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Direct adaptive command following and disturbance rejection
for minimum phase systems with unknown relative degree
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SUMMARY

This paper considers parameter-monotonic direct adaptive command following and disturbance rejection
for single-input single-output minimum-phase linear time-invariant systems with knowledge of the sign of
the high-frequency gain (first non-zero Markov parameter) and an upper bound on the magnitude of the
high-frequency gain. We assume that the command and disturbance signals are generated by a linear
system with known characteristic polynomial. Furthermore, we assume that the command signal is
measured, but the disturbance signal is unmeasured. The first part of the paper is devoted to a fixed-gain
analysis of a high-gain-stabilizing dynamic compensator for command following and disturbance rejection.
The compensator utilizes a Fibonacci series construction to control systems with unknown-but-bounded
relative degree. We then introduce a parameter-monotonic adaptive law and guarantee asymptotic
command following and disturbance rejection. Copyright © 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Direct adaptive stabilization methods include direct model reference adaptive control, high-gain
adaptive control, and universal stabilization. Direct model reference adaptive controllers rely on
parameter estimation algorithms such as recursive least-squares, gradient descent, and
projection algorithms to update the controller parameters [1-3]. These adaptation schemes
generally result in adaptive controllers whose dimension increases at least linearly or even
quadratically with the order of the plant.

Alternatively, high-gain adaptive stabilization methods use simple adaptation laws and rely
on a minimum-phase assumption since zeros attract poles under high gain [4-14]. Adaptive
high-gain proportional feedback can stabilize square multi-input, multi-output systems that are
minimum phase and relative degree one [4, 6, 7].
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50 J. B. HOAGG AND D. S. BERNSTEIN

Generally, high-gain methods can stabilize systems with relative degree one. However, in [8],
high-gain dynamic compensation is used to guarantee output convergence of single-input single-
output (SISO) minimum-phase systems with arbitrary-but-known relative degree. This result is
surprising since classical roots locus is not high-gain stable for plants with relative degree
exceeding two. However, in [13, 14] it is shown that the results of [8] can fail when the relative
degree of the plant exceeds four. Furthermore, in [13,14], the Fibonacci series is used to
construct a direct adaptive stabilization algorithm for minimum-phase systems with unknown-
but-bounded relative degree.

In general, high-gain adaptive methods are restricted to the stabilization problem. However,
high-gain adaptive controllers that utilize high-gain observers have been used for A-tracking
[15,16]. The adaptive command following problem is usually addressed using model reference
adaptive control. Direct model reference adaptive controllers cancel the zeros of the plant and
replace them with the zeros of the reference model, thus requiring that the plant be minimum
phase. In addition, direct model reference adaptive controllers typically require knowledge of
the relative degree and a bound on the plant order. The bound on the plant order is used to
determine the order of the model reference controller, while knowledge of the relative degree is
required for developing the adaptation law [2]. Model reference adaptive control methods with
relaxed assumptions on the relative degree of the plant are considered in [17, 18]. Specifically, in
[17], a model reference adaptive controller is proposed for plants with relative degree one or two.
However, the method is restricted to stabilization and does not address command following. In
[18], a model reference adaptive controller is proposed for systems with upper and lower bounded
relative degree. This controller requires that an adaptive parameter lie inside a known convex set,
and for large uncertainty in relative degree, calculating the convex set can be difficult.

In the present paper, we extend the Fibonacci-based adaptive stabilization controller
presented in [13,14] to address the adaptive command following and disturbance rejection
problems. We assume that the command and disturbance signals are generated by a linear
system with known characteristic polynomial. However, the disturbance is unmeasured. Unlike
direct model reference adaptive controllers, this adaptive controller does not require a bound on
plant order or knowledge of the relative degree. Additionally, the method presented in this
paper simultaneously addresses the command following and disturbance rejection problem,
whereas model reference adaptive control is generally restricted to the command following
problem. The main result of this paper is direct adaptive command following and disturbance
rejection for SISO minimum-phase systems with unknown-but-bounded relative degree.

In Section 2, we present the SISO command following and disturbance rejection problem and
introduce the notion of parameter-dependent dynamic compensation. Section 3 presents a fixed-gain
analysis of Fibonacci-based high-gain stabilization. In Section 4, the Fibonacci-based compensator
is extended to address the command following and disturbance rejection problem. The main result is
given in Section 5. Numerical examples are given in Section 6 and conclusions in Section 7.

2. PARAMETER-DEPENDENT DYNAMIC COMPENSATION FOR COMMAND
FOLLOWING AND DISTURBANCE REJECTION

We consider the strictly proper SISO linear time-invariant system
V= G(s)(u+w) (1

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2007; 21:49—-75
DOI: 10.1002/acs



MINIMUM PHASE SYSTEMS 51

where ©
-
G =op= > @)
p(s)
z(s) and p(s) are real monic polynomials, 6 = +1 is the sign of the high-frequency gain, and
B>0 is the magnitude of the high-frequency gain. We define the notation m =deg z(s),
n=deg p(s), and r =n — m. Furthermore, we consider a command signal y() and a disturbance
signal w(7) that are generated by the exogenous dynamics

xr(t) = Arx(2), ur([) = Crx (1) (3)

where (1) = [y:(1) w(0)]", A, e R™" C, e R*" and the characteristic polynomial of A, is
pi(s) =det(sI — A,).

In this paper, we address the adaptive command following and disturbance rejection problem
for system (1) and (2). The objective is to construct an adaptive controller that forces the plant
output y to asymptotically follow the command signal y, while rejecting the unmeasured
disturbance w. We make the following assumptions.

(I) z(s) is a real monic Hurwitz polynomial but is otherwise unknown.
(IT) p(s) is a real monic polynomial but is otherwise unknown.
(IT) z(s) and p(s) are coprime.
(IV) The magnitude f of the high-frequency gain satisfies 0 < ff<by, where by € R is known.
(V) The sign 6 = +1 of the high-frequency gain is known.
(VI) The relative degree r of G(s) satisfies 1 <r<p, where p is known, but r is otherwise
unknown.
(VII) For all 4 € spec(4;), ReA =0 and 4 is semisimple.
(VIII) The command signal y, is measured.
(IX) The disturbance signal w is not measured.
(X) The characteristic polynomial p.(s) is known.

