THE UNIVERSITY OF MI CHI GAN COLLEGE OF ENGINEERING Department of Electrical & Computer Engineering Space Physics Research Laboratory NEUTRAL ATMOSPHERIC STRUCTURE MEASUREMENTS BY PITOT PROBE TECHNIQUES Prepared on behalf of the project by J.,. HorVath under contract with: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIt-IT CENTER CONTRACT NO. NAS5-3335 GREENBELT, MARYLAND administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR May 1972

TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS iv 1. INTRODUCTION 1 2. GENERAL DIS CUSSION 2 2.1. Pitot-Static Probe 2 2.2. Pitot Probe 2 2.2.1. Ejectable tip 5 2.2.2. Dual gauge sensors 5 2.2.3. Electrometer amplifier 5 2.2.4. Electronic commutator 6 2.2.5. Elimination of the static pressure sensor 6 3. THEORY AND m UATIONS 8 4. PITOT PROBE ERROR SUMMARY 9 4.1. Ideal Impact Pressure Errors 9 4.1.1. Continuum region 9 4.1.1.1. High stagnation temperatures 9 4.1.1.2. Finite orifice size 9 4.1.1.3. Gauge and chamber response 9 4.1.1.4. Calibration 9 4.1.1.5. Angle of attack 10 4.1.1.6. Telemetry 10 4.1.1.7. Outgassing 10 4.1.1.8. Viscosity effects 10 4.1.2. Free molecular flow region 10 4.1.2.1. Internal chamber geometry 10 4.1.2.2. Angle of attack 11 4.1.2.3. Amplifier and gauge chamber response 11 4.1.2.4. Calibration 11 4.1.2.5. Outgassing 11 4.1.2.6. Telemetry 11 4.2. Velocity Errors 11 4.3. Constant K(M), Continuum Flow 13 4.4. Altitude Error in Density 28 4.5. Density Error Equations - Continuum Flow 29 4.6. Density Error Equations -- Free Molecular Flow 30 5. DATA 31 6. REFERENCES 81 7. BIBLIOGRAPHY 83 APPENDIX A: DESIGN OF A RADIOACTIVE IONIZATION GAUGE FOR UPPER ATMOSPHERE MEASUREMENTS APPENDIX B: THEORY AND DATA PROCESSING FOR THE PITOT TECHNIQUE OF UPPER ATMOSPHERE MEASUREMENT iii

LIST OF ILLUSTRATIONS Figure Page 1. Pitot-Static Probe. 3 2. Pitot Probe. 4 3. Rocket velocity and horizontal wind vector diagram. 14 4. Horizontal rocket velocity vs. initial effective elevation angle. 15 5. Velocity uncertainty' 175 km apogee, IWI= 25m/s, Q.E.=84~. 16 5. Velocity uncertainty: 175 km apogee, IWI= 25m/s, Q.E.=84~. 16 6. Velocity uncertainty: 175 km apogee, IWI= 50m/s, Q.E.=840. 17 7. Velocity uncertainty: 175 km apogee, IW-= 75m/s, Q.E.=84~. 18 8. Velocity uncertainty: 175 km apogee, IWI=10m/s, QE.=84~. 19 9. Velocity uncertainty: 140 km apogee, IWI= 25m/s, Q.E.=840. 20 10. Velocity uncertainty: 140 km apogee, JWl= 50m/s, Q.E.=84~. 21 11. Velocity uncertianty: 140 km apogee, IWI= 75m/s, Q.E.=84. 22 12. Velocity uncertainty: 140 km apogee, jWj=100m/s, Q.E.=840. 23 13. Velocity uncertainty: 175 km apogee, WIl= 50m/s, E=0~. 24 14. Velocity uncertainty: 175 km apogee, IWI=100m/s, 0=00. 25 15. Velocity uncertainty: 140 km apogee, IWI= 50m/s, e=O0. 26 16. Velocity uncertainty: 140 km apogee, |W|=100m/s, =0~. 27 iv

1. INTRODUCTION The measurement of surface pressures on rocket-borne payloads began as early as 1946 when rocket vehicles were first made available for scientific study of the earth's upper atmosphere. 1,2 The first experiments were made possible through the use of V-2 rockets and were conducted at military bases in New Mexico. These early attempts to measure atmospheric pressure, temperature, and density in the high atmosphere were largely inconclusive because of instrument contamination by rocket exhaust gases or because the altitudes attained were insufficient. As new rockets were being developed, such as the Viking and the Aerobee, new sensors and pressure measuring techniques were also being developed which provided relatively good qualitative data, as evidenced by the fact that the 1956 ARDC Model Atmosphere, based upon the experiments in the early 1950's, is still very representative regarding the neutral pressure, temperature, and density to an altitude of 90 km. The International Geophysical Year (IGY) rocket program provided the first intensive exploration of the upper atmosphere. During the period from July 1957 through November 1958 approximately 85 to 90 scientific rockets were launched at the new Fort Churchill launch facility. Coinciding with the opening of the IGY program was the availability to atmospheric researchers of the first solid fuel rockets. These rockets provided researchers with launch vehicles of greater inherent simplicity and ease of handling, and of lower relative cost. Many of the rockets launched during the IGY program at Fort Churchill were instrumented to yield information on the neutral ambient atmospheric structure, i.e., pressure, temperature, density, and winds. Three basic measurement techniques evolved. One technique, the Rocket Grenade Experiment3, is based on the speed of sound propagation through the atmosphere. Experiment implementation requires the ejection and detonation of explosive charges at precisely known times and altitudes. Peceipt of the resultant sound waves at an array of listening stations located on the ground and arranged in an appropriate, accurately measured geometry can yield information regarding both the vertical ambient temperature profile and horizontal winds. A second method determines the atmospheric drag on a sphere4' 5, 6 after ejection from a rocket payload at high altitudes. Initial sphere designs employed active, on-board accelerometer measurements with telemetering capability. Subsequent measurements of atmospheric density by the falling sphere technique have been derived from the use of active solid spheres, inflatable passive spheres that are tracked by precise radar systems, and combinations of the two types of systems. The third method involves the measurement of surface pressures at a unique point, or points, on a rocket nose cone. Interpretation of the surface pressure measurement in terms of neutral ambient pressure or density information is based on the fluid flow properties at that point. The present report describes results achieved through this method. 1

2. GENERAL DISCUSSION The Space Physics Research Laboratory of The University of Michigan, under contract with the Goddard Space Flight Center of NASA, has been engaged in the development of Pitot tube applications for the study of the upper atmosphere during the period from April 1962 through June 1971. A total of fifty-five Pitot-Static Probes and Pitot Probes were launched during this period. Thirty-eight were of the Pitot-Static Probe design, which had the capability of sensing both impact and ambient pressures. The remaining seventeen payloads were of a more sophisticated design, called the Pitot Probe, with extended high altitude measuring capability. 2.1. PITOT-STATIC PROBE The Pitot-Static Probe experiment (Figure 1), when launched by a NikeApache rocket, has a nominal apogee of 140 km. The combined impact pressure and ambient pressure measurements resolved by the Pitot- Static experiment permit data analysis within the nominal altitude range of 20 to 105 km. The pitot or impact pressure gauge orifice is located in the 3.5-in. diameter hemispherical nosetip. The static or ambient pressure is sensed through ten equally spaced holes located approximately ten calibers aft of the probe tip. A complete description of the Pitot-Static Probe experiment is given in Reference 7. 2.2. PITOT PROBE Although the Pitot- Static Probe yielded much high quality information, there were areas in design that required further exploitation. The major improvements which resulted in the Pitot Probe design (Figure 2) were the following: 1. The design of an ejectable nosetip with the specific purpose of vacuum-sealing the pitot orifice from undesirable contamination effects until the desired measuring altitude is reached. 2. The design of a dual ionization gauge sensing system which increases the nominal high altitude measurement capability from 105 km to approximately 125 km. 3. An improvement in electrometer amplifier design such that amplifier response times on the order of 10 ms can be achieved with feedback resistances of 1012Q. 4. The introduction of electronic data commutation. 5. A change in the internal and external structure design which eliminated the direct static or ambient pressure measurement. These modifications are discussed in the following paragraphs. 2

WIND GAUGE HOUSNGPITOT-STATIC PROBE- - C^\\^.' -N HAMRP_ OFRICE l- ~ — 2 QUDRALOOP ANTENNAE l \FiU NSTReMTATION ISECTQ LF- I ELEETRY, Fi q u re

7ZP! TOT PROBE ~m ~.~~~~~~.D ellcr Parr ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~Il. mK ~.~,~~~~~~~~~~~~ ~ ~ ~ ~~~~~~~~ ~ ec'w.n n urf NOU~-CL. ATUIt E. i)Q1 i 1:% ~~~~~~~~~~~~~~EEI.W W_ 1 Kl- I.1 — 31 ~ - S ~~~~h ia- ~~~~~~~~~~~~~~~~~~g~~~~~". ~O~~~S.ftI S M i I i~~~~~~~~~~Fi ue2

2.2.1. Ejectable Tip The primary objective of the ejectable nosetip is to vacuum-seal the impact pressure chamber in the payload from contamination effects until the required ejection time (altitude) during the rocket flight. Nosetip ejection is required at altitudes of 30 to 35 km (after second stage burnout) so that the upleg rocket payload measurement, from which the neutral properties of the atmosphere are deduced, will normally overlap high altitude balloon radiosonde measurements. Ejection of the nosetip at these altitudes requires rather critical design procedures due to the high dynamic pressure. The nosetip is designed to be aerodynamically unstable so that after ejection it pitches and tumbles, encountering lift and drag forces which move it to one side and downward relative to the payload, thus assuring a previously undisturbed atmosphere for upleg payload measurements. The force required to separate the tip from the nose cone is derived from a pyrotechnic squib. The squib is comprised of a dual-bridge, wiresealed piston actuator. The timing delay circuitry and power can be supplied alternatively from 1) an electronics package mounted within the ejectable tip, or from 2) the payload instrument package. A complete description of the ejectable tip used with the Pitot Probe experiment is given in Reference 8. 2.2.2. Dual Gauge Sensors The Pitot-Static Probe was instrumented with a radioactive ionization gauge pressure sensor. Radioactive gauges are inherently simple and rugged and their performance on sounding rockets has proved them very reliable. The ionization gauge design covers a wide dynamic pressure range of approximately 760 torr to 10-3 torr, with flat, stable operating characteristics. The corresponding altitude range for the pitot measurement is 30 to 100 km. The radioactive gauge design is described in detail in Appendix A. To meet the need for atmospheric structure measurements above 100 km a supplemental ionization gauge was designed with a sensitivity such that it can resolve impact pressures between 80 and 145 km. The sensor is a very simple, high pressure type, planar, hot filament ionization gauge. Both the hot filament gauge and the radioactive gauge are exposed in parallel to the pitot antechamber and thus see the same impact pressure. There is an approximate 20 km measurement overlap region (80 to 100 km) where impact pressure from both gauges is available. The overlap data region is very useful for in-flight calibration of the hot filament sensor. 2.2.3. Electrometer Amplifier The Densatron Model G electrometer amplifier9 is designed to convert output ion current from a radioactive ionization gauge or a hot filament ionization gauge into a telemetry-comatitible signal level of 0 to +5 V. It uses several ranges of sensitivity to achieve the resolution required. The appropriate sensitivity or range is selected automatically. The basic 5

technique uses a single-ended electrometer tube input stage coupled to a high-gain operational amplifier having 100% feedback to the input through a high megohm resistor. The resulting negative voltage is then inverted for telemetering (see Appendix A). 2.2.4. Electronic Commutator The purpose of a commutator in an FM/FM telemetry system is to provide time-sharing among the subcarrier oscillator channels, thus allowing more information to be transmitted through one data link. The information content for the Pitot Probes consists of the required analog pressure and aspect data plus such housekeeping information as is necessary in the data reduction process, i.e., amplifier range, chamber temperature, bias voltages, etc. The housekeeping functions occur in a prearranged sequence upon command, or at some prearranged increment of time, depending upon the normal amplifier range switching rate. Each housekeeping function in time is sampled for 70 ms, which is set by the digital sampling interface to computer processing. The electronic commutator in the Pitot Probe is a hybrid electronic package which uses both discrete and integrated circuits. The discrete components serve as the timing and clock functions while the integrated circuits are used as switches. 2.2.5. Elimination of the Static Pressure Sensor The Pitot Probe measures impact pressure only. The elimination of the static pressure sensor was based upon comparisons of all available PitotStatic data with data from the existing literature.10'11'12'13 Static pressure profiles were smoothed and compared with the ambient pressure resulting from the integration of the directly measured density profiles. This comparison was made in the altitude range of approximately 30 to 70 km. Below 30 km, where available, the static pressure was compared to rawinsonde ambient pressure data. As a result of a careful study and interpretation a static pressure correlation function was empirically derived. P 2m - [-1.3943x10-2M +0.10706] +8.2x10-4 P M4 a where P is the measured static pressure, m P is the ambient pressure, and a M is the probe Mach number. This function was found to be valid for the Pitot-Static geometry in the range: 6

0 < x < (1.38 + 0.08)x10-3 where x is the modified Chapman-Rubesin Hypersonic Interaction Parameter: T - a 2 x = M2 Kni T 9 g where T is the ambient temperature, a T is the gas temperature within the gauge, g M is the probe Mach number, and Kni is the Knudsen number based on the distance from the static pressure orifice to the probe tip. When x exceeds a value of about 1.38x103, the data begins to deviate significantly from the given correction function and indicates the possible onset of rarefaction phenomena. Above approximately 50 km (x > 1.4xlO-3) the static pressure measurement appears to be deficient and quite insensitive to atmospheric perturbations. Within the applicable range of x, however, the relative error in the pressure ratio on any Pitot-Static flight was found to be less than +2%. The problems of the static pressure measurement at about 50 km appear to be unresolvable and the need for rocket-derived neutral structure data below 30 km is very limited at best. It was on the basis of the above considerations that the static pressure measurement was eliminated. 7

3. THEORY AND EQ UATIONS By measuring the impact pressure of a suitably designed rocket probe atmospheric density can be calculated using equations appropriate to the fluid flow regime. Because of the wide range of atmospheric density encountered by the Pitot Probe during its flight, there is a large variation in the mean free path of the atmospheric particles and, thus, in the characteristics of the flow field surrounding the probe. At relatively low altitudes (below 85 km), compressible, nonviscous fluid flow theory adequately describes the flow field. At high altitudes (above 110 km), particle theory or free molecular flow theory must be used. In the region between 85 and 110 km neither the continuum flow nor free molecular flow conditions permit direct definitive data reduction and analysis. For solution in this region, a model has been derived that uses density as the independent parameter. A summary of the pertinent equations is given in Appendix B. A detailed discussion of the flow theories and the derivation of the pertinent equations is given in Reference 14. 8

4. PI TOT PROBE ERROR SUMMARY 4.1. IDEAL IMPACT PRESSURE ERRORS 4.1.1. Continuum Region Several factors may be responsible for errors in the effective ideal impact pressure in the continuum flow regime. 4.1.1.1. High Stagnation Temperatures The high gas temperatures which exist in the stagnation region of the Pitot Probe during its flight through the continuum flow region have maximums on the order of 1500~K. Dissociation effects are assumed to be negligible. The real problem encountered is the inability of the gas, which is composed of diatomic molecules, to instantaneously adjust its internal energy to the abrupt temperature changes. The time lag in equipartition of energy occurs primarily in the vibrational energies of the molecules. Analysis of the error magnitude for the Pitot Probe, as noted in Reference 15, resulted in a value of +0.8 +0.2%. 4.1.1.2. Finite Orifice Size The ideal impact pressure used in the Rayleigh Pitot Equation for the determination of ambient density assumes that all the pertinent effects in the stagnation region take place on one stagnation streamline. The area of the actual orifice is finite so that the measured pressure is an average of pressure over the entire orifice area. The pressure deficiency due to the finite Pitot Probe orifice was determined to be -0.3 +0.1%. 4.1.1.3. Gauge and Chamber Response The maximum pressure lag due to the ionization gauge sensor and antechamber gas flow response was determined to be less than +0.4 +0.2%. Because of the difficult, if not impossible, theoretical analysis of the Pitot Probe chamber response to gas flow in the continuum region the response was estimated empirically using a vacuum chamber and step function pressure inputs. 4.1.1.4. Calibration The absolute calibration of the radioactive ionization gauge for the pressure found in the continuum region (below 85 km) is believed to be within +1%.a 30 km and less than +2% at 85 km. On a relative basis, from calibration to calibration, the pressure measurement capability is believed to be within +1%, based on many statistical calibration samples. 9

4.1.1.5. Angle of Attack A study of the effects on the impact pressure measurement due to the rocket's angle of attack was carried out in wind tunnel tests. 16 An empirical expression for the angle of attack sensitivity of 5 to 1 source-shape tubes based on the wind tunnel data, has been given in Reference 17. p. (1) K (M)V2 (cosoa) The cosine term represents an approximate correction term to the Rayleigh Pitot Equation and is estimated to be accurate to within ~0.5% at a=13~. For an order of magnitude analysis the correction in the impact pressure for an a of 12~ would be +1%. 4.1.1.6. Telemetry The estimated order of magnitude error in pressure assigned to the telemetering aspects of the Pitot Probe experiment is +0.5%. 4.1.1.7. Outgassing Outgassing is assumed to be negligible in the continuum region (below 85 km), 4.1.1.8. Viscosity Effects Viscosity effects are known to become appreciable beginning at altitudes of approximately 75 km. 18'1920'21 Viscosity is considered, here, as the initial effect of transitional flow and therefore a correction is considered only through the transition model (Appendix B ). 4.1.2. Free Molecular Flow Region 4.1.2.1. Internal Chamber Geometry At very low pressures where the molecular mean free path becomes large relative to the probe chamber geometry the interpretation of the pressure measured is relatively straightforward. However, the internal antechamber geometry does become important. Because of the requirement that adequate conductance for gas flow be permitted to and from the gas chamber, the chamber must have an orifice of finite size. As a result, some molecules may enter the chamber through the orifice and pass back through the same orifice without being sensed or measured. A correction factor, rn, has been analytically derived22 which can be applied directly during the data reduction process. The correction factor is a function of the particular antechamber geometry and the angle of attack (Appendix B). 10

