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Abstract: Background. Head and neck squamous cell carci-

noma (HNSCC) cell lines are important preclinical models in the

search for novel and targeted therapies to treat head and neck

cancer. Unlike many other cancer types, a wide variety of pri-

mary and metastatic HNSCC cell lines are available. An easily

accessible guide that organizes important characteristics of

HNSCC cell lines would be valuable for the selection of appro-

priate HNSCC cell lines for in vitro or in vivo studies.

Methods. A literature search was performed.

Results. Cell growth and culture parameters from HNSCC

cell lines were catalogued into tables or lists of selected charac-

teristics. Methods for establishing cancer cell lines and basic

cell culture maintenance techniques were reviewed.

Conclusions. A compendium of HNSCC cell line characteris-

tics is useful for organizing the accumulating information regard-

ing cell line characteristics to assist investigators with the devel-

opment of appropriate preclinical models. VVC 2006 Wiley

Periodicals, Inc. Head Neck 29: 163–188, 2007
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Head and neck cancers are the eighth most com-
mon tumor in the world, accounting for 390,000
new cases of cancer in 2000.1 In the United States,
there are approximately 30,000 new cases of head
and neck cancer each year and 8,000 related
deaths.2 Head and neck squamous cell carcinoma
(HNSCC) accounts for over 90% of all head and
neck cancers.3 Unfortunately, the mortality rates
for this disease have not improved in the past
40 years despite advances in the delivery of treat-
ment and in surgical reconstruction. Patients
diagnosed with HNSCC in the United States have
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a 60% mortality rate even with standard therapy
including radiation, surgery, and/or chemotherapy.4

Five-year survival is only 40%, primarily because
of invasive spread and regional metastasis.5 Head
and neck cancers consistently metastasize to the
cervical lymph nodes before spreading to distant
sites, such as the lung and liver. Current research
is focused on understanding the molecular mecha-
nisms of HNSCC development and progression to
facilitate the design of novel therapies that may
improve survival.

Immortalized cell lines derived from HNSCC
tumors have been an invaluable tool for research-
ers investigating detailed molecular, biochemical,
genetic, and immunological properties of head
and neck cancer. Advantages of using cell culture
include sample homogeneity, cost, and the avoid-
ance of legal and ethical issues associated with
animal experimentation.6 HNSCC cell lines such
as Hep2, Hep3, and KB were some of the first
HNSCC tumor cell lines to be developed as early
as the 1950s.7 Establishing HNSCC cell lines has
proven challenging. Obstacles include fibroblast
overgrowth, long quiescent periods before the
cells can be subcultured, and the dependence on
feeder layers in primary and secondary cul-
tures.7–9 With technical improvements, such as
the use of complement-mediated lysis to selec-
tively deplete fibroblasts, mitomycin C-treated
mouse 3T3 fibroblast feeder layers, and explant
outgrowth followed by differential trypsinization,
successful permanent culture of HNSCC cell lines
has become more feasible.9–11 In fact, more than
300 reported HNSCC cell lines have been estab-
lished compared with approximately 70, 60, and
10 cell lines derived from breast, colon, and pros-
tate cancers, respectively.12–14

ESTABLISHMENT OF HNSCC TUMOR CELL LINE

The most popular method for establishing a new
HNSCC cell line is called the explant culture
method.15 Establishing a new cancer cell line
depends on several factors, with the most impor-
tant being the method of obtaining the specimen.
Surgically removing fresh tumor tissue under
aseptic conditions specifically for laboratory use
from non-necrotic and uninfected areas greatly
increases the success rate of a long-term culture.16

The fresh specimen may be treated with a triple
antibiotic solution consisting of penicillin, strepto-
mycin, and amphotericin B. Minced tumor frag-
ments are grown in minimal culture medium sup-
plemented with amino acids and serum. As the

epithelial cells are growing, fibroblasts are rou-
tinely removed either with a cell scraper or by dif-
ferential trypsinization. Differential trypsiniza-
tion involves adding trypsin to dislodge the fibro-
blasts under visualization with an inverted
microscope and blocking the trypsin activity with
serum-containing medium before the epithelial
cells detach. An alternative method using a feeder
layer was described by Rheinwald and Beckett.9

Instead of placing minced tumor fragments into
culture flasks with medium, the feeder layer
method uses culture flasks that contain mitomy-
cin C-treated 3T3 mouse-fibroblast feeder cell
monolayers. The feeder cells and fibroblasts are
then removed with EDTA inoculations and vigor-
ous pipetting.

CANCER CELL LINE MAINTENANCE

For cancer cells to survive and grow in culture,
the in vitro environment must be carefully main-
tained. Three cell culture conditions that influ-
ence tumor cell growth will be discussed: culture
medium, culture substrate, and physiochemical
variables. Nutrition for the cells is supplied by the
medium, either with or without serum. The me-
dium contains amino acids, glucose, vitamins, and
salts that are necessary to support cellular func-
tions and cell synthesis. More often than not, se-
rum, a chemically undefined mixture of hor-
mones, growth factors, lipids, transport proteins,
enzyme cofactors, and attachment factors, is
added to culture medium to promote cell growth.
The serum is isolated by removing the superna-
tant from clotted blood, usually from a calf or a fe-
tal bovine source because of its high content of em-
bryonic growth factors.17 One needs to weigh the
benefits and disadvantages of adding or withhold-
ing serum from medium. The major benefit from
adding serum is that the proteins and factors in
the serum promote faster tumor cell growth; how-
ever, these factors and proteins are relatively ex-
pensive and not well-defined. They could poten-
tially interfere with experiments that study the
effects of specific exogenous growth factors. Addi-
tionally, the cell-to-surface interaction is impor-
tant for cell proliferation. Cancer cell cultures are
usually grown as monolayers on polystyrene plas-
tic; however, there are some exceptions, such as
themulticellular tumor spheroid and the soft agar
models. Tumor cells lose the requirement for an-
chorage-dependent growth, enabling some cell
lines to grow as 3-dimensional spheroids in sus-
pension culture or as suspensions on top of an
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agar medium. These 2 models, which will be dis-
cussed later in this review, may reflect in vivo
behavior more accurately and are used to investi-
gate specific tumor cell characteristics such as
drug response or metastatic potential. Finally,
physiochemical variables, such as the CO2 concen-
tration and temperature, need to be maintained
within certain limits for optimal cell growth. For
human cancer cell lines, the optimal temperature
is 378C and the preferred CO2 atmosphere is
5%.18

Once the conditions for cancer cell culture
growth are established, it is important to rou-
tinely examine the cell cultures both macroscopi-
cally and microscopically for cell morphology, cell
density, and the presence of contaminants. Macro-
scopically, the color and turbidity of the culture
medium can describe the cell density or presence
of microbiological contaminants. For example, the
culture medium often turns from pink to yellow
when the cells in culture have depleted the
nutrients in the medium. Cloudy culture medium
often indicates the presence of bacteria or fungi in
the culture. Microscopically, it is important to
check for signs of cell deterioration such as granu-
larity around the nucleus and cytoplasmic vacuo-
lation. The interval between changing medium
and subculturing cells depends on the rate of
growth or metabolism of the cancer cells; cultures
that grow more rapidly require more frequent
changes. When cells occupy the entire surface of
a flask, the monolayer culture is considered con-
fluent, and the cells need to be subcultured to
reduce the cell density to a level where the cells
can achieve optimal growth. Subculturing cells
requires the use of proteolytic enzymes such as
trypsin (0.01–0.5%) and/or 1 mM EDTA to break
the cell-to-cell and cell-to-substrate interactions,
thereby releasing the cells from the monolayer
culture into single cell suspensions. These single
cell suspensions can be used for future passages,
for cryopreservation, or for setting up experi-
ments.

