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ABSTRACT

A general method is presented for obtaining successive terms in short-
wavelength asymptotic expansions of the diffracted field produced by plane acous-
tic and electromagnetic waves incident on an arbitrary smooth convex surface. By
introducing the geodesic coordinate system on arbitrary surfaces of non-constant
curvature, both scalar and vector integral equations governing the surface fields are
solved directly. The expressions for leading and second order terms in the asymp-
totic expansion of the diffracted fields are obtained explicitly and the differences

between acoustic and electromagnetic creeping waves are shown.
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I

INTRODUCTION

A shadow is formed when a wave is incident upon a smooth convex body
which is large compared to the incident wavelength. In the neighborhood of the
shadow boundary the surface field does not abruptly vanish and a penumbra region
exists. Some waves penetrate into the shadow region and account for the non-zero
fields there. These phenomena are due to diffraction of the incident wave by the
object.

The mathematical problem of analyzing diffraction of waves involves
finding the short-wavelength asymptotic form of a solution of the wave equation
satisfying an appropriate boundary condition of the diffracting surface and the
radiation condition at infinity. Detailed studies of the surface field on a circular
cylinder and a sphere (Franz, 1954) for which the exact solutions are available,
indicate that the incident wave is diffracted near the shadow boundary and the dif-
fracted waves proceed along the geodesic into the shadow region, spilling off energy
as they travel. Their phases are determined primarily by the distance traveled
from the shadow boundary. The waves diffracted by a smooth convex surface are
frequently called creeping waves.

In obtaining a description of the waves diffracted by an arbitrary smooth
convex surface of variable curvature, two techniques can be used:

(1) finding the asymptotic form of an exact solution for a canonical
body and generalizing the results;

(2) solving the boundary value problem directly by an asymptotic
method for a general surface but in restricted regions.

The difficulty with the first method is that very few canonical problems can be
solved exactly. Thus, in the well-known geometrical theory of diffraction (Levy

and Keller, 1959), a locally cylindrical body is chosen as the canonical body in
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analyzing diffraction of waves by arbitrary smooth surfaces. While this theory
gives the correct leading term in the asymptotic expansion of the diffracted fields,
it does not yield higher-order terms.

The purpose of this paper is to discuss an integral equation approach based
on the second technique. It can yield not only the leading term but also higher-order
terms in the asymptotic expansion of the fields diffracted by an arbitrary shape with
a smooth convex surface. The method to be used is the following. The geodesic
coordinate system is introduced to describe the geometry of the diffracting surface
(Sect. 2). Interms of this coordinate system, the short-wavelength asymptotic
form of the integral equation governing the surface fields is derived (Sect. 3.1)
for the acoustic case, and its solutions are derived for the penumbra (Sect. 3.2)
and shadow (Sect. 3.3) regions. The same procedure is repeated for the electro-

magnetic case (Chap. 4).
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I

THE GEODESIC COORDINATE SYSTEM

From the analysis of the sphere solution (Franz, 1954), it is observed
that the creeping waves propagate along the geodesic. Thus, we propose to use
the geodesic coordinate system to describe the diffracting surface. An important
advantage of this coordinate system is that it can be defined on any smooth surface.
For the sake of simplicity, it is assumed that the diffracting surface is symmetric

with respect to the shadow boundary and that the torsion of the geodesic is zero.

boundary v
u = constant

FIG. 2-1: GEODESIC COORDINATE SYSTEM
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Let us define the geodesic coordinate system as follows. The curve u=0
is taken to represent the shadow boundary with v denoting arc length along it. At
each point of u=0 the incident wave is tangent in a given direction, and this defines
a geodesic through each point of u=0; these geodesics are taken as the coordinate
curves v=const.; with u taken as arc length along the geodesic measured posi-
tively from the shadow boundary. The geodesic coordinate system is orthogonal
and the linear element is given as:

2
ds? = du’ + G dv® with Gu=0)= 1 (2.1)

Because of the agsumption that the geodesics are planar, G is independent of v.

The diffracting surface may be described by the Gauss-Weingarten equa-
tions (Struik, 195Q):

& . K 1
ou g
ot _ob =
v~ ou - FuP
(2.2)
b - - 2 2
— + = +
P G [Kttt xmn] with Kt Ktt Ktn
on - on =
o th , v xmb
where
or - ar - -
Fyth t, P b with T == the position vector. (2 3)

Here 1, t and —J%: are unit normal, tangent and binormal vectors along the

geodesic, respectively. xg is the curvature of the geodesic. Ko and Ktn are
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respectively, the tangential and the normal components of the curvature of the

u=const. curves. Thus, the two principal curvatures are Kg and Ktn and their

product is

2
xxtn=-—ld—2—@ . (2. 4)
g \f@ ou

while- Ktt is related to the function G by

3G
ou
= 2aG (2.5)
In addition to Eq. (2.2), the Codazzi equation must be satisfied:
oK
tn
- K ke
(2.6)
oK
-2 -
ov

A more detailed analysis of the geodesic coordinate system can be found in

most books on differential geometry (e.g. Struik, 1950).
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I

DIFFRACTION OF A PLANE ACOUSTIC (SCALAR) WAVE

The first problem to be considered is the diffraction of a plane acoustic
(scalar) wave by an acoustically hard surface, i.e a Neumann boundary condi-
tion is imposed.