Assumption (VII) restricts our attention to command and disturbance signals that consist of
steps and sinusoids. Furthermore, assumption (X) implies that the command and disturbance
sinusoids have known frequencies. However, assumption (IX) implies that we do not require a
direct measurement of the disturbance.

Let cx(s) and di(s) be parameter-dependent polynomials, that is, polynomials in s over the
reals whose coefficients are functions of a real parameter k. Furthermore, define the parameter-

dependent transfer function

35

where, for all k € R, pr(-)#0. Note that the polynomials ¢x(s) and d(s) need not be coprime for
all ke R.

Definition 2.1
di(s) is high-gain Hurwitz if there exists ks > 0 such that di(s) is Hurwitz for all k> k.

Definition 2.2
H,(s) is high-gain stable if there exist parameter-dependent polynomials c,(s) and di(s) such that
dy(s) is high-gain Hurwitz and, for all k € R, Gx(s) = ck(s)/di(s).
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Now, consider the feedback controller

u= G/c(s)ye (4)
where
Guls) =2V (5)
Pi(s)

Ye=y; — y is the output error, and Z;(s) and p(s) are parameter-dependent polynomials. For
example, letting Z¢(s) = ok and pr(s) = 1 yields Gy(s) = ok, and the closed-loop poles can be
determined by classical root locus. In general, the closed-loop system (1), (2), (4), and (5) from
the command y; and disturbance w to the tracking error y, is

Ve = Gk(s)ur = [G/d(s) Gk,z(s)] [yr‘|
w

where
~ s 1 o Zk,l(s)
Cra(8) = 1 + G(s)Gi(s)  Pil(s)
~ s =Gl Zkals)
Cral®) =17 Gs)Gils)  Px(s)
and

Zk1(5) = p(s)pr(s)
Zia(s) = — dPz(s)Pi(s)
Pi(s) = p(s)Pi(s) + 3Pz(5)Zk(s)
The parameter-dependent closed-loop transfer functions Gk,l(s) and kaz(s) are high-gain stable

if the parameter-dependent characteristic polynomial ji(s) is high-gain Hurwitz. The SISO
command following and disturbance rejection problem is shown in Figure 1.

w
=+ U P 2
Yr _ N Ye . Gk(s) G(S) Yy .

N

Figure 1. Combined command following and disturbance rejection problem.
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3. HIGH-GAIN DYNAMIC COMPENSATION FOR STABILIZATION

In this section, a parameter-dependent dynamic compensator is used to high-gain stabilize (1)
and (2). The controller construction utilizes the Fibonacci series. For all j>0 let F; be the
jth Fibonacci number, where Fy =0, Fi =1, F,b,=1,F3;=2,F,=3,Fs=5,F; =8,F; = 13,
Fg =21,..., and define

Sen=Fera — Fipy
where /4 satisfies 1 <h<g.
Consider the parameter-dependent dynamic compensator
OkcFer22(s)

Grgls) = : :
kelS) S8+ Kfechgss™! + Kfec1by_ 15872 + -+« 4 Kle2bys + Kerby

(6)

where k, b1, ..., b, are real, and Z(s) is a degree g — 1 monic polynomial.
Now, let g be thez upper bound on the relative degree of G(s), that is, g = p, and consider the
feedback (4) with Gi(s) = Gy ,(s). Then closed-loop system (1), (2), (4), and (6) is

- - Vr
Ve = [Gri(s) Gia(s)] l (7)
w,y
where
- A 1 Zk l(S)
G S)= ~ = — 8
) = GG ) ®
~ » —G(s Zio(s
Grals) = ©) ___ %) 9)
1 4+ G(s)Gr(s)  Pr(s)
and
Z1(8) = p(S)[s” + Krob,s? ™! 4 kv th, (P72 4 - 4 ko2 bas K by (10)
Z42(8) = —OB2(s)s” + Krobys? ™ 4 Koo by 5072 A 02 bas + Kby (11)

Pr(s) = p(s)s” + kff”f’bpp(s)s” 1y ffoo by—1p(s)s’ pEppp— C/2) p(s) + K52 Bz(s)2(s)  (12)

The following theorem provides the properties of pi(s), and thus kal(s) and (N}k,z(s) for
sufficiently large k. The proof follows from examining the Hurwitz conditions of pi(s) for
large k. For a complete proof of this result, see [13, 14].

Theorem 3.1
Consider the closed-loop system (7)—(12). Assume that the polynomials Z(s),

B, () =5 + bys” + by_15 + by
and, fori=0,1,...,p — 3,

Bi($) = bis3s® + bisas® + bipis + by
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are Hurwitz. Then pj(s) is high-gain Hurwitz, and thus (N?k’l(s) and Gk,z(s) are high-gain stable.
Furthermore, as k — oo, m + p — 1 roots of pi(s) converge to the roots of z(s)Z(s) and the real
parts of the remaining r + 1 roots approach —oo.

Note that there exist controller parameters by, ...,b, such that the polynomials By(s),...,
B,_»(s) are Hurwitz. First, let b, >0 and b,_; > 0 be such that b,_;b, > by, which implies that
B,_»(s) is Hurwitz. Next, let b,_» > bob, /b,_1, which implies that B,_3(s) is Hurwitz. In the same
manner, for i=4,5,...,p, let b,_i11 > bob,_it3/b,—ira so that B,_(s) is Hurwitz. Thus
By(s),...,B,—» are Hurwitz.

The parameter-dependent dynamic compensator Gﬂk,,,(s) is high-gain stabilizing for G(s)
under assumptions (I)~(X). However, the closed-loop system (7)—(12) is not guaranteed to
asymptotically follow the command signal or reject the disturbance. In fact, the closed-loop
system will not generally follow the command signal or reject the disturbance since Gk,p(s) does
not have an internal model of p.(s) for all values of k. However, in the next section, we augment
GA;W(S) to incorporate an internal model of p.(s).

4. HIGH-GAIN DYNAMIC COMPENSATION FOR COMMAND FOLLOWING
AND DISTURBANCE REJECTION

In this section, we construct a high-gain dynamic compensator for command following and
disturbance rejection by cascading an internal model of the exogenous dynamics p.(s) with
(A?k,g(s), where the parameter g is chosen to be an upper bound on the relative degree of an
augmented system.