There is a constant risk of contaminating cell
cultures with either microbes or different cancer
cell lines. Most of this discussion will address mi-
crobial contamination (bacteria, fungus, and myco-
plasma) and the methods for monitoring and
treating them. Bacterial or fungal contamination
is often noticed macroscopically as cloudiness in
the medium, fuzzy fungal balls, or microscopically
as fine granules. Toxic contamination can cause
cultured cells to die and slough off the plate sur-
face, often seen as significant movement under

low power. Antibiotics, such as penicillin and
streptomycin, may be used to treat unique or irre-
placeable cultures that have been contaminated;
otherwise, it is recommended that the contami-
nated cultures be discarded. The concern with
using antibiotics prophylactically is developing a
source of drug-resistant strains of bacteria that
can chronically contaminate the cultures. Myco-
plasma are small prokaryotes whose presence in
cell cultures cannot be noticed macroscopically or
microscopically. Often, these microbes grow insid-
iously and do not kill the host cells. Despite no
apparent influence on cultured cell growth or
behavior, the presence of mycoplasma may indeed
alter any parameter measured in cell culture or in
experimental investigations.19,20 By depriving the
cultured cells of medium components and degrad-
ing specific amino acids, mycoplasma can initiate
a range of effects such as altering signal transduc-
tion, cytokine and growth factor expression, can-
cer cell growth, and cell membrane composition.20

A popular choice for detecting mycoplasma con-
tamination is with the use of polymerase chain
reaction technology to detect mycoplasma-specific
sequences. It is a sensitive and specific option for
routinely screening growing cell lines or for test-
ing cell lines newly introduced in the laboratory.
To salvage irreplaceable cell lines, three groups of
antibiotics (tetracycline, macrolides, quinolones)
are effective in treatingmycoplasma infections.20

CHARACTERISTICS OF HNSCC CELL LINES

The large number of available HNSCC cell lines
underscores the importance of categorizing tumor
cell line characteristics to help researchers select
a cell line that best suits their needs. This review
has organized HNSCC cell lines into practical and
useful Appendix tables based upon important
characteristics. More detailed information regard-
ing specific cell lines and models can be found in
the primary references.

Tumor Cell Line Name and Patient Demo-

graphics. Appendix Table A1 includes general
characteristics and procurement information,
such as tumor cell line name, patient data, and
TNM stage. The cell lines that are available from
the American Type Culture Collection (ATCC) are
noted. The table also provides primary references
for the cell lines and additional references focused
upon chromosomal and molecular genetic charac-
teristics. The genetics references are not intended
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to be exhaustive, but provide researchers a start-
ing point for further investigation.

HNSCC usually arises in patients with a his-
tory of tobacco and/or alcohol use, suggesting that
alcohol and the carcinogens found in tobacco syn-
ergistically enhance the development of muta-
tions responsible for HNSCC. Furthermore, areas
of the upper aerodigestive tract, which are ex-
posed to the highest levels of carcinogens in smok-
ers, also experience high frequencies of HNSCC,
further suggesting that changes at the chromo-
somal level lead to tumorigenesis.21,22 As further
evidence of the genetic basis for HNSCC, other
malignancies such as esophageal and lung can-
cers, which share a common carcinogenic associa-
tion to tobacco, have demonstrated deletions
in chromosome 3p.23–30 In fact, Cowan et al ob-
served that 6 of 10 HNSCC cell lines demon-
strated deletions in regions of chromosome 3p
that contain tumor suppressor genes.29,31 Other
studies investigating chromosomal aberrations
have reported 11q13 amplification in 20% to 50%
of HNSCC cases and its association with poor clin-
ical prognosis and increased metastasis.32–34 The
11q13 locus contains genes that code for cyclin D1,
2 members of the fibroblast growth factor family,
and cortactin. Overexpression of cyclin D1 and
cortactin may play a role in HNSCC tumor pro-
gression.29,35–38 Mutations of the TP53 tumor
suppressor gene are a well-recognized step in car-
cinogenesis. Specific TP53 genetic alterations in
HNSCC cell lines have been characterized (Ap-
pendix Table A2). Chromosomal alterations and
instability enable the multistep process of genetic
changes in HNSCC.29,39–41 Whether the disrup-
tion is a loss of function of tumor suppressor genes
or overexpression of oncogenes, or an alteration of
chromosomal constitution, genetic changes are at
the foundation of the series of changes that lead to
rapid cell growth, tumor proliferation, and meta-
static invasion. The chromosomal and genetic het-
erogeneity present in the primary tumor remain
evident in cell lines despite continued passage
in vitro. Further investigations to elucidate the
relationship between genetic alterations at the
cytogenetic and molecular level with tumor be-
havior and clinical outcome will continue to be
critical.29,31

Site of Origin of Tumor Cell Lines. By organizing
cell lines according to the site of origin, site-spe-
cific characteristics of HNSCC may be investi-
gated with the possibility of developing more spe-
cific and targeted therapies. In the past, head and

neck cancer has been studied as an aggregate of
tumors from different sites in the upper aerodiges-
tive tract. Appendix Table A3 organizes the tumor
cell lines on the basis of the anatomic site of origin.
The sites of origin are divided into 7 categories: fa-
cial skin, nasal/paranasal sinus, oral cavity, oral
pharynx, hypopharynx, pharynx, and larynx. As
shown in Appendix Table A3, most of the HNSCC
cell lines are derived from tumors that either ori-
ginated from the oral cavity or the larynx.

Doubling Times of Tumor Cell Lines. Doubling
times are an important parameter used to measure
the cellular response to experimental changes in
culture conditions such as nutrient concentrations,
hormones, or drugs42 (Appendix Table A4). From a
practical standpoint, knowledge of doubling times
facilitates the daily maintenance of HNSCC cell
cultures. Experiments can be planned so that cells
will be in log phase when they are treated with
reagents. The standard cycle of cell growth begins
with negligible growth during the lag phase. After
trypsinization, the cells adapt to the new environ-
ment by replacing elements of the glycocalyx lost
during trypsinization, attaching to the substrate
and spreading out. Following the lag phase, cells
proceed into exponential growth during log phase.
This is the optimal time for sampling because the
population ismost uniformand cell viability is high.
The doubling time is measured during this phase.
Cells are counted during the log phase, and the av-
erage doubling time is determined by plotting the
cell counts as a function of time.43 Another method
for measuring doubling time is to calculate the time
necessary for the cells to increase twofold in the
middle of the log phase.42 Toward the end of the log
phase, adherent cells become confluent, cell divi-
sion slows, and steady-state equilibrium between
cell growth and cell death is achieved in stationary
phase. In normal cells, a phenomenon termed con-
tact inhibition has been observed when the cells
become confluent during the stationary phase, sug-
gesting that direct contact between neighboring
cells reduces cell motility, membrane ruffling, and
cell growth. However, HNSCC cell lines with regu-
lar culture medium replenishment will continue to
proliferate beyond confluence to formmultilayers of
cells. The decline phase begins when nutrients are
depleted and toxic by-products of metabolism accu-
mulate leading to cell death.42,44

In Vivo Xenograft Growth of Tumor Cell Lines. Tu-
mor cell lines or explants introduced as xenografts in
mice can potentially model complex interactions
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between the tumor and its host. Despite limitations,
there is no current technology or in vitro assay that
can predict the activity of antineoplastic drugs as
accurately or demonstrate the tumorigenic andmet-
astatic properties of tumors as fully as xenograft
animal models. Appendix Table A5 catalogues the
HNSCC cell lines that have grown as xenografts in
mice. The athymic nude mouse was first described
by Pantelouris in 1968.45 In 1969, Polvsen and
Rygaard were the first to xenograft a human colon
adenocarcinoma into a nude mouse, and 3 years
later, Polvsen and Rygaard were the first to trans-
plant human tumor cells into the nude mouse
model.46,47 In 1984, Braakhuis et al48 demonstrated
that the nude mouse xenograft model could be used
to study head and neck cancer by implanting 130
human head and neck biopsy explants into the sub-
cutaneous tissue of nude mice.