3.1 Integral Equation Governing the Surface Field.

We suppose that a plane acoustic wave is incident upon a smooth con-

vex surface and that the normal derivative of the total field on the surface van-
ishes. Then the integral equation governing the surface field can be easily de—
rived by Green's theorem (Hénl et al, 1961):

U@ =20 (¥)- %//da' U(F') l;i;(R {E(I") . fl} R (3.1)

where R=T'-T , and Uinc is the incident field. Without loss of generality,

we will consider the surface field on 8 geodesic which will be called the curve v=0.

In terms of the geodesic coordinate system, the incident wave on the geodesic v=0 is

ikt (u=0, v=0)« T (u, v=0) (3.2)

Uinc.(u’ v0) = e
In the above two equations the time dependence factor e"iwt is omitted. As ob-
served in the study of a circular cylinder and a sphere (Franz, 1954), the phase of
the diffracted (creeping) wave is determined mainly by the distance traveled from

the shadow boundary, thus we shall set

v@= X% 1(F) (3.3)
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and for a large k(== Zf_ , the wave number) I(F) is assumed to be slowly vary-

ing in comparison with eiku . Substitution of this expression into Eq. (3. 1)

gives:

I(u,0)==2 exp. {mt(o 0) T (u,0)- iku //J_‘ G(u') du'dv' Ku', ')

{n(u' v'). R} exp. {ikR ik (u- u') . (3. 4)

Since we are interested in the short-wavelength behavior of the solution, we will re-
place the second term in Eq. (3. 4) by its asymptotic form. For large k, the
integrand has a saddle point where the derivative of the function R-(u-u') van-
ishes. The Taylor series expansion of the vector R near T=T' is easily derived

by means of Eq. (2.2) and is given by:

R=5(u, v')-Fu, 0)~ (u'-u) T (u) + v'_B(u)-% [(u'-u)2 € 00 ) -2 (-0 vk, (00BCu)

+ v'zg(u){xtt(u)f(u)+xm(u)ﬁ(u)}:| - % [(u'-u)3 {kg(u)i(u) + x:(u)-f(u)}

+3(u' -u)zv! xg(u) K tn(u)E(u) +3(u'-u) v:ZG(u) K tt(u) { K tt(u)I (u)+x m(u)?x (u)}
+ v'SG(u)xtz(u)B(u):I +----, (3.5)

Above, and in following pages, the curvatures (xg etc.) 1, b andn without the
argument for the v coordinate represents their values at v=0. The dots denote
the derivative with respect to the argument of the function. Using the above ex-

pression, the solution of the equation

%.[J'ﬁ-‘ﬁ -(u-u‘)] =L 6l [(u-u')Ktt(u)*' - - ] =0 (3.6)
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yields the saddle point at v'=0 for the v' integration. Applying the method of
steepest descents (Brekhovskikh, 1960) to the v' integration in Eq. (3. 4), we obtain

an asymptotic expression of the integral equation for large k.

oY
_ 2 IR - ik(utu')
I(u, 0)= zexp.[ikf(0,0)-?(u,O)-ﬂu;} -\7-3_-, du' e
| T

-

2 Xu',0)-

2 2 2
Ry anz{ - (v'=0)}
o 2
ov

x, (u") {'ﬁ(u',O)-I‘l } 2
tn I, 0) + 0 01

1
2R o[ a°R L (u’OEIH)(k
° ZRO -'—z(v'=0)

ov'

4
....( ' O)‘-ﬁ {Tl(u': 0)'§(} é_RZ(V'=0)
- {k————— I(u', 0)

. 32 @

where

-Ro='i'" (u', 0)-T (u, 0) (3.8)

), K (k)

4
!
pq  lu-w)+ =g

R 2 (u-u')- (u-u')
o

(a-u")° (3.9)
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SR (. = giu_'} -R NVF (! t 1
w0 [1 Ro{ntt(u )Tw) + &, (@0l )}] (3. 10)
and
24 . _ _
2 I; (v'=0) == -?%u—)-l:l-Ro- {Ktt(u'),t(u')ﬂcm(u')ﬁ(u')}
ov' R
o
2 2
Rk, (u") 2
et ] “Rw-0) . (3.11)
ov'

In Eq. (3.7), the contribution from the u' integration between u and

infinity is neglected. The reason is the following: From Eq. (3.5) it can be

shown that R0 near u=u' is

Rofx (u-u') +. .. for u> u'
o (u'-u)+. .. for u<u!',

thus, exp. ik Ro-(u-u')} in Eq. (3.7) has a saddle point at u=u' only if u> u's
therefore, by integrating by parts, one can show that the contribution from the region
u< u' oo is asymptotically negligible for large k.

