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Direct adaptive command following and disturbance rejection
for minimum phase systems with unknown relative degree
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SUMMARY

This paper considers parameter-monotonic direct adaptive command following and disturbance rejection
for single-input single-output minimum-phase linear time-invariant systems with knowledge of the sign of
the high-frequency gain (first non-zero Markov parameter) and an upper bound on the magnitude of the
high-frequency gain. We assume that the command and disturbance signals are generated by a linear
system with known characteristic polynomial. Furthermore, we assume that the command signal is
measured, but the disturbance signal is unmeasured. The first part of the paper is devoted to a fixed-gain
analysis of a high-gain-stabilizing dynamic compensator for command following and disturbance rejection.
The compensator utilizes a Fibonacci series construction to control systems with unknown-but-bounded
relative degree. We then introduce a parameter-monotonic adaptive law and guarantee asymptotic
command following and disturbance rejection. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Direct adaptive stabilization methods include direct model reference adaptive control, high-gain
adaptive control, and universal stabilization. Direct model reference adaptive controllers rely on
parameter estimation algorithms such as recursive least-squares, gradient descent, and
projection algorithms to update the controller parameters [1–3]. These adaptation schemes
generally result in adaptive controllers whose dimension increases at least linearly or even
quadratically with the order of the plant.

Alternatively, high-gain adaptive stabilization methods use simple adaptation laws and rely
on a minimum-phase assumption since zeros attract poles under high gain [4–14]. Adaptive
high-gain proportional feedback can stabilize square multi-input, multi-output systems that are
minimum phase and relative degree one [4, 6, 7].
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Generally, high-gain methods can stabilize systems with relative degree one. However, in [8],
high-gain dynamic compensation is used to guarantee output convergence of single-input single-
output (SISO) minimum-phase systems with arbitrary-but-known relative degree. This result is
surprising since classical roots locus is not high-gain stable for plants with relative degree
exceeding two. However, in [13, 14] it is shown that the results of [8] can fail when the relative
degree of the plant exceeds four. Furthermore, in [13, 14], the Fibonacci series is used to
construct a direct adaptive stabilization algorithm for minimum-phase systems with unknown-
but-bounded relative degree.

In general, high-gain adaptive methods are restricted to the stabilization problem. However,
high-gain adaptive controllers that utilize high-gain observers have been used for l-tracking
[15, 16]. The adaptive command following problem is usually addressed using model reference
adaptive control. Direct model reference adaptive controllers cancel the zeros of the plant and
replace them with the zeros of the reference model, thus requiring that the plant be minimum
phase. In addition, direct model reference adaptive controllers typically require knowledge of
the relative degree and a bound on the plant order. The bound on the plant order is used to
determine the order of the model reference controller, while knowledge of the relative degree is
required for developing the adaptation law [2]. Model reference adaptive control methods with
relaxed assumptions on the relative degree of the plant are considered in [17, 18]. Specifically, in
[17], a model reference adaptive controller is proposed for plants with relative degree one or two.
However, the method is restricted to stabilization and does not address command following. In
[18], a model reference adaptive controller is proposed for systems with upper and lower bounded
relative degree. This controller requires that an adaptive parameter lie inside a known convex set,
and for large uncertainty in relative degree, calculating the convex set can be difficult.

In the present paper, we extend the Fibonacci-based adaptive stabilization controller
presented in [13, 14] to address the adaptive command following and disturbance rejection
problems. We assume that the command and disturbance signals are generated by a linear
system with known characteristic polynomial. However, the disturbance is unmeasured. Unlike
direct model reference adaptive controllers, this adaptive controller does not require a bound on
plant order or knowledge of the relative degree. Additionally, the method presented in this
paper simultaneously addresses the command following and disturbance rejection problem,
whereas model reference adaptive control is generally restricted to the command following
problem. The main result of this paper is direct adaptive command following and disturbance
rejection for SISO minimum-phase systems with unknown-but-bounded relative degree.

In Section 2, we present the SISO command following and disturbance rejection problem and
introduce the notion of parameter-dependent dynamic compensation. Section 3 presents a fixed-gain
analysis of Fibonacci-based high-gain stabilization. In Section 4, the Fibonacci-based compensator
is extended to address the command following and disturbance rejection problem. The main result is
given in Section 5. Numerical examples are given in Section 6 and conclusions in Section 7.

2. PARAMETER-DEPENDENT DYNAMIC COMPENSATION FOR COMMAND
FOLLOWING AND DISTURBANCE REJECTION

We consider the strictly proper SISO linear time-invariant system

y ¼ GðsÞðuþ wÞ ð1Þ
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where

GðsÞ ¼4 db
zðsÞ
pðsÞ

ð2Þ

zðsÞ and pðsÞ are real monic polynomials, d ¼ �1 is the sign of the high-frequency gain, and
b > 0 is the magnitude of the high-frequency gain. We define the notation m¼4 deg zðsÞ;
n¼4 deg pðsÞ; and r¼4 n�m: Furthermore, we consider a command signal yrðtÞ and a disturbance
signal wðtÞ that are generated by the exogenous dynamics

’xrðtÞ ¼ ArxrðtÞ; urðtÞ ¼ CrxrðtÞ ð3Þ

where urðtÞ ¼
4 ½yrðtÞ wðtÞ�T; Ar 2 Rnr�nr ; Cr 2 R2�nr ; and the characteristic polynomial of Ar is

prðsÞ ¼
4
detðsI � ArÞ:

In this paper, we address the adaptive command following and disturbance rejection problem
for system (1) and (2). The objective is to construct an adaptive controller that forces the plant
output y to asymptotically follow the command signal yr while rejecting the unmeasured
disturbance w: We make the following assumptions.

(I) zðsÞ is a real monic Hurwitz polynomial but is otherwise unknown.
(II) pðsÞ is a real monic polynomial but is otherwise unknown.
(III) zðsÞ and pðsÞ are coprime.
(IV) The magnitude b of the high-frequency gain satisfies 05b4b0; where b0 2 R is known.
(V) The sign d ¼ �1 of the high-frequency gain is known.
(VI) The relative degree r of GðsÞ satisfies 14r4r; where r is known, but r is otherwise

unknown.
(VII) For all l 2 specðArÞ; Re l ¼ 0 and l is semisimple.
(VIII) The command signal yr is measured.
(IX) The disturbance signal w is not measured.
(X) The characteristic polynomial prðsÞ is known.

Assumption (VII) restricts our attention to command and disturbance signals that consist of
steps and sinusoids. Furthermore, assumption (X) implies that the command and disturbance
sinusoids have known frequencies. However, assumption (IX) implies that we do not require a
direct measurement of the disturbance.

Let ckðsÞ and dkðsÞ be parameter-dependent polynomials, that is, polynomials in s over the
reals whose coefficients are functions of a real parameter k: Furthermore, define the parameter-
dependent transfer function

HkðsÞ ¼
4 ckðsÞ
dkðsÞ

where, for all k 2 R; pkð�Þc0: Note that the polynomials ckðsÞ and dkðsÞ need not be coprime for
all k 2 R:

Definition 2.1
dkðsÞ is high-gain Hurwitz if there exists ks > 0 such that dkðsÞ is Hurwitz for all k5ks:

Definition 2.2
HkðsÞ is high-gain stable if there exist parameter-dependent polynomials ckðsÞ and dkðsÞ such that
dkðsÞ is high-gain Hurwitz and, for all k 2 R; GkðsÞ ¼ ckðsÞ=dkðsÞ:
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Now, consider the feedback controller

u ¼ #GkðsÞye ð4Þ

where

#GkðsÞ ¼
4 #zkðsÞ
#pkðsÞ

ð5Þ

ye¼
4
yr � y is the output error, and #zkðsÞ and #pkðsÞ are parameter-dependent polynomials. For

example, letting #zkðsÞ ¼ dk and #pkðsÞ ¼ 1 yields #GkðsÞ ¼ dk; and the closed-loop poles can be
determined by classical root locus. In general, the closed-loop system (1), (2), (4), and (5) from
the command yr and disturbance w to the tracking error ye is

ye ¼ *GkðsÞur ¼ ½ *Gk;1ðsÞ *Gk;2ðsÞ�
yr

w

" #

where

*Gk;1ðsÞ ¼
4 1

1þ GðsÞ #GkðsÞ
¼

*zk;1ðsÞ
*pkðsÞ

*Gk;2ðsÞ ¼
4 �GðsÞ

1þ GðsÞ #GkðsÞ
¼

*zk;2ðsÞ
*pkðsÞ

and

*zk;1ðsÞ ¼
4
pðsÞ#pkðsÞ

*zk;2ðsÞ ¼
4 � dbzðsÞ#pkðsÞ

*pkðsÞ ¼
4
pðsÞ#pkðsÞ þ dbzðsÞ#zkðsÞ

The parameter-dependent closed-loop transfer functions *Gk;1ðsÞ and *Gk;2ðsÞ are high-gain stable
if the parameter-dependent characteristic polynomial *pkðsÞ is high-gain Hurwitz. The SISO
command following and disturbance rejection problem is shown in Figure 1.