The most commonly used immunodeficient
mouse model to study head and neck cancer is the
athymic nude mouse, which carries a homozygous
nu mutation on mouse chromosome 11 leading to
thymic dysgenesis.46 While the primary immune
defect of these mice is T-cell deficiency to prevent
graft rejection, the athymic nude mouse is not
completely immunodeficient. Although, functional
T lymphocytes are effectively absent, B cells,
natural killer (NK) cells, and macrophages are
still present. Nevertheless, the nude mouse is
more immunodeficient than animals that are ren-
dered immunodeficient by artificial thymectomy
or by other means of artificial immunosuppres-
sion. The benefits of using athymic nude mice
include the following: thorough characterization
and wide use; lack of hair that allows for visualiza-
tion of subcutaneously xenografted tumors; immu-
nodeficiency severe enough to support growth of
wide range of tumor cells; and availability on dif-
ferent genetic backgrounds.49 However, the nude
mice retain normal levels of NK cells and macro-
phages. To eliminate NK cell activity and improve
tumor establishment, nude mice can be pretreated
with cyclophosphamide.50 A less commonly used
immunodeficient mouse model is the severe com-
bined immunodeficiency (SCID) mouse. The bene-
fit of using a SCID mouse is that the more severe
immunodeficiency resulting in arrested T-cell and
B-cell development allows for a higher percentage
of engraftment, more enhanced tumor growth, and
less tumor regression.49 However, the disadvan-
tages of SCID mice are that they experience a high
incidence of thymic lymphomas, which may
shorten their lifespan, and their severe immunode-
ficiency makes them harder to maintain.49,51

Several considerations need to be appreciated
regarding the mouse xenograft model.52 The xeno-
graft in the mouse can be derived from either a tu-
mor cell line or a patient biopsy explant. Tumor cell
lines are histologically homogenous and undiffer-
entiated, which ensures experimental uniformity
and reproducibility. A drawback to using tumor cell
lines is the concern that as they grow in vitro, they
adapt to the culture environment and may develop
genetic and phenotypic differences from the origi-
nal tumor. The benefit of using biopsy explants is
that they conserve morphological and molecular
markers characteristics better than tumor cell
lines; however, the disadvantage is the heterogene-
ous cell population found in the biopsy specimen
and the difficulty associated with xenografting an
explant. The site of xenograft implantation is also
an important consideration. Most investigators
implant HNSCC tumors into the subcutaneous tis-
sue of the abdomen, nape of the neck, or the flank
because of the relative ease in monitoring tumor
growth and size; however, the subcutaneous
implants show a benign growth pattern. Studies
with tumor cells implanted into the subcutaneous
tissue had difficulty demonstrating any significant
invasion of surrounding tissues ormetastatic activ-
ity.47,48,53,54 Patients with head and neck cancer of-
ten have tumors that aggressively invade local sur-
rounding tissues, so the subcutaneous model has
its limitations. Orthotopic xenografts in the floor of
mouth have been able to produce tumors that
mimic histopathologic growth in the head and neck
cancer patient, including invasion into surround-
ing tissues and spread to cervical lymph nodes.55,56

Despite the recent developments of the murine
model in head and neck cancer, it is important to
recognize the limitations of the mouse xenograft
model. Immunodeficient mouse strains have
increased susceptibility to viral and bacterial infec-
tions, which limits the life span of the xenograft
mouse to 4–6 months. In addition, immunodefi-
cient mice have a different immunobiology when
compared with the human host, which may result
in different mechanisms and rates of tumor pro-
gression as well as treatment responses. Although
beyond the scope of this review, the development of
novel transgenic, knock-out and/or knock-in mice
may provide more realistic models of human
HNSCC in the setting of an intact immune system.

Tumor Cell Line Growth in Nonmonolayer Cul-

tures. Soft agar growth demonstrates anchor-
age-independent proliferation potential, a hall-
mark of transformed cancer cells. Normally, non-

Head and Neck Squamous Cell Carcinoma Cancer Cell Lines HEAD & NECK—DOI 10.1002/hed February 2007 167



neoplastic cells require cell–matrix anchorage to
survive; otherwise, a suspension-induced apopto-
sis known as anoikis occurs. Heterodimeric trans-
membrane cell surface receptors known as integ-
rins bind to components of the extracellular ma-
trix (ECM), and numerous studies have shown
the disruption of these interactions lead to anoi-
kis.57–62 However, cancer cells have less stringent
requirements for extracellular matrix adhesion,
allowing them to resist anoikis and survive in an
anchorage-independent manner. This property
enables cancer cells to extravasate into lymphatic
channels or blood vessels and invade a distant
organ. Growth on soft agar becomes a reliable
measure of the metastatic capability of tumor
cells. Ten HNSCC cell lines have been reported to
grow on soft-agar: HN-1,8 HN-2,8 UM-SCC-11A,63

UM-SCC-14C,64 UM-SCC-38,64 TR126,65 TR131,65

TR146,65 MDA-183,23 and MDA-1483.23 One chal-
lenge with this methodology is that most HNSCC
cell lines do not grow in soft agar.

Spheroids offer a useful model of solid tumors
because monolayer cultures lack the cell-to-cell
interactions characteristic of tumors in vivo.66

Spheroids are composed of an outer layer of prolif-
erating cells, an inside layer of quiescent cells,
and an inner core of necrotic cells. This arrange-
ment reflects the growth pattern on solid tumors
in vivo, with proliferating cells found closest to a
nutrient and oxygen supply, quiescent cells found
slightly farther, and necrotic cells found the far-
thest from capillaries.67–75 There are 2 methods
for culturing spheroids. The most popular ap-
proach involves the use of spinner flasks. Mono-
layer cell cultures are trypsinized and seeded in
growth medium within spinner flasks. Rotation is
achieved by spinning a stir bar in the spinner
flask. Factors that affect spheroid formation
include the type of cells, cell density at seeding,
the rotation speed, the type of culture medium,
and the incubation time. The advantage of using
spinner flask cultures is the large number of sphe-
roids formed from large-volume cultures and the
considerable size of the spheroids.67,76 Another
method for forming spheroids is to use agar over-
lay cultures as first described by Yuhas.77 Tumor
cells obtained from confluent monolayer cultures
are trypsinized into single-cell suspensions. These
suspensions are seeded in a stationary, nonadher-
ent mixture of complete growth medium and aga-
rose.67 When the spheroids are ready for experi-
ments, it is critically important to select spheroids
of the same size since a slight difference in diame-
ter can result in a dramatic volume difference.

Size uniformity can be achieved with the use of a
Pasteur pipette and a low-power microscope, or
for rapid harvesting of spheroids, the cultures
may be filtered through a nylon sieve of decreas-
ingmesh size to segregate spheroids, based on size
and leaving the largest spheroids on top.67 Eleven
cell lines have been reported to cluster into 3-
dimensional spheroidal cultures: Hep2,78 FaDu,79

HN-1,80,81 UM-SCC-22B,78 UM-SCC-30,78 CAL27,82

MDA-1483,23,83 MDA-886LN,83 MDA-686LN,83

T1/CUHK,84 and T2/CUHK.84

Spheroids may also be cultured from biopsy
specimens and such cultures demonstrate ploidy
stability suggesting that biopsies cultured in vivo
maintain the cellular complexity of tumors in
vivo.85 Spheroid cultures derived from biopsy
specimens do not experience the problematic clonal
evolution of tumor cell subpopulations that has
been attributed to the passage of monolayer cul-
tures grown from biopsy specimens.86 After a cell
line has been passaged several times, there have
been questions about its semblance to the original
tumor.85 However, genetic and molecular cytoge-
netic data show that HNSCC cells in culture
closely resemble those in the primary tumors.87,88

A 3-dimensional spheroidal culture may be a
better representation of the in vivo cellular com-
plexity and heterogeneity found in the microen-
vironment of a tumor nodule than a monolayer
culture. The 3-dimensional arrangement reflects
several characteristics of tumor cells in vivo such
as the irregular distribution of oxygen and
nutrients found in tumor cells in vivo and cellular
subpopulations of proliferating, quiescent, and
necrotic cells. A model that better mimics tumor
heterogeneity and intercellular contact should
exhibit a more representative response to drug
therapies. For example, studies using spheroid
cell cultures have shown large variations in radia-
tion and drug sensitivity, similar to those found
with tumors in vivo.74,89–94 Finally, spheroidal
cultures are less affected by the culture conditions
because of reduced cell-to-cell interactions.67 A
limiting factor to the use of tumor spheroids lies in
the difficulty of establishing cell lines that can as-
sociate into spheroid clusters. Although both nor-
mal and transformed human cells may aggregate,
only certain tumor cells will grow as spheroids.
This review lists 11 reported HNSCC cell lines out
of almost 300 total cell lines that can reassociate
into spheroidal clusters. Across a wide range of
different cancer types, only 5 of 22 human tumor
xenografts and 16 of 27 tumor cell lines formed
spheroids.68,95
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SUMMARY

Head and neck cancer remains a significant public
health concern. Despite current surgical treat-
ments and adjunctive chemoradiation therapy,
5-year survival rates remain below 50%. This has
prompted a greater need for investigating novel
and targeted therapies. The use of HNSCC cell
lines will be vital for these preclinical develop-
ments. Although the literature characterizing
HNSCC cell lines is abundant, an easily accessible
reference that organizes these data for research-
ers interested in selecting cell lines is necessary.
This review provides a detailed catalogue of
HNSCC cell line characteristics that will assist
new and experienced investigators in their selec-
tion of appropriate preclinical models for further
understanding head and neck tumor biology and
therapeutic mechanisms.
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APPENDIX

Table A1. Tumor cell line name and patient demographics.