Now the integral equation governing the surface field is thus reduced to a
one dimensional Volterra equation.

3.2 The Surface Field in the Penumbra Region.

In this section, the asymptotic integral equation (3. 7) governing the sur-
face field is solved for the penumbra region. It is agsumed that the curvatures are

slowly varying and that -&— is of order one or less. In order to obtain an appropriate

tn
form of Eq, (3. 7) in the neighborhood of the shadow boundary, we shall set
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1/3 1
= |kp (0,0 =—
[pg( )] (pg )
g
2
ku = MOE
2 (3.12)
ku'=M ,
O
13

and further assume that [kpg(u, v):] >> 1, Near the shadow boundary (u=0), the

phase function, (0, 0)-T(u,0)-u, of the incident wave term in Eq. (3.7) can be ex-

panded in Taylor series by means of Eq. (2.2) :

3 5
£(0,0)F(u, 0)-ust - L (0 0) + 155 %4 %o, O){1+4p 0,080, 0)} (3. 13)

<p (0,0)=0 by assumption of symmetry of the diffracting surface with respect to

the shadow boundar;)
Substitution of Eq. (3.12) into the above expression yields the asymptotic

form of the incident wave:

: { }
- - ) -i l+4p (0, O)p (0, 0)
eikt(O, 0)+ T(u, 0)-1ku__= e 6 [lh > £ :l +0(MO-B)
120 Mo (3.14)

Similarly, an appropriate asymptotic form of the second term in the right-hand
side of Eq. (3.7) can be easily derived by expanding the integrand near u=u',

and by substituting the relationships of (3.12) along with
2

L4

u
~N pe—— -
pg(u, 0)..pg(0, 0) + 5 P (0, 0) near u=0

g
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The high frequency asymptotic form of the integral equation governing the

surface field in the penumbra region is then

-1’5; {1+4p (0,013, (0, 0)}
I(E, 0)=2e [1+1 £ jl

120M2
0
§—723
1/2 K (S,
Jr/d'rI(T,O)e 24 l:e 4(§ ) + ):]+0(M )
M

°  (3.15)

where

41X p (0,0)p (0,0)
Kz(E,T)t e 4(5-7)1/2 [ (E-TL (g-T) {192 +-£ 24 } +

96 *720 8

(0, 0)
v £ i_@ﬂ) er(e-n) | Pg 2 2
+pg(0, 0)pg(0, o){ AT }+8ptn(0’ o) ("-17)

16 " 2p, (0,0) ]

+1 (3. 16)

(&-7)

Since there is no term of order Mo_l in the above equation, we shall take the

asymptotic expansion of I as

L9 +o(M 79 (3.17)
2 0 ) )

M
0

1(E,0=1_(£,0) +

11
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Substitution of this expression into Eq. (3. 15) simplifies the integral equation

and the following equations for Io and I, are obtained:

1
‘igf' -% d _i(§~r)3
LEo=2e ° -5 E a1 (r, 00 e 2
—® (3.18)
and
3 £ 3
‘[1+49g(0,0)bg(0,0)} 5 = _1552.12
11(§,O)=1 60 E e - ‘ﬁ:;., dTIO(T’O)K'Z(S’T)e
-0
T g 3
-3 . s _1(62-22
_e4 F drI (r,0)(E-r) /" e ) (3. 19)
T 1
-0

We observe, from the above two equations, that the kernel functions are the same,
and that substitution of the solution for the leading term Io yields the solution for
the second order term. Similarly, integral equations governing higher order terms

in the high frequency expansion of the field can be derived by including further terms

in the asymptotic expansion of Eqs. (3. 7) and (3. 15).
Since Eq. (3. 18) is a Volterra type and its kernel is a function of -7 only,

the use of Fourier transform is suggested. We shall set

(0]

N -5t
I ()= 1(5,0e " dt . (3.20)

12
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Application of the Fourier transform to both sides of Eq. (3.18) and use of the con-
volution theorem yields

3 T O 3
£ 17 3
-it -1 1 -1t-1
6 [1+'% 3 PRRT 24] .

Yoo 0 (3.21)

"fo(t)== 2 dt e

The numerator of the above equation is an Airy function (Miller, 1946)
o0} 3

o E
-ift -i2—
dE e 6 243 A 2/? (3.22)

-Q0

The denominator and other integrals for Afl can be evaluated by means of the functions

» 1

n->  ..041/3 3

F )=/ axx 2 12y Tpx-ix (3.23)
0
for various n (Weston, 1960). In particular,
i—

F = 12 213 371/ 4 A1(p)[A1(p)-1Bi (p)] (3.24)

F =432 371/ iZ’[ZA' Co e i
=7 e 1(p){-A1(p)-1B1(p)}+,] (3.25)

. or
- - Yl e A2 _

F2=213/23 1/2(12) 1/3, 4[{Ai(p)} +p {Ai(p)].2

-1{pA1(p)Bi(p)+Ai(p)‘1'31(p)]] : (3.26)

