux has essentially the same expression as CZ and may there-

S
fore, in the light of the present formulation, be considered
as a conversion of the kinetic energy of the zonally averaged
motion into that of the stationary disturbances. This
mechanical conversion occurs in the lower troposphere in
contrast to the corresponding kinematic conversion CZS' which
primarily takes place in the upper troposphere.

According to equation (2), the kinetic energy of sta-
tionary disturbances north of 15°N is affected by the energy
flux (FS) across this latitude, by the kinematic interaction
between the zonally averaged mean motion and the stationary
disturbances (CZS), by the mountain forcing (CZSM), by the
interaction between stationary and transient disturbances
(CST) and by work done by pressure forces (WS) and friction
forces (DS). Our goal is to evaluate from the available
data these processes and as many as possible of the other
quantities in (4) to (1l6). In the following the procedure
and the results of this evaluation are discussed term by term.

The calculation of FS, C and CST was made from the

VA

following approximate expressions:

. 2T a cos P rp2
S g J

([a][a*x'r*])cp dp (17)
12 1
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c =JF _Ltﬂ_z_g% 2 o[ a*v ... (18)

[ et O T, 1 o 2 —
Csr ([u (a cos @ OA U uo 2 Jg SO% P uV )
M a cos ¢
- 1 o 1 0
* RO | —_— . ot
* a cos ¢ ON T3 cos g op C° P VYV
u'2
+ —;—'tan ¢)]}dm. ...(19)
These equations are obtained from equations (4), (7) and (10)

by neglecting supposedly small terms containing mean meri-
dional velocity, vertical velocity or triple correlation of
eddy quantities of purely stationary or transient mode.
Expressions (17) to (19) were evaluated with data from "Upper
Wind Statistics Charts of the Northern Hemisphere" (Crutcher,
1959) which, among other things, includes charts of the mean
zonal wind component u, the mean meridional wind component

v, standard deviations (/ u'2 and ./ v'2) of the zonal and

meridional wind components and the correlation coefficient

(u'v'/&/r;TE v'2) between the two wind components for the
100, 200, 300, 500, 700 and 850 mb pressure levels and sepa-
rately for four seasons of the year. Data were read from
the maps at every five degrees of latitude and every ten

degrees of longitude. The calculations were made for winter
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(December ~February), for summer (June-August) and for annual
mean conditions for which data were obtained by combining
data for the four seasons. The vertical integration in
equations (17) to (19) was made by using the trapezoidal rule
and by assuming that the integrands vanish at the 1000 mb level.
This assumption as well as an artificial interpolation of data
in the lower troposphere across mountains has little signi-
ficance for the results, because the largest contribution
to the integrals comes from the upper troposphere.

‘The computed values of FS, C and CST' divided by the

ZS

area north of 15°N, are given in Table 2. For comparison,

Table 2. Energy conversions and horizontal boundary fluxes
(see equations (17) to (21)) for the atmosphere
north of 15°N as evaluated from upper wind stati-

stics. Unit: watts m™2.
Fs S35 Cor | Fr  Cur
Annual mean conditions 0.00 =0.02 0.09 0.02 -0.32

Normal winter (December-

|February) conditions -0.02 -0.10 O0.1le 0.04 -0.36
Normal summer (June- |

August) conditions -0.03 -0.03 -0.01 | -0.01 -0.20
Year 1950

(after Murakami, 1963) -0.04 0.06 -0.24
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, which were

the table also includes the values of FT and CZT

computed from the wind statistics using the following approxi-

mations to equations (6) and (9):

2T a cos P rp2

v']) _ dp ...(20)

c

([ull

F =

C =T _lul é% cosz¢[u'v']dm. ...(21)

The values obtained by Murakami (1963) for the year 1950 are
given on the lowermost line in Table 2.

The first thing to be noticed in the results is that for
the annual mean conditions the boundary fluxes are very small
compared to the conversion terms and accordingly the polar
cap north of 15°N can be considered as a kinematically closed
system from the standpoint of the stationary and transient
disturbances. This situation is seen to be valid for normal
winter conditions, but during summer FS is of the same

magnitude as CZ and CS .

S T

The negative values of C show that the stationary dis-

ZSs
turbances feed energy by kinematic interaction into the
zonally averaged mean motion. The value for annual mean

conditions, -0.02 watts m_z, is smaller than the one obtained

by Murakami (1963) for the year 1950. Because an average
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over an ensemble of many years obviously defines better steady-
state conditions than an average over only one year, the value

obtained in the present study should be more representative of

the atmosphere than that of Murakami. At this point it may

be noticed that the magnitude of CZS is much smaller than that

of CZT' The latter is always negative which conforms with the
already well-established fact that the transient eddies in the

atmosphere feed energy into the mean zonal current.