Figure 1. Combined command following and disturbance rejection problem.
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3. HIGH-GAIN DYNAMIC COMPENSATION FOR STABILIZATION

In this section, a parameter-dependent dynamic compensator is used to high-gain stabilize (1)
and (2). The controller construction utilizes the Fibonacci series. For all j50 let Fj be the
jth Fibonacci number, where F0 ¼ 0; F1 ¼ 1; F2 ¼ 1;F3 ¼ 2;F4 ¼ 3;F5 ¼ 5;F6 ¼ 8;F7 ¼ 13;
F8 ¼ 21; . . . ; and define

fg;h¼
4
Fgþ2 � Fhþ1

where h satisfies 14h4g:
Consider the parameter-dependent dynamic compensator

#Gk;gðsÞ ¼
4 dkFgþ2 #zðsÞ
sg þ kfg;gbgsg�1 þ kfg;g�1bg�1sg�2 þ � � � þ kfg;2b2sþ kfg;1b1

ð6Þ

where k; b1; . . . ; bg are real, and #zðsÞ is a degree g� 1 monic polynomial.
Now, let g be the upper bound on the relative degree of GðsÞ; that is, g ¼ r; and consider the

feedback (4) with #GkðsÞ ¼ #Gk;rðsÞ: Then closed-loop system (1), (2), (4), and (6) is

ye ¼ ½ *Gk;1ðsÞ *Gk;2ðsÞ�
yr

w

" #
ð7Þ

where

*Gk;1ðsÞ ¼
4 1

1þ GðsÞ #GkðsÞ
¼

*zk;1ðsÞ
*pkðsÞ

ð8Þ

*Gk;2ðsÞ ¼
4 �GðsÞ

1þ GðsÞ #GkðsÞ
¼

*zk;2ðsÞ
*pkðsÞ

ð9Þ

and

*zk;1ðsÞ ¼
4
pðsÞ½sr þ kfr;rbrs

r�1 þ kfr;r�1br�1s
r�2 þ � � � þ kfr;2b2sþ kfr;1b1� ð10Þ

*zk;2ðsÞ ¼
4 �dbzðsÞ½sr þ kfr;rbrs

r�1 þ kfr;r�1br�1s
r�2 þ � � � þ kfr;2b2sþ kfr;1b1� ð11Þ

*pkðsÞ ¼
4
pðsÞsr þ kfr;rbrpðsÞsr�1 þ kfr;r�1br�1pðsÞsr�2 þ � � � þ kfr;1b1pðsÞ þ kFrþ2bzðsÞ#zðsÞ ð12Þ

The following theorem provides the properties of *pkðsÞ; and thus *Gk;1ðsÞ and *Gk;2ðsÞ for
sufficiently large k: The proof follows from examining the Hurwitz conditions of *pkðsÞ for
large k: For a complete proof of this result, see [13, 14].

Theorem 3.1
Consider the closed-loop system (7)–(12). Assume that the polynomials #zðsÞ,

Br�2ðsÞ ¼
4
s3 þ brs

2 þ br�1sþ b0

and, for i ¼ 0; 1; . . . ;r� 3,

BiðsÞ ¼
4
biþ3s

3 þ biþ2s
2 þ biþ1sþ b0
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are Hurwitz. Then *pkðsÞ is high-gain Hurwitz, and thus *Gk;1ðsÞ and *Gk;2ðsÞ are high-gain stable.
Furthermore, as k!1; mþ r� 1 roots of *pkðsÞ converge to the roots of zðsÞ#zðsÞ and the real
parts of the remaining rþ 1 roots approach �1:

Note that there exist controller parameters b1; . . . ; br such that the polynomials B0ðsÞ; . . . ;
Br�2ðsÞ are Hurwitz. First, let br > 0 and br�1 > 0 be such that br�1br > b0; which implies that
Br�2ðsÞ is Hurwitz. Next, let br�2 > b0br=br�1; which implies that Br�3ðsÞ is Hurwitz. In the same
manner, for i ¼ 4; 5; . . . ; r; let br�iþ1 > b0br�iþ3=br�iþ2 so that Br�iðsÞ is Hurwitz. Thus
B0ðsÞ; . . . ;Br�2 are Hurwitz.

The parameter-dependent dynamic compensator #Gk;rðsÞ is high-gain stabilizing for GðsÞ
under assumptions (I)–(X). However, the closed-loop system (7)–(12) is not guaranteed to
asymptotically follow the command signal or reject the disturbance. In fact, the closed-loop
system will not generally follow the command signal or reject the disturbance since #Gk;rðsÞ does
not have an internal model of prðsÞ for all values of k: However, in the next section, we augment
#Gk;rðsÞ to incorporate an internal model of prðsÞ:

4. HIGH-GAIN DYNAMIC COMPENSATION FOR COMMAND FOLLOWING
AND DISTURBANCE REJECTION

In this section, we construct a high-gain dynamic compensator for command following and
disturbance rejection by cascading an internal model of the exogenous dynamics prðsÞ with
#Gk;gðsÞ; where the parameter g is chosen to be an upper bound on the relative degree of an
augmented system.

Consider the feedback (4) with the strictly proper dynamic compensator

#GkðsÞ ¼
4 #GrðsÞ #Gk; %rðsÞ

where #GrðsÞ ¼
4
#zrðsÞ=prðsÞ; #zrðsÞ is a monic polynomial with mr¼

4
deg #zrðsÞ4nr; and #Gk; %rðsÞ is given

by (6) with g ¼ %r; where %r¼
4 rþ nr �mr:Note that %r is an upper bound on the relative degree of

the cascaded system GðsÞ #GrðsÞ: Therefore, the parameter-dependent dynamic compensator is

#GkðsÞ ¼
dkF %rþ2 #zrðsÞ#zðsÞ

prðsÞ½s %r þ kf %r; %rb %rs %r�1 þ kf %r; %r�1b %r�1s %r�2 þ � � � þ kf %r;2b2sþ kf %r;1b1�
ð13Þ

where k; b1; . . . ; b %r are real, and #zðsÞ is a degree %r� 1 monic polynomial. Then closed-loop
system (1), (2), (4), and (13) is

ye ¼ ½ *Gk;1ðsÞ *Gk;2ðsÞ�
yr

w

" #
ð14Þ

where

*Gk;1ðsÞ ¼
4 1

1þ GðsÞ #GkðsÞ
¼

*zk;1ðsÞ
*pkðsÞ

ð15Þ

*Gk;2ðsÞ ¼
4 �GðsÞ

1þ GðsÞ #GkðsÞ
¼

*zk;2ðsÞ
*pkðsÞ

ð16Þ
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and
*zk;1ðsÞ ¼

4
prðsÞpðsÞ½s %r þ kf %r; %rb %rs

%r�1 þ kf %r; %r�1b %r�1s
%r�2 þ � � � þ kf %r;2b2sþ kf %r;1b1� ð17Þ

*zk;2ðsÞ ¼
4 �dbprðsÞzðsÞ½s %r þ kf %r; %rb %rs

%r�1 þ kf %r; %r�1b %r�1s
%r�2 þ � � � þ kf %r;2b2sþ kf %r;1b1� ð18Þ

*pkðsÞ ¼
4
prðsÞpðsÞs %r þ kf %r; %rb %rprðsÞpðsÞs %

r�1 þ kf %r; %r�1b %r�1prðsÞpðsÞs %
r�2

þ � � � þ kf %r;1b1prðsÞpðsÞ þ kF %rþ2bzðsÞ#zrðsÞ#zðsÞ ð19Þ

Theorem 4.1
Consider the closed-loop system (14)–(19). Assume that the dynamic compensators #GrðsÞ and
#Gk; %rðsÞ are minimum phase, that is, assume that the polynomials #zrðsÞ and #zðsÞ are Hurwitz.
Furthermore, assume that the polynomials