13
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The remaining Fn may be expressed in terms of the above three functions by

the relation,

n _(n-1 _(n-2)
"3 n 3 (n-1) 3 (n-2)
Fn(p)m cn(lz) i Fo(p)+Dn(12) i Fl(p)+En(12) i Fz(p)
(3.27)
where C , D and E_ are given in Table I,
n n n
n C D E
n n n
3 2 4p 0
4 0 6 4p
5 8p 16p 10
6 28 80p 16p2
7 32p° 108+64p> 112p
8 288p 672p2 220+ 64p3
9 2912 +512p° 10048p +1024p* 3456p2
TABLE I: THE FUNCTION F,
Using the F1 function, Eq. (3.21) reduces to
4/3
T (=2 ., (3.28)
!5v1(t2 )

where

w=1|7 [At-1B1] .

14
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The inverse Fourier transform of Eq. (3.28) yields the solution for the leading term:

1 ip§2-1/3 1/3 |
I (‘g', v=0) =—;— (p) (p=t2 ") (3.29)
=-Q0

Similarly, the application of the Fourier transform to the integral equation

governing the second order term (3. 19) gives

1 (1) = N p=t21/3) (3. 30)
YU 2T Al ()
p)w, (p
where
o 3 g 3
45 (&)
N= dE enitE [i{1+4pg((;»00)9g(0, 0)} 55 e i 6 -\I-zi‘-/d'rlo(f, 0)&2(5, T)e i 24 ]
T
(3.31)

Using the convolution theorem, the functions Fn of Table I and Eq. (3.28), one

can show that:

~

p (0,0)7 w,(p)
N ___ 17 g 1 8 8 R
«Ai(p)‘"p[ +0,(0, 0)p 0,077 2.0 0)}&1@) [ =+5ot (5P )pg(o,o)pg(o,t))]

pw, (p 2 7 ~p(0,0) [ % @) ’ 4
-{m’] [gpg(O, 0)pg(0, 0)+ p_&_—m(o, 0):] +p (0, 0)p (0,0)= [ ( J
(3.32)

Substitution of this expression into Eq. (3. 30) and inverse Fourier transformation
gives the solution for I,. Combining L with Eqs. (3. 3) and (3.29), we obtain

15
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the desired expression for the surface field in the penumbra region:

u
ip3 u
d iku ip=
2

U 0ne® L [ ey e po 8|2l 2,

T wl(p) kp (0, 0) 2/3 15

£
~00 5 ,’r -0

d2p

+p.(0,0 (oo17 p(OO)} (P! {

U'ID-‘

2

3
+p (0, 0)——g(o 0) (g-gp )}
du

2 2
pw, (p) dp p (0,0)
{ t } {7 (0, 0)—&(0,0)+-3——}
w, (p) 2 pm(O, 0)
2
0.0
4 p{pw G} 50,0 —£0.0)
+ du :] (3.33)
3{\'vl(p)}4
where 1/3

2

xp_(0,0)
d= -—g;—-— and A = the incident wavelength.

When % is positive and sufficiently large (far away from the shadow boundary into

the shadow region) Eq. (3. 33) can be expressed as a rapidly convergent series in terms

of the residues at the poles Cvl(p)-"-O. This residue series represents the creeping

16
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waves. When % goes to negative infinity (illuminated region), Eq. (3.33) reduces

ikt(0, 0)- T (u, 0)

to 2e (Logan, 1959) which is the geometrical optics term. The

width of the penumbra region is of order d.

3.3 The Surface Field in the Shadow Region.

The incident plane wave -cannot reach the shadow region directly (other-
wise the shadow does not exist), and only the waves diffracted near the shadow
boundary proceed into the shadow region. An expression for the surface field in
this region may be obtained by following two steps (Honl et al, 1961):

1) obtain the initial values of the diffracted (creeping) waves from the
solution for the penumbra region at the shadow boundary; and

2) solve the homogeneous integral equation (without the plane wave term
in Eq. 3.7 and the limit of the integration only over the surface in the
shadow region) and match the initial values at the shadow boundary.

The initial values of the diffracted waves may be obtained from Eq. (3. 33).
When u is positive, the integrals of this equation can be expressed in terms of the
residues at the poles Gv_l(p)=0 , and each residue represents a creeping wave
(Goodrich, 1959). The values of these residues at the shadow boundary (u=0) yield
the necessary initial values of the creeping waves. The residue series of Eq.
(3. 33) at the shadow boundary is
p (0,0)

U(0,0)~2 [u- {z(
)~ F‘Z P, (p) {kp EE 15 Zpt (o 0)

I=1
2

2 p(0 0)
p(o 0):&(0 0’) . (5 *2p_(0,0) 30"“’ O)J(O 09}]
u 2

(3.34)

where p P is the £th root of w (pl) =0. In the above expression, each term in the
series represents the initial value (birth weight) of the 2 mode of the creeping waves.