Cell line Sex TNM stage Reference Genetics references

Hep2* M – 1, 2 –

Hep3 M – 1, 2 –

KB* M – 3 –

RPMI 2650 – – 4 –

Detroit 562* F – 5 –

FaDu* M – 6 –

SW579* M – 7 –

A-253* M – 8 –

T3M-1 M – 9 9

HLac78 – T2N2M0 10, 11 11

HLac79 – – 11 11

HSmC78 – T2N2M0 10, 11 11

HPaC79 – – 11 –

MC F – 12 –

HN-1 M T2N1M0 13 13, 14

HN-2 M T3N0M0 13 13, 14

HN-3 M T3N0M0 13 13, 14

HN-4 M T2N0M0 13 13

HN-5 M T2N0M0 13 14

HN-6 M T2N0M0 13,15 14

HN-6Rr M – 15 –

HN-6nl M – 15 –

HN-6n2 M – 15 14

HN-7 M T2N0M0 13 –

HN-8 M T2N0M0 13 –

HN-9 F T2N0M0 13 –

HN-10 M T2N0M0 13 –

UM-SCC-1 M T2N0M0 16 7

UM-SCC-2 F T2N0M0 16 17

UM-SCC-3 F T1N0M0 16 17, 18

UM-SCC-4 F T3N2aM0 19 17

UM-SCC-5 M T2N1M0 19 17, 18, 20

UM-SCC-6 M T2N0M0 19 17, 18

UM-SCC-7 M T2N1M0 19 17, 18

UM-SCC-8 F T2N1M0 19 7, 17, 18, 20

UM-SCC-9 F T2N0M0 19 17, 18, 20

UM-SCC-10A M T3N0M0 19 7, 17, 18, 20, 21

UM-SCC-10B M T3N1M0 22 7, 18, 20

UM-SCC-11A M T2N2aM0 19 7, 17, 18, 20

UM-SCC-11B M T2N2aM0 7 7, 17, 18, 20

UM-SCC-12 M T2N1M0 19 17

UM-SCC-13 M T3N0M0 7 17

UM-SCC-14A F T1N0M0 19 7, 17, 18, 20, 21

UM-SCC-14B F T1N0M0 19 7, 17, 18, 20, 21

UM-SCC-14C F T1N0M0 19 7, 17, 18, 20, 21

UM-SCC-15 M T4N1M0 7 7

UM-SCC-16 F T2N0M0 22 7, 17, 20

UM-SCC-17A F T1N0M0 23 7, 17, 20, 23, 24

UM-SCC-17as F T1N0M0 23 23

UM-SCC-17B F T1N0M0 23 7, 17, 20, 23, 24

UM-SCC-18 M T3N1M0 7 –

UM-SCC-19 M T2N1M0 7 7, 17

UM-SCC-20 M T2N1M0 7 17, 18

UM-SCC-21A M T2N1M0 25, 26 7, 17, 20, 26

UM-SCC-21B M T2N1M0 18, 26 7, 17, 18, 20, 26

UM-SCC-22A F T2N1M0 7 7, 17, 18

UM-SCC-22B F T2N1M0 19 7, 17, 18

UM-SCC-23 F T2N0M0 22 7, 18
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Table A1. (Continued).

Cell line Sex TNM stage Reference Genetics references

UM-SCC-24 M T1N0M0 7 –

UM-SCC-25 M T3N0M0 7 17

UM-SCC-26 M T3N1M0 7 17

UM-SCC-27 M T1N0M0 7 –

UM-SCC-28 F T1N0M0 7 17

UM-SCC-29 M T3N2aM0 7 17

UM-SCC-30 F T3N1M0 7 17

UM-SCC-31 M T3N0M0 7 –

UM-SCC-32 M T3N1M0 7 –

UM-SCC-33 F T4N3aM0 7 –

UM-SCC-34 M T3N1M0 7 –

UM-SCC-35 M T4N1M0 19 17

UM-SCC-36 M T2N0M0 7 –

UM-SCC-37 M T2N0M0 7 –

UM-SCC-38 M T2N2aM0 19, 26 7, 17, 18, 26

UM-SCC-39 M T3N3aM0 7 –

UM-SCC-40 M T3N0M0 7 –

UM-SCC-41 M T2N1M0 7 –

UM-SCC-42 M T4N3bM0 7 –

UM-SCC-43 M – 7 –

UM-SCC-44 M T4N2bM0 7 –

UM-SCC-45 F T4N2bM0 7 –

UM-SCC-46 F – 7 27

UM-SCC-47 M T3N1M0 7 27

UM-SCC-48 M T4N0M0 7 –

UM-SCC-49 M T2N1M0 7 17, 18

UM-SCC-50 F T4N3bM0 7 –

UM-SCC-51 M T3N3bM0 7 17, 18

UM-SCC-52 F T3N3cM0 7 –

UM-SCC-53 M T3N1M0 7 –

UM-SCC-54 M T3N0M0 7 –

UM-SCC-55 M – 7 –

UM-SCC-57 M – 7 –

UM-SCC-58 F – 7 –

UM-SCC-59 F T3N2bM0 7 –

UM-SCC-60 – – 7 –

UM-SCC-62 M T3N1M0 7 –

UM-SCC-63 M – 22 7

UM-SCC-65 M – 7 17

UM-SCC-66 M – 7 –

UM-SCC-67 M – 7 –

UM-SCC-68A M – 7 –

UM-SCC-68B M – 7 –

UM-SCC-69 M T4N0M0 19 7, 18, 21

UM-SCC-70 M – 7 –

UM-SCC-71 M – 7 –

UM-SCC-72 M – 7 –

UM-SCC-73A M – 7 17

UM-SCC-73B M – 7 17

UM-SCC-74A M T3N0M0 7 –

UM-SCC-74B M T3N0M0 7 –

UM-SCC-75 F – 7 –

UM-SCC-76 M – 7 –

UM-SCC-77 F – 7 –

UM-SCC-78A M – 7 –

UM-SCC-78B M – 7 –

UM-SCC-79 M – 7 –

UM-SCC-80 M T4N1M0 7 7, 18, 21

UM-SCC-81A M T2N0M0 7 24

UM-SCC-81B M T2N0M0 7 7, 24

UM-SCC-82A F T2N0M0 7 7, 17, 18, 21
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Table A1. (Continued).