Consider the feedback (4) with the strictly proper dynamic compensator

Gi(s) = Gi(5)Gi j(s)

where G.(s) = Z,(s) /p:(5), Z:(s) is a monic polynomial with », = deg Z,(s) <n,, and Gk,ﬁ(s) is given
by (6) with g = p, where p’% p + n — m;. Note that p is an upper bound on the relative degree of
the cascaded system G(s)G.(s). Therefore, the parameter-dependent dynamic compensator is

k52 2,(5)4(s)

Gi(s) = _ . _ : . . : 13
k(s) Pe($)[s? + kfﬁvﬁbpsﬂ*l + kfﬁ,ﬁ—]bpilspfz + - Ki2bys + Kby (13)
where k,bi,...,b; are real, and Z(s) is a degree p — 1 monic polynomial. Then closed-loop
system (1), (2), (4), and (13) is
~ ~ Yr
Ve = [Gri(s) Gra(s)] (14)
w
where
N . 1 5
Gra(9) — = i) (15)
1+ G(s)Gr(s)  Pr(s)
~ R -G Z
Gals) 2 ——0)___ 2l (16)
1+ G(s)Gi(s)  Pr(s)
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and Z1(8) = pr(p(S)s? + Kiibss? 4 Iii1bs P72 4 k2bys 4 KDy (17)
21.2(8) = —0Bpe()2(s)[s” + Kribss? 4 I tbs (P72 4 Kby 4 KDy (18)
Pr(8) = pr)p(s)s” + K7 bapi()p(s)s” ™" + K7 b5 1 pe(s)p(s)s”
+ o Kby po(s)p(s) 4 KT Bz(s5)2:(5)2(s) (19)
Theorem 4.1

Consider the closed-loop system (14)—(19). Assume that the dynamic compensators G.(s) and
Gy 5(s) are minimum phase, that is, assume that the polynomials Z.(s) and Z(s) are Hurwitz.
Furthermore, assume that the polynomials

B a2(s) = > + bys® + bs_15s + by (20)

and, fori=0,1,...,p — 3,
Bi(5) = bi38> + bias® + bi1s + by (21

are Hurwitz. Then the following statements hold:

(i) pr(s) is high-gain Hurwitz, and thus Gy ;(s) and Gy (s) are high-gain stable.
(i) Ask — 0o, m+ m; + p — 1 roots of pi(s) converge to the roots of z(s)Z;(s)Z(s) and the real
parts of the remaining r + n, — m, + 1 roots approach —oo.
(iii)) There exists ks > 0 such that, for all k=kg, lim,_~ y.(¢) = 0.

Proof
Statements (i) and (ii) follow from applying Theorem 3.1 to the cascade G(s)G,(s). Specifically,
define G(s) = G(s)G:(s). Since Z(s) is Hurwitz, it follows that G(s) satisfies assumptions (I)~(VI)
where p is an upper bound on the relative degree of G(s). Furthermore, p(s) is the closed-loop
parameter-dependent characteristic polynomial of G(s) connected in feedback with the
controller Gk,ﬁ(s). Then according to Theorem 3.1, pi(s) is high-gain Hurwitz, and, as k —
0o, m+ m; + p — 1 roots of pi(s) converge to the roots of z(s)Z,(s)Z(s) and the real parts of the
remaining r + n, — m, + 1 roots approach —oo.

Now, we show part (iii). Letting .#(-) denote the Laplace operator, the final value theorem implies

lim ye(#) = lim s.Z(y(1)

— - L(ye(1))
= lim s[Gk,l(s) Gk,z(s)]
s—0 g(W(Z‘))
Z:(s)
=lim s [Zf’l(s) Z;:,z(s)] )
=0 | pr(s)  Prls) ] | zy(s)
pi(s)
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2007; 21:49—-75
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PPN + Kibys™™! -+ K5t by] 2,(5)

— i
0 Pe(s) Pi(s)
—OBpes)z NS + Kby 4 Kby 2(5)
+ =
Pr(s) Pi(s)
— bm S[p(s)zr(s) — 5Bz(s)zw(s)][s‘j + kf«i,ﬁbﬁsﬁfl Y 78 bi] )
5—0 Pi(s)

where L(y:(0)) = z:(5)/p:(s5), L(w(t)) = z,(s)/p:(s), and z:(s) and z,(s) are polynomials. Since
Pr(s) is high-gain Hurwitz, there exists ks > 0 such that, for all k> ks, pr(s) is Hurwitz. Then (22)
implies, for all k> kq, lim,_,~ ye(f) = 0. 0

5. PARAMETER-MONOTONIC ADAPTIVE COMMAND FOLLOWING AND
DISTURBANCE REJECTION FOR SYSTEMS WITH UNKNOWN-BUT-
BOUNDED RELATIVE DEGREE

Although Theorem 4.1 guarantees the existence of a strictly proper parameter-dependent
dynamic compensator (13) for asymptotic command following and disturbance rejection, the
stabilizing threshold ks is unknown. In this section, we introduce a parameter-monotonic
adaptive law for the parameter k and present our main result. To complete our analysis, we
construct state space realizations for the open-loop system (1) and (2) and the compensator (4)
and (13). Let the system (1) and(2) have the minimal state space realization

X=Ax+ Bu+w), y=~Cx (23)

where 4 e R™", Be R™!, and Ce RIX”.A )
Next, consider the controller Gi(s) = G.(s)G(s) given by (4) and (13) and write

Hs) ="V 4 5 0P P4 Bs 4 2 (24)
so that Gi(s) has the state space realization
% = A(k)% + By,, u= C(k)% (25)
where A(k) e RUP*0utp) g e RUA/>1 “and ¢ e R are given by
4 BC0] [0
A(k) = . , B=| (26)
0  Bsk) A;
C(k)=[Cr D:Cy(k)] (27)
where
'_kf'p:ﬁbp. 1 -+ 0] 1
) : PR i Zp2
Ap(k)= ' T, By= (28)
—k2by 0 1
__kf;a,lbl 0 --- ()_ Zo
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2007; 21:49—-75
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Cy(k)=[okF2 0 --. 0] (29)

is a realization of AGAk,l;(s)Aand (/ir, B., C,, ﬁr) is a minimal realization of Gr(s). Note that, for all
non-zero k € R, (A4;(k), C5(k)) is observable. The closed-loop system (23) and (25)—(29) is

% = A(k)X + Bu, (30)
Ve = CX + Du, 31)
where
.. [ 4 BCk .. [0 B [xl
A= | ) , B , x= (32)
—BC  A(k) B 0 x
C=[-C 0], D=[10] (33)

Now we present the main result of this paper, namely direct adaptive command following and
disturbance rejection for minimum-phase systems with unknown-but-bounded relative degree.