17
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The short-wavelength asymptotic form of the homogeneous integral equation
governing the surface field in the shadow region is the same as Eq. (3.7), except for
the incident field term which vanishes now. Before attempting to solve the in-

tegral equation, we can observe that the common factor

m[ﬁ—] -1/2
2

ov'
in the kernel of Eq. (3.7) behaves near the saddle point u=u' as follows

-1/2

2
"G(u') [Roﬁ(v'=0):| = ‘,G(u') [l—ﬁo-{ntx(u'ﬁ(u')
. n1/4
+xm(u')'ﬁ(u')}] 1/22_’ [%%))-] (3. 35)

<Refer to Egs. (2.2), (2.4), (2.5) and (3. 10).) The above relation indicates
~1-1/4

that the solution of the homogeneous integral equation has a factor [G (u}] / .

In view of the phase factor for the solution in the penumbra region, Eq. (3.33), we

shall set the solution of the homogeneous integral equation in the form

-1/3 v,(8) . (s)
_ -1/4 2 1Y %
I(u, 0)= A | G(u) exp [ik ds {’y (s)+ — ot +. . }] )
[ ] M2 (s) 0 M(s) MZ (s)
0 (3. 36)

where the constant A is the initial value,

18
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and

M (u) = [kpg(u, 0)] 1/3

The propagation factors Yo o and ) are yet to be determined. On setting
, 2 . ,
k(u-u') = M (u)r (3.37)

we obtain the following expression under the assumption that the curvatures
are slowly varying:

u

7(8) v,(8)
k % {'y (s)+M() 2 +}
M~ (s) M()

u'
72 2
A (w)7+ = M( j [:71(u)'r -5 pg(u, 0) bo(u)—é'bg(u, 0) 1A (w) ]

3
+ "'1—" [72(u)7+? [p (u, 0)‘7 (u) - 3 35 (u, 0)p (u, 0)'7 (u)
M ( )

- $0.00,005 0,007 (o) + 53700, 00y 0 }

2
-15' {Pg(u. 0)¥,(u) - bg(u, 0)v, (u) J ro™) . (3. 38)

Now combine Eq. (3.7), without the incident plane wave term, with Eq..(3. 36}
and expand the integrand near the saddle point u=u' by Taylor series. {using Eq. 2.3).

19
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After these algebraic manipulations and making use of Eq. (3. 37} and (3. 38), we

can obtain the following asymptotic homogeneous equation; for the propagation factors 'yi:

_i- @

P(U,O) {--2-7

1/2
lﬂ—zp—\ dr 7 [I-M(u) 3

i } { f’:(u: 0) fs(i: 0)9 (uo 0)}
M) 2 *

5 p (u,0)p (u,0) 8
+1h {9; 326%'2( 0 +=—55 }' L b (5,0}
M) L1920 1152 M“(u) &
{3- pE(u: 0)
8 p, (u, 0) 12-—1/3 -8
P
M (u)'r M"(u)

s 4 e 1042
(pﬁ(u. 0 (ud-5 p (0, 013 (s, 01 (u-3 p (0, 005 (1, 004 (ud + 335 (u, ) 7°(u)>
1'2 . A
-3 Pg(u. Oj-vl(u)-ﬁg(u. 0)vl(u)>}:l
3 1/3 2 L
exp. l:-i-z-; 1y (u) 2 1/3 1%(—)-— {wl(u)'r -Ié‘ pg(u. 0}, (u,0)

+0 (M-S) - %5g(u. 0) 70“")}] (3. 39)

20
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1
Upon comparing coefficients of the leading term in the expansion in powers of v

we obtain

(00}

x
..i— 3
dr 1'1/2 exp {-112-47 -i 'yo(u)r 2-1/3} (3. 40)

1= - = :
2,’2:'
0

Comparing with Eq.(3.23), it can be shown that the right-hand side is related to
the function F, of Eq. (3.25). Substitution of Eq. (3.23) and (3. 25) into Eq. (3. 40)
yields the following:

Aily) v'vl (v) =0 (3.41)

The solution of this equation determines Y, To be consistent with the initial
values (Eq. 3.34) of the creeping waves, the roots of w 1(70)_=0 must be chosen.
In terms of the definition

the various roots are given by Table II at the end of this section.

Since ‘yo is constant, comparison of the coefficients of ‘1\171' in Eq. (3. 39)
yields
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4 X
4 p (u,0)
0 m= ~ dr 1/2[ p(u,O)*r-i—'&—--—'r4
24
2.2
0

-ir {yl(u)i-z%-ﬁg(u, 0)7} 2-1/3:| exp. {—1’162_ r- i'—} (3.42)

Various integrals in Eq. (3.42) can be identified with Eq. (3.28). Thus, after
substitution of F from Table I, we can evaluate 7 from Eq. (3,42) and the
result is

p (u,0)
S

1/3
vl(u) =2 5

(3.43)

-2
From the coefficients of M =~ in Eq. (3. 39), one finds:

1.° (u, 0) e (u, O)iix(u. 0)