Cell line Sex TNM stage Reference Genetics references

UM-SCC-82B F – 7 17, 18, 21

UM-SCC-83A M – 7 7, 24

UM-SCC-83B M – 7 7, 24

UM-SCC-84 M T2N0M0 7 –

UM-SCC-85 M – 7 –

UM-SCC-86 F – 7 24

UM-SCC-87 M T3N0M0 7 7, 24

UM-SCC-88 F T3N1M1 7 –

UM-SCC-89 M T3N0M0 7 24

UM-SCC-90 M T4N3M0 7 7, 24

UM-SCC-91 M T4N0M0 7 24

UM-SCC-92 F T2N0M0 7 –

UM-SCC-93 F T4N0M0 7 7, 24

UM-SCC-94 M T4N2aM0 7 24

UM-SCC-95 M T4N1M0 7 –

UM-SCC-96 F T3N3M0 7 –

UM-SCC-97 F T1N0M0 7 –

UM-SCC-98 M T4N0M0 7 –

UM-SCC-99 M T3N0M0 7 –

UM-SCC-100 F T4N3M0 7 –

UM-SCC-101A F T2N3M0 7 7

UM-SCC-101B F T2N3M0 7 –

SCC-4* M T3N0M0 28 –

SCC-9* M T2N1 28 –

SCC-12 M – 28 –

SCC-13 F – 28 –

SCC-15* M T4N1M0 28 –

SCC-25* M T2N1 28, 29 7

SCC-35 – T4N0 29, 30 7

SCC-49 – T2N0 30 –

SCC-61 – T4N2b 29, 30 7

SCC-66 – T4N0 30 –

SCC-68 M T4N10M0 7 –

SCC-71 – T4N1 30 –

SCC-73 – T4N0 30 –

SCC-74 F T4N0M0 7 –

SCC-76 – T4N0 30 –

SCC-182 M T3N0M0 7 –

SCC-200 M T2N2M0 7 –

SCC-203 M T2N2M0 7 –

SCC-210 M T3N0M0 7 –

SCC-213 M T4N0M0 7 –

SCC-220 M T4N1M0 7 –

JSQ-3 – T3N0 29, 31 7

JSQ-13 – – 32 –

SQ-9G – T3N1 30 7

SQ-20B – T2N0 29, 30 7

SQ-29 – T3N1 30 –

SQ-31 – T2N0 29, 30 7

SQ-38 – T3N0 30 7

SQ-39 – T3N2a 30 –

SQ-43 – T1N0 30 –

SQ-50 – T4N2 7 –

HN-SCC-3 – T3N3bM0 31 –

HN-SCC-28 – – 31 –

HN-SCC-29 – – 32 –

HN-SCC-42 – – 32 –

HN-SCC-58 – T4N1M0 31 –

HN-SCC-68 – – 32 –

HN-SCC-80 – – 32 –

HN-SCC-104 – T3N3aM0 31 –
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Table A1. (Continued).

Cell line Sex TNM stage Reference Genetics references

HN-SCC-109A – – 32 –

HN-SCC-131 – – 31 –

HN-SCC-135 – T1N1MO 29 7

HN-SCC-151 – T3N0M0 29 7

HN-SCC-167 – T3N0M0 29 7

HN-SCC-294 – T2N0M0 29 7

PCI-1 M – 33, 34 7, 33

PCI-2 M T3N0M0 33 7, 33

PCI-3 – T3N0M0 33 7, 33

PCI-4A M T3N0M0 33, 34 7, 33

PCI-4B M T3N0M0 33, 34 7, 33

PCI-5 M T3N1M0 33 7, 33

PCI-6A M T3N3M0 33, 34 7, 33

PCI-6B M T3N3M0 33, 34 7, 33

PCI-7 M T4N2M0 33 7, 33

PCI-8 M T3N0M0 33 33

PCI-9A T4N3M0 33 7, 33

PCI-9B M T4N3M0 33 7, 33

PCI-10 M T3N1M0 33 7, 33

PCI-11 M T4N1M0 33, 34 7, 33

PCI-12 M – 33 7, 33

PCI-13 M T4N1M0 33, 34 7, 33

PCI-14 M – 33 –

PCI-15A M T2N1M0 33, 34 –

PCI-15B M T2N1M0 33, 34 –

PCI-16 M T2N1M0 33 –

PCI-17 F T2N0M0 33 –

PCI-18 M – 33 –

PCI-19 M T3N0M0 7 –

PCI-20 M – 7 –

PCI-21 M T3N2M0 7 –

PCI-22A M T4N1M0 34, 35 –

PCI-22B M T4N1M0 34, 35 –

PCI-23 F T2N0M0 36 –

PCI-24 M T2N0M0 33 –

PCI-25 M T4N1M0 34, 35 –

PCI-26 M T3N0M0 34 –

PCI-27 M T4N0M0 7 –

PCI-28 M T3N2M0 34, 35 –

PCI-29 F T4N0M0 7 –

PCI-30 M T3N1M0 34, 36 –

PCI-31 M T3N0M0 34 –

PCI-32 M T4N0M0 37 –

PCI-33 M – 34 –

PCI-34 M T4N2M0 34 –

PCI-35 M T3N1M0 7 –

PCI-36 F T2N0M0 34 –

PCI-37A M T3N2M0 34 –

PCI-37B M T3N2M0 34 –

PCI-38 M T3N1M0 34, 36 –

PCI-39 M T2N0M0 34 –

PCI-40 M T4N2M0 7 –

PCI-41 F T2N0M0 7 –

PCI-42 M T4N2M0 7 –

PCI-43 M T1N0M0 7 –

PCI-44 M T4N0M0 7 –

PCI-45 M T4N3M0 7 –

PCI-46 M T2N2M0 7 –

PCI-47 F T3N0M0 7 –

PCI-50 M T2N0M0 38 –

PCI-51 M T1N2M0 39 –
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Table A1. (Continued).

Cell line Sex TNM stage Reference Genetics references

PCI-52 M T1N2M0 40 –

PCI-100 M T3N1M0 7 –

PCI-101 M T4N2M0 7 –

PCI-102 M T2N0M0 7 –

PCI-103 M T3N0M0 7 –

PCI-104 M T4N3M0 7 –

PCI-105 M T3N0M0 7 –

PCI-106 F T4N2M0 7 –

UT-SCC-1A F T2N1M0 19, 41 7

UT-SCC-1B F T4N1M0 42 7

UT-SCC-2 M T4N1M0 19, 41 7

UT-SCC-4 F T4N0M0 41 7

UT-SCC-5 M T1N1M0 42 7

UT-SCC-6A F T2N1M0 42 7, 43

UT-SCC-6B F T2N1M0 42 7

UT-SCC-7 M T1N0M0 41 7

UT-SCC-8 M T2N0M0 42 7, 43

UT-SCC-9 M T2N0M0 42 7, 43

UT-SCC-10 M T1N0M0 42 7, 43

UT-SCC-11 M T1N0M0 41 7

UT-SCC-12A F T2N0M0 41 7

UT-SCC-12B F T2N0M0 42 7

UT-SCC-13 M T3N0M0 42 7

UT-SCC-14 M T3N1M0 42 7

UT-SCC-15 M T1N0M0 7 7

UT-SCC-16A F T3N0M0 41 7, 43

UT-SCC-16B F T3N0M0 42 7

UT-SCC-17 M T2N0M0 7 7

UT-SCC-18 M T3N1M0 42 7, 43

UT-SCC-19A M T4N0M0 44 7, 43

UT-SCC-19B M T4N0M0 44 7

UT-SCC-20A F T1N0M0 42 7

UT-SCC-20B F – 42 7

UT-SCC-21 M T3N0M0 7 7

UT-SCC-22 M T1N0M0 44 7

UT-SCC-23 M T3N0M0 7 7

UT-SCC-24A M T2N0M0 42 7

UT-SCC-24B M T2N0M0 42 7, 43

UT-SCC-25 M T2N0M0 42 7

UT-SCC-26A M T1N2M0 42 7

UT-SCC-26B M T1N2M0 42 7

UT-SCC-27 M T2N0M0 7 7

UT-SCC-28 F T2N0M0 7 7

UT-SCC-29 M T2N0M0 42, 44 7, 43

UT-SCC-30 F T3N1M0 7 7

UT-SCC-31 M T3N2bM0 7 7

UT-SCC-32 M T3N0M0 7 7

UT-SCC-33 F T2N0M0 7 7

UT-SCC-34 M T4N0M0 7 7

UT-SCC-35 M T2N0M0 7 7

UT-SCC-36 M T4N1M0 7 7

UT-SCC-37 F T2N0M0 7 –

UT-SCC-38 M T2N0M0 7 –

UT-SCC-39 M T2N0M0 7 –

UT-SCC-40 M T3N0M0 7 –

UT-SCC-41 M T3N0M0 7 –

UT-SCC-42A M T4N3M0 7 –

UT-SCC-42B M T4N3M0 7 –

UT-SCC-43A F T4N1M0 7 –

UT-SCC-43B F T4N1M0 7 –

UT-SCC-44 F T4N2bM0 7 –
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Table A1. (Continued).