Theorem 5.1

Consider the closed-loop system (30)—(33) consisting of the open-loop system (23) with
unknown relative degree r satisfying 1<r<p, and the feedback controller (25)-(29).
Furthermore, consider the parameter-monotonic adaptive law

k(1) = ye ™ 0y2(1) (34)

where 7 > 0 and o > 0. Assume that the dynamic compensators Gy(s) and Gk’,;(s) are minimum
phase, that is, assume that the polynomials Z,(s) and Z(s) are Hurwitz. Furthermore, assume that
the polynomials By(s), ..., Bs—2(s) given by (20) and (21) are Hurwitz. Then, for all initial
conditions ¥(0) and k(0) > 0, k(¢) converges and lim,_,, y.(f) = 0.

Proof
The closed-loop system (30)—(33) with the inputs y, and w generated by the linear system (3) can
be written as

X(t) = Ac(k(t)xc(1) (35)
Ve(t) = Cex.(1) (36)
where
A(k) BC, Lo ¢
m@él()B , QéWDGLXﬁﬁlWW
A, xr(t)

Since (34)—(36) is locally Lipschitz, it follows that the solution to (34)—(36) exists and is unique
locally, that is, there exists 7, > 0 such that (x.(¢), k(¢)) exists on the interval [0, ¢,).

First, we show that if x.(f) escapes at f,, then k() escapes at 7. Assume that k(f) does not
escape at .. Let k(t,) = lim,_,,, k() so that k(¢) is continuous on [0, z.]. Then ¢(1) = A.(k(£))q(z) is

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2007; 21:49—-75
DOI: 10.1002/acs



58 J. B. HOAGG AND D. S. BERNSTEIN

a linear time-varying differential equation on [0, 7.], where A.(k(?)) is continuous in ¢. The
solution to ¢(f) = A.(k(t))q(¢) exists and is unique on [0, z,] [19]. Therefore, ¢(z) does not escape
at t, and, by uniqueness, x.(¢) = ¢(¢) on [0, z.]. Consequently, x.(¢) does not escape at .. Hence,
if x.(¢) escapes at ¢,, then k(¢) escapes at f,.

Now, we show that k() converges. For contradiction, suppose that k() diverges to infinity
at t,. Theorem 4.1 implies that there exists ks >0, such that for all k>ks, A(k) is asympt-
otically stable and lim,_ . y.(f) = 0. Since, for all k>k,, A(k) is asymptotically stable and
lim,—~ ye(7) = 0, it follows from Lemma A.2 that there exists P : [k, 00) — RUF2+0)x(1+2n40)
and Q : [k, 00) — RUF2t/x(t2m40) gyich that the entries of P and Q are real rational functions
and, for all k>k,, P(k) is positive definite, Q(k) is positive semidefinite, and

AT(k)P(k) + P(k)A(k) = —Q(k) — yCTC,

Lemma A.3 implies that there exists k, > ks such that, for all k > k,, aP(k) > 0P(k)/0k. Since k()
diverges to infinity at f., there exists #, <t, such that k(z;) = k;.
For all t €[5, t,), define

Vo(xe, k) = e *OxT P(k)x,

Note that Vo(x,, k) is not to be considered a candidate Lyapunov function but is non-negative
for all k>ks and for all x e R"™™"* For all 1€, ) the derivative of Vo(x.,k) along
trajectories of (34)—(36) satisfies

Vo(xe, k) = — e OxI AT (k) P(k) + P(k)Ac(k)]xe — ake ™ x] P(k)x. + ke ™ x] ag_gck) X,
= —e %] Q(k)x, — ye X C} Coxe — ke " x] { P(k) - 81;5)])6
< — e XTOk)x, — ye*y?
< —pe =k (37)
Integrating (37) from ¢, to t<t, and solving for k(¢) yields
k(1) < Vo(xe(t2), k) + ko — e O (O PU(1)x(0) < Vo(xelt2), ko) + ke (38)

for t € [y, t.). Hence, k(:) is bounded on [0, 7.), which is a contradiction. Therefore, the solution
to (34)—(36) exists and is unique on all finite intervals. Then integrating (37) from #, to t<oo
yields (38) for ¢ € [t;,00). Therefore, k(-) is bounded on [0, 00). Since k(¢) is non-decreasing,
koo = lim,_, k(f) exists.

Since for all > 0, k() <k, it follows that

pe e /0 t yi(r)de<y /0 ko y2(r) dt = k(1) — k(0) <ko, — k(0)

and thus y.(-) is square integrable on [0, c0). This property will be used later.
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Next, we show that, for all k > 0, the pair (A(k), C) is detectable. Let A be an element of the

closed right half plane. Then

. (A4 — A1
A(k) — A )
—BC
-C

rank =rank

c

(A — Al
=rank C
0

A— Al
=rank C
0

BC(k)
A(k) — 11
0

BC (k)
0
A(k) — A1 |

B 0 I, 0
0 0 0 C(k)
0 Liss] L0 A(k)— il

Since (4, B, C) is a minimal realization of the minimum-phase plant (1) and (2), it follows that

[A—JI B
C 0
0 0
is non-singular. Thus,
. - [ 1y
A(k) — 21
rank N =rank| 0
C -
L0
o
0
=rank
0
| 0
which implies
I,
A(k) — 21 0
rank N =rank
C 0
0

Copyright © 2006 John Wiley & Sons, Ltd.