From the standpoint of the present study the most impor-
tant quantity in Table 2 appears to be CST' which represents
the conversion of kinetic energy of stationary disturbances
into that of transient disturbances. Considering annual mean
conditions this conversion is seen to be positive. This means
that the large-scale transient disturbances act as an energy
sink for the stationary disturbances. From the stand-point
of transient disturbances this energy conversion, 0.09 watts m_2
is rather insignificant, because energy generation and dissipa-
ticen in these disturbances (WT and DT in equation (3)) are of
the order of a few watts m_2. However, it turns out to be
very important in the kinetic energy balance of stationary
disturbances. The meridional distribution of the conversion

integrand is shown in Fig. 4. It is seen that the stationary

disturbances feed energy into transient disturbances in the
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latitudes south of 50°N, whereas the opposite is true further
north. The values obtained by Murakami for the year 1950,
which are also shown in Fig. 4, agree reasonably‘weli with
those of the present study.

In order to get a better idea about the relative importance
of FS, CZS and CST in the maintenance of the kinetic energy
of stationary disturbances, an attempt was made tc evaluate
also the forcing effect of mountains (CZSM), the rate of
energy dissipation due to small-scale turbulence (DS) and
generation of kinetic energy due to work done by pressure
forces (Ws)o All these processes are difficult to estimate
in any way and therefore the following discussion is necessar-
ily semi-qualitative. |

To evaluate the CZSM—term, the only data available
with regard to the mountain torque seem to be those published
by White (1949). These were used together with the mean
zonal component of the surface wind. For the latter, data
were obtained from Tucker (1957) and also by extrapolation
from the free atmosphere. (In this extrapolation, data for
the earth's topography were taken from Berkofsky and‘Bertoni

(1955)). For the annual mean conditions the calculations

gaves

C M = 0.02 watts m—2
ZS
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Thus there is in the Northern Hemisphere, due to the presence
of mountains, a small drainage of kinetic energy of mean zonal
motion into that of stationary disturbances. The rate of
this energy conversion is small compared to the conversion
between stationary and transient disturbances. This result
does not give support to the normal expectations: in many
theoretical studies of the stationary disturbances the
transient eddy forcing has been neglected and the forcing due
to mountains retained.

There is no very satisfactory way of evaluating the rate
of frictional loss of kinetic energy in the atmosphere. If
we assume that most of the dissipation takes place in the
boundary layer, we have from the classical Ekman-Taylor
boundary layer theory the following expression for D, the rate

of total energy dissipation (cf. e.g. Brunt, 1941):

[Ec o 2
D = 5 P sin 2a V7, ... (22)

where k is the coefficient of eddy viscosity. po the air density
at the surface, o the angle between surface wind and gecstrophic
wind and V is the speed of the geostrophic wind, assumed

constant with height. If we now suppose that the assumptions

of the above theory (balance between pressure, Coriolis and

friction forces in the boundary layer, constant geostrophic
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wind and eddy viscosity) hold at any time and that the time
variation of the parameters k and o is small, the theory
should be valid also for the time-mean conditions. Conse-

quently, we would have

_/f_K , 2
DS = 5> P sin 20LOVs , c.0(23)

where Vs is the velocity of the time-mean geostrophic wind in

the boundary layer. If this is taken to be the vector mean

wind speed ( 52+§2) at the 850 mb level, equation (22) gives
-4 -1 5 2 -1

(with £ = 10 sec , k = 107 em” sec 7, po = 1.25 gm cm_3

and ao = 20°) for annual mean conditions north of 15°N:

DS = 0.11 watts m-2.

(The corresponding value of the annual mean total dissipation
as obtained from equation (22) turns out to be 1.7 watts m—za)
Even if its numerical value may not be accurate, the order of
magnitude of DS should be correct. Comparing the above
value of DS with the earlier computed value of CST = 0.09
watts m_2 we can say that the small-scale turbulence and large-
scale transient disturbances are equally important in destroying
the kinetic energy of stationary disturbances.

The most difficult term in equation (2) to estimate

directly is WS, the work done by pressure forces in stationary
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disturbances. In light of the above results for the other
terms in equation (2)., there should be a generation of kinetic
energy in the stationary disturbances due to this process,
i.e. WS should be positive. It is easy to show that for a

closed system the expression for WS can be written as

WS = "Jr [‘x—f*-VC—D*]dm = "Jr [&*(I)*]dm,
M M
where o denotes specific volume. (This second expression

for WS is normally called the rate of conversion of available
potential energy to kinetic energy in the stationary distur-
bances.) Thus, in addition to the fields of mean wind and
specific volume which are roughly known, a direct evaluation

of WS would require a knowledge of either the time-mean
ageostrophic winds or the vertical velocity field. Reliable
estimates of either of them are difficult to obtain on a
hemispheric scale. In his study of the stationary distur-
bances, Murakami (1963) computed the mean vertical velocity

for the year 1950 from the observed mean winds with the aid

of the continuity equation. When using this method, which

is very sensitive to errors in the wind field, the mass balance
requirements (w = 0 at the top and the bottom of the atmosphere)
cannot usually be satisfied. Depending on whether he assumed