B %r�2ðsÞ ¼
4
s3 þ b %rs

2 þ b %r�1sþ b0 ð20Þ

and, for i ¼ 0; 1; . . . ; %r� 3;

BiðsÞ ¼
4
biþ3s

3 þ biþ2s
2 þ biþ1sþ b0 ð21Þ

are Hurwitz. Then the following statements hold:

(i) *pkðsÞ is high-gain Hurwitz, and thus *Gk;1ðsÞ and *Gk;2ðsÞ are high-gain stable.
(ii) As k!1; mþmr þ %r� 1 roots of *pkðsÞ converge to the roots of zðsÞ#zrðsÞ#zðsÞ and the real

parts of the remaining rþ nr �mr þ 1 roots approach �1:
(iii) There exists ks > 0 such that, for all k5ks; limt!1 yeðtÞ ¼ 0:

Proof
Statements (i) and (ii) follow from applying Theorem 3.1 to the cascade GðsÞ #GrðsÞ: Specifically,
define %GðsÞ ¼4 GðsÞ #GrðsÞ: Since #zrðsÞ is Hurwitz, it follows that %GðsÞ satisfies assumptions (I)–(VI)
where %r is an upper bound on the relative degree of %GðsÞ: Furthermore, *pkðsÞ is the closed-loop
parameter-dependent characteristic polynomial of %GðsÞ connected in feedback with the
controller #Gk; %rðsÞ: Then according to Theorem 3.1, *pkðsÞ is high-gain Hurwitz, and, as k!
1; mþmr þ %r� 1 roots of *pkðsÞ converge to the roots of zðsÞ#zrðsÞ#zðsÞ and the real parts of the
remaining rþ nr �mr þ 1 roots approach �1:

Now, we show part (iii). LettingLð�Þ denote the Laplace operator, the final value theorem implies

lim
t!1

yeðtÞ ¼ lim
s!0

sLðyeðtÞÞ

¼ lim
s!0

s½ *Gk;1ðsÞ *Gk;2ðsÞ�
LðyrðtÞÞ

LðwðtÞÞ

" #

¼ lim
s!0

s
*zk;1ðsÞ
*pkðsÞ

*zk;2ðsÞ
*pkðsÞ

� � zrðsÞ
prðsÞ

zwðsÞ
prðsÞ

2
6664

3
7775
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¼ lim
s!0

s
prðsÞpðsÞ½s %r þ kf %r; %rb %rs

%r�1 þ � � � þ kf %r;1b1�
*pkðsÞ

zrðsÞ
prðsÞ

�

þ
�dbprðsÞzðsÞ½s %r þ kf %r; %rb %rs

%r�1 þ � � � þ kf %r;1b1�
*pkðsÞ

zwðsÞ
prðsÞ

�

¼ lim
s!0

s
½pðsÞzrðsÞ � dbzðsÞzwðsÞ�½s %r þ kf %r; %rb %rs

%r�1 þ � � � þ kf %r;1b1�
*pkðsÞ

ð22Þ

where LðyrðtÞÞ ¼ zrðsÞ=prðsÞ; LðwðtÞÞ ¼ zwðsÞ=prðsÞ; and zrðsÞ and zwðsÞ are polynomials. Since
*pkðsÞ is high-gain Hurwitz, there exists ks > 0 such that, for all k5ks; *pkðsÞ is Hurwitz. Then (22)
implies, for all k5ks; limt!1 yeðtÞ ¼ 0: &

5. PARAMETER-MONOTONIC ADAPTIVE COMMAND FOLLOWING AND
DISTURBANCE REJECTION FOR SYSTEMS WITH UNKNOWN-BUT-

BOUNDED RELATIVE DEGREE

Although Theorem 4.1 guarantees the existence of a strictly proper parameter-dependent
dynamic compensator (13) for asymptotic command following and disturbance rejection, the
stabilizing threshold ks is unknown. In this section, we introduce a parameter-monotonic
adaptive law for the parameter k and present our main result. To complete our analysis, we
construct state space realizations for the open-loop system (1) and (2) and the compensator (4)
and (13). Let the system (1) and(2) have the minimal state space realization

’x ¼ Axþ Bðuþ wÞ; y ¼ Cx ð23Þ

where A 2 Rn�n; B 2 Rn�1; and C 2 R1�n:
Next, consider the controller #GkðsÞ ¼ #GrðsÞ #Gk; %rðsÞ given by (4) and (13) and write

#zðsÞ ¼ s %r�1 þ #z %r�2s
%r�2 þ � � � þ #z1sþ #z0 ð24Þ

so that #GkðsÞ has the state space realization

’#x ¼ #AðkÞ #xþ #Bye; u ¼ #CðkÞ #x ð25Þ

where #AðkÞ 2 Rðnrþ %rÞ�ðnrþ %rÞ; #B 2 Rðnrþ %rÞ�1; and #C 2 R1�ðnrþ %rÞ are given by

#AðkÞ ¼4
#Ar

#Br
#C %rðkÞ

0 #B %rðkÞ

" #
; #B¼4

0

#A %r

" #
ð26Þ

#CðkÞ ¼4 ½ #Cr
#Dr

#C %rðkÞ� ð27Þ

where

#A %rðkÞ ¼
4

�kf %r; %rb %r 1 � � � 0

..

. . .
. ..

.

�kf %r;2b2 0 1

�kf %r;1b1 0 � � � 0

2
66666664

3
77777775
; #B %r¼

4

1

#z %r�2

..

.

#z0

2
6666664

3
7777775

ð28Þ
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#C %rðkÞ ¼
4 ½dkF %rþ2 0 � � � 0� ð29Þ

is a realization of #Gk; %rðsÞ and ð #Ar; #Br; #Cr; #DrÞ is a minimal realization of #GrðsÞ: Note that, for all
non-zero k 2 R; ð #A %rðkÞ; #C %rðkÞÞ is observable. The closed-loop system (23) and (25)–(29) is

’*x ¼ *AðkÞ *xþ *Bur ð30Þ

ye ¼ *C *xþ *Dur ð31Þ

where

*AðkÞ ¼4
A B #CðkÞ

� #BC #AðkÞ

" #
; *B¼4

0 B

#B 0

" #
; *x¼4

x

#x

" #
ð32Þ

*C¼4 ½�C 0�; *D¼4 ½1 0� ð33Þ

Now we present the main result of this paper, namely direct adaptive command following and
disturbance rejection for minimum-phase systems with unknown-but-bounded relative degree.