4.1.2.2. Angle of Attack In the free molecular flow region the pressure response to the angle of attack behaves in direct relation to the cosine distribution law (Appendix B). 4.1.2.3. Amplifier and Gauge Chamber Response The error resulting from the speed with which the sensor and sensor electronics responds to changes in the effective impact pressure in the free molecular flow region has been analytically determined to be less than ~0.5%. The response time is less than 20 ms. 4.1.2.4. Calibration The absolute calibration of the ionization gauges in the region corresponding to the onset of free molecular flow (above 85 km) is believed to be within ~2%. It is estimated that the absolute calibration of the gauges is within ~6% at a pressure equivalent to 125 km or 10-4 torr. The repeatability of any particular radioactive ionization gauge calibration is within ~1% to an altitude of 100 km (10-3 ). Using the radioactive gauge as a reference element, the hot filament gauge can be adjusted for a possible constant percentage offset. After the in-flight calibration has been made the repeatability of the hot filament gauge, based upon its linearity, is estimated to be within ~3% to an altitude of 125 km. 4.1.2.5. Outgassing A correction factor becomes necessary at the highest altitudes because of outgassing. A constant outgassing rate is assumed. The nominal background pressure or "outgassing correction factor" is of the order of 7.5x10-6 torr. The correction at 125 km is typically less than 10%. 4.1.2.6. Telemetry The estimated order of magnitude error in pressure assigned to the telemetering aspect of the Pitot Probe experiment is +0.5%. 4.2. VELOCITY ERRORS Errors in the total velocity component arise from two sources, vehicle tracking and atmospheric winds. Several comparisons of Doppler23'24 and radartracked Pitot Probe vehicle velocities have been made. The difference in velocity as measured by the two techniques has never exceeded 2 m/s. Atmospheric winds can be the largest source of uncertainty in the velocity component. The total velocity component is the sum of two vectors, the rocket 11

velocity vector is assumed zero wind field, and the actual atmospheric wind vector. Atmospheric winds are normally thought to be horizontal. Very little information exists about vertical winds. However, it is generally assumed that their magnitudes do not exceed 1 or 2 m/s.25 In the Pitot Probe wind error analysis, vertical winds and vehicle tracking velocity errors are considered to be second order effects and assumed to be negligible (less than 0.2%). The effect of horizontal atmospheric winds on the magnitude of the rocket velocity vector is a function of 1. the magnitude, |WI, of the wind component, 2. the elevation angle, c, of the rocket velocity vector, 3. the relative angle, 0, between the flight path azimuth and the wind direction, and 4. the magnitude, |IV, of the velocity vector. These effects are evaluated as follows. The total velocity vector is V = V+ W where from Figure 3 VR = (|IVcoss)j + (IVlsins)k, (E < 90) (2) WH = (IWlsin6)i + (IWIcosO)j, (0 < 0 < 2rr) (3) Vt = (IWlsinO)i + (IWicosO + IVlcoss)j + (IVlsinc)k (4) An order of magnitude analysis of the velocity vector error due to horizontal atmospheric winds may be undertaken using Equation 4 and Figure 3. The objective is to point up the relative importance of (1) the apogee altitude, (2) the initial effective elevation angle, and (3) the wind direction with respect to the flight path azimuth, for any given wind magnitude. The i,j,k rectangular coordinate system is chosen arbitrarily such that the unit vectors j and k lie in the plane determined by the vehicle flight path. The angle E represents the elevation angle of the rocket velocity vector at the time (altitude) of interest. The absolute magnitude of the horizontal wind vector is denoted by IWI and 0 is the angle determined by the two unit vectors j and w/lwl. The quantity |Vicoss, the horizontal rocket velocity, is essentially constant above an altitude of approximately 30 km except for a small Coriolis effect. From Figure 4 a unique horizontal velocity can be found for any given initial 12

effective elevation angle and apogee altitude. (Note that Figure 4 is limited to a Nike-Apache trajectory with a specific second stage ignition time of 20 s.) Using a nominal initial effective elevation of 84~, and apogee altitudes of 140 and 175 km for the Pitot-Static and Pitot Probes respectively, two constant horizontal velocities can be obtained and, using Equations 2 and 4, two sets of velocity uncertainty data can be generated (Figures 5 through 12). Figures 13 through 16 show the expected velocity uncertainties as a function of the initial effective launch elevation angle (Q.E. ), and fixed parameters WH, apogee, and 6. 4.3. CONSTANT K (M), CONTINUUM FLOW The constant (K (M ) 1 i (+1)2 M2 -1 K(M)= 2M2 \ Zy 4yM2- 2y + 2 from Equation 1 is a weak function of both Mach number and y. For the Mach number range limits of 3.5 and 5.5 the values of K(M) are.94706 and.93063 respectively, a difference of less than 2%. In the data reduction process an assumed Mach number may be used for the initial density determination. Successive improvement in the value of K(M) may be attained by iteration. The constant K (M) is therefore assumed to have zero error contribution in the density determining process. 13

k VHF WH V I R i VT /x I Figure 3. Rocket velocity and horizontal wind vector diagram. 14

INITIAL ELEVATION ANGLE VS. HORIZONTAL ROCKET VELOCITY -, 86 W o 9 cY 84 1 6 H> 0 A _ F ~- t< ho= ROCKET APOGEE 82 \ -J w 80 - - I I I I I I 150 200 250 300 350 400 450 HORIZONTAL ROCKET VELOCITY (METERS/SEC.). Figure 4. Horizontal rocket velocity vs. initial effective elevation angle.

125 115 105 5_ 5 0 0 75 DL H6 5 ESTIMATE OF THE I VELOCITY UNCERTAINTY i L | AS A FUNCTION OF < |THE FOLLOWING 55 | CONDITIONS: _ I) NIKE-APACHE VEHICLE 2) APOGEE: 175 Km. 45 3) WH= 25 METERS/SEC. 4) Q.E.= 84~ 35 3 1 I,1 1 1 1 I I, I I I I I 1.0 2.0 VELOCITY UNCERTAINTY ( PERCENT) Figure 5. Velocity uncertainty: 175 km apogee, jWl=25m/s, Q.E.=84~. 16

125 0 0 0 0 ~~85 If LU 6 5- / / ESTIMATE OF THE H I I I I VELOCITY UNCERTAINTY I AS A FUNCTION OF < I I THE FOLLOWING 55 __ CONDITIONS: _ I) NIKE-APACHE VEHICLE 2) APOGEE: 175 Km. 45 3) WH= 50 METERS/SEC._ 4) Q.E.= 84~ 35i I I, 1.0 2.0 VELOCITY UNCERTAINTY ( PERCEN T) Figure 6. Velocity uncertainty: 175 km apogee, I[W=50m/s, Q.E.=84~. 17

125 115 105 95 85 0 / 0 0 0 E 0)I Ii I ^ - <D CD LU D 65L / ESTIMATE OF THE _ H I I / VELOCITY UNCERTAINTY! _- | / AS A FUNCTION OF 4< | THE FOLLOWING 55 CONDITIONS: I) NIKE-APACHE VEHICLE 2) APOGEE: 175 Km. 45 I 3) WH= 75 METERS/SEC. 4) Q.E.= 84" 35 I 1.0 2.0 VELOCITY UNCERTAINTY ( PERCENT) Figure 7. Velocity uncertainty: 175 km apogee, IWI=75m/s, Q.E.=84~. 18

125 115 105 95 -85 / o o -0 E 11I", 75 LU/ D: -665 / ESTIMATE OF THE H / / / YVELOCITY UNCERTAINTY _ / AS A FUNCTION OF a< | / / THE FOLLOWING 55 CONDITIONS: I) NIKE-APACHE VEHICLE 2) APOGEE: 175 Km. 45 3) WH= 100 METERS/SEC. 4) Q.E.= 84~ 35 1.0 2.0 VELOCITY UNCERTAINTY ( PERCENT) Figure 8. Velocity uncertainty: 175 km apogee, |IW=100m/s, Q.E.=84~. 19

I... I I I I I 125 105 _ 95 0 0*/ ~ II II 11 11 85 _ 775 D _65 ESTIMATE OF THE,-I /~ /~ ~VELOCITY UNCERTAINTY AS A FUNCTION OF I< I ~~ I I ITHE FOLLOWING 55 CONDITIONS: I) NIKE-APACHE VEHICLE 2) APOGEE: 140 Km. 45 3) WH= 25 METERS/SEC. 4) Q.E.= 84" 35 I I 1.0 2.0 VELOCITY UNCERTAINTY ( PERCENT) Figure 9. Velocity uncertainty: 140 km apogee, |wl=25m/s, Q.E.=84~. 20

l I l I l I l I I I 125 115 105 0 0 o0 00 o0 /O/0 11 / // / / / 95 CD // _ 85 E / $75 LUJ I I ESTIMATE OF THE _ I I I VELOCITY UNCERTAINTY — D / IAS A FUNCTION OF -65 THE FOLLOWING H~~ I ICONDITIONS: a< II I I I) NIKE-APACHE VEHICLE 55 2) APOGEE: 140 Km. 3) WH = 50 METERS/SEC. 4) Q.E.= 840 45 35 /2 3 4 5 VELOCITY UNCERTAINTY (PERCENT) Figure 10. Velocity uncertainty: 140 km apogee, IW|=50m/s, Q.E.=84~. 21

125 _ 115 105 95 ~E~~ VELOCITY UNCERTAINTY ~^ ~~3 H=75 METERS/ SEC. Q' / //VELOCITY UNCERTAINTY (P R T) Dligg / / / ~AS A FUNCTION OF THE FOLLOWING H'~~~ / / ~~CONDITIONS: II / I) NIKE-APACHE VEHICLE 55 2) APOGEE: 140 Km. _ 3) WH = 75 METERS/SEC. 4) Q.E.= 840 45 35 VELOCITY UNCERTAINTY (PERCENT Figure 11. Velocity uncertainty: 140 km apogee, |IW=75m/s, O.E.=84~. 22

125 115 105 95 85 C 75 LI I ESTIMATE OF THE VLCT UT (NVELOCITY UNCERTAINTY AS A FUNCTION OF -6 65 / / /THE FOLLOWING CONDITIONS: I< / / / I) NIKE-APACHE' VEHICLE 55 2) APOGEE: 140 Km. 3) WH = 100 METERS/SEC. 4) Q.E.=84o 45 35 I' 2 3 4 5 VELOCITY UNCERTAINTY (PERCENT) Figure 12. Velocity uncertainty: 140 km apogee, IW|=100m/s Q.E.=84~. 23

~ 1 I I II / " 1 I I 1 - 1 - 125 115 105 95 0 0 D, I, /". /'. 65_ / / / W AS A FUNCTION OF - 85: / o / o %.75 3W L__ESTIMATE OF THE 0 ~~~~~VELOCITY UNCERTAINTY 65D AS A FUNCTION OF H~._~~ ~THE FOLLOWING: CONDITIONS: 55 I1) NIKE-APACHE VEHICLE 2) APOGEE: 175 Km. 3) WH=50 ML1ERS/SEC. 4) 0e 45 1.0 2.0 VELOCITY UNCERTAINTY (PERCENT) Figure 13. Velocity uncertainty: 175 km apogee, IWI=50m/s, G=0. 24

125 115 105 f lo lo c /o 0 0 ~* 0 LI | | / / ESTIMATE OF THE D 6 / I I AS A FUNCTION OF - L I I I I I CONDI TIONS: C I I I I I I) NIKE-APACHE VEHICLE 55 I I I I / 2) APOGEE: 175 Km. _ W I I I I 3) WH = 10 METERS/SEC. 4) Co= o~ 45 35 23 4 5 VELOCITY UNCERTAINTY PERCENT Figure 14. Velocity uncertainty: 175 km apogee, |W|=100m/s, =0~o. 25

125 115 105 95-0 c lo, /,o.,', 85 WLI I I I / /ESTIMATE OF THE VELOCITY UNCERTAINTY AS A FUNCTION OF 9- ~651~ / | |THE FOLLOWING H'- II CONDITIONS: <Q: I I I I 1I) NIKE-APACHE VEHICLE 55 I I 2) APOGEE: 140 Km. 3) WH = 50 METERS/SEC. 4) G =o 45 35 1 2 3 4 5 VELOCITY UNCERTAINTY (PERCENT) Figure 15. Velocity uncertainty: 140 km apogee, I|!-=50m/s, 0=00. 26

I'''' L'I' 1 125 115 105 95 _ I ~~ /~ /o: /0' /o' 6 /< / / /O'7s Ic / /' /0 /0' /0' 75 ESTIMATE OF THE - |.| / / / / VELOCITY UNCERTAINTY ) / / / AS A FUNCTION OF t- / / / / / TTHE FOLLOWING I' | / / / / CONDI TIONS: I) NIKE-APACHE VEHICLE 55 2) APOGEE: 140 Km. 3) WH = Q00 METERS/SEC. 4) = 0 45 35 1 2 3 4 5 VELOCITY UNCERTAINTY (PERCENT) Figure 16. Velocity uncertainty: 140 km apogee, IWI=lOOm/s, =0~. 27

4.4. ALTITUDE ERROR IN DENSITY Errors in density due to incremental altitude uncertainties are directly related to the pressure scale height. For an order of magnitude analysis the pressure and density scale height can be assumed equal. Then -Ah H P = P e a 2 and p -Ah Pa H = e apO -Ah Ah " = ~'- - e -E H Po a ahP e H Let Pa o Ah lSAh 2 5H 6' 2 o, %/ ~ / l t i H!i and let o P p0 o then.a Ah Ah2 I+ H ~~~~Pa~28 28

where p is atmospheric density at different altitudes 1 and 2 corresponding a1 to Ah, Ah is the assumed altitude error, H is the assumed scale height, and 6p is the uncertainty in atmospheric density. a 4.5. Density Error Equations - Continuum Flow The Rayleigh Pitot Equation for determination of atmospheric density can be shown to take the form _(M Pi (Appendix B ). Ka (M) V2(cosa) Taking partial differentials of the expression above and expanding the mean density error ratio, we have ~Pc 6Pi] + 4 6Pa ___i ih\ +4 6V2i/26h6K (MA/ 6hF2i'6Ah,2.'i \2 + lcosa\2 Pa Vi Pi i g1 l +M, l ( \) + Ah) H | + 41 cosoc where 6p. is the total uncertainty in the pressure measurement due to calibration, telemetry, gauge and chamber response, probe geometry, caloric effects, etc., 6V is the total uncertainty in the velocity magnitude due to tracking errors and atmospheric winds, K (M) is the uncertainty in the constant K(M), 6Ah is the uncertainty in the altitude error, Ah is the error magnitude, H is the scale height, 6cosaO is a function representing the uncertainty in the angle of attack, and 6H is the uncertainty in the scale height. 29

4.6. Density Error Equations - Free Molecular Flow The derivation of the impact pressure equation for free molecular flow follows from the thermal transpiration equation. Modification of the basic relationship for relative particle drift velocities and chamber geometry gives Pi p = (Appendix B). a 2T\/2rR T. Vnlcosa As in continuum flow, the mean density error ratio can be written 6P 6Pi f^ 2V2 cos 2( 6T. 2+('2 + Ah2 (h2 + f -H.)a(~) + - Pa V Pi! Iv J cosa 4\ Ti 4l R Ah Ah 2 6H 2 i f A where 6T. is the uncertainty in the gas temperature in the gauge chamber, 6R is the uncertainty in the gas constant which is a function of the molecular weight, and 6n is the uncertainty in the internal gauge geometry correction. The other parameters retain their identities. 30

5. DATA The results from forty-eight Pitot-Static and Pitot Probe experiments are reported herein. Fifty-five payloads were actually launched. There were six vehicle-related failures and one payload malfunction (due to a mechanical commutator). The six vehicle failures may be categorized as follows: 1. two failures of the Apache motor headcap,26 2. two failures resulting from the loss of one or more Nike fins, and 3. two failures resulting from nonignition of the Apache motor. The data presented in this report have not been corrected for either (1) changes in composition, or (2) the effects of atmospheric winds. SOUNDING ROCKET SUMMARY NASA VEHICLE NUMBER VEHICLE TYPE GAUGE TYPE DATE TIME (GMT) LOCATION 14.19 Pitot-Static Radioactive 06 Jun 1962. 23:40:00 Wallops Island 14.20 Pitot-Static Radioactive 01 Dec 1962 20:34:00 Wallops Island 14.21 Pitot-Static Radioactive 07 Dec 1963 13:43:00 Wallops Island 14.22 Pitot-Static Radioactive 04 Feb 1964 01:35:00 Ascension Island 14.24 Pitot-Static Radioactive 15 Apr 1964 01:21:42 Ascension Island 14.23 Pitot-Static Radioactive 15 Apr 1964 15:56:00 Ascension Island 14.64 Pitot-Static Radioactive 08 Mar 1965 17:48:08 USNS Croatan 14.65 Pitot-Static Radioactive 09 Mar 1965 06:26:26 UTSNS Croatan 14.66 Pitot-Static Radioactive 04 Apr 1965 16:06:35 USNS Croatan 14.26 Pitot-Static Radioactive 06 Apr 1965 16:34:05 USNS Croatan 14.63 Pitot-Static Radioactive 09 Apr 1965 20:26:10 USNS Croatan 14.67 Pitot-Static Radioactive 13 Apr 1965 04:05:06 USNS Croatan 14.27 Pitot-Static Radioactive 13 Apr 1965 16:00:09 USNS Croatan 14.25 Pitot-Static Radioactive 15 Apr 1965 16:00:04 USNS Croatan 14.47 Pitot-Static Radioactive 23 May 1965 02:02:01 Ascension Island 14.48 Pitot-Static Radioactive 23 May 1965 14:00:00 Ascension Island 14.168 Pitot-Static Radioactive 09 Nov 1965 18:40:00 Fort Churchill 14.251 Pitot-Static Radioactive 27 Feb 1966 16:51:59 Ascension Island 14.289 Pitot-Static Radioactive 07 Aug 1966 09:48:51 Fort Churchill 14.285 Pitot-Static Radioactive 26 Aug 1966 19:11:00 Wallops Island 14.286 Pitot-Static Radioactive 28 Aug 1966 04:23:00 Wallops Island 14.319 Pitot-Static Radioactive 31 Jan 1967 23:17:00 Fort Churchill 14.318 Pitot-Static Radioactive 01 Feb 1967 05:38:00 Fort Churchill 31

S3UNDING ROCKET SUMMARY (Concluded) NASA VEHICLE NUMBER VEHICLE TYPE GAUGE TYPE DATE TIME (GMT) LOCATION 14.316 Pitot-Static Radioactive 01 Feb 1967 08:25:59 Fort Churchill 14.322 Pitot-Static Radioactive 01 Feb 1967 11:58:00 Fort Churchill 14.97 Pitot-Static Radioactive 03 Aug 1967 11:10:01 Point Barrow 14.290 Pitot-Static Radioactive 05 Aug 1967 09:56:00 Point Barrow 14.344 Pitot-Static Radioactive 17 Mar 1968 06:59:01 Puerto Rico 14.345 Pitot-Static Radioactive 17 Mar 1968 18:45:01 Puerto Rico 14.333 Pitot-Static Radioactive 18 Mar 1968 07:00:05 Puerto Rico 14.187 Pitot Dual 08 Aug 1968 19:35:00 Wallops Island 14.357 Pitot-Static Radioactive 09 Aug 1968 07:24:00 Wallops Island 14.386 Pitot Dual 19 Nov 1968 20:04:59 Wallops Island 14.362 Pitot Dual 12 May 1969 19:23:00 Wallops Island 14.384 Pitot Dual 13 Jan 1970 23:50:50 Fort Churchill 14.426 Pitot Dual 06 Mar 1970 18:24:00 Wallops Island 14.427 Pitot Dual 07 Mar 1970 17:59:00 Wallops Island 14.428 Pitot Dual 07 Mar 1970 18:26:00 Wallops Island 14.429 Pitot Dual 07 Mar 1970 18:41:00 Wallops Island 14.430 Pitot Dual 08 Mar 1970 17:25:00 Wallops Island 14.466 Pitot Dual 03 Aug 1970 16:09:00 Wallops Island 14.431 Pitot Dual 21 Aug 1970 15:39:00 Wallops Island 14.385 Pitot Dual 17 Sep 1970 15:58:00 Wallops Island 10.327 Pitot Dual 21 Sep 1970 16:14:00 Wallops Island 14.460 Pitot Dual 20 Nov 1970 23:29:00 Eglin AFB 14.478 Pitot Dual 10 Mar 1971 17:59:00 Wallops Island 14.479 Pitot Dual 10 Mar 1971 18:26:00 Wallops Island 14.480 Pitot Dual 10 Mar 1971 18:41:00 Wallops Island 32