Cell line Sex TNM stage Reference Genetics references

UT-SCC-45 M T3N1M0 7 –

UT-SCC-46A M T1N0M0 7 –

UT-SCC-46B M T1N0M0 7 –

UT-SCC-47 M T2N0M0 7 –

UT-SCC-48 M T3N0M0 7 –

UT-SCC-49 M T2N0M0 7 –

UT-SCC-50 M T2N0 7 –

UT-SCC-51 M T2N0M0 7 –

UT-SCC-52 M T2N1M0 7 –

UT-SCC-53 M T4N2cM0 7 –

UT-SCC-54A F T2N0M0 7 –

UT-SCC-54B F T2N0M0 7 –

UT-SCC-55 M T4N1M0 7 –

EV-SCC-1 M T2N0M0 22 –

EV-SCC-2 M T2N2aM0 7 –

EV-SCC-3 M T2N2bM0 22 –

EV-SCC-4 M T3N1M0 22 –

EV-SCC-7 M T4N0M0 7 –

EV-SCC-10M M T4N1M0 7 –

EV-SCC-14M M T2N2bM0 7 –

EV-SCC-17P M T4N0M0 7 –

EV-SCC-17M M T4N0M0 7 –

EV-SCC-18 M T3N1M0 7 –

EV-SCC-19P M T3N1M0 7 –

EV-SCC-19M M T3N1M0 7 –

HFH-SCC-3 M T1N0M0 21 21

HFH-SCC-4 M T4N0M0 21 21

HFH-SCC-6 M T2N1M0 21 21, 45

HFH-SCC-8 M T1N1M0 21 46

HFH-SCC-11 M T3N0M0 21 21

HFH-SCC-12 M T2N2bM0 21 21

HFH-SCC-15 F – 21 21

HFH-SCC-16 M T2N2M0 21 21

HFH-SCC-17 – NS 18 18

HFH-SCC-19 M T1N2M0 21 21

HFH-SCC-20 M T4N3M0 21 21

HFH-SCC-28 M T2N0M0 21 21

HFH-SCC-29 F – 21 21

HFH-SCC-33 M T4N2M0 21 21

HFH-SCC-42 M T2N0M0 21 21

AMC-HN-1 M T1N0M0 47 47

AMC-HN-2 M T4N2M0 47 47

AMC-HN-3 M T3N1M0 47 47

AMC-HN-4 F T4N0M0 47 47

AMC-HN-5 M T3N0M0 47 47

AMC-HN-6 M T4N2M0 47 47

AMC-HN-7 M T4N2M0 47 47

AMC-HN-8 M T3N2M0 47 47

AMC-HN-9 F T4N2M0 47 47

UD-SCC-1 M T3N2bM0 48 48

UD-SCC-2 M T1N2M0 48 48

UD-SCC-3 M T2N2cM0 48 48

UD-SCC-4 M T3N1M0 48 48

UD-SCC-5 M T1N1M0 7 48

UD-SCC-6 M T2N0M0 7 48

HNSCCUM-01T M T2N2cM0 7 –

HNSCCUM-02T M T3N3bM0 7 –

HNSCCUM-03T M T3N2bM0 7 –

HNSCCUM-04N M T1N1M0 7 –

HNSCCUM-05N M T1N2bM0 7 –

HNSCCUM-06N M T2N2cM0 7 –
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Table A1. (Continued).

Cell line Sex TNM stage Reference Genetics references

HNSCCUM-07N M T2N2bM0 7 –

TU-138 M T3N0M0 49 –

TU-158 LN M T2N2aM0 49 –

TU-159 M T3N0M0 49 –

TU-167 F T4N2bM0 49 –

TU-177 M T3N0M0 49 –

TU-182 F T3N2bM0 49 –

TU-202 – – 7 –

TU-212 M T2N2cM0 49 –

TU-212 LN M T2N2cM0 49 –

TU-358B – – 7 –

TU-686 – – 7 –

CAL 33 – – 50 50

CAL 27* M – 50 50

TR126 F – 51 –

TR131 M – 51 –

TR138 M – 51 –

TR146 F – 51 –

MDA-183 M T3N0M0 52 7, 52

MDA-1483 M T2N1M0 52 7, 52

584A2 – – 53 53

MDA-886LN M T3N3a 54 –

T1/CUHK – – 55 55

T2/CUHK – – 55 55

MDA-686Ln – – 56 –

HTB43 – – 57 –

UPCI:SCC003 F T1N0 58, 59 58–60

UPCI:SCC016 F T1N0 58, 59 58, 59

UPCI:SCC029 M T4N2 58, 59 58, 59

UPCI:SCC030 M T4N2B 58, 59 58, 59

UPCI:SCC032 M T2N2B 58, 59, 61 58, 59, 61

UPCI:SCC036 M T3N1 58, 59, 61 58, 59, 61

UPCI:SCC040 M T2N2 58, 59 58, 59, 62–67

UPCI:SCC056 M T3N2B 58, 59, 61 58, 59, 61, 63, 65

UPCI:SCC070 F T3N1 58, 59, 61 58, 59, 61

UPCI:SCC072 F T3N2B 58, 59, 61 58, 59, 61

UPCI:SCC074 F T4N1 59, 61 59, 61

UPCI:SCC075 M T3N2B 58, 59, 61 58, 59, 61

UPCI:SCC077 M T2N2 58, 59, 61 58, 59, 61

UPCI:SCC078 M T2N0 58, 59, 61 58, 59, 61, 68

UPCI:SCC080 M T1N0 58, 59 58, 59

UPCI:SCC081 F T4N0 59, 61 59, 61

UPCI:SCC084 M T2N2B 58, 59, 61 58, 59, 61

UPCI:SCC089 M T4N2B 59, 61 59, 61

UPCI:SCC090 M T2N0 59, 62, 69 59, 62, 69

UPCI:SCC099 M T1N0 58, 59 58, 59

UPCI:SCC103 F T1N0 58, 59, 61 58, 59, 61, 64, 66, 68

UPCI:SCC104 M T4NX 58, 59, 61 58, 59, 61

UPCI:SCC105 M T2N0 58, 59, 61 58, 59, 61

UPCI:SCC111 F T1N1 58, 59, 61 58, 59, 61

UPCI:SCC114 M T2N0 58, 59, 61 58, 59, 61, 63, 65, 70

UPCI:SCC116 M T2N0 58, 59, 61 58, 59, 61

UPCI:SCC122 M T1N1 58, 59, 61 58, 59, 61

UPCI:SCC125 F T4N2B 58, 59, 61 58, 59, 61

UPCI:SCC131 M T2N2 58, 59, 61 58–61, 67

UPCI:SCC136 F T3N2 58, 59, 61 58, 59, 61

UPCI:SCC142 M T4NX 58, 59, 61 58, 59, 61

UPCI:SCC154 M T4N2 58, 59 58, 59

UPCI:SCC172 M – 58, 59 58–60

UPCI:SCC182 M T2N1 58, 59 58, 59

JHU-11-SCC M T3N0 71–73 –
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Table A1. (Continued).

Cell line Sex TNM stage Reference Genetics references

JHU-12-SCC F T1N2b 71 –

JHU-20-SCC M T2N2b 72–74 –

JHU-22-SCC M T3N2b 72–74 –

JHU-29-SCC M T4N0 71 –

*HNSCC cell lines available from the American Type Culture Collection (ATCC).

Table A2. TP53 gene mutations.