Theorem 5.1
Consider the closed-loop system (30)–(33) consisting of the open-loop system (23) with
unknown relative degree r satisfying 14r4r; and the feedback controller (25)–(29).
Furthermore, consider the parameter-monotonic adaptive law

’kðtÞ ¼ g e�akðtÞy2eðtÞ ð34Þ

where g > 0 and a > 0: Assume that the dynamic compensators #GrðsÞ and #Gk; %rðsÞ are minimum
phase, that is, assume that the polynomials #zrðsÞ and #zðsÞ are Hurwitz. Furthermore, assume that
the polynomials B0ðsÞ; . . . ;B %r�2ðsÞ given by (20) and (21) are Hurwitz. Then, for all initial
conditions *xð0Þ and kð0Þ > 0; kðtÞ converges and limt!1 yeðtÞ ¼ 0:

Proof
The closed-loop system (30)–(33) with the inputs yr and w generated by the linear system (3) can
be written as

’xcðtÞ ¼ AcðkðtÞÞxcðtÞ ð35Þ

yeðtÞ ¼ CcxcðtÞ ð36Þ

where

AcðkÞ ¼
4

*AðkÞ *BCr

0 Ar

" #
; Cc¼

4 ½ *C *DCr�; xcðtÞ ¼
4

*xðtÞ

xrðtÞ

" #

Since (34)–(36) is locally Lipschitz, it follows that the solution to (34)–(36) exists and is unique
locally, that is, there exists te > 0 such that ðxcðtÞ; kðtÞÞ exists on the interval ½0; teÞ:

First, we show that if xcðtÞ escapes at te; then kðtÞ escapes at te: Assume that kðtÞ does not
escape at te: Let kðteÞ ¼

4
limt!te kðtÞ so that kðtÞ is continuous on ½0; te�: Then ’qðtÞ ¼ AcðkðtÞÞqðtÞ is
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a linear time-varying differential equation on ½0; te�; where AcðkðtÞÞ is continuous in t: The
solution to ’qðtÞ ¼ AcðkðtÞÞqðtÞ exists and is unique on ½0; te� [19]. Therefore, qðtÞ does not escape
at te and, by uniqueness, xcðtÞ ¼ qðtÞ on ½0; te�: Consequently, xcðtÞ does not escape at te: Hence,
if xcðtÞ escapes at te; then kðtÞ escapes at te:

Now, we show that kðtÞ converges. For contradiction, suppose that kðtÞ diverges to infinity
at te: Theorem 4.1 implies that there exists ks > 0; such that for all k5ks; *AðkÞ is asympt-
otically stable and limt!1 yeðtÞ ¼ 0: Since, for all k5ks; *AðkÞ is asymptotically stable and
limt!1 yeðtÞ ¼ 0; it follows from Lemma A.2 that there exists P : ½ks;1Þ ! Rðnþ2nrþ %rÞ�ðnþ2nrþ %rÞ

and Q : ½ks;1Þ ! Rðnþ2nrþ %rÞ�ðnþ2nrþ %rÞ such that the entries of P and Q are real rational functions
and, for all k5ks; PðkÞ is positive definite, QðkÞ is positive semidefinite, and

AT
c ðkÞPðkÞ þ PðkÞAcðkÞ ¼ �QðkÞ � gCT

c Cc

Lemma A.3 implies that there exists k25ks such that, for all k5k2; aPðkÞ > @PðkÞ=@k: Since kðtÞ
diverges to infinity at te; there exists t25te such that kðt2Þ ¼ k2:

For all t 2 ½t2; teÞ; define

V0ðxc; kÞ ¼
4
e�akðtÞxTc PðkÞxc

Note that V0ðxc; kÞ is not to be considered a candidate Lyapunov function but is non-negative
for all k5ks and for all x 2 Rnþ2nrþ %r: For all t 2 ½t2; teÞ the derivative of V0ðxc; kÞ along
trajectories of (34)–(36) satisfies

’V0ðxc; kÞ ¼ � e�akðtÞxTc ½A
T
c ðkÞPðkÞ þ PðkÞAcðkÞ�xc � a’ke�akxTc PðkÞxc þ ’ke�akxTc

@PðkÞ
@k

xc

¼ � e�akxTc QðkÞxc � ge�akxTc C
T
c Ccxc � ’ke�akxTc aPðkÞ �

@PðkÞ
@k

� �
xc

4 � e�akxTc QðkÞxc � ge�aky2e

4 � ge�aky2e ¼ � ’k ð37Þ

Integrating (37) from t2 to t5te and solving for kðtÞ yields

kðtÞ4V0ðxcðt2Þ; k2Þ þ k2 � e�akðtÞxTc ðtÞPðkðtÞÞxcðtÞ4V0ðxcðt2Þ; k2Þ þ k2 ð38Þ

for t 2 ½t2; teÞ: Hence, kð�Þ is bounded on ½0; teÞ; which is a contradiction. Therefore, the solution
to (34)–(36) exists and is unique on all finite intervals. Then integrating (37) from t2 to t51
yields (38) for t 2 ½t2;1Þ: Therefore, kð�Þ is bounded on ½0;1Þ: Since kðtÞ is non-decreasing,
k1¼

4
limt!1 kðtÞ exists.

Since for all t > 0; kðtÞ5k1; it follows that

ge�ak1
Z t

0

y2eðtÞ dt4g
Z t

0

e�akðtÞy2eðtÞ dt ¼ kðtÞ � kð0Þ5k1 � kð0Þ

and thus yeð�Þ is square integrable on ½0;1Þ: This property will be used later.
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Next, we show that, for all k > 0; the pair ð *AðkÞ; *CÞ is detectable. Let l be an element of the
closed right half plane. Then

rank
*AðkÞ � lI

*C

" #
¼ rank

A� lI B #CðkÞ

� #BC #AðkÞ � lI

�C 0

2
664

3
775

¼ rank

A� lI B #CðkÞ

C 0

0 #AðkÞ � lI

2
664

3
775

¼ rank

A� lI B 0

C 0 0

0 0 Inrþ %r

2
664

3
775

In 0

0 #CðkÞ

0 #AðkÞ � lI

2
664

3
775

Since ðA;B;CÞ is a minimal realization of the minimum-phase plant (1) and (2), it follows that

A� lI B 0

C 0 0

0 0 Inrþ %r

2
664

3
775

is non-singular. Thus,

rank
*AðkÞ � lI

*C

" #
¼ rank

In 0

0 #CðkÞ

0 #AðkÞ � lI

2
664

3
775

¼ rank

In 0 0

0 #Cr
#Dr

#C %rðkÞ

0 #Ar � lI #Br
#C %rðkÞ

0 0 #A %rðkÞ � lI

2
6666664

3
7777775

which implies

rank
*AðkÞ � lI

*C

" #
¼ rank

In 0 0

0 #Ar � lI #Br
#C %rðkÞ

0 #Cr
#Dr

#C %rðkÞ

0 0 #A %rðkÞ � lI

2
6666664

3
7777775
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¼ rank

In 0 0 0

0 #Ar � lI #Br 0

0 #Cr
#Dr 0

0 0 0 I %r

2
666664

3
777775

In 0 0

0 Inr 0

0 0 #C %rðkÞ

0 0 #A %rðkÞ � lI

2
666664

3
777775

Since ð #Ar; #Br; #Cr; #DrÞ is a minimal realization of the minimum-phase compensator #GrðsÞ; it
follows that

In 0 0 0

0 #Ar � lI #Br 0

0 #Cr
#Dr 0

0 0 0 I %r

2
666664

3
777775

is non-singular. Thus,

rank
*AðkÞ � lI

*C

" #
¼ rank

In 0 0

0 Inr 0

0 0 #C %rðkÞ

0 0 #A %rðkÞ � lI

2
666664

3
777775

Since, for all k > 0; ð #A %rðkÞ; #C %rðkÞÞ is observable, it follows that, for all k > 0

rank
*AðkÞ � lI

*C

" #
¼ nþ nr þ %r

Therefore, for all k > 0; ð *AðkÞ; *CÞ is detectable.
Next, we show that limt!1 yeðtÞ ¼ 0: Define A1¼

4 *Aðk1Þ: Since ðA1; *CÞ is detectable, it
follows that there exists L 2 Rðnþnrþ %rÞ�1 such that As¼