PITOT-STATIC NASA 14.19 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRE$SURE 06 JUNE 1962 ALTITUDE: N/A KM KG/CU-M K TORR RA'TIO RATIO 23:40:00.000 GMT HORIZONTAL VELOCITY: N/A WALLOPS ISLAND, VIRGINIA FLIGHT TIME: N/A 72.0 7.20E-5 196.6 3.05E-02 1.08 1.00 LAT 37 DEG 50 HIN N PRECESSION PERIOD: N/A 73.0 6.17E-05 193.3 2.57E-02 1,07 0.99 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: N/A 74.0 5.31E-05 188.6 2.16E-02 1.06' 0.98 TRACKING MODE: DOVAP 75.0 4.49E-05 186.8 1.81E-02 1.03 0.97 76.0 3.71E-05 189.3 1.51E-02 0,99 0.96 77.0 3.04E-05 194.1 1.27E-02 0.95 0.96 PRESSURE RATIO = P/P STD, 78.0 2.57E-05 193.3 1.07E-02 0.93 0.96 DENSITY RATIO = RHO/RHO STD. 79.0 2.20E-05 189.8 8.99E-03 0,94 0.96 80.0 1.88E-05 186.0 7.53E-03 0.94 0.97 81.0 1.60E-05 182.4 6.29E-03 0.96 0.97 82.0 1.34E-05 181.4 5.24E-03 0.97 0.97 ALTITUDE DENS'ITY TEMP. PRESSURE DENSITY PRESSURE 83.0 1.12E-05 180.6 4.36E-03 0.97 0,97 KM KG/CU-M K TORR RATIO RATIO 84.0 9.29E-06 181.1 3.62E-03 0.97 0.97 85.0 7.72E-06 181.4 3.02E-03 0,96 0.98 31.0 1.90E-02 206,3 8.44E 00 1.20 1.09 86.0 6.50E-06 179.1 2.51E-03 0.98 0.98 32.0 1.54E-02 216.9 7,20E 00 1.13 1.08 87.0 5.51E-06 175.2 2.08E-03 1.00 0.97 33.0 1.27E-02 225.8 6.18E 00 1.09 1.07 88.0 4.69E-06 169.8 1,71E-03 1.02 0.96 34.0 1.06E-02 233.5 5.33E 00 1.07 1.07 89.0 3.94E-06 165.8 1.41E-03 1,03 0.95 35.0 8,93E-03 240.3 4.62E 00 1.06 1.07 90.0 3,32E-06 160.5 1.15E-03 1.05 0.93 36.0 7.61E-03 245.3 4.02E CO 1.05 1.08 91.0 2.75E-06 157.3 9.32E-04 1.06 0.91 37.0 6.50E-03 250.7 3.51E 00 1.04 1.08 92,0 2.26E-06 154.7 7.53E-04 1.06 0.88 38.0 5.59E,03 255.0 3.07E 00 1.04 1.09 93.0 1.85E-06 152.2 6.07E-04 1.05 0.84 39.0 4.85E-03 257,7 2.69E 00 1,05 1.09 94.0 1.49E-06 152.0 4.88E-04 1.02 0.8' 40.0 4.20E-03 261.3 2.36E 00 1.05 1.10 41.0 3.66E-03 263.7 2.08E 00 1.06 1.11 42.0 3.19E-03 266.4 1.83E 00 1.07 1.11 43.0 2.78E-03 269.6 1.61E 00 1.07 1.11 44.0 2.43E-03 272.3 1,43E 00 1.08 1.12 45.0 2.14E-03 273.3 1.26E 00 1.09 1.12 46.0 1.90E-03 272.1 1.11E 00 1.11 1.13 47.0 1.68E-03 271.9 9,84E'01 1.12 1.13 48.0 1.49E-03 270.9 8.69E-01 1.13 1.13 49.0 1.32E-03 270.0 7.68E-01 1.14 1.13 50.0 1.18E-03 266.4 6.77E-01 1.15 1.13 51.0 1.04E-03 266.5 5.97E-01 1.15 1.13 52.0 9.26E-04 263.7 5.26E-01 1.16 1.13 53.0 8.27E-04 259.7 4.63E-01 1.16 1.12 54.0 7.33E-04 257.3 4.06E-01 1.16 1.12 55.0 6.47E-04 255.7 3.56E-01 1.15 1.1k 56.0 5.71E-04 254.0 3.12E-01 1.15 1.11 57.0 5.01E-04 253.6 2.74E-01 1.14 1.10 58.0 4.42E-04 251.7 2.40E-01 1.13 1.10 59.0 3.89E-04 250.3 2.10E-01 1.12 1.09 60.0 3.42E-04 248.9 1.83E-01 1.12 1,09 61.0 3.00E-04 247.9 1.60E-01 1.11 1.08 62.0 2.68E-04 242.1 1.40E-01 1.12 1.08 63.0 2.36E-04 239.2 1,22E-01 1.11 1.08 64.0 2.09ErO4 234.5 1.06E-01 1.11 1,07 65.0 1.85E-04 229.3 9.14E-02 1.11 1.06 66.0 1.62E-04 226.1 7.89E-02 1.10 0.06 67.0 1.42E-04 222.2 6.80E-02 1.09 1.05 68.0 1.25E-04 216.7 5.84E,02 1.10 1.05 69.0 1.1OE-04 210.6 4.99E-02 1.10 1.04 70.0 9.59E-05 205.8 4.25E-02 1.10 1.03 71.0 8.34E-05 200.8 3,61E-02 1.09 1.02 - aI U.S. 3TO. 30... r. S.. 8 *8. s..8.8.80 1.90 1.0 0 I" l'l0 8 00 ao.88 220.' 1, 2o08.0 2a8.o ODNS1TT S I r, TEPERMTURLE (' K) 33

PITOT-STATIC NASA 14.20 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 01 DECEMBER 1962 ALTITUDE: 150.7 KM KM KG/CU-M K TORR RATIO RATIO 20:34:00.000 GMT HORIZONTAL VELOCITY: 477.9 M/SFC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 418 SEC 74.0 3.61E-05 250.6 1.95E-02 0.72 0.89 LAT 37 DEG 50 MIN N PRECESSION PERIOD: N/A 75.0 3.22E-U5 245.7 1.70E-02 0.74 0.91 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: N/A 76.U 2.92E-05 235.9 1.48E-02 0.78 0.94 TRACKING MODE: DOVAP 77.U 2.61E-05 228.6 1.29E-02 0.81 0.97 78.U 2.28t-05 226.0 1.1IE-02 0.83 0.99 79.0 1.95E-U5 228.1 9.58E-03 0.83 1.03 PRESSURE RATIO - P/P STD. 80.0 1.67E-05 230.4 8.29E-03 0.84 1.07 DENSITY RATIO RHO/RHO STD. 81.0 1.42E-05 234.8 7.18E-03 0.86 1.11 82.0 1.20E-05 2 41.6 6.24E-03 0.87 1.16 83.0 1.03E-05 245.5 5.45E-03 0.90 1.22 84.0 8.88E-06 248.9 4.76E-03 0.93 1.28 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 85.0 7.81E-06 247.5 4.16E-03 0.98 1.35 KM KG/CU-M K TORR RATIO RATIO 86.0 6.89E-06 245.1 3.64E-03 1,04 1.42 87.0 6.07E-06 242.7 3.17E-03 1.10 1.48 33.0 1.05E-02 200.2 4.53E 00 0.91 0.79 88.0 5.37E-06 239.0 2.76E-03 1.17 1.55 34.0 8.45E-03 211.0 3.84E 00 0.85 0.77 89.0 4.73E-06 236.0 2.40E-03 1.24 1.62 35.0 6.24E-03 246.3 3.31E 00 0.74 0.77 90.0 4.16E-06 232.8 2.09E-03 1.31 1.70 36.0 5.23E-03 256.9 2.89E 00 0.72 0.77 91.0 3.67E-06 228.6 1.81E-03 1.41 1.77 37.0 4.81E-03 244.2 2.53E 00 0.77 0.78 92.0 3.22E-06 225.1 1.56E-03 1.50 1.82 38.0 4.41E-03 231.0 2.19E 00 0.82 0.78 93.0 2.84E-06 219.8 1.34E-03 1.61 1.87 39.0 3.84E-03 229.1 1.90E 00 0.83 0.77 94.0 2.49E-06 215.3 1.15E-03 1.71 1.91 40.0 3.29E-03 231.0 1.64E 00 0.82 0.76 95.0 2.17E-06 211.5 9.88E-04 1.79 1.94 41.0 2.78E-03 236.6 1.42E 00 0.80 0.75 96.0 1.86E-06 210,9 8.45E-04 1.84 1.96 42.0 2.34E-03 244.3 1.23E 00 0.78 0.75 97.0 1.60E-06 209.4 7.22E-04 1.90 1.98 43.0 1.93E-03 259.1 1.08E 00 0.74 0.74 98.0 1.37E-06 208.7 6.16E-04 1.95 1.99 44.0 1.64E-03 268.3 9.48E-01 0.73 0.75 99.0 1.17E-06 208.5 5.25E-04 1.98 1.99 45.0 1.43E-03 271.6 8.37E-01 0.73 0.75 100.0 1.00E-06 208.1 4.48E-04 2.01 1.98 46.0 1.27E-03 270.1 7.39E-01 0.74 0.75 101.0 8.54E-07 207.8 3.82E-04 2.05 1.98 47.0 1.13E-03 267.8 6.52E-01 0.75 0.75 102.0 7.33E-07 206.3 3.26E-04 2.10 1.96 48.0 1.01E-03 264.1 5.74E-01 0.77 0.75 103.0 6.21E-07 207.6 2.78E-04 2.11 1.94 49.0 9.03E-04 259.8 5.05E-01 0.78 0.75 104.0 5.19E-07 212.2 2.37E-04 2.08 1.93 50.0 8.00E-04 257.5 4:.44E-Q1 0.78 0.74 105.0 4.33E-07 21 8.1 2.03E-04 2.04 1.90 51.0 7.02E-04 257.5 3.89E-01 0.77 0.74 106.0 3.60E-07 226.0 1.75E-04 2.00 1.87 52.0 6.11E-04 259.8 3.42E-01 0.76 0.73 107.0 3.09E-07 227.6 1.51E-04 2.01 1.86 53.0 5.28E-04 264.5 3.01E-01 0.74 0.73 54.0 4.59E-04 268,2 2.65E-01 0.73 0.73 55.0 4.03E-04 269.6 2.34E-01 0.72 0.73 56.0 3.54E-04 271.0 2.07E-01 0.71 0.73 57.0 3.13E-04 270.8 1.83E-01 0.71 0.73 58.0 2.77E-04 270.4 1.61E-01 0.71 0.74 59.0 2.49E-04 265.4 1.42E-01 0.72 0.774 60.0 2.21E-04 263.4 1.25E-01 0.72 0.75 61.0 1.97E-04 260.0 1.10E-01 0.73 0.75 62.0 1.75E-04 257.1 9.69E-02 0.73 0.75 63.0 1.54E-04 256.5 8.51E-02 0.72 0,75 64.0 1.36E-04 254.7 7.46E-02 0.72 0.76 65.0 1.22E-04 248.6 6.53E-02 0.73 0.76 66.0 1.08E-04 245.3 5.71E-02 0.73 0.76 67.0 9.50E-05 243.2 4.98E-02 0.73 0.77 68.0 8.23E-05 244.7 4.34E-02 0.72 0.78 69.0 7.11E-05 247.3 3.79E-02 0.71 0.79 70.0 6.12E-05 251.2 3.31E-02 0.70 0.80 71.0 5.35E-05 251.6 2.90E-02 0.70 0.82 72.0 4.67E-05 252.5 2.54E-02 0.70 0.84 73.0 4.09E-05 252.6 2.23E-02 0.71 0.86 | _I'WTS' VDeoITT wr 8M LTI8VS. TFEm8UTE.- U.S. USo. fmTW. 8 i. ~i 8 ~. 8 U~ri e, ~.160o.60.68 D I:ED L~~~31.0.00 180.0 288.8 228.88 218.18 a18.08 10.88 DENSITY MCITIO p0,, TENPERRTURE (' K) 34

PTlOT-STATIC NASA 14.21 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE PENSITY PRESSURE 07 DECEMEER 1963 ALTITUDE: 140.8 AK KG/CU-M K TORR RATIO RATIO 13:43:00.000 GMT HORIZQNTAL VELOCITY: 435 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 380 SEC 77.0 2.27E-05 230.4 1.13E-02 0.71 0.85 LAT 37 DEG 50 MIN N PRECESSION PERIOD: N/A 78.0 1.99E-05 227.2 9.74E,03 3.72 0.87 LONG 75 DEC 29 MIN W STABILIZED ROLL RATE: N/A 79.0 1.77E-05 220.1 8,39E-03 0.75 0.90 TRACKING MODE: DOVAP PRESSJRE RATIO = P/P STD. DENSITY RATIO ~ RHO/RHO STO. ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE KM KG/CU-M K TORR RATIO RATIO 36.0 5.82E-03 251,6 3.15E 00 0.80 0.84 37.0 5.11E-03 250.6 2.76E 00 0.82 0.85 38.0 4.50E-03 248,5 2.41F 00 0.84 0.85 39.0 3.98E-03 245.1 2.10E 00 0 0.8.85 40.0 3.48E-03 244.2 1.83E 00 0.87 0.85 41.9 3.02E-03 245.2 1.59E 00 0.87 0.85 42.0 2.65E-03 243.4 1.39E 00 0.89 0.84 43.0 2.28E-03 246.5 1.21E DO 0.88 0,84 44.0 1,93E-03 2546 1.06E 00 0.85 0.83 45.0 1.67E-03 258.0 9.28E-01 0.85 0.83 46.0 1.46E-03 259.1 8.15E-01 0.85 0.83 47.0 1.27E-03 261,7 7.16E-01 0.85 0.82 48.0 1,13E-03 258.5 6.29E-01 0.86 0,82 49.0 1.01E-03 253.6 5.52E-01 0.87 0.81 50.0 8.79E-04 255.3 4.83E-01 9.85 0.81 51.0 7.78E-04 252.7 4.23E-01 0.86 0.80 52.0 6.91E-04 248.8 3.70E-01 0.86 0.79 53.0 6.22E-04 241.0 3.23E-01 0.88 0.78 54.0 5.44E-04 239.6 2.81E-01 0.86 0.77 55,0 4.72E-04 240.1 2.44E-01 0.84 0.76 56.0 3.99E-04 247.5 2.13E-01 0.80 0.75 57.0 3.41E-04 253.3 1.86E01 0.77 0.75 58.0 3.05E-04 247.7 1.63E-01 0.78 0.75 59.0 2.66E-04 248.0 1.42E-01 0.77 0.74 60.0 2.36E-04 244,0 1.24E-01 0.77 0.74 61.0 2.02E-04 248.8 1.08E-01 0.75 0.73 62.0 1.71E-04 257.4 9.48E-02 0.72 0.73 63.0 1 52E-04 254.1 8.32E-02 0.71 0,74 64.0 1.40E-04 240.9 7.27E-02 0.74 0.74 65.0 1.26bE04 232.4 6.31E-02 0.75 6.73 66.0 1.13E-04 223,8 5.45E-02 0.77 0.73 67.0 9.54E-05 228.6 4.70E-02 0.73 0.73 68.0 8.29E-05 227.2 4.06E-02 0.73 0.73 69.0 7.22E-05 225.1 3.50E-02 0.72 0.73 70.0 6.22E-05 225.2 3.02E-02 0.71 0.73 71.0 5,32E-05 227.1 2.60E-02 0.70 0.73 72.0 4.50E-05 232.2 2,25E-02 0,68 0,74 73.0 3.72E,05 244.1 1.96E-02 0.64 0.76 74.0 3.26E-05 242.9 1.71E-02 0.65 0.78 75.0 2.80E-05 246.7 1.49E-02 0.65 0.80 76.0 2.50E-05 241.0 1.30E-02 0,67 0.82 8<1' -1 i "-'-''1 3v. 8" NWw 8 8 8 8 8 8 QENSIT1Y RATIO r, TE'4iERATURE ( iKI 35