0
0

Il’lr‘rﬂ_

0
Ck)
A(ky — A1
0 0
C, D, C;(k)
B.Cs(k)
0 Ay(k)y — Al

A, — I

0 0
A, — 0 B.Cy(k)
C: D, Cy(k)
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I, 0 0 07r, O 0

0 A —A B, 0|0 I, 0
=rank . ) .

0 ¢, D, 0|0 0 C5(k)

0 0 0 I,1L0 0 Ayk)—2il

Since (ffr, l?r,ér,f)r) is a minimal realization of the minimum-phase compensator Gr(s), it
follows that

I, 0 0 0
0 A —2 B 0
0 ¢ Do
0 0 0 I
is non-singular. Thus,
I, 0 0
A(k) — I 0 I, 0
rank . = rank .
C 0 0 Cy(k)
0 0 Ayk) —

Since, for all k>0, (/Iﬁ(k), C‘,;(k)) is observable, it follows that, for all k>0

A(k) — I

rank =n+n+p

C

Therefore, for all k >0, (A(k), C) is detectable.

Next, we show that lim,_, y.(f) = 0. Define A%—A(k%) Since (A, C) is detectable, it
follows that there exists L € R P! sych that 4= A, 4+ LC is asymptotically stable. Then
adding and subtracting A,x and LDu, from (30) implies

3(1) = A1) + [A(k(1)) — Ax]3(1) + [B + LD (1) — LIC5(t) + Duy(1)]

which is equivalent to

(1) = AK(1) + ADX(1) + Ju (1) — Ly ()

where
A(D) = A(k(1)) — An

J=B+ LD

Since 4 is asymptotically stable, A(:) is continuous, lim,_,, A(z) = 0, u,(-) is bounded on [0, c0),
and y.(-) is square integrable on [0,00), it follows from Lemma B.1 that X%(-) is bounded
on [0, 00).
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AN
Yr tf-\ \1/—0A > GA\LN& G(S) Y >
k= f,\/efokyz
- :

Figure 2. Adaptive controller for the command following and disturbance rejection problem.

Next, since A(-) is bounded, %(-) is bounded, and u.(-) is bounded, it follows from (30) that £(-)
is bounded. Since X(-), (), u;(-), and u(-) are bounded, it follows from (30) and (31) that y.(-)
and y.(-) are bounded. Therefore, d(y*(¢))/dt = 2y.()y.(¢) is bounded, and thus y(7) is
uniformly continuous. Since y2(7) is uniformly continuous and lim,_ fot y2(t)dr exists,
Barbalat’s lemma implies that lim,_, , y.(7) = 0. O

Figure 2 illustrates the adaptive controller presented in Theorem 5.1.

6. SERIALLY CONNECTED MASS-SPRING-DAMPER

Consider the three-mass serially connected mass—spring—damper system shown in Figure 3. The
dynamics of the system are given by

M+ Cg+ Kq = b(u+w) (39)
where
nm 1
M= my , b=10 (40)
ms 0
c1+ o —C 0
C=| —a o+ —c (41)
0 —C3 3+ C4
ki + ks —ky 0
K= —ky ky + ks —k3 (42)
0 —k3 ks 4+ ky
9=la 92 g3 (43)
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u(t) + w(t) y1(t)
k’z kiﬁ

AN A

mq mo ms

A
}_(IT([) }_;z(L)

Figure 3. Three-mass serially connected mass—spring—damper system.

]_

C1

The masses are m; = 1 kg, my = 0.5kg, and m3 = 1 kg; the damping coefficients are ¢; = ¢; =
c3 = ¢4 = 2kg/s; and the spring constants are k; = 2kg/s?, k, = 4kg/s?, k3 = 1 kg/s?, and
ky = 3kg/s>.

Our objective is to design an adaptive controller so that every SISO force-to-position transfer
function of the system (39)—(43) can track a sinusoid of w; = 11 rad/s and a step, while rejecting
a sinusoid of w,; = 8 rad/s and a constant disturbance. Thus, the dynamics for tracking and
disturbance rejection are given by the characteristic polynomial

pe(s) = s(s2 + w%)(s2 + w%)

All SISO force-to-position transfer functions of an asymptotically stable serially connected
structure are known to be minimum phase [20]. Furthermore, [20] show that the relative degree
of a SISO force-to-position transfer function for a serially connected structure is equal to the
number of intervening masses plus two. For a three mass system, all force-to-position transfer
functions have relative degree not exceeding four. Therefore, p = 4 is an upper bound on the
relative degree of the force-to-position transfer functions for a three-mass system. Lastly, it
follows from [20] that all SISO force-to-position transfer functions of an asymptotically stable
serially connected structure have positive high-frequency gain, so let 6 = 1. Next, let us assume
that the upper bound on the magnitude of the high-frequency gain is by = 10. Then all SISO
force-to-position transfer functions satisfy assumptions (I)—(VI).

Next, consider the parameter-dependent transfer function (13) where p = 4, which is given by

K52.(5)2(s)

Gi(s) = Pr($)[s* + K3bys® + kOb3s? + kObays + kb1 ]

To satisfy the assumptions of Theorem 4.1 the design parameters are chosen to be

2:(s) = (s + 2)(s + 4)(s + 6)(s + 8)(s + 10)
£(s) = (s + 15)(s + 20)(s + 25)
ba=4, byi=4, by—=12, b =4

Then, the adaptive controller considered in Theorem 5.1 is given by the adaptive law

k(t) = ye~™y2(1) (44)
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and (25), where

0 1 0 0 0 0
0O 0 1 0 o0 0
A=lo 0o 0 1 0|, B=]0 (45)
0 0 0 0 1 0
0 —7744 0 —185 0] 1]
C.(k)=[3840 — 3360 1800 155 30], D,=1 (46)
—4K* 1 0 0 1
2 —4k5 0 1 0 .| 60 @
A B T N I O A B S T 2
—4K7 0 0 0 7500
Csk)=[k* 000, y=1, a=0.1 (48)

Now, we assume that the sensor is placed so that the position of m, is the output of the force-
to-position system we are trying to control. This system is

1= Gi(s)u+w) (49)
where
N 453 4 2457 + 485 + 32

Gi(s) = 5 7} 3 2 (50)

§¢ 4 165> 4 84s* 4 224s° 4 330s% + 2805 + 100

Furthermore, let us assume that the reference and disturbance signals are
ye(f) = 10 sin(w;#) + 5 (51)
w(t) = 7cos(wyt) — 8 (52)

The mass—spring—-damper system (49) and (50) is simulated with the initial conditions
q(0) =[—0.5 0.25 1.0]" m and ¢(0) =[0.1 —0.2 0.3]" m/s. The adaptive controller (25) and
(44)—(48) is implemented in the feedback loop with y.(f) = y.(f) — y1(¢) and initial
conditions X(0) = 0 and k(0) = 25. Figure 4 shows that y,(z) asymptotically tracks y.(¢), that
is, y.(f) converges to zero. Figure 5 shows that u(zr) is bounded and k(¢) converges to
approximately 42.2.