4
A1 þ L *C is asymptotically stable. Then

adding and subtracting Asx and L *Dur from (30) implies

’*xðtÞ ¼ As *xðtÞ þ ½ *AðkðtÞÞ � A1� *xðtÞ þ ½ *Bþ L *D�urðtÞ � L½ *C *xðtÞ þ *DurðtÞ�

which is equivalent to

’*xðtÞ ¼ As *xðtÞ þ DðtÞ *xðtÞ þ JurðtÞ � LyeðtÞ

where

DðtÞ ¼4 *AðkðtÞÞ � A1

J ¼4 *Bþ L *D

Since As is asymptotically stable, Dð�Þ is continuous, limt!1 DðtÞ ¼ 0; urð�Þ is bounded on ½0;1Þ;
and yeð�Þ is square integrable on ½0;1Þ; it follows from Lemma B.1 that *xð�Þ is bounded
on ½0;1Þ:
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Next, since *Að�Þ is bounded, *xð�Þ is bounded, and urð�Þ is bounded, it follows from (30) that ’*xð�Þ
is bounded. Since *xð�Þ; ’*xð�Þ; urð�Þ; and ’urð�Þ are bounded, it follows from (30) and (31) that yeð�Þ
and ’yeð�Þ are bounded. Therefore, dðy2eðtÞÞ=dt ¼ 2’yeðtÞyeðtÞ is bounded, and thus y2eðtÞ is
uniformly continuous. Since y2eðtÞ is uniformly continuous and limt!1

R t
0 y2eðtÞ dt exists,

Barbalat’s lemma implies that limt!1 yeðtÞ ¼ 0: &

Figure 2 illustrates the adaptive controller presented in Theorem 5.1.

6. SERIALLY CONNECTED MASS–SPRING–DAMPER

Consider the three-mass serially connected mass–spring–damper system shown in Figure 3. The
dynamics of the system are given by

M .qþ C ’qþ Kq ¼ bðuþ wÞ ð39Þ

where

M¼4
m1

m2

m3

2
664

3
775; b¼4

1

0

0

2
664
3
775 ð40Þ

C¼4
c1 þ c2 �c2 0

�c2 c2 þ c3 �c3

0 �c3 c3 þ c4

2
664

3
775 ð41Þ

K ¼4
k1 þ k2 �k2 0

�k2 k2 þ k3 �k3

0 �k3 k3 þ k4

2
664

3
775 ð42Þ

q¼4 ½q1 q2 q3�T ð43Þ

Figure 2. Adaptive controller for the command following and disturbance rejection problem.
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The masses are m1 ¼ 1 kg; m2 ¼ 0:5 kg; and m3 ¼ 1 kg; the damping coefficients are c1 ¼ c2 ¼
c3 ¼ c4 ¼ 2 kg=s; and the spring constants are k1 ¼ 2 kg=s2; k2 ¼ 4 kg=s2; k3 ¼ 1 kg=s2; and
k4 ¼ 3 kg=s2:

Our objective is to design an adaptive controller so that every SISO force-to-position transfer
function of the system (39)–(43) can track a sinusoid of o1 ¼ 11 rad=s and a step, while rejecting
a sinusoid of o2 ¼ 8 rad/s and a constant disturbance. Thus, the dynamics for tracking and
disturbance rejection are given by the characteristic polynomial

prðsÞ ¼ sðs2 þ o2
1Þðs

2 þ o2
2Þ

All SISO force-to-position transfer functions of an asymptotically stable serially connected
structure are known to be minimum phase [20]. Furthermore, [20] show that the relative degree
of a SISO force-to-position transfer function for a serially connected structure is equal to the
number of intervening masses plus two. For a three mass system, all force-to-position transfer
functions have relative degree not exceeding four. Therefore, r ¼ 4 is an upper bound on the
relative degree of the force-to-position transfer functions for a three-mass system. Lastly, it
follows from [20] that all SISO force-to-position transfer functions of an asymptotically stable
serially connected structure have positive high-frequency gain, so let d ¼ 1: Next, let us assume
that the upper bound on the magnitude of the high-frequency gain is b0 ¼ 10: Then all SISO
force-to-position transfer functions satisfy assumptions (I)–(VI).

Next, consider the parameter-dependent transfer function (13) where %r ¼ 4; which is given by

#GkðsÞ ¼
k8#zrðsÞ#zðsÞ

prðsÞ½s4 þ k3b4s3 þ k5b3s2 þ k6b2sþ k7b1�

To satisfy the assumptions of Theorem 4.1 the design parameters are chosen to be

#zrðsÞ ¼ ðsþ 2Þðsþ 4Þðsþ 6Þðsþ 8Þðsþ 10Þ

#zðsÞ ¼ ðsþ 15Þðsþ 20Þðsþ 25Þ

b4 ¼ 4; b3 ¼ 4; b2 ¼ 12; b1 ¼ 4

Then, the adaptive controller considered in Theorem 5.1 is given by the adaptive law

’kðtÞ ¼ ge�akðtÞy2eðtÞ ð44Þ

Figure 3. Three-mass serially connected mass–spring–damper system.
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and (25), where

#ArðkÞ ¼
4

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 �7744 0 �185 0

2
666666664

3
777777775
; #Br¼

4

0

0

0

0

1

2
666666664

3
777777775

ð45Þ

#CrðkÞ ¼
4 ½3840 � 3360 1800 155 30�; #Dr¼

4
1 ð46Þ

#A %rðkÞ ¼
4

�4k3 1 0 0

�4k5 0 1 0

�12k6 0 0 1

�4k7 0 0 0

2
666664

3
777775; #B %r¼

4

1

60

1175

7500

2
666664

3
777775 ð47Þ

#C %rðkÞ ¼
4 ½k8 0 0 0�; g ¼ 1; a ¼ 0:1 ð48Þ

Now, we assume that the sensor is placed so that the position of m2 is the output of the force-
to-position system we are trying to control. This system is

y1 ¼ G1ðsÞðuþ wÞ ð49Þ

where

G1ðsÞ ¼
4 4s3 þ 24s2 þ 48sþ 32

s6 þ 16s5 þ 84s4 þ 224s3 þ 330s2 þ 280sþ 100
ð50Þ

Furthermore, let us assume that the reference and disturbance signals are

yrðtÞ ¼ 10 sinðo1tÞ þ 5 ð51Þ

wðtÞ ¼ 7 cosðo2tÞ � 8 ð52Þ

The mass–spring–damper system (49) and (50) is simulated with the initial conditions
qð0Þ ¼ ½�0:5 0:25 1:0�T m and ’qð0Þ ¼ ½0:1 � 0:2 0:3�T m=s: The adaptive controller (25) and
(44)–(48) is implemented in the feedback loop with yeðtÞ ¼ yrðtÞ � y1ðtÞ and initial
conditions #xð0Þ ¼ 0 and kð0Þ ¼ 25: Figure 4 shows that y1ðtÞ asymptotically tracks yrðtÞ; that
is, yeðtÞ converges to zero. Figure 5 shows that uðtÞ is bounded and kðtÞ converges to
approximately 42:2:

Now let us assume that the position sensor is placed on the third mass instead of the second
mass. Then, we are trying to control the force-to-position system

y2 ¼ G2ðsÞðuþ wÞ ð53Þ

where

G2ðsÞ ¼
4 8s2 þ 20sþ 8

s6 þ 16s5 þ 84s4 þ 224s3 þ 330s2 þ 280sþ 100
ð54Þ
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Note that G2ðsÞ has relative degree 4 instead of 3. As before, the reference and disturbance
signals are given by (51) and (52). The mass–spring–damper system (53) and (54) is simulated
with the initial conditions qð0Þ ¼ ½�0:5 0:25 1:0�T m and ’qð0Þ ¼ ½0:1 � 0:2 0:3�T m=s:
The adaptive controller (25) and (44)–(48) is implemented in the feedback loop with

0 0.5 1 1.5 2 2.5 3

0

50

y 1
(t)

0 0.5 1 1.5 2 2.5 3

0

50

Time (sec)

y e
(t)