PITUT-STATIC NASA 14.22 FLIGHT PARAMETERS ALTITUDE DENSITY TE4P. PRESSURE DENSITY PRESSURE 04 FEBRUARY 1964 ALTITUDE: 148.5 KM K KG/CU-M K TORR RATIO RATIO 01:35:00.000 GMT HORIZONTAL VELOCITY: 21G.O M/SEC ASCENSION ISLAND FLIGHT TIME: 388 SEC 76.0 3.20E-05 215.5 1.49E-02 0.86 0.94 LAT 7 DEG 58 MIN S PRECESSION PERIOD:. N/A 77.0 2.75E-05 214.7 1.27E-02 0.86 0.96 LONG 14 DEG 25 MIN W STABILIZED ROLL RATE: N/A 78.0 2.38E-05 212.2 1,09E-02 0.87 C.97 TRACKING MODE: DOVAP 79.0 2.07E-05 208.2 9.29E-03 0.88 1.00 80.0 1.77E-05 207.5 7.91E-03 0.88 1.02 81.0 1.52E-05 205.6 6.73E-03 0.92 1.04 PRESSURE RATIO = P/P STD. 82.0 1.28E-35 207.9 5.73E-03 0.93 1.07 DENSITY RATIO RHO/RHO STO. 83.0 1.08E-05 210.1 4.89E-03 0.94 1.09 84.0 9.20E-06 210.5 4.17E-03 0.96 1.12 85.0 7.80E-06 212.2 3.56E-03 0.97 1.15 86.0 6.60E-06 214.6 3.05E-03 1.00 1.19 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 87.0 5.50E-06 221.0 2.62E-03 1.00 1.22 KM KG/CU-M K TORR RATIO RATIO 88.0 4.70E-06 222.6 2.25E-03 1.03 1.27 89.0 4.00E-06 225.5 1.94E-03 1.05 1.31 35.0 7.39E-03 239.0 3.80E 00 0.87 0.88 90.0 3.40E-06 229.3 1.68F-03 1.07 1.37 36.0 6.39E-03 240.0 3.30E 00 0,88 0.88 91.0 2.90E-06 232.8 1.45E-03 1.12 1.43 37.0 5.52E-03 241.5 2.87E 00 0.88 0.88 92.0 2.50E-06 234.3 1.26E-03 1.17 1.47 38.0 4.74E-03 244.8 2.50E 00 0.88 0.88 93.0 2.15E-06 236.6 1.1OE-03 1.22 1.52 39.0 4.05E-03 249.9 2.18E 00 0.87 0.88 94.0 1.84E-06 240.6 9.54E-04 1.26 1.58 40.0 3.48E-03 254.4 1.91E 00 0.87 0.89 95.0 1.58E-06 244.4 8.32E-04 1.31 1.63 41.0 3.00E-33 258.8 1.67E 00 0.87 0.89 96.0 1.36E-06 248.2 7.27E-04 1.35 1.69 42.0 2.58E-03 264.5 1.47E 00 0.86 0.69 97.0 1.18E-06 250.4 6.37E-04 1.40 1.74 43.0 2.25E-03 267.2 1.30E 00 0.87 0.89 98.0 1.02E-06 254.1 5.58E-04 1.45 1.80 44.0 1.95E-03 272.1 1.14E 00 0.86 0.90 99.0 8.80E-07 258.8 4.91F-04 1.49 1.86 45.0 1.70E-03 276.0 1.01E 00 0.86 0.90 100.0 7.65E-07 262.2 4.32E-04 1.54 1.91 46.0 1.48E-03 281.0 8.96E-01 0.87 0.91 101.0 6.70E-07 263.9 3.81E-04 1.61 1.97 47.0 1.30E-03 283.9 7.95E-01 0.87 0.91 102.0 5.80E-07 269.3 3.36E-04 1.66 2.03 48.0 1.17E-03 280.0 7.06E-01 0.89 0.92 103.0 5.OOE-07 276.7 2.98E-04 1.70 2.08 49.0 1.04E-03 279.3 6.26E-01 0.90 0.92 104.0 4.40E-07 279.2 2.65E-04 1.77 2.15 50.0 9.35E-04 275.2 5.54E-01 0.91 0.93 105.0 3.80E-07 287.7 2.35E-04 1.79 2.20 51.0 8.40E-04 270.8 4.90E-01 0.93 0.93 106.0 3.35E-07 291.1 2.10E-04 1.86 2.25 52.0 7.50E-04 267.7 4.33E-01 0.94 0.93 53.0 6.70E-04 264.2 3.81E-01 0.94 0.93 54.0 5.95E-04 261.8 3,36E-01 0.94 0.92 55.0 5.30E-04 258.3 2.95E-01 0.94 0.92 56.0 4.65E-04 258.6 2.59E-01 0.94 0.92 57.0 4.10E-04 257.5 2.27E-01 0.93 0.91 58.0 3.65E-04 253.7 1.99E-01 0.94 0.91 59.0 3.20E-04 253.5 1.75E-01 0.92 0.91 60.0 2.83E-04 251.0 1.53E-01 0.92 0.91 61.0 2.50E-04 248.4 1.34E-01 0.93 0.90 62.0 2.18E-04 249.0 1.17E-01 0.91 0.91 63.0 1.95E-04 242.9 1.02E-01 0.92 0.90 64.0 1.72E-04 239.8 8.88E-02 0.91 0.90 65.0 1.52E-04 235.7 7.72E-02 0.91 0.90 66.0 1.34E-04 231.7 6.69E-02 0.91 0.90 67.0 1.18E-04 227.4 5.78E-02 0.91 0.89 68.0 1.03E-04 224.7 4.99E-02 0.90 0.89 69.0 9,00E-35 221.4 4.29E-02 0.90 0.89 70.0 7.70E-05 222.6 3.69E-02 0.88 0.89 71.0 6.60E-05 223.6 3.18E-02 0.86 0.90 72.0 5.70E-35 222.9 2.74E-02 0.86 0.90 73.0 5.00E-05 218.5 2.35E-02 0.86 0.91 74.0 4.30E-05 218.0 2.02E-02 0.86 0.92 75.0 3.70E-05 217.4 1.73E-02 0.85 0.93 8 RTITUW VS. IT nraI TO 8 MRTITIE VI. TE!P!RTr |, I,.4695~~~~~~0 10.22 D~~~~~~~~. 00- 191t62 U.S. MO. AT#. 8 8. -,8 8'i a8 8 8 8 8 8 36.V 88.8 l~o lzo 1M18.oR 1888 z# a io~r'i000~zR~o~.i.a ~ES~'FTI ~p~ IREITUE(H I6

PITOT-STATIC NASA 14.24 FLIGHT PARAMETERS ALTITUDE DENSITY TE9P. PRESSURE DENSITY PRESSURE 15 APRIL 1964 ALTITUDE: 143.9K K K KG/CU-N K TORR RATIO RATIO 01:21:42.000 GMT HORIZONTAL VELOCITY: 196.0 M/SEC ASCENSION ISLAND FLIGHT TIME: 388 SEC 73.0 5.36E-05 203.6 2.35E-02 0.93 0.91 LAT 7 DEG 58 nIN S PRECESSION PERIOD: N/A 74.0 4.73E-05 195.2 1.99E-02 0.94 0.90 LONG 14 DEG 25 MIN W STABILIZED ROLL RATE: N/A 75.0 3,99E-05 195.0 1.68E-02 0.92 0.90 TRACKING MODE: DOVAP 76.0 3.49E-05 187.3 1.41E-02 0.93 0,89 77,0 3.04E-05 179.3 1.17E-02 0.95 0.88 78.0 2.57E-05 175.7 9,73E-03 0.93 0.87 PRESSURE RATIO s P/P STD. 79.0 2.09E-05 179.1 8.06E-03 0.89 0.86 DENSITY RATIO ~ RHO/RHO STO. 80.0 1.64E,05 190,5 6.73E-03 0.82 0.87 81.0 1.27E-05 208.1 5.69E-03 0.77 0.88 82.0 1.04E-05 217.3 4,87E-03 0.75 0.90 83.0 8.96E-06 216.3 4.17E-03 0.78 0.93 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 84.0 8.06E-06 235.4 3.57E-03 0.84 0.96 KM KG/CU-N K TORR RATIO RATIO 85.0 7.18E-06 195.3 3.02E-03 0.90 0.98 86.0 6.21E-06 190.0 2.54E-03 0.94 0.99 32.0 1.17E-02 244.9 6.17E 00 0.86 0.93 87.0 5.25E-06 188.5 2.13E-03 0.95 1.00 33.0 1.02E-02 244.7 5.38E 00 0.88 0.93 88.0 4.41E-06 188.1 1.79E-03 0.96 1.00 34.0 8.79E-03 247.5 4,69E 00 0.89 0.94 89,0 3.73E-06 186.3 1.50E-03 0.98 1.01 35.0 7.54E-03 252.1 4.09E 00 0,89 0.95 90.0 3.19E-06 181.8 1.25E-03 1.01 1.02 36.0 6.47E-03 257.3 3.59E 00 0.89 0.96 91.0 2.69E-06 179.4 I.04E-03 1.03 1.02 37.0 5.64E-03 258.9 3.15E 00 0.90 0.97 92.0 2.26E-06 177.3 8,63E-04 1.06 1.00 38.0 4.98E.03 257.3 2.76E 00 0.93 0.98 93.0 1.93E-06 171.7 7.14E-04 1.10 0.99 39.0 4.32E-03 260.4 2.42E 00 0.93 0.98 94,0 1.64E-06 166.1 5,87E-04 1.12 0,97 40.0 3.68E-03 269.1 2.13E 00 0.92 0.99 95.0 1.40E-06 158.6 4.78E-04 1.1* 0.94 41.0 3.26E-03 267.9 1,88E 00 0,94 1.00 96.0 1.17E-06 153.5 3.87E-04 1.16 0.90 42.0 2.84E-03 271.4 1.66E 00 0.95 1,01 97,0 9.62E-07 150.0 3.11E-04 1.14 0.85 43.0 2.51E-03 271.2 1.47E 00 0.97 1,01 98.0 7.66E-07 151.2 2.50E-04 1.09 0.80 44.0 2.14E-03 281.5 1.30E 00 0,95 1.02 99.0 6.03E-07 154.7 2.01E-04 1.02 0.76 45.0 1.92E-03 278.2 1.15E 00 0.97 1.03 100.0 4.65E-07 162.8 1.63E-04 0.94 0.72 46.0 1.72E-03 275.0 1.02E 00 1.01 1.03 47.0 1.50E-03 279.2 9.02E-01 0.00 1.04 48.0 1.33E-03 279.2 8.00E-01 1.01 1.04 49.0 1.18E-03 278.9 7.09E-01 1.02 1.05 50.0 1.06E-03 275.0 6.28E-01 1.03 1.05 51.0 9.32E-04 276.9 5.56E-01 1.03 1.05 52.0 8.35E-04 273.6 4.92E-01 1.04 1.05 53.0 7.46E-04 270,6 4.35E-01 1.05 1.06 54.0 6.58E-04 271.1 3.84E-01 1.04 1.06 55.0 5.89E-04 267.3 3.39E-01 1.05 1.06 56.0 5.34E-04 259.6 2.99E-01 1.07 1.06 57.0 4.69E-04 259.7 2.62E-01 1.06 1.05 58.0 4.08E-04 262.6 2.31E-01 1.05 1.06 59.0 3.74E-Q4 251.4 2.03E-01 1.08 1.05 60.0 3.60E-04 227.0 1.76E-01 1.18 1.05 61.0 3.26E-04 215.5 1.51E-01 1.21 1.02 62.0 2.81E-04 213.9 1.29E-01 1.18 1.00 63.0 2,35E-04 219.1 1.1E-01 1.10 0.98 64.0 1.93E-04 229.7 9.55E-02 1.03 0.97 65.0 1.66E-04 231.0 8.26E-02 0.99 0,96 66.0 1.51E-04 218.8 7.12E-02 1.03 0.95 67.0 1.32E-04 214.5 6,10E-02 1.02 0,94 68.0 1.15E-04 210.4 5.21E-02 1.01 0.93 69.0 9.86E-05 209,2 4.44E-02 0.99 0.92 70.0 8.30E-05 212.1 3.79E-02 0,95 0.92 71.0 7.11E-05 211.5 3.24E-02 0,93 0.91 72.0 6.13E-05 209.3 2.76E-02 0.92 0.91 8 8 8,-V 8 o< |1 ~10. 1'*''' "8 8 8;;~~~~~~~~~ 8''...' *.. q. " *w.L 0.L 10 I;*.!0 z. la. oo. *f8o88 59r lIDy. I2 1 180.80 180.10 1000 888,880^OB,W S0oO MO DENSITY RATIO fp,, TEMPERfTURE (* K) 37

PITOT-STATIC NASA 14.21 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 15 APRIL 1964 ALTITUDE: 140.0 KM KM KG/CU-M K TORR RAT IO RATIO 1St56s00.000 GMT HORIZONTAL VELOCITY: 274.0 M/SEC ASCENSION ISLAND FLIGHT TIME: 384 SEC 73.0 6.11E-05 203.7 2.68E-02 1.06 1.03 LAT 7 DEG 58 MIN S PRECESSION PERIOD: N/A 74.0 5.29E-05 199.3 2.27E-02 1.05 1.03 LONG 14 DEC 25 MIN W STABILIZED ROLL RATEt N/A 75.0 4.33E-05 206.6 1.93E-02 1.00 1.03 TRACKING MODE: DOVAP 76.0 3.64E-05 209.3 1.64E-02 0.97 1.04 77.0 3.10E-05 209.6 1.40E-02 0.97 1.05 78.0 2.63E-05 210.8 1.19E-02 0.96 1.07 PRESSURE RATIO ~ P/P STD. 79.0 2.27E-05 208.4 1.02E-02 0.97 1.09 DENSITY RATIO * RHO/RHO STD.. 80.0 1.96E-05 205.4 8.67E-03 0.98 1.11 81.0 1.71E-05 199.8 7.36E-03 1.03 1.14 82.0 1.49E-05 193.6 6.21E-03 1.08 1.15 83.0 1.27E-05 191.1 5.23E-03 1.10 1.17 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 84.0 1.06E-05 192.4 4.39E-03 1.11 1.18 KM KG/CU-m K TORR RATIO RATIO 85.0 8.45E-06 204.1 3.71E-03 1.06 1.20 86.0 6.98E-06 210.4 3.16E-03 1.05 1.23 32.0 1.26E-02 252.0 6.84E 00 0.93 1.03 87.0 5.91E-06 212.3 2.70E-03 1.07 1.26 33.0 1.09E-02 254.9 5.99E 00 0.94 1.04 88.0 5.01E-06 214.3 2.31E-03 1.09 1.30 34.0 9.59E-03 253.7 5.24E 00 0.97 1.05 89.0 4.24E-06 217.1 1.98E-03 1.11 1.34 35.0'8.49E-03 250.6 4.58E 00 1.00 1.06 90.0 3.50E-06 226.4 1.71E-03.10 139 36.0 7.47E-03 248.8 4.00E 00 1.03 1.07 91.0 2.87E-06 239.4 1.48E-03 1.10 1.45 37,0 6.51E-03 249.3 3.50E 00 1.04 1.08 92.0 2.49E-06 240.2 1.29E-03 1.16 1.50 38.0 5.68E-03 249.6 3.05E 00 1.06 1.08 93.0 2.13E-06 244.9 1.12E-03 1.21 1.56 39.0 4.90E-03 253.0 2.67E 00 1.06 1.08 94.0 1.85E-06 246.4 9.82E-04 1.27.62 40.0 4.248-03 256.1 2.34E 00 1.06 1.09 95.0 1.61E-06 247.6 8.58E-04 1.33 1.68 41.0 3.70E-03 257.3 2.05E 00 1.07 1.09 96.0 1.39-06 251.0 7.52-04 1.38 1.74 42.0 3.25E-03 257.0 1.80E 00 1.09 1.09 97.0 1.18E-06 259.7 6.60E-04 1.40 1.81 43.0 2.87E-03 255.1 1.58E 00 1.10 1.09 44.0 2.51E-03 255.6 1.38E 00 1.11 1.09 45.0 2.21E-03 254.4 1.21E 00 1.12 1.08 46.0 1.91E-03 258.2 1.06E 00 1.12 1.08 47.0 1.65E-03 262.6 9.33E-01 1.10 1.07 48.0 1.43E-03 266.8 8.22E-01 1.08 1.07 49,0 1.24E-03 271.5 7.25E-01 1.07 1.07 50.0 1.08E-03 275.7 6.41E-01 1.05 1.07 51.0 9.44E-04 279.5 5.68E-01 1.04 1.08 52.0 8.30E-04 282.0 5.04E-01 1.04 1.08 53.0 7.37E-04 281.9 4.47E-01 1.04 1.09 54.0 6.81E-04 270,1 3.96E-01 1.08 1.09 55.0 6.20E-04 261.5 3.49E-01 1.11 1.09 56.0 5.51E-04 258.6 3.07E-01 1.11 1.09 57.0 4.80E-04 260.9 2.70E-01 1.09 1.08 58.0 4.32E-04 254.5 2.37E-01 1.11 1.09 59.0 3.81E-Q4 252.9 2.08E-01 1.10 1.08 60.0 3.37E-04 250.2 1.82E-01 1.10 1.08 61.0 3.02E-04 243.8 1.59E-01 1.12 1.07 62.0 2.70E-04 237.3 1.38E-01 1.13 1.07 63.0 2.43E-04 228.3 1.19E-01 1.14 1.06 64.0 2.09E-04 229.3 1.03E-01 1.11 1.05 65.0 1.81E-04 228.8 8.92E-02 1.08 1.04 66,0 1.55E-04 231.0 7.71E-02 1.05 1.03 67.0 1.36E-04 227.5 6.66E-02 1.05 1.03 68.0 1.18E-04 226.3 5.75E-02 1.04 1.03 69.0 1.01E-04 228.2 4.96E-02 1.01 1.03 70,0 8.93E-05 222.6 4.28E-02 1,02 1.03 71.0 7.83E-05 218.1 3.68E-02 1.02 1.04 72.0 6.93E-05 210.9 3.15E-02 1.04 1.04 mf2 "v 8Th8 Ty ogl. vs. TrormWE 2l 5 |FE —. iim.. rmo. mn. 0 ~ rJ~~~c ~~ 3 8 WIi c 8 8*C t **t ^ -<..80.80.80 180 lID 1N0 1.80:80.a 18080 188.8 8888 RD 188.8 80 OENSTI RFIATIO APE,,11PuFITW~ (,K) 38

PITOT-STATIC NASA 14.64 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 08 MARCH 1965 ALTITUDE: 141.5 KM KM KG/CU-M K TORR RATIO RATIO 17:48t08.000 GMT HORIZONTAL VELOCITY: 275.2 M/SEC USNS CROATAN FLIGHT TIME: 380 SEC 66.0 1.79E-04 231.9 8.94E-02 1.22 1.20 LAT 0 DEG 0 MIN PRECESSION PERIOD: N/A 67.0 1.59E-04 225.5 7.72E-02 1.22 1.20 LONG 84 DEG 8 MIN W STABILIZED ROLL RATE: N/A 68.0 1.40E-04 220.5 6.65E-02 1.23 1.19 TRACKING MODE: DOVAP 69.0 1.24E-04 213.4 5.70E-02 1.24 1.19 70.0 1.07E-04 211.3 4.87E-02 1.22 1.18 71.0 9.20E-05 209.7 4.16E-02 1,20 1.17 PRESSURE RATIO = P/P STD. 72.0 7.88E-05 208.7 3.54E-02 1.18 1.17 DENSITY RATIO = RHO/RHO STD. 73.0 6.75E-05 207.5 3.02E-02 1.17 1.17 74.0 5,75E-05 207.4 2.57E-02 1.15 1.17 75.0 4.89E-05 207.7 2.19E-02 1.13 1.17 76.0 4.15E-05 208,5 1.86E-02 1.11 1.18 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 77.0 3.58E-05 205.8 159E-02 1.12 1.19 KH KG/CU-M K TORR RATIO RATIO 78.0 3.09E-05 202.5 1.35E-02 1.12 1.20 79.0 2.67E-05 198,4 1.14E-02 1.1' 1.22 25.0 4.02E-02 217.0 1.88E 01 1.00 0.98 80.0 2.26E-05 198.2 9.65E-03 113 1.24 26.0 3,41E-02 218.9 1.61E 01 1.00 0.98 81.0 1.92E-05 197.1 8.15E-03 1.16 1.26 27.0 2.90E-02 220.7 1.38E 01 0.99 0.98 82.0 1.63E-05 196.0 6.88E-03.18 1.28 28.0 2.48E-02 221.4 1.18E 01 0.99 0.98 83.0 1.38E-05 195.3 5.81E-03 1.20 1.30 29.0 2.12E-02 222,4 1.02E 01 0.99 0.98 84.0 1.17E-05 194.2 4.89E-03 3.22 1.32 30.0 1.81E-02 223.8 8.72E 00 0.98 0.97 85.0 9.76E-06 196.3 4.13E-03 1.22.34 31.0 1.53E-02 227.9 7.51E 00 0.97 0.97 86,0 8.11E-06 199.7 3.49E-03 1.23 1.36 32.0 1.28E-02 235.4 6.49E 00 0.94 0.97 87.0 6,47E-06 213.0 2.97E-03 1.18 1.39 33.0 1.07E-02 244.6 5.64E 00 0.92 0.98 88.0 5.34E-06 221.5 2.55E-03 1.17 1.43 34.0 9.02E-03 253.3 4.92E 00 0.91 0.99 89.0 4,46E-06 228.8 2.20E-03 1.17 1.49 35.0 7.72E-03 259.4 4.31E 00 0.91 1.00 90.0 3.78E-06 233.9 1.90E-03 1.19 1.55 36.0 6.62E-03 266.0 3.79E 00 0.91 1.01 91.0 3.22E-06 238.5 1.65E-03 1.24 1.62 37.0 5,73E-03 271.0 3.34E 00 0.92 1.03 92.0 2.76E-06 242.4 1.44E-03 1.29 1.68 38.0 4.99E-03 275.0 2.96E 00 0.93 1.04 93.0 2.35E-06 248.7 1.26E-03 1.34 1.75 39.0 4.39E-03 276.6 2.62E 00 0.95 1.06 94.0 1.95E-06 263.2 1.1E-03 1,34 1.83 40.0 3.89E-03 276.3 2.31E 00 0.97 1.08 95.0 1.68E-06 269.8 9.76E-04 1.39 1.91 41.0 3.43E-03 277.4 2.05E 00 0.99 1.09 96.0 1.50E-06 267.0 8.63E-04 1.49 2.00 42.0 3.06E-03 275.2 1.81E 00 1.02 1.10 97.0 1.34E-06 263.8 7.62E-04 1.59 2.09 43.0 2.70E-03 276.0 1.61E 00 1.04 1.11 98.0 1.21E-06 257.3 6.71E-04 1.72 2.16 44.0 2.37E-03 278.4 1.42E 00 1.05 1.12 99.0 1.08E-06 253.2 5.89E-04 1.83.23 45.0 2.07E103 282.7 1.26E 00 1.05 1.13 100.0 9.65E-07 248.4 5.16E-04 1.94 2.28 46.0 1.85E-03 280.7 1.12E 00 1.08 1.14 101.0 8.52E-07 246.0 4.52E-04 2.05 2.34 47.0 1.66E-03 277.3 9.92E-01 1.11 1.14 102.0 7.51E-07 243.9 3.94E-04 2.15 2.38 48.0 1.48E-03 275.4 8,78E-01 1.12 1.14 103.0 6.59E-07 242.6 3.44E-04 2.24 2.41 49.0 1.31E-03 275.4 7.77E-01 1.13 1.15 104.0 5.76E-07 242.1 3.00E-04 2.31 2.44 50.0 1.17E-03 272.7 6.87E-01 1.14 1.15 105.0 5.02E-07 242.4 2.62E-04 2.37 2.45 51.0 1.02E-03 276.8 6.08E-01 1.12 1.15 52.0 9.02E-04 277.2 5.39E-01 1.13 1.15 53.0 7.97E104 278.0 4.77E-01 1.12 1.16 54.0 7.05E-04 278.5 4.23E-01 1.12 1.16 55.0 6.25E-04 278.5 3.75E-01 1.11 1.17 56.0 5.58E-04 276.4 3.32E-01 1.12 1.18 57.0 4.98E-04 274.2 2.94E-01 1.13 1.18 58.0 4.50E-04 268.1 2.60E-01 1.15 1.19 59.0 4.02E-04 264.7 2.29E-01 1.16 1.19 60.0 3.59E-04 260.9 2.02E-01 1.17 1.20 61.0 3.20E-04 257.2 1.77E-01 1,19 1.20 62.0 2.86E-04 252.3 1.55E-01 1.20 1.20 63.0 2.55E-04 247.5 1.36E,01 1.20 1.20 64.0 2.26E-04 243.6 1.19E-01 1.20 1.20 65.0 2.03E-04 235.9 1.03E-01 1.22 1.20 ism U.S. To. WN. 8 8,..... i 8 8.. 8:*~4'. 8 8 * S,1: 8.~ ) *.D1.80.810 1,0 t.120 1t.o.10 160o,8 180.o0,0.00 28o.8 10.0 oo0 120.00 2.00 OENSITT RITIO.,TELIPERlTUlf E (' K) 39