® to vanish at 1000 mb or 100 mb, Murakami obtained
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WS = 0.65 watts m_2 or WS = 0.31 watts m—z, respectively.
When the same method was applied in‘the present:study, the
data of which cover at least four other years in addition to
1950, the corresponding values turned out to be 0.19 watts m
and 0.03 watts m_z. Even if all these values are of the
right sign, the magnitude of WS is not fixed with any
certainty. This is probably just an indication of the fact
that reliable estimates of mean divergence’cannot be obtained
from the mean wind field by a direct method.

One of the indirect ways of getting approximate values
of divergence and vertical velocity is to make use of the
vorticity equation. This approach was applied in the preseht
study to the time-mean conditions (see next section) and by
using the values of ® so obtained, the —[&*@*] covariance was
computed. The resulting values were generally positive in
the middle and high latitudes, where the vorticity method of
computing vertical velocities is best applicable. The less
reliable values for lower latitudes were negative and large
and made also WS negative.

The best estimate of WS can at the present time probably
be obtained by computing it as a residual term from equation
(2). Having evaluated all the other terms, the value of W

S

which balances this equation is
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WS = 0.20 watts m—2

for the annual mean conditions. This value is larger than

any of the other terms in equation (2) which means that the
conversion of available potential energy into kinetic energy
plays the dominant role in the kinetic energy balance of
stationary disturbances. At this point it may be noted

that the above value of WS is an order of magnitude smaller
than the rate of the total conversion of available potential
energy into kinetic energy normally obtained for the atmosphere
(see e.g. Oort, 1964).

A convenient way of summarizing the results of this
section is to present them in the form of an energy flow
diagram, schematically shown on the left hand side of Fig. 5.
In this diagram only processes affecting the kinetic energy
of stationary disturbances are indicated. The numerical
values for the annual mean conditions are given on the right-
hand side of the same figure. The physical picture arising
from the numbers is as follows: the main source of kinetic
energy for the stationary disturbances is the available
potential energy. The dissipative mechanisms are the small-
scale turbulence as well as the large-scale transient
eddies; the combined effect of these two processes is such

that the residence time of kinetic energy in the stationary
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Fig. 5.
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Scheme of the kinetic energy balance in the
stationary disturbances (left) and the numerical
values obtained from annual mean conditions (right).
The unit of energy per unit area is 10~ joules m
and that of the energy changes is watts m-2.
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disturbances (KS/(D + CST)) is only about three days. The

S
kinematic as well as mechanical (mountain torque) interaction

between stationary disturbances and the zonally averaged mean

motion are relatively small.



3. VORTICITY BALANCE

In this section the dynamics of the stationary disturban-
ces are discussed in the light of the relative magnitude of
different terms in the time-averaged vorticity equation.

At the same time an approximate picture of the normal vertical
velocities required to maintain the vorticity balance is
presented.

The vorticity equation can be written as

ot ; _ oy 0w ot ol Y
vl V.V¢ + fV.V = ¢ 50~ © 3p Kk . Vox b + k.VxF  ...(24)

For vorticity changes in the free atmosphere in the time-range
of a few days the terms on the right-hand side of (24) have
been found small, and, in fact, have been neglected in most
numerical weather prediction models used so far. If we assume
that these terms are small also in the time-averaged vorticity

equation, we obtain from equation (24)
V.V + BV + fV.V = F ... (25)

where

28
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1 Y JdX cos ¢

FT i cos oon T o9
— ——l—_————a—. ! 1 l _a_ 1 ] tan cp ] [
X = - (7 Zos o on WUt T oo g Sp U’V cos 9 - T u'v )
Y = - (———l——— < u'v' + —L 9 v'v' cos ¢ + tan 9 u'u')
a cos ¢ 99 a cos ¢ 99 a

F represents the forcing effect of horizontal transient dis-
turbances on the time-mean vorticity field and has been discussed
by Saltzman (1962) and Saltzman and Rao (1963).

In equation (25) all the terms can be evaluated from the
wind statistics data except the divergence term for which a
value is obtained as a residual necessary to balance the
equation. The calculations were made for the 100, 200, 300,
500, 700 and 850 mb levels. Instead of discussing results for
individual pressure surfaces, results will be shown for
vertically integrated values, which have an interpretation
in terms of vertical velocity. Using the equation of contin-

uity (V.W + %ﬁ = 0) and assuming that

w =0 at p = 100 mb,
we obtain by integrating (25) with respect to pressure:
®=0 +0 + 0, 20+ (26)

A B C

where
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P
- __il” - -
wp =" f) V-VEap
Py
p
- _ ]_r -
®p = £ J Bv dp
Py
P
- _ ]_r
wc = F ) F dp
Py
and p, = 100 mb.