12(‘1)2-2/3 Ky )= (12) 2/3 (?)[

5 2pt (u, 0) 30
P, (u: 0) 2 [
+-K———45 } + ", F (¥ ) E - 45 =—p (u, O)p (u, 0)+135 (u, 0)

(3.44)

and upon substituting the values of F o and F_ given by Eqs. (3.24) and (3, 26),

2
we obtain Yy s namely
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Y 2 .
w2 L +£s(f’ 0 p Lo, 0)p (u,0) +fg(u, 0)
LF 7, (10 "4, (4,0) ~ 60 90
2 1 2 1 ¢ 2 . .
LA [53 -Epg(u, 0) pg(u. 0) + '1-5'5' p(u, 05] . (3.45)

Combining Egs. (3. 36), (3.43) and (3.45) and matching the initial values given by
Eq. (3.34) by letting u=0, we obtain the desired solution for the surface field
in the shadow region:

1/4 - p (0,0)
@ ]
. [em] [pg q, Z B, Ame)

L=1

[ {B P (0,0) __E )
—==p (0, 0) (0 0)
2/3M ©) T30 4p (o 0) 180

2
(0,0) dp
1 <_1.+_pg___ L & )}J
- \ " p (0, 0) (Oo O)
312 1025 (0,00 60 %" % 2

u
4E i% 1/3

6 _ds 1/3_6/[ _ds 2
exp. l:—e Bl p (s, 0) —C o Ms)2 " e pg(S. 0) M(s)
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+

Ly o2
{ < Py (s, 0) fg(s. 0) pg(s. 0) Py (s, 0) )
107 pm(s, 0) 60 90

+ B8, (60 35 Py (s,0)p (s,O)+13—5p (8,0)>}] (8. 48}

where M(u)= [kpg(u, 0)] 1/3 and various values of B f and A i(-B 1) are given

in Table II.
1 B ’ Ai(-8 z’
1 1,01879 +0.53566
2 3.24820 -0, 41902
3 4,82010 + (0. 38041

TABLE II: THE VALUES OF B: and Ai(-Bl)

In deriving the Eq. (3.46) the following relationships are used:

iz iX 12X

3 - 6 3 »
T=¢ B, =nd wip)=e 2F‘A1(pe ) . (3.47)
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DIFFRACTION OF A PLANE ELECTROMAGNETIC (VECTOR) WAVE

The second problem to be investigated is the diffraction of a plane electro-
magnetic wave by a perfectly conducting smooth convex surface of nonconstant
curvature. Since much of the analysis is similar to that which we have already
discussed for the acoustic case, the details will be omitted wherever possible.

4.1 Integral Equation Governing the Induced Currents on the Conducting

Surface.
If a plane electromagnetic wave is incident upon a smooth convex
conducting surface, the integral equation governing the induced currents on the

conductor is (Hénl et al, 1961)

35)=zacf)xﬁm°'(f)-%ﬁﬁ),//'# {Em)x‘ﬁ eikR} . ()
R

— inc. -1
Here H Ine is the incident field and the time dependence factor e wt is
omitted. Again, without loss of generality, we shall consider the induced current
along the geodesic v=0. The expression for the incident field is

ik?(O, 0)' -f(uo O)

ﬁmc'(u, 0)= [— cos 90’6 (0, o)+smooﬁ(o, 0)] e (4.2)
_, [0, 0)xH
where 9°= sin 5 2 is the polarization angle of the incident wave.
o
With the substitution
=i =i v g=% o T =t T iku
J (?)n[ t(F) It(r)+b (r) Ib(?)] e (4.3)
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the vector integral Eq. (4. 1) is reduced to two coupled scalar equations:

, c. 1 o — 1-ikR
It(u,0)==2li'n (u,O)-",z';/ du'dv "G(u) R3

t(u)- [ﬁ(u)x {It(u', v') t(u, v')x-ﬁ+lb(u', v)b(u', v')xﬁ}]

eikR- ik (u-u') (4. 4)

and

inc. 1 ~ 1-1kR
(u,0)=2 (u,0)-==// du'dv* ,’G( ")
I.Du Ib u 2/ u'dv u R3

bu): | Bu)x {It(u', v)t(u', v')x'ﬁ+lb(u', v)b(u', v') x-f!}]
eikR- ik (u-u') (4.5)

The above two equations are similar to that of acoustic case, Eq. (3.4). They

also have saddle points at v'=0 for the v' integration and at u=u' for the u'
integration along the v'=0 curve. Performing the v' integration by the method of

steepest descents, we obtain
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u

1(u0)=-21 *(,0- 5= / CEONNES 7 7z
T e

0 v

l: -ikl(u 0) W - {n(u)x<t(u')xR )}

4
a_i(vy_o)

- aV/' 5 > t(u)- {h‘(u)x (f(u'zxﬁo )}It(ll'. 0)

8R2 2_&2(1,':0)}
o] 5v

1(u',0) \ _ o
- : 9 ZG(u) t(u) - {(ﬁ (u) 'RO Ktt(u') -n(u)- t(ui))