PITOT-STATIC NASA 14.65 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 09 MARCH 1965 ALTITUDE: 143.2 KM KM KG/CU- K TORR RATIO RATIO 06:26:26.000 GMT HORIZONTAL VELOCITY: 246.6 M/SEC USNS CROATAN FLIGHT TIME: 380 SEC 66.0 1.66E-04 236.4 8.45E-02 1.13 1.1 LAT 0 DEG 52 MIN S PRECESSION PERIOD: N/A 67.0 1.45E-04 234.8 7.33E-02 2 1.14 LONG 84 DEG 9 MIN W STABILIZED ROLL RATE: N/A 68.0 1.27E-04 232.3 6.36E-02 1.11 1.4 TRACKINC MODE: DOVAP 69.0 1.14E-04 223.5 5.49E-02 1.14 1,14 70.0 1.01E-04 216.8 4.72E-02 1.15 1.14 71.0 8.87E-05 211.2 4.03E-02 1.16.14 PRESSURE RATIO r P/P STD. 72.0 7.72E-05 206.8 3.44E-02 1.16 1.13 DENSITY RATIO z RHO/RHO STD. 73.0 6.71E-05 202.1 2.92E-02 1.16 1.13 74.0 5.78E-05 198.6 2,47E-02 1.15 1.12 75.0 5.03E-05 192.5 2.09E-02 1.16.12 76.0 4.34E-05 187.1 1.75E-02 1.16 1.11 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 77.0 3.68E-05 184.4 1.46E-02 1.15 1.10 KM KG/CU-M K TORR RATIO RATIO 78.0 3.08E-05 183.9 1.2E-02 1.12 1.09 79.0 2.54E-05 186.2 1.02E-02 1.00 1.09 25.0 3.97E-02 217.5 1.86E 01 0.99 0.97 80.0 2.08E-05 190.5 8.54E-03 1.04 1.10 26.0 3.35E-02 220.8 1.59E 01 0.98 0.97 81.0 1.62E-05 206.8 7.22E-03 0.98 1.12 27.0 2.81E-02 226.2 1.37E 01 0.96 0.97 82.0 1.33E-05 215.1 6.16E-03 0.96 1.15 28.0 2.38E-02 230.2 1.18E 01 0.95 0.98 83.0 1.12E-05 219.1 5.29E-03 0.97 1.18 29.0 2.02E-02 234.5 1.02E 01 0.94 0.98 84.0 9.67E-06 218.0 4.54E-03 1.01 1.22 30.0 1.73E-02 237.2 8.84E 00 0.94 0.98 85.0 8.45E-06 213.8 3.89E-03 1.06 1.26 31.0 1.49E-02 238.9 7.67E 00 0.94 0.99 86.0 7.21E-06 214.5 3.33E-03 1.09 1.30 32.0 1.30E-02 237.6 6.65E 00 0.96 1.00 87.0 6.10E-06 217.4 2.86E-03 1.11 1.33 33.0 1.15E-02 232.7 5.76E 00 0.99 1.00 88.0 5.23E-06 217.7 2.45E-03 1.14.38 34.0 1.03E-02 224.0 4.97E 00 1.04 1.00 89.0 4.39E-06 223.0 2.11E-03 1.15.42 35.0 8.98E-03 220.8 4.27E 00 1.06 0.99 90.0 3.71E-06 227.7 1.82E-03 1.17 1.48 36.0 7.42E-03 230.0 3.68E 00 1.02 0.98 91.0 3.20E-06 228.2 1.57E-03 1.23 1.54 37.0 6.02E-03 245.9 3.19E 00 0.96 0.98 92.0 2.80E-06 225.3 1.36E-03 1.31 1.58 38.0 5.10E-03 253.5 2.79E 00 0.95 0.98 93.0 2.41E-06 226.0 1.17E-03 1.37 1.63 39.0 4.37E-03 259.4 2.44E 00 0.94 0.99 94.0 2.08E-06 226.1 1.01E-03 1.42 1.67 40.0 3.77E-03 264.4 2.15E 00 0.94 1.00 95.0 1.78E-06 228.3 8.75E-04 1.47 1.72 41.0 3.25E-03 270.3 1.89E 00 0.94 1.01 96.0 1.51E-06 233.1 7.58E-04 1.50 1.76 42.0 2.81E-03 276.3 1.67E 00 0.94 1.01 97.0 1.28E-06 239.0 6.59E-04 1.52 1.80 43.0 2.41E-03 285.8 1.48E 00 0.93 1.02 98.0 1.10E-06 242.3 5.74E-04 1.56 1.85 44.0 2.1IE-03 290.4 1.32E 00 0.93 1.04 99.0 9.42E-07 247.1 5.01E-04 1.59 1.90 45.0 1.86E-03 293.5 1.18E 00 0.94 1.05 100.0 8.04E-07 253.6 4.39E-04 1.62 1.94 46.0 1.64E-03 297.0 1.05E 00 0.96 1.07 101.0 6.83E-07 262.6 3.86E-04 1.64 2.00 47.0 1.48E-03 293.7 9.36E-01 0.99 1.08 102.0 5.75E-07 275.9 3.42E-04 1.65 2.06 48.0 1.34E-03 289.0 8.34E-01 1.02 1.09 103.0 4.87E-07 289.7 3.04E-04 1.66 2.13 49.0 1.21E-03 284.6 7.42E-01 1.04 1.09 104.0 4.09E-07 308.8 2.72E-04 1.64 2.21 50.0 1.09E-03 280.5 6.59E-01 1.06 1.10 105.0 3.38E-07 337.3 2.45E-04 1.59 2.29 51.0 9.84E-04 275.4 5.84E-01 1.08 1.11 52.0 8.80E-04 272.3 5.16E-01 1.10 1.11 53.0 7.81E-04 271.2 4.56E-01 1.10 1.11 54.0 6.92E-04 270.4 4.03E-01 1.10 1.11 55.0 6.10E-04 270.9 3.56E-01 1.09 1.11 56.0 5.36E-04 272.5 3.15E-01 1.08 1.12 57.0 4.73E-04 273.1 2.78E-01 1.07 1.12 58.0 4,21E-04 271.2 2.46E-01 1.08 1.13 59.0 3.78E-04 266.7 2.17E-01 1.09 1.13 60.0 3.38E-04 262.8 1.91E-01 1.10 1.14 61.0 3.04E-04 256.8 1.68E-01 1.13 1.14 62.0 2.75E-04 248.6 1.47E-01 1.15 1.14 63.0 2.44E-04 244.7 1.29E-01 1.15 1.14 64.0 2.17E-04 239.6 1.12E-01 1.15 1.14 65.0 1.90E-04 237.8 9.73E-02 1.14 1.13 8 RLtU lt 3. WIT~ IO 8. TflT- -aS. IfJ.. *M l.q2. 136.!..z 10. 818. 8 ~ 8e iJ 8~ ae ~l uo w WENSITY BRT I O. ".' te 8 8 Sg{^ t->! 8.11e 1...~ i'.'M. SQ'. 00 t.0 $.~o 0 Iw t. ISo. 180.00 20.00 2".0 O. 260 L.0 2d 80.00 OENSIT~ RRTIO ~m.'TEHPERfRTURE (' K) 40

PITOT-STATIC NASA 14.66 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 04 APRIL 1965 ALTITUDE: 139.2 KM KM KG/CU-N K TORR RATIO RATIO 16:06:35.000 GMT HORIZONTAL VELOCITY: 310.7 N/SEC USNS CROATAN FLIGHT TIMES 374 SEC 66.0 1.56E-04 235.3 7.91E-02 1.06 1.06 LAT 24 DEG 05 MIN S PRECESSION PERIOD: N/A 67.0 1.37E-04 232.2 6.85E-02 1.05.06 LONG 76 DEG 08 MIN N STABILIZED ROLL RATE: N/A 68.0 1.22E-04 225.3 5.92E-02 1.07 1.06 TRACKING NODE: DOVAP 69.0 1.06E-04 223.4 5,10E-02 1.06 1.06 70.0 9.34E-05 217.9 4.38E-02 1.07 1.06 71.0 8.05E-05 216.9 3.76E-02 1.05 1.06 PRESSURE RATIO * P/P STD. 72.0 6.97E-05 214,5 3.22E-02 1.05 1.06 DENSITY RATIO * RHO/RHO STD. 73.0 6.04E-05 211.7 2.75E-02 1.04 1.06 74.0 5.24E-05 208,1 2.35E-02 1.04 1.07 75.0 4.47E-05 207,8 2.00E-02 1.03 1.07 76.0 3.79E-05 208.8 1.70E-02 1.01 1.08 ALTITUDE DENSITY TENP. PRESSURE DENSITY PRESSURE 77.0 3.21E-05 210.3 1,45E-02 1,00 1.09 K KG/CU-N K TORR RATIO RATIO 78.0 2.73E-05 211.1 1.24E-02 0.99 1.11 79.0 2.32E-05 212.2 1.06E-02 0.99 1.14 25.0 4.10E-0Z 231.3 2.04E 01 1.02 1.07 80.0 1.97E-05 213.7 9.07E-03 0.98 1.17 26.0 3.52E-02 232.8 1.77E 01 1.03 1.08 81.0 1.68E-05 214.5 776E-03 1.01 1.20 27.0 3.02E-02 234.8 1.53E 01 1.03 1.08 82.0 1.44E-05 214.3 6.65E-03 1.04 1.24 28.0 2.61E.02 235.2 1.32E 01 1.04 1.09 83.0 1.24E-05 213.0 5.69E-03 1.08 1.27 29.0 2.26E-02 235.3 1.15E 01 1.05 1.10 84.0 1.08E-05 208.8 4.86E-03 1,13 1.31 30.0 1.94E-02 237.5 9.93E 00 1.05 1,11 85.0 9.34E-06 205.7 4.14E-03 1.17 1.34 31.0 1.69E-02 236.4 8.60E 00 1.07 1.11 86,0 8.13E-06 200.6 3.51E-03 1.23 1.37 32.0 1.47E-02 235.5 7,46E 00 1.08 1.12 87.0 7.12E-06 193.5 2.97E-03 1.29 1.39 33.0 1.27E-02 236.2 6.46E 00 1,09 1.12 88.0 6.19E-06 186.9 2.49E-03 1.35 1.40 34.0 1.10E-02 236.3 5.60E 00 1.11 1.12 89.0 5.29E-06 182.8 208E-03 1.39.41 35.0 9.57E-03 235.4 4.85E 00 1.13 1.13 90.0 4.50E-06 178.8 1.73E-03 1.42 1.41 36.0 8.28E-03 235.7 4.20E 00 1.14 1.12 91.0 3.80E-06 175.6 1.44E-03 1.46.41 37.0 7.12E-03 237.7 3.64E 00 1.14 1.12 92.0 3.17E-06 174.1 1.19E-03 1.48 1.38 38.0 6.14E-03 239.2 3.16E 00 1.14 1,12 93.0 2.64E-06 172.6 9.82E-04 1.50 136 39.0 5,24E-03 243,7 2.75E 00 13 1,11 94.0 2.22E-06 169.0 8.08E-04 1.52 1.34 40.0 4.49E-03 248.0 2.40E 00 1.12 1.12 95.0 1.84E-06 167.5 6.64E-04 1.52.30 41.0 3.83E-03 254.2 2.10E 00 1.11 1.12 96.0 1.53E-06 165.0 5.44E-04 1.51 1.26 42.0 3.33E-03 256,2 1.84E 00.11 1.11 97.0 1.24E-06 166.7 4.45E-04 1.47 1.22 43.0 2.88E-03 259.9 1.61E 00 1.11 1.11 98.0 1.01E-06 167.9 3.65E-04 1.43.18 44.0 2.51E-03 262.1 1.42E 00 1.11 1.12 99.0 8.28E-07 168.2 3.00E-04 1.40.14 45.0 2.19E-03 264.3 1.25E 00 1.11 1.11 46.0 1.91E-03 267.0 1.1OE 00 1.12 1.12 47.0 1.68E-03 267.7 9.69E-01 1.12 1.11 48.0 1.47E-03 269.9 8.55E-01 1.11 1.11 49.0 1.31E-03 267.2 7.54E-01 1.13 1.11 50.0 1.15E-03 268.5 6.65E-01 1.12 1.11 51.0 1.02E-03 267.0 5.87E-01 1.12 1.11 52.0 9.04E-04 265.5 5.17E-01 1.13 1.11 53.0 7.97E-04 265.4 4.56E-01 1.12 1.11 54.0 7.07E-04 263.5 4.01E-01 1.12 1.10 55.0 6.29E-04 260.5 3.53E-01 1.12 1.10 56.0 5.58E-04 258.0 3.10E-01 1.12 1.10 57.0 4.96E-04 254.7 2.72E-01 1.12 1.09 58.0 4.41E-04 250.8 2.38E-01 1.13 1.09 59.0 3.87E-04 250.0 2.08E-01 1.12 1.09 60.0 3.43E-04 246.5 1.82E-01 1.12 1.08 61.0 3.02E-04 244.2 1.59E-01 1.12 1.07 62.0 2.65E-04 242.5 1,38E-01 1.11 1.07 63.0 2.33E-04 240.1 1.20E-01 1.09 1.07 64.0 2.03E-04 239.7 1.05E-01 1.08 1.06 65.0 1.78E-04 237.6 9.11E-02 1.07 1.06 8 igTfvw. ow i o8 WT W oraww K.~*a~~~~. *~~~~~~. a -~ ilw US,. SR. sI0. 8 4 1 8 8 %; I e -: % Si 8.43.8I.8 3.00.20 l. 10.10 110,00 183.00 ZO. 00 22o.3o z.oo. o. 2Q. 280. o0 OENSITT RfTIO' *.,' TE4PERITURE (' K) 41