Now let us assume that the position sensor is placed on the third mass instead of the second
mass. Then, we are trying to control the force-to-position system

2 = Ga(s)(u + w) (53)
where
N 852 4+ 20s + 8
Ga(s) = 54
28 = 3 1655 1 8457 1 2245° 1 33052 4 2805 + 100 4
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501 1
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-50+F 4
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Figure 4. The output y;(¢) asymptotically tracks the reference y;(f), so y.() converges to zero.

x 10

0 0.5 1 1.5 2 25 3
Time (sec)

Figure 5. The control u(f) is bounded and the gain k(f) converges to approximately 42.2.

Note that G,(s) has relative degree 4 instead of 3. As before, the reference and disturbance
signals are given by (51) and (52). The mass—spring—damper system (53) and (54) is simulated
with the initial conditions ¢(0)=[—0.5 0.25 1.0]"m and ¢(0)=1[0.1 —0.2 0.3]"m/s.
The adaptive controller (25) and (44)-(48) is implemented in the feedback loop with
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0 1 2 3 4 5
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Figure 6. The output y,(¢) asymptotically tracks the reference y;(f), so y.() converges to zero.
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Figure 7. The control u(z) is bounded and the gain k() converges to approximately 711.

Ve(t) = y:(t) — y2(¢) and initial conditions X(0) = 0 and k(0) = 600. Figures 6 and 7 show that
ve() converges to zero and k() converges to approximately 711.

Lastly, to demonstrate the adaptive controller for an open-loop unstable system, assume that
¢ = —2kg/s instead of 2 kg/s. Then the damper ¢; supplies energy to the system rather than
dissipating energy, and one would expect that this could cause the system to be unstable. If the
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0 0.5 1 15 2 25 3 35 4
Time (sec)

Figure 8. The output y;(¢) asymptotically tracks the reference y;(f), so y.(f) converges to zero.

25 3 3.5 4

1.5 2 2.5 3 3.5 4
Time (sec)

Figure 9. The control u(¢) is bounded and the gain k() converges to approximately 44.2.

sensor is placed on the m; mass, the force-to-position system is

Y1 =G3(s)(u+w) (55)
where
s 4s% 4 2457 + 485 + 32
Gi(9)=— 3 3 3 3 (56)
§O 4+ 125° 4 36s* + 7253 + T4s* 4 1285 + 100
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As expected, the open-loop system (55) and (56) is unstable with unstable poles at 0.4032 +
71.3756. The mass—spring—damper system (55) and (56) is simulated with the initial conditions
q(0) =[-0.5 0.25 1.0]" m and ¢(0) =[0.1 — 0.2 0.3]" m/s. The adaptive controller (25) and
(44)—(48) is implemented in the feedback loop with y.(f) = y.(z) — y1(f) and initial conditions
X(0) = 0 and k(0) = 30. Figures 8 and 9 show that y,(¢) converges to zero and k(#) converges to
approximately 44.2.

7. CONCLUSIONS

In this paper, we presented a direct adaptive tracking and disturbance rejection algorithm for
single-input, single-output minimum-phase linear time-invariant systems with unknown-but-
bounded relative degree. The controller requires knowledge of the sign of the high-frequency
gain and an upper bound on the magnitude of the high-frequency gain. The adaptive controller
guarantees that the tracking error converges to zero. Unlike model reference adaptive control
methods, this control does not require knowledge of the system order and requires only an
upper bound on the relative degree. Furthermore, the adaptive controller presented herein has
only one adaptive parameter regardless of system order.

In practical applications, persistent output disturbances can cause the adaptive parameter to
grow without bound. This problem can be corrected for in practice by turning off the adaptation
mechanism once the control objective is achieved. The adaptive controller presented in this
paper is applicable to command following and disturbance rejection for steps and sinusoids with
known frequency, which encompasses many practical applications. In particular, the controller
has potential application to problems in structural vibration control where the disturbances are
harmonic with known frequencies.

Future research may include extending this method to address the general unsolved problem
of adaptive command following and disturbance rejection where the command and disturbance
signals have unknown spectra. More specifically, one could consider commands and
disturbances that are generated by unknown linear systems or a more general class of
command and disturbances with unknown spectra, for example, broadband disturbances.

APPENDIX A: PRELIMINARY RESULTS FOR ANALYSING
PARAMETER-MONOTONIC ADAPTIVE SYSTEMS

In this appendix, we present several preliminary results useful for analysing parameter-
monotonic adaptive systems. In this section, we consider the system

X = A(k)x (AD)
y = C(k)x (A2)

where A(k) e R™ and C(k) e R have entries that are polynomials in k.
The first two results concern the solution to a Lyapunov equation for system (A1)—(A2).