2Ro {é_g_ (W { ,0)

8V'2

nt‘(u')ﬁ(u') + (t'(u')-xtt(u')ﬁo) xt(u')'ﬁ(u) . -ﬁ(u')}

2
0 It '
,2(“ ,0)
+ zav 2 I(U)’ {ﬁ(u)x(?(u')"§o )}
2R { 9 R(v'-O)}
o] v
0
—=(u',0) - :
+ 8281: G(u')t(u) '{ﬁo(‘—‘(“) 'N(“')> Ky(a)
{ 5 v'= 0)}
ov'
- xt(u')'ﬁ(u') (5(0) "ﬁo)}:] + O(k—slz) (4.6)
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and

u
inc. 1 ' | 2xd 1
Ib(u,0)=2lb (u,v=0)-§;/ du \lG(u) \ -3
—m Y

4
[-ik{n(u) R }{b(u) b(u')} {avv (Y'-O{}{n(lﬂ R}{b(U.) b(m)}

2 2 2
Ro 8R 2{ o R (vho)}
(o]
av'

Glu') Ib(u', 0)

2
L(v' 0)} 2R 2

8v'

1 (u,0)- {5 b} {x w)aw-&

821
g (u', 0)
: {B(u) .E(u')} {'ﬁ(u)~§o}

ov
2
{2 (v}
ov'
81

+ ‘5;;7(!" u') {b(g) bl )} K (u')’ﬁ(u)-ﬁo-i(u)-f(u')}:l
—-—(v"O}

ov'

- xt(u')ﬁ (u)- —ﬁ(u')} +

+ 0 (k'3/ 2 (4.7)

where xt(u)ﬁ(u) = ntt(u)f(u) + xm(u)ﬁ(u) .
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4,2 The Induced Currents in the Penumbra and the Shadow Regions.
In this section, Eqs. (4.6) and (4. 7) are solved by the same technique

used in the acoustic case. In the penumbra region, substitution of Eq. (3.12)
into Eq. (4.2) gives the asymptotic form of the incident field:

Iinc' (u‘v =0)== .E(u) . [ﬁ(U)Xi"mc.] e-iku

3
‘1"' 1+4p (O)P (0) _
==coseoe E;H{ 5 } :|+0(M°3)
120 MQ (4.8)
and
mc (u,v=0) == b(u) [n(u)xH ] -iku
3
L
= -sineoﬁgo— e S 4 O(Mo-s) . (4.9)
Combining Egs. (3.12), (4.6) and (4. 8), we have;
3
& 1+4p (0)p (0)
-i p (0)p (0)
1(£,0)=2cos6 e 6 I:1+i{ g ZL } Es]
t ° 120 M
)
| N A N
1 24 4 (£-r)" T2t -3
..-TZT-/ v It(g'o)e {e 5 + Mz } +0(Mo )

/o ° (4. 10)
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where

-iZ 2 5 p (u=0)p (0)
. 4 1/2 | (£-7) (&-7) 1
KySomd=e ~ &) l:’ % e \mtt e }

2 2
+p(0)p(0) {%— %’-%‘-’L + -;-:E(g-ﬂs gT}

i_10(0)

(4.11)

Now the above asymptotic form of the integral equation governing It is independent
of Ib'\ and thus the original coupled vector integral Eq. (4. 1) is decoupled in the
asymptotic sense for large k.

Upon comparing Eq. (4. 10) with the acoustic Eq. (3. 15), we can easily
observe that the only difference between the two equations is the sign of the term

p (0,0)
me(O. 0)(E-1)

in K at and K2 . Thus, we can immediately obtain the solution

for It from the acoustic solution given by Eq. (3. 33).
The asymptotic form of the integral equation governing Ib in the penumbra
region is

3

Y M
(£,0)=-2 sm9 j— dr 1 (7, 0) e 24
b o M © qr /

2+o(1v10'2)] + O(Mo's) . (4.12)
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On setting

1,{€.0)

M
0

-3
Ib(§,0)== o) (4.13)

application of the Fourier transform and the Fn function (Eq. 3.23) yields:

‘fbo-_- -ising 4 223 4 (p)+"fbo [—I-HZIAi(p) {Ai(p)~1éi(p)}] . (4.14)

Substituting the Wronskian relation

AiBi - BiAi = &
8

into Eq. (4.14), the inverse Fourier transform gives the solution for Ioo :

2 -1/3
 1sing R _»
(§,0) =~ dp —7—— . (4.15)
L ; 173Mo = w o)