PITOT-STATIC NASA 14.26 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 06 APRIL 1965 ALTITUDE: 142.2 KM KM KG/CU-M K TORR RATIO RATIO 16:34:05.000 GMT HORIZONTAL VELOCITY: 201.5 M/SEC USNS CROATAN FLIGHT TIME: 378 SEC 66.0 1.50E-04 219.8 7.10E02 1.02 095 LAT 35 DEG 14 MIN S PRECESSION PERIOD: N/A 67.0 1.29E-04 219.5 6.10E-02 0.99 0.94 LONG 74 DEG 15 MIN W STABILIZED ROLL RATE: N/A 68.0 1.E-04 219.0 5.24E-02 0.97 0.94 TRACKING MODE: DOV-AP 69.0 9.58E-05 217.7 4.49E-02 0.96 0.93 70.0 8.24E-05 217.0 3.85E-02 0.94 0.93 71.0 7.08E-05 216.5 3.30E-02 0.93 0.93 PRESSURE RATIO = P/P STD. 72.0 6.07E-05 216.5 2.83E-02 0.91 0.93 DENSITY RATIO = RHO/RHO STD. 73.0 5.20E-05 216.6 2.43E-02 0.90 0.94 74.0 4.49E-05 214.9 2.08E-02 0.89 0.94 75.0 3.91E-05 211.0 1.78E-02 0.90 0.95 76.0 3.40E-05 206.8 1.51E-02 0.91 0.96 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 77.0 2.93E-05 204.0 1.29E-02 0.91 0.97 KM KG/CU-M K TORR RATIO RATIO 78.0 2.53E-05 200.4 1.09E-02 0.92 0.97 79.0 2.17E-05 197.6 9.24E-03 0.92 0.99 25.0 3.81E-02 228.1 1.87E 01 0.95 0.98 80.0 1.85E-05 195.7 7.80E-03 0.93 1.00 26.0 3.26E-02 229.9 1.61E 01 0.95 0.98 81.0 1.58E-05 193.0 6.57E-03 0.95 1.02 27.0 2.80E-02 231.1 1.39E 01 0.96 0.99 82.0 1.34E-05 191.4 5.52E-03 0.97 1.03 28.0 2.40E-02 233.1 1.20E 01 0.96 1.00 83.0 1.13E-05 190.7 4.64E-03 0.98 1.04 29.0 2.06E-02 235.0 1.04E 01 0.96 1.00 84.0 9.71E-06 186.0 3.89E-03 1.02 1.05 30.0 1.78E-02 235.5 9.03E 00 0.97 1.01 85.0 8.32E-06 181.1 3.25E-03 1.04 1.05 31.0 1.53E-02 237.4 7.83E 00 0.97 1.01 86.0 6.94E-06 180.6 2.70E-03 1.05 1.05 32.0 1.31E-02 240.7 6.79E 00 0.96 1.02 87.0 5.63E-06 185.7 2.25E-03 1.02 1.05 33.0 1.12E-02 245.0 5.91E 00 0.97 1.03 88.0 4.56E-06 192.3 1.89E-03 1.00 1.06 34.0 9.78E-03 244.4 5.15E 00 0.99 1.03 89.0 3.74E-06 197.7 1.59E-03 0.98 1.08 35.0 8.50E-03 244.9 4.48E 00 1.00 1.04 90.0 3.13E-06 199.9 1.35E-03 0.99 1.10 36.0 7.37E-03 246.1 3.91E 00 1.02 1.04 91.0 2.65E-06 199.9 1.14E-03 1.02 1.12 37.0 6.39E-03 247.6 3.41E 00 1.02 1.05 92.0 2.26E-06 198.5 9.66E-04 1.06 1.12 38.0 5.53E-03 249.8 2.98E 00 1.03 1.05 93.0 1.91E-06 198.7 8.17E-04 1.09 1.14 39.0 4.79E-03 252.1 2.60E 00 1.03 1.05 94.0 1.63E-06 196.9 6.91E-04 1.12 1.14 40.0 4.16E-03 254.1 2.28E 00 1.04 1.06 95.0 1.39E-06 194.9 5.84E-04 1.15 1.14 41.0 3.60E-03 257.3 2.OOE 00 1.04 1.06 96.0 1.18E-06 193.6 4.92E-04 1.17 1.14 42.0 3.12E-03 260.6 1.75E 00 1.04 1.06 97.0 9.88E-07 195.0 4.15E-04 1.17 1.14 43.0 2.69E-03 266.0 1.54E 00 1.03 1.06 98.0 8.29E-07 196.2 3.50E-04 1.18 1.13 44.0 2.34E-03 269.6 1.36E 00 1.04 1.07 99.0 6.97E-07 197.2 2.96E-04 1.18 1.12 45.0 2.04E-03 273.2 1.20E 00 1.04 1.0C7 100.0 5.84E-07 199.1 2.50E-04 1.18 1.11 46.0 1.80E-03 273.7 1.06E 00 1.05 1.08 47.0 1.59E-03 274.0 9.39E-01 1.06 1.08 48.0 1.41E-03 273.3 8.30E-01 1.07 1.08 49.0 1.26E-03 270.2 7.33E-01 1.09 1.08 50.0 1.12E-03 268.3 6.47E-01 1.09 1.08 51.0 1.00E-03 264.9 5.71E-01 1.10 1.08 52.0 8.91E-04 261.7 5.02E-01 1.11 1.08 53.0 7.89E-04 259.8 4.42E-01 1.11 1.07 54.0 7.00E-04 257.1 3.88E-01 1.11 1.07 55.0 6.23E-04 253.3 3.40E-01 1.11 1.06 56.0 5.50E-04 251.2 2.98E-01 1.11 1.06 57.0 4.87E-04 248.0 2.60E-01 1.10 1.04 58.0 4.31E-04 244.6 2.27E-01 1.11 1.04 59.0 3.82E-04 240.3 1.98E-01 1.10 1.03 60.0 3.36E-04 237.4 1.72E-01 1.10 1.02 61.0 2.96E-04 233.8 1.49E-01 1.10 1.01 62.0 2.61E-04 229.5 1.29E-01 1.09 1.00 63.0 2.28E-04 226.8 1.11E-01 1.07 0.99 64.0 1.99E-04 224.0 9.60E-02 1.06 0.97 65.0 1.73E-04 221.7 8.26E-02 1.04 0.96 8 rLTIUrE VS. OB11T0 1RTIO N8 TIII~ N. TEIE8EUI ~ — 1962 U.S. 310. RT#. Is BI 8 8 g1 8-:. 8''.. 8 / 8. DENSITY RFATIO ^P,. TEMPERATURE (* K) 42

PITOT-STATIC NASA 14.63 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 09 APRIL 1965 ALTITUDE: 147.0 KM KM KG/CU-M K TORR RATIO RATIO 20:26:10.000 GMT HORIZONTAL VELOCITY: 272.5 M/SEC USNS CROATAN FLIGHT TIME: 388 SEC 66.0 1.34E-04 226.2 6.53E-02 0.91 0.88 LAT 44 DEG 23 MIN S PRECESSION PERIOD: N/A 67.0 1.15E-04 227.4 5.63E-02 0.88 0.87 LONG 77 DEG 47 MIN N STABILIZED ROLL RATE: N/A 68.0 9.97E-05 226.3 4.86E-02 0.87 0.87 TRACKING MODE: DOVAP 69.0 8.66E-05 224.7 4.19E-02 0.87 0.87 70.0 7.49E-05 223.8 3.61E-02 0.86 0.87 71.0 6.49E-05 222.4 3.1 E-02 0.85 0,88 PRESSURE RATIO = P/P STD. 72.0 5.55E-Q5 223.9 2.68E-02 0.83 0.88 DENSITY RATIO - RHO/RHO STD. 73.0 4.83E-05 221.5 2.30E-02 0.83 0.89 74.0 4.20E-05 218.9 1.98E-02 0.84 0.90 75.0 3.58E-05 220.6 1.70E-02 0.82 0.91 76.0 3.07E-05 221.2 1.46E-02 0.82 0.93 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 77.0 2.65E-05 220.3 1.26E-02 0.83 0,95 KM KG/CU-M K TORR RATIO RATIO 78.0 2.31E-05 217.0 1.08E-02 0.84 0.96 79.0 1.99E-05 216.0 9.26E-03 0.85 0.99 25.0 4.02E-02' 214.3 1.86E 01 1.00 0.97 80.0 1.71E-05 215.4 7.93E-03 0.86 1,02 26.0 3.41E-02 215.8 1.59E 01 1.00 0.97 81.0 1.48E-05 213.0 6.79E-03 0.89 1.05 27.0 2.86E-02 220.3 1.36E 01 0.98 0.96 82.0 1.27E-05 212.3 5.81E-03 0.92 1.08 28.0 2.42E-02 223.5 1.16E 01 0.96 0.96 83.0 1.09E-05 211.3 4.96E-03 0.95 1.11 29.0 2.07E-02 224.6 1.00E 01 0.96 0.96 84.0 9.35E-06 210.4 4.24E-03 0.98 1.14 30.0 1.77E-02 226.1 8.62E 00 0.96 0,96 85.0 8.00E-06 209.9 3.62E-03 1.00 1.17 31.0 1.52E-02 226.7 7.42E 00 0.96 0.96 86.0 6.87E-06 208.6 3.09E-03 1.04 1.20 32.0 1.29E-02 230.4 6.40E 00 0.95 0.96 87.0 5.88E-06 207.7 2.63E-03 1.07 1.23 33.0 1.10E-02 233.5 5.53E 00 0.95 0.96 88.0 5.04E-06 206.4 2.24E-03 1.10 1.26 34.0 9.38E-03 237.2 4.79E 00 0.95 0.96 89.0 4.31E-06 205.4 1.91E-03 1.13 1.29 35.0 8,05E-03 239.9 4.16E 00 0.95 0.97 90.0 3.68E-06 204.6 1.62E-03 1.16 1.32 36,0 6.86E-03 244.9 3.62E 00 0.94 0.97 91.0 3.11E-06 205.9 1.38E-03 1.20 1.35 37.0 5.94E-03 246.6 3.15E 00 0.95 0.97 92.0 2.60E-06 209.9 1.18E-03 1.21 1.37 38.0 5.11E-03 250.2 2.75E 00 0.95 0.97 93.0 2.15E-06 217,3 1.01E-03 1.22 1.40 39.0 4.39E-03 254.8 2.41E 00 0.95 0.98 94.0 1.82E-06 220.7 8.65E-04 1.25 1.43 40.0 3.82E-03 256.6 2.11E 00 0.96 0.98 95.0 1.54E-06 224.7 7.45E-04 1,27 1.46 41.0 3.33E-03 258.2 1.85E 00 0.96 0.99 96.0 1.31E-06 228.2 6.44E-04 130 1.49 42.0 2.92E-03 258.5 1.63E 00 0.98 0.99 97.0 1.11E-06 233.2 5.58E-04 1.32 1.53 43.0 2.53E-03 262.1 1.43E 00 0.97 0.99 98.0 9.55E-07 235.4 4.84E-04 1.36 1.56 44.0 2.24E-03 260.2 1.26E 00 0.99 0.99 99.0 8.21E-07 238.0 4.21E-04 1.39 1.59 45.0 1.95E-03 262.8 1.10E 00 0.99 0.99 1000l 7.22E-07 235.3 3.66E-04 1.45 1.62 46.0 1.71E-03 263.7 9.71E-01 1.00 0.99 101.0 6.33E-07 233.0 3.18E-04 1.52 1.65 47.0 1.52E-03 260.9 8.54E-01 1.01 0.98 102.0 5.61E-07 227.8 2.75E-04 1.61 1.66 48.0 1.33E-03 262,2 7.51Es01 1.01 0.98 103.0 4.94E-07 223.4 2.38E-04 1.68 1.66 49.0 1.18E-03 259,8 6.60E-01 1.02 0.97 104.0 4.31E-07 220.6 2.05E-04 1.73 1.67 50.0 1.03E-03 261.6 5.80E-01 1.00 0.97 105.0 3.75E-07 218.1 1.76E-04 1.77 1.65 51.0 9.07E-04 261.2 5.10E-01 1.00 0.97 52.0 7.97E-04 261.4 4.49E-01 1.00 0.96 53.0 7.08E-04 258.6 3.94E-01 1.00 0.96 54.0 6.27E-04 256.3 3.46E-01 0.99 0.95 55.0 5.55E-04 253.9 3.03E-01 0.99 0.95 56.0 4.92E-04 250.7 2.66E-01 0.99 0.94 57.0 4.32E-04 249.7 2.32E-01 0.98 0.93 58.0 3.81E-04 247.4 2.03E-01 0.98 0.93 59.0 3.37E-04 244.0 1.77E-01 0.97 0.92 60.0 2.96E-04 242.0 1.54E-01 0,97 0.92 61.0 2.61E-04 238.8 1.34E-01 0.97 0.91 62.0 2.30E-04 235.2 1.17E-01 0.96 0.90 63.0 2.02E-04 232.1 1.01E-01 0.95 0.89 64.0 1.75E-04 231.9 8.74E-02 0.93 0.89 65.0 1.53E-04 229.4 7.56E-02 0.92 0.88 8:tI 8 S 43 8 I \ i i...48.60.88 1.80o 1:10 Do" 1,60 1. 0. oo 200,,0 220.10 i20.a00 260.00 680o OENSITT R TIO m.m TEN.ERITURE ('K) 43

PITUT-STATIC NA5A 14.67 FLIGHT PARAMETERS LLTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 13 APRIL 1965 ALTITUDE: 150.5 KM KM KG/CU-9 K TUOR RATIO RATIO 04:05:36.000 GMT HORIZ.NTAL VELOCITY: 134.2 M/SEC USNS CRJATAN FLIGHT TIME: 394 SEC 66.U 1.12E-04 241.9 5.84E-02 0.76 0.78 LAT 60 DEG 30 MIN S PRECESSION PERIOD: N/A 67. 9.78E-05 241.3 5.38E-02 0.75 0.79 LUNG 78 DEG 00 MIN W STABILIZED ROLL RATE: N/A 68.0 8.50E-05 241.7 4.42E-02 3.75 0.79 TRACKING MODE: D3VAP 69.0 7.26E-U5 246.8 3.86E-02 0.73 0.80 70.0 6.31E-05 248.0 3.37E-02 0.72 0.61 71.0 5.59E-05 244.5 2.94E-02 0.73 0.83 PRESSJRE RATIO = P/P STD. 72.0 4.97E-05 239.5 2.56E-02 0.75 0.84 DENSITY RATIO = RHO/RIfD STD. 73.0 4.39E-05 235.6 2.23E-02 0.76 0.86 74.0 3.87E-05 231.7 1.93E-02 0.77 0.88 75.0 3.35E-05 231.8 1.67E-02 0.77 0.89 76.0 2.89E-J5 232.8 1.45E-02 0.77 0.92 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 77.0 2.53E-05 230.2 1.25E-02 0.79 0.94 KM KG/CU-M K TORR RAT RATIRATIO 78.0 2.19E-05 230.1 1.09E-02 0.80 0.97 79.0 1.94E-05 224.3 9.37E-03 0.83 1.00 25.0 3.63E-02 223.0 1.74E 01 0.91 0.91 83.0 1.70E-J5 220.4 8.07E-03 0.85 1.C4 26.0 3.10E-02 224.5 1.50E 01 0.91 0.91 81.0 1.49E-05 215.8 6.93E-03 0.90 1.07 27.0 2. 6E-02 225.0 1.29E 01 0.91 0.91 82.0 1.31E-05 210.0 5.92E-03 0.95 1.10 28.0 2.29E-02 224.8 1.11F 01 0.91 0.92 83.U 1.14E-05 205.6 5.05E-03 0.99 1.13?9.0 1.97E-02 224.8 9.54E 00 0.92 0.92 84.) 9.79E-06 203.4 4.29E-03 1.02 1.15 30.0 1.71E-02 222.7 8.20E 00 0.93 0.91 85.0 8.38E-06 201.7 3.64E-03 1.05 1.18 31.0 1.46E-02 224.1 7.05E 00 0.92 0.91 86.0 7.15E-06 200.3 3.09E-03 1.08 1.20 32.0 1.26E-02 223.3 6.06F 00 0.93 0.91 e7.0 6.08E-06 199.5 2.61E-03 1.11 1.22 33.0 1.09E-02 221.7 5.21E 00 0.94 0.90 88.0 5.18E-36 198.1 2.21E-03 1.13 1.24 34.0 9.38E-03 221.2 4.47E 00 0.95 0.90 89.0 4.39E-06 197.6 1.87E-03 1.15 1.26 35.0 8.00E-03 222.8 3.84E 00 0.95 0.89 90.0 3.75E-06 195.4 1.58E-03 1.18 1.28 36.0 6.34E-03 224.0 3.30E 00 0.94 0.88 91.0 3.17E-06 195.0 1.33E-03 1.22 1.31 37.U 5.79E-03 227.9 2.84E 00 0.93 0.87 92.0 2.70E-06 193.0 1.12E-03 1.26 1.31 38.0 4.94E-03 230.5 2.45E 00 0.92 0.87 93.0 2.30E-06 190.5 9.44E-04 1.31 1.31 39.0 4.22E-03 233.3 2.12E 00 0.91 0.86 94.0 1.95E-06 188.7 7,92E-04 1.34 1.31 40.0 3.59E-03 237.6 1.84E 00 0.90 0.05 95.0 1.64E-36 188.1 6.65E-04 1.36 1.30 41.0 3.07E-03 241.3 1.60E 00 0.89 0.85 96.0 1.39E-06 195.9 5.57E-04 1.38 1.29 42.0 2.63E-03 245.3 1.39E 00 0.88 0.84 97.0 1.17E-06 184.7 4.65E-04 1.39 1.28 43.0 2.27E-03 247.8 1.21E 00 0.87 0.84 98.0 9.85E-37 183.2 3.89E-04 1.40 1.25 44.0 1.97E-03 249.4 1.06F 00 0.87 0.83 99.0 3.31E-07 181.1 3.24E-04 1.41 1.23 45.0 1.71E-03 251.1 9.25E-01 0.87 0.83 133.0 7.07E-07 176.9 2.69E-04 1.42 1.19 46.0 1.49E-03 252.1 8.09E-01 0.87 0.82 131.0 6.02E-37 171.9 2.23E-04 1.45 1.15 47.0 1.29E-03 255.0 7.09E-01 0.86 0.82 102.0 5.13E-07 165.8 1.R3E-04 1.47 1.10 48.0 1.12E-03 257.6 6.21E-01 0.85 0.81 103. 4.35E-07 159.6 1.50E-04 1.48 1.05 49.0 9.79E-04 258.7 5.45E-01 0.84 0.80 104.0 3.71E-07 151.3 1.21E-04 1.49 0.98 50.0 8.56E-04 259.8 4.79E-01 0.83 0.80 105.0 3.17E-07 141.2 9.64E-05 0.50 0,90 51.0 7.49E-04 261.30 4.21E-01 0.83 0.80 106.0 2.66E-07 132.2 7.57E-05 1.48 0.81 52.0 6.55E-04 262.5 3.70E-01 0.82 0.79 107.0 2.24E-07 120.9 5.84E-05 1.45 0.72 53.0 5.76E-04 262.7 3.26E-01 0.81 0.79 108.0 1.88E-07 108.0 4.37E-05 1.42 0.61 54.0 5.06E-04 263.1 2.87E-01 0.80 0.79 55.0 4.47E-04 262.1 2.52E-01 0.80 0.79 56.0 3.99E-04 258.1 2.22E-01 0.80 0.79 57.0 3.54E-04 255.3 1.95E-01 0.80 0.78 58.0 3.14E-04 252.2 1.71E-01 0.81 0.78 59.0 2.77E-04 250.1 1.49E-01 0.80 0.78 63.0 2.41E-U4 251.5 1.31E-01 0.79 0.78 61.0 2.11E-04 251.5 1.14E-01 0.78 0.77 62.0 1.84E-34 252.5 1.00E-01 0.77 0.78 63.0 1.62E-04 251.0 8.76E-02 0.76 0.78 64.0 1.43E-04 248.7 7.66E-02 0.76 0.78 65.0 1.26E-04 246.6 6.69E-02 0.75 0.78 8 ILTITUI V3. 05510580010 8 F.TITtI V3. TWOIMPRI0O 9 5 —- 1 U.S. STO. RTI. 8 8 8 / 8 AJ8J 8 8 8 f^~~~ f ^ ^^\!:. ~~~~~8 8~~~~~~~~~~~~~~~ 8i~ ~~~~~~~~~~~~~~ 8 i__:___ ~.ENSITT RATIO es.. TEMPERATURE.. /. 44' 5' ~ e~'u # 8 ~o 1t ~o 15 6.R 8.8 81 1 R.8 ~O 0 20 B 88:EST ~I EPRIUE[H ~ ~