Fig. 6a shows the longitudinal variation of 5A' &B and

5C for annual mean conditions at 500 mb at the latitudes
70°N, 50°N and 30°N. Table 3 gives the average magnitude
of the different terms at each latitude. It is seen that all
the computed terms are of the same order of magnitude.
However, 5A and £B which represent the advection of the mean
relative vorticity and the earth's vorticity, respectively,
Table 3. Average magnitude (mean of the absolute values

at 36 grid points) of the different terms in

equation (26) at 500 mb (see Fig. 6a). Unit:
10™> cb sec~l

W wB (wA+wB) wc w
70°N 0.51 0.44 0.41 0.51 0.60
50°N 1.34 1.27 0.52 1.006 1.03

30°N 1.54 1.27 1.34 2.02 2.85
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counterbalance each other to a large extent. The physical
interpretation of this phenomenon, which is most pronounced
at 50°N, is that an air particle moving along with the mean
flow tends to conserve its absolute vorticity. This fact,
noticed also by Wiin-Nielsen (1960), makes the sum of w. and

A

5B generally smaller than &é, which represents the forcing
effect of transient eddies. Accordingly, the distribution

of @ follows by and large that of 5C, as is clearly seen in
Fig. 6b. . It can be concluded that the kinematic forcing
effect of large-scale transient disturbances is very important
and largely determines the field of vertical velocity in the
stationary disturbances. At this point it must be noticed
that at the lower boundary of the "free atmosphere" the
vertical velocities, as determined from equation (26) should
be compatible with the vertical velocities produced by friction
in the boundary layer and by the forcing of mountains. Over
oceans and flat continental areas the latter effect is absent.
In such regions the boundary layer friction, which is difficult
to evaluate by direct methods, can be determined from the
values which are obtained from equation (26). These aspects
will be discussed in more detail in a forthcoming paper.

Fig. 7 shows the distribution of the annual mean vertical

velocity at the 500 mb level. There is no definite way of
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Fig. 7. The distribution of the annual mean vertical
velocity w at the 500 mb level as computed from
the vorticity equation. Unit: 10-5 cb sec-l.
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judging how correct the computed w-values are but most features
of the map in high and middle latitudes look realistic. A
general downward motion is obtained in subpolar regions with

a maxXimum, 2 x lO_5 cb sec_l (0.3 em sec—l), occurring over
Greenland. Upward mean motion is obtained along the east
coast of North America and Asia and all over the northern
Atlantic and northern Pacific. These are regions of strongest
cyclonic activity and lows in the annual mean surface charts.
The maximum of upward motion over western North America roughly
coincides with the maximum of lifting caused by the Rocky
Mountains. The large ®-values obtained south of about 30°N
need not represent real vertical velocities because some of

the assumptions underlying the present calculations are not
valid in these latitudes; wusing the w-values seen in Fig. 7
one can easily show, for example, that the twisting term and
the term describing the vertical advection of mean vorticity
cannot in these areas be neglected in comparison with those
retained in equation (25).

An important question in theoretical studies of stationary
disturbances in the atmosphere is the applicability of a linear
model, i.e. whether these disturbances can be considered as
small perturbations superimposed upon the basic zonal flow,

in which case the terms involving products of perturbation
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quantities can possibly be neglected in the governing equa-
tions. In the vorticity equation the largest non-linear
effects can be expected to arise from the horizontal advection
of relative vorticity° For stationary disturbances, the

linear vorticity advection is given by

[ul _ 3fx | w* 3[f],

a cos ¢ OA a dg
and the non-linear advection by
W . VEx

Fig. 8 shows the distribution of these terms as a function of
latitude for normal winter conditions at 200 mb. (For this
particular pressure level, data were read from the wind
statistics using a denser grid than for other levels.) It

is seen that the non-linear advection is at every latitude

of smaller magnitude than the linear advection. The ratio of
the average magnitude of these terms is 0.19, 0.24 and 0.47,
for 30°N, 50°N and 70°N, respectively. In the light of these
numbers it seems that the non-linear terms in the vorticity
equation can be neglected when middle latitude conditions are
of primary interest but should be included if the stationary

disturbances at high latitudes are also to be simulated.
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4. CONCLUDING REMARKS

The results of the present study show the importance of
large-scale transient eddies for the maintenance of the
stationary disturbances in the atmosphere. Contrary to
normal expectations the direct mechanical effect of mountains
on these "standing" waves seems to be relatively small.

In the present study only the kinetic energy and
vorticity balance in the stationary disturbances have been
discussed. A similar observational study of the thermal
energy balance could possibly help to reveal the role of
geographically fixed heat sources and sinks in the maintenance

of these disturbances.
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