Cell line Mutation Protein detection IB/IHC* References

Ca9-22 R248W + –

FS-1 R273H + –

HSC-3 aa305-306 INSERTION + –

HSC-4 R248Q + –

HSQ-89 G266E + –

K562 wt � –

Kuma-3 C176F + –

MO24 wt � 33

PCI-13 E286K 33, 37, 75

PCI-30 wt 33, 37, 75

PCI-4B 33, 37, 75

SCC-4 T150L + 33

SCC-9 del275–285 � 33

TE-11 R110L + –

UD-SCC-1 Skip exon 3 �/� 48, 76

UD-SCC-2 �/� 48, 76

UD-SCC-3 �/� 48, 76

UD-SCC-5 H179Y +/+ 48, 76

UD-SCC-6 Y220C +/+ 48, 76

UD-SCC-7A/B/C R248L +/+ 48, 76

UD-SCC-8 T155N +/+ 48, 76

UM-SCC-1 16, 77

UM-SCC-5 V157F 16, 77

UM-SCC-6 16, 77

UM-SCC-10A/B G245C +/+ 16, 76, 77

UM-SCC-11B C242S +/+ 16, 76, 77

UM-SCC-12 Q110 stop 16, 77

UM-SCC-13 Y163C 16, 77

UM-SCC-14A/B/C R280S +/+ 16, 76, 77

UM-SCC-17A/B wt �/� 16, 76, 77

UM-SCC-22A/B Y220C +/+ 16, 76, 77

UM-SCC-23 C176F 16, 77

UM-SCC-25 wt 16, 77

UM-SCC-36 R158P 16, 77

UM-SCC-46 P278A 16, 77

UM-SCC-47 wt 16, 77

UM-SCC-54 16, 77

UM-SCC-57 R273L 16, 77

UM-SCC-68 R248W 16, 77

UM-SCC-72 wt 16, 77

UM-SCC-74A wt 16, 77

UM-SCC-74B wt 16, 77

UM-SCC-81A wt 16, 77

UM-SCC-81B H193R 16, 77

UPCI:SCC-16 R282W 78

UPCI:SCC-29B R280T 78

UPCI:SCC-32 Del2bp 78

UPCI:SCC-36 I195F 78

UPCI:SCC-70 R248Q 78

UPCI:SCC-72 H179N 78
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Table A2. (Continued).

Cell line Mutation Protein detection IB/IHC* References

UPCI:SCC-77 Del1bp 78

UPCI:SCC-84 Del1bp 78

UPCI:SCC-99 P177R 78

UPCI:SCC-103 R306X 78

UPCI:SCC-105 T155P 78

UPCI:SCC-111 H189Y 78

UPCI:SCC-114 R248Q 78

UPCI:SCC-116 R175H 78

UPCI:SCC-122 R273H 78

UPCI:SCC-125 P151H 78

UPCI:SCC-136 E224X 78

UPCI:SCC-172 T155P 78

UPCI:SCC-182 E294X 78

UT-MUC-1 19, 79, 80

UT-SCC-1A 19, 79, 80

UT-SCC-2 19, 79, 80

UT-SCC-4 19, 79, 80

UT-SCC-5 19, 79, 80

UT-SCC-6A/B 19, 79, 80

UT-SCC-7 G266E +/+ 19, 79, 80

UT-SCC-8 19, 79, 80

UT-SCC-9 �/� 19, 79, 80

UT-SCC-14 Skip exon 8 insertion intron 8 +/+ 19, 79, 80

UT-SCC-15 N77 del116 �/� 19, 79, 80

UT-SCC-15 19, 79, 80

UT-SCC-16A 19, 79, 80

UT-SCC-20B 19, 79, 80

UT-SCC-22 C238F +/+ 19, 79, 80

UT-SCC-23 �/� 19, 79, 80

UT-SCC-24A/B NT 775ins49 �/� 19, 79, 80

UT-SCC-33 R282W +/+ 19, 79, 80

UT-SCC-34 �/� 19, 79, 80

UT-SCC-50 Skip exon 9 �/� 19, 79, 80

Abbreviations: IB, immunoblot; IHC, immunohistochemistry.

Table A3. Tumor cell line and anatomic site of origin.

Oral cavity Oropharynx Hypopharynx Larynx Paranasal/nasal sinus Facial skin

Hep3 (HeLa?) UM-SCC-4 FaDu Hep2 (HeLa?) RPMI 2650 UM-SCC-21A
KB (HeLa?) UM-SCC-6 UM-SCC-15 HLac78 MC UM-SCC-21B
SW579 UM-SCC-18 UM-SCC-22A HLac79 UM-SCC-3 UM-SCC-63
A-253 UM-SCC-19 UM-SCC-22B HN-2 UM-SCC-33 SCC-12
T3M-1 UM-SCC-26 UM-SCC-30 HN-4 UM-SCC-85 SCC-13
HN-1 UM-SCC-31 UM-SCC-37 HN-8 UT-SCC-53 PCI-20
HN-3 UM-SCC-34 UM-SCC-39 HN-9 AMC-HN-5 UT-SCC-7
HN-5 UM-SCC-35 UM-SCC-42 HN- 10 UT-SCC-12A
HN-6 UM-SCC-38 UM-SCC-53 UM-SCC-5 UT-SCC-12B
HN-6Rr UM-SCC-50 UM-SCC-60 UM-SCC-10A
HN-6Rr UM-SCC-62 UM-SCC-80 UM-SCC-10B
HN-6Rr UM-SCC-65 UM-SCC-88 UM-SCC-11A
HN-7 UM-SCC-81B SCC-35 UM-SCC-11B
UM-SCC-1 UM-SCC-87 SQ-31 UM-SCC-12
UM-SCC-9 UM-SCC-89 HN-SCC-104 UM-SCC-13
UM-SCC-14A UM-SCC-91 PCI-5 UM-SCC-16
UM-SCC-14B UM-SCC-95 PCI-8 UM-SCC-17A
UM-SCC-14C UM-SCC-99 PCI-11 UM-SCC-17as
UM-SCC-27 UM-SCC-100 PCI-12 UM-SCC-17B
UM-SCC-32 UM-SCC-101A PCI-21 UM-SCC-20
UM-SCC-44 UM-SCC-101B PCI-32 UM-SCC-23
UM-SCC-45 SCC-49 PCI-40 UM-SCC-24
UM-SCC-47 SCC-71 PCI-104 UM-SCC-25
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Table A3. (Continued).

Oral cavity Oropharynx Hypopharynx Larynx Paranasal/nasal sinus Facial skin

UM-SCC-48 SCC-200 PCI-105 UM-SCC-28
UM-SCC-49 SQ-9G PCI-106 UM-SCC-36
UM-SCC-51 HN-SCC-3 UT-SCC-26A UM-SCC-46
UM-SCC-55 HN-SCC-167 UT-SCC-26B UM-SCC-52
UM-SCC-59 PCI-6A EV-SCC-10M UM-SCC-54
UM-SCC-69 PCI-6B HFH-SCC-6 UM-SCC-57
UM-SCC-73A PCI-7 AMC-HN-2 UM-SCC-66
UM-SCC-82A PCI-9A UD-SCC-2 UM-SCC-67
UM-SCC-82B PCI-9B HNSCCUM-01T UM-SCC-68A
UM-SCC-83A PCI-10 HNSCCUM-03T UM-SCC-72
UM-SCC-83B PCI-41 HNSCCUM-06N UM-SCC-76
UM-SCC-84 PCI-46 HNSCCUM-07N UM-SCC-81A
UM-SCC-86 PCI-51 TU-212 UM-SCC-90
UM-SCC-92 EV-SCC-3 TU-212 LN UM-SCC-93
UM-SCC-96 HFH-SCC-19 UM-SCC-94
UM-SCC-97 HFH-SCC-20 UM-SCC-98
SCC-4 UD-SCC-1 SQ-20B
SCC-9 UD-SCC-4 SQ-43
SCC-15 HNSCCUM-02T SQ-50
SCC-25 HNSCCUM-05N HN-SCC-28
SCC-61 TU-158 LN PCI-1
SCC-66 TU-159 PCI-4A
SCC-68 TU-182 PCI-4B
SCC-73 MDA-183 PCI-14
SCC-182 JHU-20-SCC PCI-16
SCC-210 JHU-29-SCC PCI-17
SCC-213 UPCI:SCC003 PCI-18
SCC-220 UPCI:SCC036 PCI-19
JSQ-3 UPCI:SCC072 PCI-25
SQ-29 UPCI:SCC080 PCI-26
SQ-38 UPCI:SCC089 PCI-28
SQ-39 UPCI:SCC090 PCI-29
HN-SCC-131 PCI-35
HN-SCC-135 PCI-37A
HN-SCC-151 PCI-37B
HN-SCC-294 PCI-39
PCI-2 PCI-43
PCI-3 PCI-44
PCI-13 PCI-47
PCI-15A PCI-52
PCI-15B PCI-102
PCI-22A PCI-103
PCI-22B UT-SCC-6A
PCI-23 UT-SCC-6B
PCI-24 UT-SCC-8
PCI-27 UT-SCC-9
PCI-30 UT-SCC-11
PCI-31 UT-SCC-13
PCI-33 UT-SCC-17
PCI-34 UT-SCC-19A
PCI-36 UT-SCC-19B
PCI-38 UT-SCC-22
PCI-42 UT-SCC-23
PCI-45 UT-SCC-29
PCI-50 UT-SCC-34
PCI-100 UT-SCC-35
PCI-101 UT-SCC-38
UT-SCC-1A UT-SCC-39
UT-SCC-1B UT-SCC-42A
UT-SCC-2 UT-SCC-42B
UT-SCC-5 UT-SCC-49
UT-SCC-10 UT-SCC-50
UT-SCC-14 UT-SCC-51
UT-SCC-16A EV-SCC-18
UT-SCC-16B HFH-SCC-3
UT-SCC-18 HFH-SCC-11
UT-SCC-20A HFH-SCC-12
UT-SCC-20B HFH-SCC-16
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Table A3. (Continued).