PITOT-STATIC NASA 14.27 FLIGHT PAMESTESS ALTITUDE DEtSITY TEMP. PRESSURE DENSITY PRESSURE 13 A64IL 1965 ALTITJOE: 145.6 KM KM KG/CU-M TOkR R AT I& ATIO 16:30:09.003 GMT HOkILC'NTAL VELOCITY: 273.7 4/SFC USNS CROfTAN FLIGHT TImE: 356 SFE 66.u 9.54E-05 247.2 5.38E-02 0.65 0.68 LAT 60 DEG 30 MIN S PqECESSION PERIOD1; /A 67.0 8.37E-35 246.0 4.4 3E-02 U.64 0.69 LGNG 78 DEC 00 MIN W STASILIZE0 ROLL RATE: k/D 68.0 7.20E-05 249.9 3.88E-02 0.63 0.69 TRACKI4NG MIDE: 07V9P 69.0 6.21E-35 253.7 3.39E-C0 0.62 0.71 70.( 5.40E-05 255.9 2.98E-02 30.62 0.72 71.0 4.77E-05 254.1 2.61E-02 0.62 0.74 PRESSURE RATIO = P/P STO. 72.0 4.21E-05 252.3 2.29E-02 0.63 0.75 DENSITY RATIO = RHO/RHO ST[,. 73.0 3.78E-05 245.9 2.00E-02 3.65 0.77 74.0 3.38E-05 239.5 1.74E-02 0.67 0.79 75.0 3.00E-05 234.4 1.51E-02 0.69 0.81 76.0 2.66E-35 229.0 1.31E-02 0.71 0.83 ALTITUDE DENSITY TEMP. PRESSURE DEN.SITY PRESSURE 77.0 2.35E-05 223.7 1.13E-02 0.73 C.65 Ku KG/CU-A K TORR RATIO PATIO 78.0 2.07E-05 218.4 9.74E-03 0.75 0.87 79.0 1.81E-05 214.1 8.35E-03 0.77 O.e9 25.0 3.78E-32 215.6 1.76E 01 3.94 0.92 83.0 1.58E-35 209.6 7.13E-03 0.79 0.92 26.0 3,21E-02 217.1 1.50E 01 0.94 0.92 81.0 1.36E-05 207.6 6.08E-03 0.82 0.94 27.0 2.74E-02 21.7,7 1.28E 01 3.94 0.91 82.0 1.18E-05 203.5 5.17E-03 0.86 0,96 28.0 2.34E-02 218.2 1.10E 01 0.93 0.91 83.0 1.02E-05 199.5 4.38E-03 0.89 0.98 29.0 2.OOE-02 218.6 9.42E 00 0.93 0.91 84.0 8.73E-06 197.1 3.71E-03 0.91 1.00 30.0 1.71E-02 219.1 8.07E O0 0.93 0.90 85.0 7.47E-36 194.4 3.13F-03 0.93 1.01 31.0 1.47E-02 218.3 6.91E 00 0.93 0.89 86.0 6.39E-06 191.3 2,b3E-03 0.97 1.02 32.0 1.26E-02 218.2 5.92E 00 0.93 0.89 87.0 5,43E-06 189.0 2.21E-03 0.99 1.03 33.0 1.08E-02 218.0 5.07E 00 0.93 0.88 86.0 4.59E-06 187.4 1.85E-03 1.00 1.04 34.0 9.18E-03 219.8 4.35E 0J 0.93 0.87 89.0 3.89E-06 185.0 1.55E-03 1.02 1.05 35.0 7.88E-03 219.5 3.73E 00 0.93 0.86 90.0 3.28E-36 183.2 1.29E-03 1.03 1.05 36.0 6.75E-03 219.7 3.20E 00 0.93 0.85 91.0 2.75E5-06 182.2 1.08F-03 1.06 1.06 37.0 5.72E-03 222.6 2.74E 00 0.92 0.84 92.0 2.32E-06 179.8 8.98E-04 1.08 1.05 38.0 4.82E-03 227.4 2.36E 00 0.90 0. 83 93.0 1.95E-06 177.7 7.46E-04 1.11 1.04 39.0 4. 11E-03 230.1 2.04E 00 0.89 0.82 94.0 1.64E-06 175.7 6.18E-04 1.12 1.02 40.0 3.51E-03 232.8 1.76E 00 0.8a 0 82 95.0 1.38E-06 171.8 5.115E-4 1.14 1.00 41.0 2.98E-03 237.6 1.53E 00 0.86 0.1 96.0 1.14E-06 171.5 4.21E-04 1.13 0.98 42.0 2.55E-03 241.2 1,32E 00 0.85 0.80 97.0 9.45E-07 170.4 3.47E-04 1.12 0.95 43.0 2.20E-03 243.3 1.15E 00 0.85 0.80 98.0 7.83E-07 169.2 2.85E-04 1.11 0,92 44.0 1.89E-03 246.8 1.OOE 00 0.84 0.79 99.0 6.39E-07 170.6 2.35E-04 1.08 0.89 45.0 1.64E-03 248.2 8.77E-01 0.83 0.78 00.0 5.20E-07 172.9 1.94E-04 1.05 0.86 46.0 1.42E-03 250.5 7.66E-01 0.83 0.78 47.0 1.23E-03 253.0 6.70E-01 0.82 0.77 48.0 1.07E-33 254.7 5.87E-01 O.sl 0.77 49.0 9.36E-04 255,2 5.14E-01 0.81 0.76 50.0 8.14E-04 257.3 4.51E-01 0.79 0.75 51.0 7.16E-04 256.7 3.96E-01 0.79 0.75 52.0 6.26E-34 257.6 3.47E-01 0.79 0.74 53.0 5.49E-04 257.9 3.05E-01 3.77 0.74 54.0 4.84E-04 256.7 2.68E-01 0.77 0.74 55.0 4.28E-04 254,6 2.35E-01 0.76 0.73 56.0 3.82E-04 249.7 2.05E-01 0.77 0.73 57.0 3.38E-04 246.5 1.79E-01 0.77 0.72 58.0 2.99E-04 243.0 1.56E-01 0.77 0.72 59.0 2.64E-04 239.5 1.36E-01 0.76 0.71 60.0 2,31E-04 237.8 1.18E-01 0.75 0.70 61.0 2.02E-04 236.1 1.03E-01 0.75 0.69 62.0 1.76E-04 235,1 8.91E-02 0.74 0.69 63.0 1.53E-04 234.5 7.73E-02 0.72 0.68 64.0 1.32E-04 235.7 6.70E-02 0.70 0.63 65.0 1.12E-04 241.4 5.82E-02 0.67 0.68 R!.T/TUr2 IIP. 110t RTIo0 ITITUO 8. TI0 fIAR3 1t02 P.3. aro. NRV. Zia I0.~~~ ~. 8 8 8 3 B d~l.'' K) 45

PITUT-STATIC NASA 14.25 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 15 APRIL 1965 ALTITUDE: 139.5 KM KM KG/CU-M K TORR RATIO RATIO 16:00:04.000 GMT HORIZONTAL VELOCITY: 314.4 M/SfC USNS CROATAN FLIGHT TIME: 378 SEC 61.0 2.53E-04 231.2 1.26E-01 0.94 0.85 LAT 52 DEG 35 MIN S PRECESSION PERIOD: N/A 62.0 2.20E-04 229.9 1.09E-01 0.92 0.84 LONG 78 DEG 20 MIN W STABILIZED ROLL RATE: N/A 63.0 1.91E-04 228.9 9.42E-02 0.90 0.83 TRACKING MODE: DOVAP 64.0 1.66E-04 227.4 8.13E-02 0.88 0.82 65.0 1.45E-04 224.5 7.01E-02 0.87 0.82 66.0 1.25E-04 224.4 6.04E-02 0.85 0.81 PRESSURE RATIO = P/P STD. 67.0 1.06E-04 228.2 5.21E-02 0.82 0.81 DENSITY RATIO = RHO/RHO STD. 68.0 9.02E-05 231.9 4.51E-02 0.79 0.81 69.0 7.71E-05 235.1 3.91E-02 0.77 0.81 70.0 6.66E-05 236.2 3.39E-02 0.76 0.82 71.0 5.80E-05 235.4 2.94E-02 0.76 0.83 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 72.0 5.12E-05 231.1 2.55E-02 0.77 0.84 KM KG/CU-M K TORR RATIO RATIO 73.0 4.55E-05 224.6 2.20E-02 0.79 0.85 74.0 4.06E-05 216.4 1.89E-02 0.81 0.86 20.0 8.51E-02 210.0 3.85E 01 0.96 0.93 75.0 3.59E-05 209.2 1.62E-02 0.83 0.87 21.0 6.94E-02 219.8 3.29E 01 0.92 0.93 76.0 3.15E-05 202.8 1.38E-02 0.84 0.87 22.0 5.80E-02 225.9 2.82E 01 0.90 0.93 77.0 2.73E-05 198.2 1.17E-02 0.85 0.88 23.0 4.98E-02 226.5 2.43E 01 0.91 0.93 78.0 2.34E-05 195.2 9.84E-03 0.85 0.88 24.0 4.40E-02 220.2 2.09E 01 0.94 0.94 79.0 1.94E-05 198.8 8.31E-03 0.83 0.89 25.0 3.86E-02 214.8 1.79E 01 0.96 0.94 80.0 1.64E-05 198.9 7.03E-03 0.82 0.90 26.0 3.32E-02 213.2 1.52E 01 0.97 0.93 81.0 1.42E-05 193.9 5.93E-03 0.86 0.92 27.0 2.81E-02 215.0 1.30E 01 0.96 0.92 82.0 1.22E-05 189.7 4.98E-03 0.88 0.93 28.0 2.33E-02 222.1 1.11E 01 0.93 0.92 83.0 1.04E-05 186.4 4.18E-03 0.90 0.93 29.0 1.95E-02 228.3 9.59E 00 0.91 0.92 84.0 8.80E-06 184.1 3.49E-03 0.92 0.94 30.0 1.67E-02 230.0 8.27E 00 0.91 0.92 85.0 7.41E-06 182.4 2.91E-03 0.93 0.94 31.0 1.43E-02 232.0 7.15E 00 0.91 0.92 86.0 6.19E-06 181.9 2.43E-03 0.94 0.94 32.0 1.23E-02 233.3 6.18E 00 0.90 0.93 87.0 5.15E-06 182.1 2.02E-03 0.94 0.94 33.0 1.05E-02 236.7 5.35E 00 0.91 0.93 88.0 4.27E-06 183.1 1.68E-03 0.93 0.95 34.0 9.09E-03 237.0 4.64E 00 0.92 0.93 35.0 7.83E-03 238.7 4.03E 00 0.93 0.93 36.0 6.75E-03 240.5 3.50E 00 0.93 0.93 37.0 5.80E-03 243.4 3.04E 00 0.93 0.94 38.0 5.02E-03 245.0 2.65E 00 0.93 0.94 39.0 4.34E-03 247.0 2.31E 00 0.94 0.93 40.0 3,79E-03 246.8 2.01E 00 0.95 0.94 41.0 3.29E-03 248.0 1.76E 00 0.95 0.93 42.0 2.84E-03 251.0 1.54E 00 0.95 0.93 43.0 2.47E-03 252.5 1.34E 00 0.95 0.93 44.0 2.13E-03 256.4 1.18E 00 0.94 0.93 45.0 1.84E-03 260.6 1.03E 00 0.93 0.92 46.0 1.59E-03 265.3 9.09E-01 0.93 0.92 47.0 1.38E-03 269.5 8.01E-01 0.92 0.92 48.0 1.18E-03 278.8 7.09E-01 0.89 0.92 49.0 1.04E-03 280.5 6.28E-01 0.90 0.93 50.0 9.21E-04 281.0 5.57E-01 0.89 0.93 51.0 8.25E-04 278.1 4.94E-01 0.91 0.94 52.0 7.52E-04 269.9 4.37E-01 0.94 0.94 53.0 6,86E-04 260.7 3.85E-01 0.97 0.94 54.0 6.20E-04 253.1 3.38E-01 0.98 0.93 55.0 5.56E-04 246.8 2.96E-01 0.99 0.92 56.0 4.96E-04 241.1 2.58E-01 1.00 0.91 57.0 4.40E-04 236.1 2.24E-01 1.00 0.90 58.0 3.86E-04 233.3 1.94E-01 0.99 0.89 59.0 3.33E-04 234.4 1.68E-01 0.96 0.88 60.0 2.91E-04 232.3 1.46E-01 0.95 0.87 8 _ LTITUOC VS. IOOITn IRIO 8 TITUC w. TVOsrIP _ 16 U.S. S70. alm. 8 8 8 8 8 8 8. 8 t 8 *81 8 8* I* 8' 8'8~,~46 46

ITO3T-STATI(. NASA 14.47 FLIGHT PAPAMETERS ILTITUDE DENSITY TEMP, PRESSURE DENSITY PRESSURE 23 MAY 1965 ALTITUDE: 145.2 KM KM KG/CU-A K TOUR RATIO RATIO 02:02:01.000 GMT HORIZONTAL VELOCITY: N/A ASCENSIJN ISLAND FLIGHT TIE: 360 SEC 66.0 1.66E-34 233,C 8.33E-02 1.13 1.12 LAT 7 DEG 58 MIN S PRECESSION PERIC;O: /A 67.j 1.47E-'4 227.6 7.21E-02 1.13 1.12 LONG 14 DEG 25 MIN w $TA61LIZED ROLL RATE:, PO RPS 6d.0 1.30E-04 221.8 6.21E-02 I.14 1.11 TRACKING MODE: DOVAP 69.0 1,13E-U4 219.2 5.34F-02 1.13 1.11 7J.0 9.86E-05 215.4 4.58E-02 1.13 1.11 71.0 6.63E-35 210.4 3.91F-02 1.13 1.10 PRESSURE RAT13 = P/P STD. 72.0 7.56E-35 204.5 3.33E-02 1.14 1.10 DENSITY RATIP RHO/RHO STJ. 73.0 6.62E-05 197.8 2.82C-02 1.14 1.C9 74.0 5.77E-U5 191.2 2.38E-02 1.15 1.08 75,0 4.88E-05 189.7 1.99E-02 1.12 1.07 76.0 4.06E-05 191.4 1.67E-02 1.09 1.06 ALTITUDE DENSITY TEMP. PRFSSURE DENSITY PRESSURE 77. 3.32E-05 197.2 1 41E-02 1.03 1.06 KM KG/CU-M K TORR RATIO RATIO 76.0 2.72E-05 203.8 1.19F-02 0.99 1.C7 79.0 2.26E-05 208.7 1.02F-02 0.96 1.09 25.0 3.89E-02 220,4 1.85E 01 0.97 0,97 8J.Q 1.90E-05 211.8 8.67E-03 0.95 1.11 26.0 3.25E-02 226.7 1.59E 01 0.95 0.97 81.0 1.62E-05 212.3 7.41F-03 0.98 1.15 27.0 2.74E-02 231.9 1.37E 01 a.94 0.97 8.0 1.40E-05 209.8 6.,3E-03 1.01 1.18 28.0 2.32E-02 237.1 1.18E 01 3.32 0,98 83.0 1.21E-35 207.0 5,39E-03 1.05 1.21 29.0 2.00E-02 238.5 1.03E 01 0.93 0.99 94.J 1.03E-05 207.0 4.59E-03 1.08 1.23 30.0 1.73E-02 239.4 8.92F 00 0.94 0.99 85.0 6.50E-J6 214.2 3.92E-03 1.36 1.27 31.0 1.51E-02 238.0 7,74E 00 0.96 1.00 86.0 7.18E-06 217.4 3,36E-03 1.09 1.31 32.0 1.30E-32 243.0 6.72E 00 3.96 1.01 87.0 6.21E-2)6 215.6 2.98E-03 1.13 1.35 33.0 1.12E-02 242.1 5.84E 00 0.97 1,01 88.0 U.44E-06 210.5 2.47E-U3 1.19 1.39 34.0 9.64E-03 244.8 5.08E 00 3.97 1.02 89.0 4.74E-06 26,.0 2.10E-03 1.24 1.42 35.0 8.27E-33 248.8 4.43E 00 3.99 1.03 9u.O 4.09E-06 203.0 1.79E-0 1.29 1.45 36.0 7.13E-03 252.2 3.87E 00 0.98 1,04 9 1.0 3.57E-06 197.0.IE-03 1.37 1.48 37.0 6.22E-03 252.9 3.39E 00 1.30 1.04 92.0 3.05E-J6 194.6 1,28E-03 1.43 1.49 38.0 5.43E-03 253.6 2.97E 00 1.01 1.05 93.0 2.60E-06 192.3 1.08E-03 1.48 1.50 39.0 4.76E-03 253.2 2.60E 00 1.03 I.C5 94.0 2.18E-06 193.1 9,07E-04 1.49 1.50 40.0 4.12E-03 256.3 2.27E 00 1.03 1.06 95.0 1.83E-06 193.0 7.64E-04 1.51 1.50 41.0 3,56E-03 260.3 2.00F 00 5.33 1.06 96.0 1.55E-36 192.7 6.43E-04 1.53 1. 49 42.0 3.06E-03 266.4 1.76E 00 1,02 1.06 97.0 1.33E-06 18B.8 5.41E-04 1.58 1.48 43.0 2.64E-03 272.5 1.55E 00 1.32 1.07 98.0 1.14E-06 184.4 4.53E-04 1.62 1.46 44.0 2.31E-03 275.4 1.37E 00 1.32 1.08 99.0 9.83E-07 178.2 3.77E-04 1.66 1.43 45.0 2.02E-03 278,8 1.21E 00 1.03 1.08 100.0 8.32E-07 174.5 3.13E-04 1.67 1. 8 46.0 1.77E-03 282.2 1.08E 00 1.04 1.09 101.0 6.98E-37 171.9 2.56E-04 1.68 1.34 47.0 1.57E-03 282.4 9.55E-01 1.05 1.10 102.0 5.31E-07 170.1 2.136-34 1.66 1.28 48.0 1.38E-33 285.4 8.48E-01 1.05 1.11 133.0 4.79E-07 169.9 1.75E-04 1.63 1.23 49.0 1.23E-23 284.6 7.54E-01 1.06.11 104. 3.92E-07 171.0 1.44E-04 1.57 1.17 50.0 1.10E-03 282.6 6.70E-01 1.07 1.12 105.0 3.19E-07 173.4 1.19E-04 1.53 1.11 51.0 9.79E-04 281.9 5.94E-01 1.38 1.13 52.0 8.76E-04 279.5 5.27E-01 1.39 1.13 53.0 7.85E-04 276.4 4.67E-01 1.11 1.13 54.0 7.06E-04 271.9 4.13E-01 1.12 1.14 55.0 6.33E-04 267,8 3.65E-01 1.13 1.14 56.0 5.64E-04 265.0 3.22E-01 1.13 1.14 57.0 5.02E-04 262.1 2.83E-01 1.14 1.14 58.0 4.49E-04 257.6 2.49E-01 1.15 1.14 59.0 3.98E-04 254.9 2.19E-01 1.15.14 60.0 3.55E-04 250.3 1,91E-01 1.16 1.14 61.0 3.14E-04 247.3 1.67F-01 1.16 1.13 62.0 2.77E-04 244.7 1.46E-01 1.16.13 63.0 2.45E-04 241.0 1.27E-01 1.15 1.13 64.0 2.16E-04 237.7 1.11E-01 1.15 1.12 65.0 1.88E-04 237.2 9.61E-02 1.13 1.12 8 LTITUI. V o0118 ITt ra TiNO 2W 18.7 --.6. 1? u.;. i0o. RTM. ~~8~~~~~~~~ 8 8 I 8 8 I.* 8 I- Ia:c~~~~~~~~ a: *C~~~~~~ea 8 ~ I'.^ u8 8 tug "i 8 6.,.NR 88 MT 10 1.80 I.4D 1'.8 I84O w088.00 20 w.08 0 -.0 200.0 — 288, 0 DENS1TT RA7IO *n.,. TEMPEARTURE ( K) 47