Lemma A.1

Assume that there exists ks >0 such that, for all k>ks, A(k) is asymptotically stable. Let
0(k) € R have entries that are polynomial functions of k, where, for all k > ks, Q(k) is positive
definite. Then there exists P : [ks, 00) — R/ such that each entry of P is a real rational function,
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and for all k>ks, P(k) is positive definite and satisfies
AT (k)P(k) + P()A(k) = —Q(k) (A3)

Proof
For all k>k, (A3) has the unique solution

P(k) = —vee ' [(AT(k) @ AT(k) ™" vee Q(K)] = / " et s (e dr
0

where vec is the column stacking operator and @ is the Kronecker sum [21, Proposition 11.8.3].
Then P(k) has entries that are real rational functions of k, and for all k>k,, P(k) is positive

definite. O
Lemma A.2
Consider systems (A1)—(A2), and assume that
Ai(k) - As(k)
AR = 1 3
A

C(k)=[Ci(k) C2(k)]

where A;(k) e R As(k) e R'2, C (k) e R, and C,(k) e R™" have entries that are
polynomials in k, and 4, € R?*2. For all / € spec(4,), assume that A is semisimple and Re 4 = 0.
Furthermore, assume that there exists ks > 0 such that, for all k>k,, A4,(k) is asymptotically
stable and lim,_,, y(f) = 0 for all initial conditions x(0). Let y > 0. Then there exist P : [ks, 00) —
R and Q : [ks, 00) — R such that the entries of P and Q are real rational functions, and for
all k=ks, P(k) is positive definite, Q(k) is positive semidefinite, and they satisfy

AT (k)P(k) + P(k)A(k) = —Q(k) — yC" (k)C(k) (A4)
Proof
For all k> ks, spec(4;(k)) N spec(A4,) = 0. Therefore, for all k> k,, the Sylvester equation

A1(k)S(k) — S(k)A2 = A3(k)
has the unique solution
S(k) = vec ' [(—AT @ A (k)" vec 43(k)]

where the entries of S(k) are real rational functions of k [21, Corollary 7.2.5]. For all k>ks,
define

I —Sk)
R(k) =

and consider the change of basis

o Ai(k)y —A(k)S(k) + S(k)A; + A3(k) Aik)y 0

Ak) 2 R () ARRK) = | 1 AR

A 0 A
C(k)= C(k)R(k) = [Ci(k) Ca(k) — Ci(k)S(k)]
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Since lim,_ ¥(f) = 0, it follows that lim,_ ., Ci(k)e'®’ 4+ (Ca(k) — Cy(k)S(k))e®>" = 0. Since
Ai(k) is asymptotically stable, it follows that lim,_« (Ca(k) — C1(k)S(k))e’>* = 0. Since every
eigenvalue of A, is on the imaginary axis, every non-zero entry of (Cy(k) — C1(k)S(k))e®?! is
either constant or involves sinusoids. Therefore, lim,_,, (C»(k) — C;(k)S(k))e??’ = 0 implies that
Cs(k) — C1(k)S(k) = 0. Hence, for all k=k,, C(k) =[C (k) 0].

Let Q1 >0 and y>0. Since, for all k>ks, A;(k) is asymptotically stable, it follows from
Lemma A.1 that there exists P : [ks, 00) — R"*!' such that each entry is a real rational function
and, for all k=k,, P(k) is positive definite and satisfies

AT (R)P1(k) + Pi(k)A1 (k) = —Q1 — yC{ (k) Ci (k)

Since A4, is Lyapunov stable, it follows that there exist P, >0 and 0,>0 such that
A3 Py + PyA; = — Q5. Next, define

[Pi(k)y ©
Py 1(k) ]
0 P
o K
U

so that, for all k>k,, P(k) is positive definite, O is positive semidefinite, and

AT (k) P(k) + P(k)A(k) = —Q — yC " (k) C(k) (A5)
Pre-multiplying (AS) by R~ T(k) and post-multiplying by R~!(k) yields
AT (k) P(k) + P(k)A(k) = —Q(k) — yCT (k) C(k)

where P(k)= R T(k)P(k)R™'(k) and Q(k)=R T(k)OR'(k). Thus, for all k>k, P(k) is
positive definite, Q(k) is positive semidefinite, and (A4) is satisfied. Since the entries
of P(k) and R(k) are real rational functions, the entries of P(k) and Q(k) are real rational
functions. |

The next result concerns the derivative of a positive-definite matrix whose entries are real
rational functions of a single parameter. We recall the O-notation. Let f : R - Randg: R - R
be continuous functions. Then f(k) = O(g(k)) as k — oo if there exist M >0 and k; > 0 such
that, for all k> k,, |f (k)| < M|g(k)|. For convenience, we shall omit ‘k — o0’ from the O-notation
for the remainder of this section.

Lemma A.3

Let ks >0 and consider P : [kg, 00) — R/, where each entry of P is a real rational function.
Assume that, for all k>k,, P(k) is symmetric positive definite. Then, for all o > 0, there exists
ky = ks such that, for all k=k,

dP(k)
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Proof
Write

pulk) -+ puk)

P(k) =

pn(k) -+ pu(k)

where, for i,j =1,...,1/, p;(k) is the real rational function
o k) @y, K+ (/7;‘;‘,u,.,71ku”71 ot @ik + @4
Wy(k) ki + lpij,v,,flkwil + .. 4 l//ij,lk + lpij,O
where u; and v; are non-negative integers. Then, for all k>0, p;(k) can be expressed as
o k0,00 = ¢k (k)
pij(k) — (%k i ij — ij ij
K (k)
where o = u; — vy is an integer and for convenience ¢; = Py The term (K" (k) — ¢k (k) /

k' ;(k) is a real rational function of k whose denominator is a polynomial in k of degree 2v;
and whose numerator is a polynomial in k of degree at most u;; + v;; — 1. Therefore,

kv”QDij(k) - ¢jjkllif¢g(k)
ki (k)

pij(k)

=0k ")

and hence p;(k) = ¢k + O(k"~).
For all k> ks, the determinants of the leading principal minors of P(k) are

A(k) = pu (k)
= ¢ k™" + Ok )
=0k" 4+ O(k" )

pi(k)  pa(k)

As(k) =
p2(k)  pa(k)

k™ + O ) ik 4 Ok )
Dok + O(=) k™ + O(k™1)

= Dok + O(k™ )

pi(k) puak) pik)
As(k)= | pia(k)  pxa(k)  pas(k)
p13(k)  pa(k)  pas(k)
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Gk + O™ )k + O™ i3k + O™
= | 1ok + O™ ook + OKk™7") - p3k™ + O(k™ ")

G13k7 + O™ 71)  dysk™ + Ok™")  33k™ + O(k™ )
=03k" + O(k™ ™)

A(k) = |P(k)|

= k" + O™ ™)

where, for i = 1,...,/, w; is an integer, and @, € R depends on the constants ¢,..., ;- .., Py
Since P(k) is positive definite for all k >k, it follows that, for all k>ks and for alli=1,...,/,
Ai(k) >0, and thus ®; > 0.