Figure 4. The output y1ðtÞ asymptotically tracks the reference yrðtÞ; so yeðtÞ converges to zero.
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8

u 
(t)

0 0.5 1 1.5 2 2.5 3
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40
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(t)

Figure 5. The control uðtÞ is bounded and the gain kðtÞ converges to approximately 42:2:
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yeðtÞ ¼ yrðtÞ � y2ðtÞ and initial conditions #xð0Þ ¼ 0 and kð0Þ ¼ 600: Figures 6 and 7 show that
yeðtÞ converges to zero and kðtÞ converges to approximately 711:

Lastly, to demonstrate the adaptive controller for an open-loop unstable system, assume that
c1 ¼ �2 kg=s instead of 2 kg/s. Then the damper c1 supplies energy to the system rather than
dissipating energy, and one would expect that this could cause the system to be unstable. If the

0 1 2 3 4 5

0

100

y 2
(t)

0 1 2 3 4 5

0

100

Time (sec)

y e
(t)

Figure 6. The output y2ðtÞ asymptotically tracks the reference yrðtÞ; so yeðtÞ converges to zero.
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Figure 7. The control uðtÞ is bounded and the gain kðtÞ converges to approximately 711:
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sensor is placed on the m2 mass, the force-to-position system is

y1 ¼ G3ðsÞðuþ wÞ ð55Þ

where

G3ðsÞ ¼
4 4s3 þ 24s2 þ 48sþ 32

s6 þ 12s5 þ 36s4 þ 72s3 þ 74s2 þ 128sþ 100
ð56Þ

0 0.5 1 1.5 2 2.5 3 3.5 4

0

50

y 1
(t)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

50

Time (sec)
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(t)

Figure 8. The output y1ðtÞ asymptotically tracks the reference yrðtÞ; so yeðtÞ converges to zero.
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Figure 9. The control uðtÞ is bounded and the gain kðtÞ converges to approximately 44:2:
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As expected, the open-loop system (55) and (56) is unstable with unstable poles at 0:4032�
;1:3756: The mass–spring–damper system (55) and (56) is simulated with the initial conditions
qð0Þ ¼ ½�0:5 0:25 1:0�T m and ’qð0Þ ¼ ½0:1 � 0:2 0:3�T m=s: The adaptive controller (25) and
(44)–(48) is implemented in the feedback loop with yeðtÞ ¼ yrðtÞ � y1ðtÞ and initial conditions
#xð0Þ ¼ 0 and kð0Þ ¼ 30: Figures 8 and 9 show that yeðtÞ converges to zero and kðtÞ converges to
approximately 44:2:

7. CONCLUSIONS

In this paper, we presented a direct adaptive tracking and disturbance rejection algorithm for
single-input, single-output minimum-phase linear time-invariant systems with unknown-but-
bounded relative degree. The controller requires knowledge of the sign of the high-frequency
gain and an upper bound on the magnitude of the high-frequency gain. The adaptive controller
guarantees that the tracking error converges to zero. Unlike model reference adaptive control
methods, this control does not require knowledge of the system order and requires only an
upper bound on the relative degree. Furthermore, the adaptive controller presented herein has
only one adaptive parameter regardless of system order.

In practical applications, persistent output disturbances can cause the adaptive parameter to
grow without bound. This problem can be corrected for in practice by turning off the adaptation
mechanism once the control objective is achieved. The adaptive controller presented in this
paper is applicable to command following and disturbance rejection for steps and sinusoids with
known frequency, which encompasses many practical applications. In particular, the controller
has potential application to problems in structural vibration control where the disturbances are
harmonic with known frequencies.

Future research may include extending this method to address the general unsolved problem
of adaptive command following and disturbance rejection where the command and disturbance
signals have unknown spectra. More specifically, one could consider commands and
disturbances that are generated by unknown linear systems or a more general class of
command and disturbances with unknown spectra, for example, broadband disturbances.

APPENDIX A: PRELIMINARY RESULTS FOR ANALYSING
PARAMETER-MONOTONIC ADAPTIVE SYSTEMS

In this appendix, we present several preliminary results useful for analysing parameter-
monotonic adaptive systems. In this section, we consider the system

’x ¼ AðkÞx ðA1Þ

y ¼ CðkÞx ðA2Þ

where AðkÞ 2 Rl�l and CðkÞ 2 Rd�l have entries that are polynomials in k:
The first two results concern the solution to a Lyapunov equation for system (A1)–(A2).

Lemma A.1
Assume that there exists ks > 0 such that, for all k5ks; AðkÞ is asymptotically stable. Let
QðkÞ 2 Rl�l have entries that are polynomial functions of k; where, for all k5ks; QðkÞ is positive
definite. Then there exists P : ½ks;1Þ ! Rl�l such that each entry of P is a real rational function,
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and for all k5ks; PðkÞ is positive definite and satisfies

ATðkÞPðkÞ þ PðkÞAðkÞ ¼ �QðkÞ ðA3Þ

Proof
For all k5ks; (A3) has the unique solution

PðkÞ ¼4 �vec�1½ðATðkÞ � ATðkÞÞ�1 vecQðkÞ� ¼
Z 1
0

eA
TðkÞtQðkÞeAðkÞt dt

where vec is the column stacking operator and� is the Kronecker sum [21, Proposition 11.8.3].
Then PðkÞ has entries that are real rational functions of k; and for all k5ks; PðkÞ is positive
definite. &

Lemma A.2
Consider systems (A1)–(A2), and assume that

AðkÞ ¼4
A1ðkÞ A3ðkÞ

0 A2

" #

CðkÞ ¼4 ½C1ðkÞ C2ðkÞ�

where A1ðkÞ 2 Rl1�l1 ; A3ðkÞ 2 Rl1�l2 ; C1ðkÞ 2 Rd�l1 ; and C2ðkÞ 2 Rd�l2 have entries that are
polynomials in k; and A2 2 Rl2�l2 : For all l 2 specðA2Þ; assume that l is semisimple and Re l ¼ 0:
Furthermore, assume that there exists ks > 0 such that, for all k5ks; A1ðkÞ is asymptotically
stable and limt!1 yðtÞ ¼ 0 for all initial conditions xð0Þ: Let g > 0: Then there exist P : ½ks;1Þ !
Rl�l and Q : ½ks;1Þ ! Rl�l such that the entries of P and Q are real rational functions, and for
all k5ks; PðkÞ is positive definite, QðkÞ is positive semidefinite, and they satisfy

ATðkÞPðkÞ þ PðkÞAðkÞ ¼ �QðkÞ � gCTðkÞCðkÞ ðA4Þ

Proof
For all k5ks; specðA1ðkÞÞ \ specðA2Þ ¼ |: Therefore, for all k5ks; the Sylvester equation

A1ðkÞSðkÞ � SðkÞA2 ¼ A3ðkÞ
has the unique solution

SðkÞ ¼ vec�1½ð�AT
2 � A1ðkÞÞ

�1 vecA3ðkÞ�

where the entries of SðkÞ are real rational functions of k [21, Corollary 7.2.5]. For all k5ks;
define

RðkÞ ¼4
I �SðkÞ

0 I

" #

and consider the change of basis

%AðkÞ ¼4 R�1ðkÞAðkÞRðkÞ ¼
A1ðkÞ �A1ðkÞSðkÞ þ SðkÞA2 þ A3ðkÞ

0 A2

" #
¼

A1ðkÞ 0

0 A2

" #

%CðkÞ ¼4 CðkÞRðkÞ ¼ ½C1ðkÞ C2ðkÞ � C1ðkÞSðkÞ�
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Since limt!1 yðtÞ ¼ 0; it follows that limt!1 C1ðkÞeA1ðkÞt þ ðC2ðkÞ � C1ðkÞSðkÞÞeA2t ¼ 0: Since
A1ðkÞ is asymptotically stable, it follows that limt!1 ðC2ðkÞ � C1ðkÞSðkÞÞeA2t ¼ 0: Since every
eigenvalue of A2 is on the imaginary axis, every non-zero entry of ðC2ðkÞ � C1ðkÞSðkÞÞeA2t is
either constant or involves sinusoids. Therefore, limt!1 ðC2ðkÞ � C1ðkÞSðkÞÞeA2t ¼ 0 implies that
C2ðkÞ � C1ðkÞSðkÞ ¼ 0: Hence, for all k5ks; %CðkÞ ¼ ½C1ðkÞ 0�:

Let Q1 > 0 and g > 0: Since, for all k5ks; A1ðkÞ is asymptotically stable, it follows from
Lemma A.1 that there exists P1 : ½ks;1Þ ! Rl1�l1 such that each entry is a real rational function
and, for all k5ks; P1ðkÞ is positive definite and satisfies

AT
1 ðkÞP1ðkÞ þ P1ðkÞA1ðkÞ ¼ �Q1 � gCT

1 ðkÞC1ðkÞ

Since A2 is Lyapunov stable, it follows that there exist P2 > 0 and Q250 such that
AT

2P2 þ P2A2 ¼ �Q2: Next, define

%PðkÞ ¼4
P1ðkÞ 0

0 P2

" #

%Q¼4
Q1 0

0 Q2

" #

so that, for all k5ks; %PðkÞ is positive definite, %Q is positive semidefinite, and

%ATðkÞ %PðkÞ þ %PðkÞ %AðkÞ ¼ � %Q� g %CTðkÞ %CðkÞ ðA5Þ

Pre-multiplying (A5) by R�TðkÞ and post-multiplying by R�1ðkÞ yields

ATðkÞPðkÞ þ PðkÞAðkÞ ¼ �QðkÞ � gCTðkÞCðkÞ

where PðkÞ ¼4 R�TðkÞ %PðkÞR�1ðkÞ and QðkÞ ¼4 R�TðkÞ %QR�1ðkÞ: Thus, for all k5ks; PðkÞ is
positive definite, QðkÞ is positive semidefinite, and (A4) is satisfied. Since the entries
of %PðkÞ and RðkÞ are real rational functions, the entries of PðkÞ and QðkÞ are real rational
functions. &

The next result concerns the derivative of a positive-definite matrix whose entries are real
rational functions of a single parameter. We recall the O-notation. Let f : R! R and g : R! R

be continuous functions. Then f ðkÞ ¼ OðgðkÞÞ as k!1 if there exist M > 0 and k1 > 0 such
that, for all k5k1; jf ðkÞj4MjgðkÞj: For convenience, we shall omit ‘k!1’ from the O-notation
for the remainder of this section.

Lemma A.3
Let ks > 0 and consider P : ½ks;1Þ ! Rl�l ; where each entry of P is a real rational function.
Assume that, for all k5ks; PðkÞ is symmetric positive definite. Then, for all a > 0; there exists
k25ks such that, for all k5k2

dPðkÞ
dk

5aPðkÞ
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Proof
Write

PðkÞ ¼

p11ðkÞ � � � p1lðkÞ

..

. ..
.

pl1ðkÞ � � � pllðkÞ

2
6664

3
7775

where, for i; j ¼ 1; . . . ; l; pijðkÞ is the real rational function

pijðkÞ ¼
4 jijðkÞ

cijðkÞ
¼

jij;uij k
uij þ jij;uij�1k

uij�1 þ � � � þ jij;1kþ jij;0

kvij þ cij;vij�1k
vij�1 þ � � � þ cij;1kþ cij;0

where uij and vij are non-negative integers. Then, for all k > 0; pijðkÞ can be expressed as

pijðkÞ ¼ fijk
sij þ

kvijjijðkÞ � fijk
uijcijðkÞ

kvijcijðkÞ

where sij ¼
4
uij � vij is an integer and for convenience fij ¼

4 jij;uij : The term ðk
vijjijðkÞ � fijk

uijcijðkÞÞ=
kvijcijðkÞ is a real rational function of k whose denominator is a polynomial in k of degree 2vij
and whose numerator is a polynomial in k of degree at most uij þ vij � 1: Therefore,

kvijjijðkÞ � fijk
uijcijðkÞ

kvijcijðkÞ
¼ Oðksij�1Þ

and hence pijðkÞ ¼ fijk
sij þOðksij�1Þ:

For all k5ks; the determinants of the leading principal minors of PðkÞ are

L1ðkÞ ¼
4
p11ðkÞ

¼f11k
s11 þOðks11�1Þ

¼F1k
w1 þOðkw1�1Þ

L2ðkÞ ¼
4

p11ðkÞ p12ðkÞ

p12ðkÞ p22ðkÞ

�����
�����

¼
f11k

s11 þOðks11�1Þ f12k
s12 þOðks12�1Þ

f12k
s12 þOðks12�1Þ f22k

s22 þOðks22�1Þ

�����
�����

¼F2k
w2 þOðkw2�1Þ

L3ðkÞ ¼
4

p11ðkÞ p12ðkÞ p13ðkÞ

p12ðkÞ p22ðkÞ p23ðkÞ

p13ðkÞ p23ðkÞ p33ðkÞ

��������

��������
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¼

f11k
s11 þOðks11�1Þ f12k

s12 þOðks12�1Þ f13k
s13 þOðks13�1Þ

f12k
s12 þOðks12�1Þ f22k

s22 þOðks22�1Þ f23k
s23 þOðks23�1Þ

f13k
s13 þOðks13�1Þ f23k

s23 þOðks23�1Þ f33k
s33 þOðks33�1Þ

��������

��������
¼F3k

w3 þOðkw3�1Þ

..

.

LlðkÞ ¼
4 jPðkÞj

¼Flk
wl þOðkwl�1Þ

where, for i ¼ 1; . . . ; l; wi is an integer, and Fi 2 R depends on the constants f11; . . . ;f1i; . . . ;fii:
Since PðkÞ is positive definite for all k5ks; it follows that, for all k5ks and for all i ¼ 1; . . . ; l;
LiðkÞ > 0; and thus Fi > 0:

Next, consider the derivative of PðkÞ with respect to k: For i; j ¼ 1; . . . ; l

dpijðkÞ
dk

¼ sijfijk
sij�1 þOðksij�2Þ

Let a > 0: Then, for i; j ¼ 1; . . . ; l

apijðkÞ �
dpijðkÞ
dk

¼ a½fijk
sij þOðksij�1Þ� � ½sijfijk

sij�1 þOðksij�2Þ�

¼ afijk
sij þOðksij�1Þ

For all k5ks; the determinants of the leading principal minors of aPðkÞ � dPðkÞ=dk are

%L1ðkÞ ¼
4 ap11ðkÞ �

dp11ðkÞ
dk

¼ af11k
s11 þOðks11�1Þ

¼ aF1k
w1 þOðkw1�1Þ

%L2ðkÞ ¼
4

ap11ðkÞ �
dp11ðkÞ
dk

ap12ðkÞ �
dp12ðkÞ
dk

ap12ðkÞ �
dp12ðkÞ
dk

ap22ðkÞ �
dp22ðkÞ
dk

��������

��������

¼ a
f11k

s11 þOðks11�1Þ f12k
s12 þOðks12�1Þ

f12k
s12 þOðks12�1Þ f22k

s22 þOðks22�1Þ

" #�����
�����

¼ a2F2k
w2 þOðkw2�1Þ
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%L3ðkÞ ¼
4

ap11ðkÞ �
dp11ðkÞ
dk

ap12ðkÞ �
dp12ðkÞ
dk

ap13ðkÞ �
dp13ðkÞ
dk

ap12ðkÞ �
dp12ðkÞ
dk

ap22ðkÞ �
dp22ðkÞ
dk

ap23ðkÞ �
dp23ðkÞ
dk

ap13ðkÞ �
dp13ðkÞ
dk

ap23ðkÞ �
dp23ðkÞ
dk

ap33ðkÞ �
dp33ðkÞ
dk

�������������

�������������

¼ a

f11k
s11 þOðks11�1Þ f12k

s12 þOðks12�1Þ f13k
s13 þOðks13�1Þ

f12k
s12 þOðks12�1Þ f22k

s22 þOðks22�1Þ f23k
s23 þOðks23�1Þ

f13k
s13 þOðks13�1Þ f23k

s23 þOðks23�1Þ f33k
s33 þOðks33�1Þ

2
664

3
775

��������

��������
¼ a3F3k

w3 þOðkw3�1Þ

..