Oral cavity Oropharynx Hypopharynx Larynx Paranasal/nasal sinus Facial skin

UT-SCC-24A HFH-SCC-28
UT-SCC-24B HFH-SCC-42
UT-SCC-25 AMC-HN-3
UT-SCC-27 AMC-HN-7
UT-SCC-28 AMC-HN-8
UT-SCC-30 HNSCCUM-04N
UT-SCC-31 TU-177
UT-SCC-32 TR 131
UT-SCC-33 TR 138
UT-SCC-36 584A2
UT-SCC-37 MDA-886LN
UT-SCC-40 JHU-11-SCC
UT-SCC-41 JHU-22-SCC
UT-SCC-43A
UT-SCC-43B
UT-SCC-44
UT-SCC-45
UT-SCC-46A
UT-SCC-46B
UT-SCC-47
UT-SCC-52
UT-SCC-54A
UT-SCC-54B
UT-SCC-55
EV-SCC-4
EV-SCC-7
EV-SCC-14M
EV-SCC-17P
EV-SCC-17M
EV-SCC-19P
EV-SCC-19M
HFH-SCC-4
HFH-SCC-8
HFH-SCC-15
HFH-SCC-33
AMC-HN-1
AMC-HN-4
AMC-HN-6
UD-SCC-5
UD-SCC-6
TU-138
TU-167
TU-202
CAL 33
CAL 27
TR 126
TR 146
MDA-1483
T1/CUHK
T2/CUHK
JHU-12-SCC
UPCI:SCC016
UPCI:SCC029
UPCI:SCC030
UPCI:SCC032
UPCI:SCC040
UPCI:SCC056
UPCI:SCC070
UPCI:SCC074
UPCI:SCC075
UPCI:SCC077
UPCI:SCC078
UPCI:SCC081
UPCI:SCC084
UPCI:SCC099
UPCI:SCC103
UPCI:SCC104
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Table A3. (Continued).

Oral cavity Oropharynx Hypopharynx Larynx Paranasal/nasal sinus Facial skin

UPCI:SCC105
UPCI:SCC111
UPCI:SCC114
UPCI:SCC116
UPCI:SCC122
UPCI:SCC125
UPCI:SCC131
UPCI:SCC136
UPCI:SCC142
UPCI:SCC154
UPCI:SCC172
UPCI:SCC182

Note: For references, please refer to Table A1.

Table A4. Doubling times of HNSCC cell lines.

Cell line Doubling time, h References

T3M-1 17 9

HN-1 36 13

HN-2 48 13

HN-3 38 13

HN-4 100 13

HN-5 34 13

HN-6 32 13

HN-6Rr 30 15

HN-6nl 30 15

HN-6n2 72 15

HN-7 72 13

HN-8 170 13

HN-9 70 13

HN- 10 60 13

UM-SCC-1 37 81

UM-SCC-2 34 81

UM-SCC-4 90 81

UM-SCC-5 34 81

UM-SCC-6 77 81

UM-SCC-8 37 81

UM-SCC-9 55 81

UM-SCC-10B 36 81

UM-SCC-11B 29 81

UM-SCC-12 34 81

UM-SCC-14A 40 81

UM-SCC-14B 38 81

UM-SCC-14C 43 81

PCI-1 66 34

PCI-4A 58 7

PCI-4B 58 7

PCI-6A 68 34

PCI-6B 106 34

PCI-11 124 34

PCI-13 86 34

PCI-15A 126 34

PCI-15B 66 34

. .

Cell line Doubling time, h References

PCI-22A 80 34

PCI-22B 68 34

PCI-25 200 34

PCI-26 93 34

PCI-28 240 34

PCI-30 52 34

PCI-33 102 34

PCI-34 73 34

PCI-37A 80 34

PCI-37B 91 34

PCI-38 82 34

PCI-39 104 34

PCI-50 27.3 38

UT-SCC-1A 53 81

UT-SCC-1B 62 81

UT-SCC-2 32 81

UT-SCC-4 88 81

UT-SCC-5 45 81

UT-SCC-6A 100 81

UT-SCC-6B 91 81

UT-SCC-7 43 81

UT-SCC-8 23 81

UT-SCC-9 43 81

UD-SCC-1 32.5 48

UD-SCC-2 42 48

UD-SCC-3 31 48

UD-SCC-4 36 48

CAL 33 43 50

CAL 27 35 50

TR126 21 51

TR131 34 51

TR138 22 51

TR146 22 51

MDA-183 36 52

MDA-1483 36 52
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Table A5. HNSCC xenograft models.

Nude mice References Nude + Cycl References SCID References

Hep2 82, 83 PCI-1 33 UM-SCC-11A 84
Hep3 85–87 PCI-2 33
KB 88, 89 PCI-3 33
Detroit 562 90, 91 PCI-4A 33
FaDu 92, 93 PCI-4B 33
SW579 94 PCI-5 33
A-253 92 PCI-6A 33
T3M-1 9 PCI-6B 33
HLac78 95, 96 PCI-7 33
HLac79 10, 95 PCI-8 33
HSmC78 10 PCI-9A 33
HN-2 13 PCI-9B 33
HN-5 13 PCI-10 33
HN-6 13 PCI-11 33
UM-SCC-2 97, 98 PCI-12 33
UM-SCC-3 97 PCI-14 7
UM-SCC-4 7 PCI-15A 7
UM-SCC-6 7 PCI-15B 7
UM-SCC-7 7 PCI-16 7
UM-SCC-10A 7 PCI-17 7
UM-SCC-10B 7 PCI-18 7
UM-SCC-11B 98
UM-SCC-12 7
UM-SCC-14A 7
UM-SCC-16 7
UM-SCC-17B 7
UM-SCC-18 7
UM-SCC-19 7
UM-SCC-22B 99
SCC-4 28
SCC-9 28
SCC-12 28
SCC-13 28
SCC-15 28
SCC-25 28
SCC-61 100
JSQ-3 101
SQ-20B 102–105
PCI-13 7
PCI-52 106
UT-SCC-12A 107
UT-SCC-14 108
AMC-HN-1 47
AMC-HN-2 47
AMC-HN-3 47
AMC-HN-4 47
AMC-HN-5 47
AMC-HN-6 47
AMC-HN-7 47
AMC-HN-8 47
AMC-HN-9 47
UD-SCC-1 48
UD-SCC-2 48
UD-SCC-3 48
UD-SCC-4 48
TU-138 109
CAL 27 50
CAL 33 50
TR131 51
TR138 51
TR146 51
MDA-183 52
MDA-1483 52
T1/CUHK 55
T2/CUHK 55
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