Next, consider the derivative of P(k) with respect to k. For i,j =1,...,/

dpl(k) gii—1 gi—2
L = 0k + Ok

Let o > 0. Then, fori,j =1,...,!

dpy(k o - -
o) ~ LI _ g1,k 4 0]~ Loy k! + O]

= ok + Ok~ 1)
For all k> ks, the determinants of the leading principal minors of aP(k) — dP(k)/dk are
dp11(k)

dk
=ag k7 + O™ )

/_\1(k) = apri(k) —

= a® k" + O(K" )

dpii(k dpia(k
apii(h) — LI o1y - 2200

dppr(k dpr(k
op1a(k) — %() apa(k) — pézk( )

As(k) =

Gk + O™ ik + O™
o
Pk + OK™>7") - ok + O(k>7)

_ an)zsz + O(szfl)
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o) — dp(lilk(k) apll) dpézk(k) s — dpélgk(k)
I k

As(0) = | apratk) —% aply — 220 jfk( Dty - —dpéik)

dpis(k dpas(k dps3(k

api3(k) — pc113k( ) op23(k) — p213k( ) 2p33(k) - p(313k( :

kT + 0K ) k™ + O™ p3k + OB
=lo| Pk + Ok 7)ok 4+ O™ py3k™ + Ok~ )
P13k + O™ dy3k®™ + Ok™7") 33k + O™ )
D3k 4 O(k" ")

Rk~ ‘aP(k) -9

=AD" + Ok )

Since o >0 and Qy,....0,>0, it follows that, for i =1,...,/, a’®; > 0. Therefore, for all
sufficiently large k, Ai(k),. .., Ai(k) >0, and thus aP(k) — dP(k)/dk is positive definite. []

APPENDIX B: PRELIMINARY RESULT FOR FORCED LINEAR
TIME-VARYING SYSTEMS

The result of this section concerns the solution to a class of forced linear time-varying systems.
This result is integral to the proof of asymptotic command following and disturbance rejection
for the adaptive controller presented in this paper.

Lemma B.1
Consider the nonhomogeneous linear time-varying system
{0 = AL(@0) + ADOLU) + L(0) + Do) (B1)

where ( € R:, ¢ :[0,00) — RY, o : [0, 00) — R, and A : [0,00) — R*E. Assume that A is
asymptotically stable, A(:) is continuous, lim,~, A(¢) = 0, ¢(-) is square integrable on [0, c0),
and w(-) is bounded on [0, 00). Then, for all {(0), {(-) is bounded on [0, c0).

Proof
First, consider the system

it = AL (1) + AD(0) + L(0) (B2)
Since A(-) is continuous the solution {;(-) exists and is unique on all finite intervals. Since A4 is

asymptotically stable, let P >0 be the solution to the Lyapunov equation AT P + PAs = —21,

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2007; 21:49—-75
DOI: 10.1002/acs



MINIMUM PHASE SYSTEMS 73

and define V({,) = (] P{,. Differentiating V'({,) along the trajectory of (B2) yields
V() = =201 + LIAT(OP + PAWIG + ( PL$ + ¢ "L P, (B3)
Since 0<(¢; — PL) (¢, — PL¢), it follows that
(IPLY+ ¢ "LTPL <[ + ¢"LTP’ Lo (B4)
Combining (B3) and (B4) yields
V)< = G4+ HIATOP+ PAWY + ¢ ¢

where 1= Amax(LTP?L). Since A(f) — 0 as ¢ — oo, there exists 7o>0 such that, for all 1>1,,
Jmax(AT(t)P + PA(1)) <1. Therefore, for all 7> 1

V&)< =3IGOIF + nllg@)P

where || - || is the Euclidean norm. Integrating from ¢, to ¢ yields
L/ 2 ! 2
O0SVEG< —5 [ 16O dt+n [ [l¢@I"dr + V(&i(%)) (B5)
Io to

Since >0 and ¢(-) is square integrable on [0, c0), it follows from (BS) that {;(:) is square
integrable on [0, 00) and V(-) is bounded on [0, c0). Since V() is bounded on [0, 00), {;() is
bounded on [0, 00).

Next, consider the system

L(t) = AL() + A6)a(1) + Dea(r) (B6)

Since A(:) is continuous, the solution {,(-) exists and is unique on all finite intervals.
Furthermore, since A is asymptotically stable, there exist « >0 and > 0 such that [jes(=9)|
<Pe =9 Let ¢ € (0,). Since A(f) - 0 as t — oo, there exist 7o>0 such that, for all > 1,
A< (o — &)/p. For all =1, (B6) has the solution

{5(1) = e (1) + / teAS(”T)Da)(r) dr + / 'eA»@*f)A(r)zz(r) dr

10 to

which implies that

IGOII< Be ™ Ia(10) ] +ﬁ/ e || Dl lleo(r) || d

+ﬁ/ e IA@ G ()] de

to
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t
< B D510l +[>’||D||<sup ||w<z)||) / &9 dr
=1 o

+B / e =" ("‘ g 8) 162(0)l| de

—alt—to) 1 e——t)
— B L0} + BIDI| (sup ||w(z)||) [— - ]
=1 o o
t
F -9 / Il de
ty
t
<citee 4 (-0 / eI de (B7)
ty

where ¢; = (1/o0)BlIDII(sup,s,, llo(®)]) and ¢ = BlIL5(t)]je*. Multiplying (B7) by e* yields

IE2(n)lle™ < cre™ + 2 + (o0 — 8)/ 15()]e”" de (B?)

Using the Gronwall-Bellman inequality [2], (B8) implies that, for all 1>1¢,
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where ¢3 =[c; + ¢i(x — €)/e] and ¢4 = cpe” 9% Therefore, for all >t

10l es + cae™

and we conclude that {,(-) is bounded on [0, c0).

Now, by the superposition of the differential equations (B2) and (B6), we obtain the
differential equation (B1) whose solution is given by {(¢) = {;(¢) + {»(¢). Since {;(-) and {,(-) are
bounded on [0, 00), it follows that {(-) is bounded on [0, c0). O
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