.

%LlðkÞ ¼
4 aPðkÞ �

dPðkÞ
dk

����
����

¼ alFlk
wl þOðkwl�1Þ

Since a > 0 and F1; . . . ;Fl > 0; it follows that, for i ¼ 1; . . . ; l; aiFi > 0: Therefore, for all
sufficiently large k; %L1ðkÞ; . . . ; %LlðkÞ > 0; and thus aPðkÞ � dPðkÞ=dk is positive definite. &

APPENDIX B: PRELIMINARY RESULT FOR FORCED LINEAR
TIME-VARYING SYSTEMS

The result of this section concerns the solution to a class of forced linear time-varying systems.
This result is integral to the proof of asymptotic command following and disturbance rejection
for the adaptive controller presented in this paper.

Lemma B.1
Consider the nonhomogeneous linear time-varying system

’zðtÞ ¼ AszðtÞ þ DðtÞzðtÞ þ LfðtÞ þDoðtÞ ðB1Þ

where z 2 Rlz ; f : ½0;1Þ ! Rlf ; o : ½0;1Þ ! Rlo ; and D : ½0;1Þ ! Rlz�lz : Assume that As is
asymptotically stable, Dð�Þ is continuous, limt!1 DðtÞ ¼ 0; fð�Þ is square integrable on ½0;1Þ;
and oð�Þ is bounded on ½0;1Þ: Then, for all zð0Þ; zð�Þ is bounded on ½0;1Þ:

Proof
First, consider the system

’z1ðtÞ ¼ Asz1ðtÞ þ DðtÞz1ðtÞ þ LfðtÞ ðB2Þ

Since Dð�Þ is continuous the solution z1ð�Þ exists and is unique on all finite intervals. Since As is
asymptotically stable, let P > 0 be the solution to the Lyapunov equation AT

s Pþ PAs ¼ �2I ;
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and define Vðz1Þ ¼
4 zT1Pz1: Differentiating Vðz1Þ along the trajectory of (B2) yields

’Vðz1Þ ¼ �2z
T
1 z1 þ zT1 ½D

TðtÞPþ PDðtÞ�z1 þ zT1PLfþ fTLTPz1 ðB3Þ

Since 04ðz1 � PLfÞTðz1 � PLfÞ; it follows that

zT1PLfþ fTLTPz14zT1 z1 þ fTLTP2Lf ðB4Þ

Combining (B3) and (B4) yields

’Vðz1Þ4� zT1 z1 þ zT1 ½D
TðtÞPþ PDðtÞ�z1 þ ZfTf

where Z¼4 lmaxðLTP2LÞ: Since DðtÞ ! 0 as t!1; there exists t050 such that, for all t5t0;
lmaxðD

TðtÞPþ PDðtÞÞ41
2
: Therefore, for all t5t0

’Vðz1ðtÞÞ4� 1
2
jjz1ðtÞjj

2 þ ZjjfðtÞjj2

where jj � jj is the Euclidean norm. Integrating from t0 to t yields

04Vðz1ðtÞÞ4�
1

2

Z t

t0

jjz1ðtÞjj
2 dtþ Z

Z t

t0

jjfðtÞjj2 dtþ Vðz1ðt0ÞÞ ðB5Þ

Since Z > 0 and fð�Þ is square integrable on ½0;1Þ; it follows from (B5) that z1ð�Þ is square
integrable on ½0;1Þ and Vð�Þ is bounded on ½0;1Þ: Since Vð�Þ is bounded on ½0;1Þ; z1ð�Þ is
bounded on ½0;1Þ:

Next, consider the system

’z2ðtÞ ¼ Asz2ðtÞ þ DðtÞz2ðtÞ þDoðtÞ ðB6Þ

Since Dð�Þ is continuous, the solution z2ð�Þ exists and is unique on all finite intervals.
Furthermore, since As is asymptotically stable, there exist a > 0 and b > 0 such that jjeAsðt�tÞjj
4be�aðt�tÞ: Let e 2 ð0; aÞ: Since DðtÞ ! 0 as t!1; there exist t050 such that, for all t5t0;
jjDðtÞjj4ða� eÞ=b: For all t5t0; (B6) has the solution

z2ðtÞ ¼ eAsðt�t0Þz2ðt0Þ þ
Z t

t0

eAsðt�tÞDoðtÞ dtþ
Z t

t0

eAsðt�tÞDðtÞz2ðtÞ dt

which implies that

jjz2ðtÞjj4be�aðt�t0Þjjz2ðt0Þjj þ b
Z t

t0

e�aðt�tÞjjDjj jjoðtÞjj dt

þ b
Z t

t0

e�aðt�tÞjjDðtÞjj jjz2ðtÞjj dt
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4be�aðt�t0Þjjz2ðt0Þjj þ bjjDjj sup
t5t0

jjoðtÞjj
� �Z t

t0

e�aðt�tÞ dt

þ b
Z t

t0

e�aðt�tÞ
a� e
b

� �
jjz2ðtÞjj dt

¼ be�aðt�t0Þjjz2ðt0Þjj þ bjjDjj sup
t5t0

jjoðtÞjj
� �

1

a
�

e�aðt�t0Þ

a

� �

þ ða� eÞ
Z t

t0

e�aðt�tÞjjz2ðtÞjj dt

4 c1 þ c2e
�at þ ða� eÞ

Z t

t0

e�aðt�tÞjjz2ðtÞjj dt ðB7Þ

where c1¼
4 ð1=aÞbjjDjjðsupt5t0 jjoðtÞjjÞ and c2¼

4 bjjz2ðt0Þjjeat0 : Multiplying (B7) by eat yields

jjz2ðtÞjje
at4c1e

at þ c2 þ ða� eÞ
Z t

t0

jjz2ðtÞjje
at dt ðB8Þ

Using the Gronwall–Bellman inequality [2], (B8) implies that, for all t5t0

jjz2ðtÞjje
at4 c1e

at þ c2 þ
Z t

t0

ða� eÞðc1eat þ c2Þ exp
Z t

t
ða� eÞ ds

� �
dt

¼ c1e
at þ c2 þ ða� eÞ

Z t

t0

ðc1eat þ c2Þ eða�eÞðt�tÞ dt

¼ c1e
at þ c2 þ ða� eÞeða�eÞt

Z t

t0

c1e
et þ c2e

�ða�eÞt dt

¼ c1e
at þ c2 þ ða� eÞeða�eÞt

c1

e
eet �

c2

a� e
e�ða�eÞt �

c1

e
eet0 þ

c2

a� e
e�ða�eÞt0

h i

4 c1 þ
c1ða� eÞ

e

� �
eat þ ða� eÞeða�eÞt �

c1

e
eet0 þ

c2

a� e
e�ða�eÞt0

h i
4 c3e

at þ c4e
ða�eÞt

where c3¼
4 ½c1 þ c1ða� eÞ=e� and c4¼

4
c2e
�ða�eÞt0 : Therefore, for all t5t0

jjz2ðtÞjj4c3 þ c4e
�et

and we conclude that z2ð�Þ is bounded on ½0;1Þ:
Now, by the superposition of the differential equations (B2) and (B6), we obtain the

differential equation (B1) whose solution is given by zðtÞ ¼4 z1ðtÞ þ z2ðtÞ: Since z1ð�Þ and z2ð�Þ are
bounded on ½0;1Þ; it follows that zð�Þ is bounded on ½0;1Þ: &

REFERENCES
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