=00

Thus, combining solutions for It and Ib’ we obtain the expression for the in-

duced currents in the penumbra region as
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Q0 ip
[
-

iku 1

\{_‘22/3 2

p (0,0)
{-—+p(o o)—ﬁ(o 0 iz 7 -“—}
(0,0)

w(p) 3 p(0,0) dp
__& 2
+{ (p}z {5+30 (0 ) +p(0 0) (0 0)( p>}
{pw(p)} p(O 0)
{ ()}3{ p(OO) (00)+ (00)}
2

dp
42 {om )} p0.0— 0.0

T fw o} u ]

als

iku

J(u, 0) = t(u, 0) cos 00 e

é\a >
&
® &

|-

+t(n, 0) cos 90 e

ey

Q

ipE
isin6 d
+'B(u,o)—-_-1—/-§-—-9—— dp = (p)+O(M % (4.16)
27 7

+00
where 1/3

2
‘- [MJ (0, 0):|

32



THE UNIVERSITY OF MICHIGAN
1741-2-T

Due to the similarity of asymptotic forms of electromagnetic and acoustic integral
equations, solutions for the shadow region can be obtained by the same method

used in the acoustic case. The induced current in the shadow region is:

T

1/6 i
1/4[p (0,0) 3
GT" | g | ika <
J (4, 0)=1%(u, 0)cos 8 [G( )] ["g(“' 0)] Z B Al-B)) [H -2/3,,2 ©)
221

£(0,0) o dp 60,0 (0, 0) N
{Bz< 30" 4p ©,0) 180" (. 0) 2 O °’> (10 0,00 50 % 0)—-5(0 o>}:|

T / 1% “
6 ds_ -1/3 6 ds
exp. [-:e B —— M(s) -e -
] pg(s. 0) / p (5,0)2 1/ 3M(s, 0)
0 o ®

2
d ae
. ) fg(s' 0) pg(s’ O)ds (s,0) —hg. (8, 0))
{f? (Té' % (,0)" 60 )

+Bz 60 45p(8.0)——£(8.0)+ﬁ-5' '—g'(s,O) >}:’

1/6 iku+1" ®

v11/4 [ p_(0,0)
= G(0 g
+ b (u, 0) sing [-G_(E)L] [pg(u, 0)] -1/3 M(O Z Xi( -a,

~ . '-.11
exp. I:-e 6 al/ -p-;(%?-é-)- g 1/3 M(s):l+ oM™ . (4.17)

33



THE UNIVERSITY OF MICHIGAN
7741-2-T

Here B, and Ai(-BI) are given in Table 2, and a, is the % yoot of Ai(-a£)=0:

1

] @, Ai(-afl)
1 2,33811 +0.70121
2 4.08795 ~-0.80311
3 5. 52056 + 0. 86520

TABLE 3: THE VALUES OF a, AND Ai(-al)
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\'
DISCUSSION

In both the acoustic and the electromagnetic diffraction problems con-
sidered, the short-wavelength asymptotic expressions for the surface fields have
been obtained for the penumbra and the shadow regions. The second order terms in
the asymptotic expansion of the surface fields are new results. The leading terms are
the same as those of Fock (1946) and Levy and Keller (1959).

a4
In the solutions for the shadow region, the factor Glu) is of interest.

By definition of the function G (Eq. 2.1), Ja dv represents the width between the
two adjacent geodesics. Thus, referring to the geometrical theory of diffraction

1/4
(Levy and Keller, 1959), [g((%] represents the so-called ray convergence factor

for the creeping waves. In the geometrical theory of diffraction, this factor was ob-
tained by physical reasoning (conservation of energy), and in the present paper, this
factor is justified mathematically. The leading term for the acoustic and electromagnetic
creeping waves is the same as that predicted by the geometrical theory of diffraction.
This leading term, except the factor [G(O) / G(u)] 1/ 4, is independent of curvature in

the direction transverse to the geodesic.

In the solutions of electromagnetic diffraction problems, it is shown that up
to the terms of order [kpg] 2/[3 in the asymptotic expansion, there is no coupling be-
tween the tangential and binormal components of the creeping waves. However, identity
between the acoustic creeping waves under Neumann boundary condition and the tan-
gential component of the electromagnetic creeping waves is true only in the leading
term. The transverse curvature appears in the second order term. The effect of
transverse curvature on the electromagnetic creeping waves differs from that on the

acoustic creeping waves. This is one of the new results of the present investigation.
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When the radius of curvature P, in the transverse direction is infinite,
the diffracting surface becomes cylindrical. In this case, the propagation factors
of the creeping waves in the shadow region agree with those obtained by Franz and
Klante (1959), and by Keller and Levy (1959). When the principal radii of curva-
ture (pg and p tn) are the same and constant, the diffracting surface is spherical.
In this case, the solutions of the creeping waves reduce to the results of Senior
(1966), who obtained the creeping wave solution (including the second order terms)
for the sphere by means of a Watson transformation of the Mie series (exact) solu-
tion.

The solutions for the shadow regions are not valid near a caustic where
the radius of curvature (p t) in the direction transverse to the geodesic is no longer
large compared to the incident wavelength. The author feels that the integral
equation method used here will be still applicable in investigating the surface fields
near the caustic, provided that the saddle point integration for the v' coordinate

(Sect. 3.1 and 4. 1) is modified by some suitable means.
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