PITJT-STAT I C NASA 14.40 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 23 MAY 19b5 ALTITJDE: 150.0 KM. K KG/CU-M K TORR RATIO RATIO 14:00:00.000 GMT HORIZONTAL VELOCITY: 182,.7 M/SEC ASCENSIPh. ISLAND FLIGHT TIME: 390 SEC 66.0 1.63E-04 241.9 8.49E-02 1.11 1.14 LAT 7 DEG 58 MIN S PRECESSIJN PERID: N/A 67.0U 1.45E-04 236.4 7.38E-02 1.12 1.14 LONG 14 DEC 25 MIN w STABILIZED ROLL RATE: 5.88 RPS 68.0 1.29E-04 230.3 6.40E-02 1.13 1.15 TRACKING M3DE: DOVAP 69.U 1.15E-04 222.9 5.52E-02 1.15 1.15 70.0 1.02E-04 215.8 4.74E-02 1.17.15 71.0 9.05E-05 207.7 4.05E-02 1.18 1.14 PRESSURE RATIO = P/P STD. 72.0 7.91E-05 201.9 3.44E-02 1.19 1.13 DENSITY RATIO = RHO/RHO STD. 73.0 6.83E-05 197.9 2 91E-02 1.18 1.12 74.0 5.84E-05 195.3 2.46E-02 1.16 1.12 75.0 4.88E-05 197.2 2.07E-02 1.12 1.11 76.0 4.06E-05 200.4 1.75E-02 1.09 1.11 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 77.0 3.32E-05 208.1 1.49E-02 1.03 1.12 KM KG/CU-M K TORR RATIO RATI ATIO 78.0 2.79E-05 211. I.27E-02 1.01 1.13 79.0 2.41E-05 208.7 1.08E-02 1.03 1.16 25.0 3.97E-02 223.1 1.91E 01 0.99 1.00 80.0 2.10E-05 203.8 9,22E-03 1.05 1.18 26.0 3.37E-32 226.0 1.64E 01 0.99 1.00 81.0 1.84E-05 197.0 7,81E-03 1.11 1.21 27.0 2.85E-02 230.4 1.41E 01 0.97 1.00 82.0 1.55E-U5 197.5 6 59E-03 1.12 1.23 28.0 2.43E-32 233.5 1.22E 01 0.97 1.01 83.0 1.27E-05 204.2 5.59E-03 1.10 1.25 29.0 2.08E-02 236.2 1.06E 01 0.97 1.02 84.0 1.05E-05 210.4 4.76E-03 1.10 1.28 30.0 1.79E-02 237.9 9.17E 00 0.97 1.02 85.0 9.22E-36 204.1 4.05E-03 1.15 1.31 31.0 1.54E-32 2430.1 7.96E 00 0.97 1.C3 86.0 7.89E-G6 202.5 3.44E-03 1.19 1.34 32.0 1.32E-02 243.5 6.92E 00 0.97 1.04 87.0 6.55E-36 207.4 2.93E-03 1.19 1.37 33.0 1,.14E-02 245.6 6.03E 00 0.93 1.05 88.0 5.47E-06 211.9 2 50E-03 1.19 1.40 34.0 9.85E-03 247.8 5.26E 00 1.00 1.06 89.0 4.80E-06 206.0 2.13E-03 1.26 1.44 35.0 8.49E-03 251.1 4.59E 00 1.20 1.07 90.0 4.23E-36 198.3 1.81E-03 1.33 1.47 36.0 7.32E-03 254.8 4.02E 00 1.01 1.07 91.0 3.70E-06 191.2 1.52E-03 1.42 1.49 37.0 6.36E-33 257.0 3.52E 00 1.02 1.06 92.0 3.16E-06 187.9 1.28E-03 1.48 1.49 38.0 5.53E-03 259.4 3.09E 00 1.03 1.09 93.0 2.69E-06 184.8 1.07E-03 1.53 1.49 39.0 4.84E-03 260.3 2.71E 00 1.05 1.10 94.0 2.29E-36 181.1 8.93E-04 1.57 1.48 43.0 4.20E-33 263.7 2.39E 00 1.05 1.11 95.0 1.93-06 1798.7 7.43-04 1.60 0.46 41.0 3.68E-03 264.9 2.10E 00 1.06 1.12 96.0 1.62E-06 176.6 6.16E-04 1.60 1.43 42.0 3.24E-03 264.9 1.85E 00 1.,08 1.12 97.0 1.32E-06 180.0 5.12E-04 1.57 1.40 43.0 2.84E-03 266.2 1.63E 00 1.09 1.12 44.0 2.47E-33 269.9 1.44E 00 1.09 1.13 45.0 2.16E-03 272.6 1.27E 00 1.10 1.13 46.0 1.88E-03 277.1 1.12E 00 1.10 1.14 47.0 1.65E-03 279.8 9.94E-01 1.10 1.14 48.0 1.47E-03 278.4 8.82E-01 1.11 1.15 49.0 1.32E-03 274.5 7.81E-01 1.14 1.15 530.0 1.20E-03 266.7 6.89E-01 1.17 1.15 51.0 1.07E-03 263.5 6.07E-01 1.19 1.15 52.U 9.57E-04 259.1 5.34E-01 1.19 1.14 53.0 8.49E-04 256.3 4.69E-01 1.20 1.14 54.0 7.47E-04 255.5 4.11E-01 1.18 1.13 55.0 6.53E-04 256.4 3.61E-01 1.16 1.12 56.0 5.67E-04 259.2 3.17E-01 1.14 1.12 57.0 4.95E-34 261.0 2.78E-01 1.12 1.12 58.u 4.33E-04 262.4 2.45E-01 1.11 1.12 59.0 3.84E-04 260.3 2.15E-01 1.11 1.12 60.0 3.40E-34 258.4 1.89E-01 1.11 1.13 61.0 3.01E-04 256.2 1.66E-01 1.11 1.12 62.0 2.67E-34 253.2 1.46E-01 1.12 1.13 63.0 2.36E-34 250.8 1.28E-01 1.11 1.13 64.0 2.08E-04 248.9 1.12E-01 1.11 1.13 65.0 1.84E-04 245.8 9.74E-02 1.10 1.13 8 LTIT00E V. 0811DTT MT1 8 TT0O! STIreYTIJE S' ~~R~ 11 —- \9SS U.S. 30. r8."8 8 8,'C I- - 8 8 8 8 28 ""* 8.. 48

PITOT-STATIC NASA 14.168 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 09 NOVEMBER 1965 ALTITUDE; 144.3 KM KM KG/CU-M K TORR RATIO RATIO 18:40:00.000 GMT HORIZONTAL VELOCITY: 235.7 M/SEC CHURCHILL, MANITOBA, CANADA FLIGHT TIME: 383 SEC 66.0 8.53E-05 253.3 4.65E-02 0.58 0.62 LAT 58 DEG 44 MIN N PRECESSION PERIOD: N/A 67.0 7.50E-05 252,4 4.08E-02 0.58 0.63 LONG 93 DEG 49 MIN W STABILIZED ROLL RATE: N/A 68.0 6.61E-05 250.7 3.57E-02 0.58 0.64 TRACKING MODE: DOVAP 69,0 5.85E-05 247.7 3.12E-02 0.58 0.65 70.0 5.12E-05 247.3 2.73E-02 0,59 0.66 71.0 4.47E-05 247.5 2.38E-02 0.59 0.67 PRESSURE RATIO = P/P STD. 72.0 3.88E-05 249.3 2.08E-02 0.58 0.69 DENSITY RATIO: RHO/RHO STD.' 73.0 3.36E-05 251.9 1.82E-02.0.58 0.70 74,0 2.92E-05 254.1 1.60E-02 0.58 0.73 75.0 2.55E-05 255.2 1.40E-02 0.59 0.75 76.0 2.24E-05 254.9 1.23E-02 0.60 0.78 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 77.0 1.99E-05 251.5 1.08E-02 0,62 0.81 KM KG/CU-M K TORR RATIO RATIO 78.0 1.75E-05 250.4 9.44E-03 0.64 0.84 79.0 1,56E-05 245.6 8.25E-03 0.66 0.88 25.0 4.02E-02 192.9 1.67E 01 1.00 0,87 80.0 1.38E-05 242.2 7.20E-03 0.69 0.93 26.0 3.29E-02 198.2 1.40E 01 0.96 0.86 81.0 1,22E-05 238,5 6.27E-03 0.73 0.97 27.0 2.75E-02 200.0 1.18E 01 0.94 0,84 82.0 1.06E-05 238.8 5.45E-03 0.77 1.01 28.0 2.27E-02 204.9 1.00E 01 0.90 0.83 83,.0 9.30E-06 236.6 4.74E-03 0.81 1.06 29.0 1,92E-02 205.5 8.50E 00 0.89 0.82 84.0 8.16E-06 234.1 4.12E-03 0.85 1.11 30.0 1.64E-02 203.9 7.20E 00 0.89 0.80 8 5.0 7.15E'06 231.7 3.57E-r03 0.89 1.15 31.0 1.39E-02 203.8 6.10E 00 0.88 0.79 86.0 6.28E-06 228.3 3.09E-03 0.95 1.20 32.0 1.17E-02 205.2 5.17E 00 0.86 0.78 87.0 5.51E-06 224.6 2.67E-03 1.00 1.25 33.0 9.36E-03 218.6 4.41E 00 0.81 0.77 88.0 4.86E-06 219.3 2.30E-03 1.06 1.29 34.0 8.03E-03 218.3 3.78E 00 0.81 0.76 89.0 4.27E-06 214.1 1.97E-03 1.12 1.33 35.0 6.75E-03 222.8 3.24E 00 0.80 0.75 90.0 3.70E-06 211.4 1.68E-03 1.17 1.37 36.0 5.74E-03 225.3 2.79E 00 0.79 0.74 91.0 3,22E-06 207.3 1.44E-03 1.24 1.41 37.0 4.85E-03 229.9 2.40E 00 0.78 0.74 92.0 2.77E-06 205.1 1.22E-03 1.29 1.42 38.0 4.17E-03 231.0 2.07E 00 0.78 0.73 93.0 2.35E-06 205.7 1,04E-03 1.34 1.45 39.0 3.60E-03 231.2 1.79E 00 0.78 0.73 94.0 1.94E-06 212.7 8,89E-04 1.33 1.47 40.0 3.12E-03 230.5 1.55E 00 0.78 0.72 95.0 1.63E-06 216.9 7.61E-04 1.35 1.49 41.0 2.69E-03 231.0 1.34E 00 0.78 0.71 96.0 1.38E-06 220.1 6.54E-04 1.37 1.52 42.0 2.31E-03 232.6 1.16E 00 0.77 0.70 97.0 1.20E-06 217.6 5.62E-04 1.43 1,54 43.0 1.98E-03 235.0 1.00E 00 0.76 0.69 98.0 1.03E-06 217.7 4.83E-04 1.46 1.56 44.0 1.70E-03 237.3 8.69E-01 0.75 0.68 99.0 8.94E-07 215.2 4.14E-04 1.51 1,57 45.0 1.47E-03 238.2 7.54E-01 0.75 0.67 100.0 7.70E-07 214.2 3.55E-04 1.55 1.57 46.0 1.26E-03 241.4 6.55E-01 0.74 0.67 101.0 6.61E-07 213.7 3.04E-04 1.59 1.58 47.0 1.09E-03 242.9 5.70E-01 0.73 0.66 102.0 5.65E-07 214.2 2.61E-04 1.62 1.57 48.0 9.38E-04 245.9 4.97E-01 0.71 0.65 49.0 8.19E-04 245.7 4.33E-01 0.71 0.64 50.0 7.14E-04 245.7 3.78E-01 0.69 0.63 51.0 6.13E-04 249.9 3.30E-01 0.68 0.62 52.0 5.28E-04 253.9 2.89E-01 0.66 0.62 53.0 4.61E-04 254.8 2.53E-01 0.65 0.61 54.0 4.02E-04 256.2 2.22E-01 0.64 0.61 55.0 3,46E-04 261.5 1.95E-01 0.62 0.61 56.0 3.04E-04 261.8 1.71E-01 0.61 0.61 57.0 2.67E-04 262.2 1.51E-01 0.61 0.61 58.0 2.38E-04 258.6 1.33E-01 0.61 0.61 59.0 2.09E-04 258.7 1.16E-01 0.60 0.61 60.0 1.85E-04 256,6 1.02E-01 0.60 0.61 61.0 1.64E-04 253.9 8.97E-02 0.61 0.61 62.0 1.44E-04 253.4 7.86E-02 0.60 0.61 63.0 1.25E-04 255.9 6.89E-02 0.59 0.61 64.0 1.09E-04 257.6 6.05E-02 0.58 0.61 65.0 9.65E-05 255.4 5.31E-02 0.58 0.62 8 gT~fi1R. 11v 1 TO 8 LPw6T g Is T vs. TIroweI S " —-- lt2 U1S. 0O. AT". 8 8 * C C.'' ~ ~8 ~ 8' ~.40o.88.8r 1IoD l.20 I18 - 1.oo88 16..8 1. 208.08 22.18 0 240,0o 168.0 260.o0 DENSITr RATIO IN^.m. TEMPERATURE (* K) 49

PITUT-STATIC NASA 14.251 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DESITY PRESSURE 27 FEBRUARY 1966 ALTITJOE: 154.8 KM KM G/CU-3 K TORR RATIO RATIO 16:51:59.000 GMT HORIZONTAL VELOCITY: 241.2 H/SEC ASCENSION ISLAND FLIGHT TIME: 396 SEC 65.0 1.69E-U4 243.3 8.86E-02 1.01 1.03 LAT 7 DEG 58 MIN S PRECESSION PERIOD: N/A 66.0 1.48E034 242.1 7.72E-02 1.01 1.03 LONG 14 DEG 25 MIN W STABILIZED ROLL RATE: N/A 67.0 1.28E-04 243.9 6.72E-02 0.98 1.04 TRACKING M3DE: DOVAP 68.0 1.13E-04 240.6 5.86E-02 099 1.05 69.0 1.00E-04 236.4 5.09E-02 1.00 1.06 70.0 8.85E-05 231.5 4.41E-02 1.01 1.07 PRESSURE RATIO = P/P STD. 71.0 7.82E-05 226.5 3.81F-02 1.02 1.07 DENSITY RATIO = RHO/RHO STD. 72.0 6.86E-05 222.5 3.29E-02 1.03 1.08 73.0 5.97E-05 219.8 2.83F-02 1.03 1.09 74.0 5.22E-05 215.7 2.43E-02 1.04 1.10 75.0 4.51E-05 213.7 2.08E-02 1.04 1.11 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 76.0 3.87E-05 213.0 1.78E-02 1.03 1.12 KM KG/CU-M K TORR RATIO RATIO 77.0 3.29E-05 214.4 1.52E-02 1.02 1.14 78.0 2.74E-05 220.9 1.30E-02 1.00 1.16 24.0 4.86E-02 205.2 2.15E 01 1.04 0.96 79.0 2.36E-05 220.5 1.12E-02 1.00 1.20 25.0 4.02E-02 210.8 1.82E 01 1.00 0.96 80.0 2.02E-05 221.5 9.64E-03 1.01 1.24 26.0 3.32E-02 217.9 1.56E 01 0.97 0.95 81.0 1.75E-05 219.9 8.29E-03 1.05 1.28 27.0 2.71E-02 229.3 1.34E 01 0.92 0.95 82.0 1.52E-U5 217.4 7.12E-03 1.10 1.32 28.0 2.28E-02 235.6 1.1bE 01 0.91 0.96 83.0 1.31E-05 216.4 6.1E-03 1.14 1.37 29.0 2.00E-02 232.5 1.OE 01 0.93 0.96 84.0 1.12E-05 217.1 5.24E-03 1.17 1.41 33.0 1.73E-02 232.3 8.66E 00 0.94 0.96 85.0 9.55E-06 218.6 4.50E-03 1.19 1.46 31.0 1.50E-02 231.6 7.48E 00 0.95 0.97 86.0 8.16E-06 219.8 3.86E-03 1.23 1.50 32.0 1.31E-02 229.0 6.46E 00 0.96 0.97 87.0 6.37E-06 221.3 3.32E-03 1.27 1.55 33.0 1.12E-02 231.2 5.58E 00 0.97 0.97 88.0 6.05E-06 219.3 2.86E-03 1.32 1.61 34.0 9.61E-03 233.0 4.82E 00 0.97 0.97 89.0 5.14E-06 222.0 2.46E-03 1.35 1.66 35.0 8.14E-03 238.3 4.18E 00 0.96 0.97 90.0 4.42E-06 222.3 2.12E-03 1.39 1.72 36.0 6.95E-03 242.5 3.63E 00 0.96 0.97 91.0 3.79E-06 223.4 1.82E-03 1.46 1.79 37.0 5.91E-03 248.6 3.16E 00 0.95 0.97 92.0 3.27E-06 223.2 1.57E-03 1.53 1.83 38.0 5.05E-03 254.3 2.77E 00 0.94 0.98 93.0 2.81E-06 223.9 1.35E-03 1.60 1.88 39.0 4.32E-33 260.8 2.43E 00 0.93 0.98 94.0 2.42E-06 224.2 1.17E-03 1.66 1.93 40.0 3.73E-03 265.7 2.13E 00 0.93 0.99 95.0 2.08E-06 225.0 1.01E-03 1.72 1.98 41.0 3.22E-03 271.5 1.88E 00 0.93 1.00 42.0 2.82E-03 273.9 1.66E 00 0.94 1.01 43.0 2.49E-03 274.4 1.47E 00 0.96 1.01 44.0 2.23E-03 270.7 1.30E 00 0.99 1.02 45.0 1.98E-03 269.2 1.15E 00 1.01 1.02 46.0 1.74E-03 270.3 1.01E 00 1.02 1.03 47.0 1.53E-03 271.5 8.95E-01 1.02 1.03 48.0 1.34E-03 274.0 7.91E-01 1.02 1.03 49.0 1.17E-03 277.8 7.00E-01 1.01 1.03 50.0 1.03E-03 279.7 6.21E-01 1.00 1.04 51.0 9.19E-04 277.9 5.50E-01 1.01 1.04 52.0 8.28E-04 273.1 4.87E-01 1.03 1.04 53.0 7.50E-04 266.1 4.30E-01 1.06 1.04 54.0 6.77E-04 259.5 3.78E-01 1.07 1.04 55.0 5.91E-04 261.3 3.33E-01 1.05 1.04 56.0 5.08E-04 267.7 2.93E-01 1.02 1.04 57.0 4.45E-04 269.8 2.59E-01 1.01 1.04 58.0 4.01E-04 264.0 2.28E-01 1.03 1.05 59.0 3.63E-04 256.4 2.00E-01 1.05 1.04 63.0 3.26E-04 253.1 1.76E-01 1.07 1.05 61.0 2.90E-04 245.6 1.53E-01 1.07 1.04 62.0 2.53E-04 245.6 1.34E-01 1.36 1.04 63.0 2.24E-04 241.9 1.17E-01 1.05 1.03 64.0 1.94E-04 243.2 1.02E-01 1.03 1.03 8 ^Tt. sl'sTz e rn a 8 KTIt. TormrE NS. 1'.251, _N, T251 _ g- 2 U.S. SrD. AT#. i i i < *'. k'- k- c 8 8 OENITY RRT1IO P. TEERRTRE ( K) 50 50

PITUTrSTATIC NASA 14.289 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 07 AUGUST 1966 ALTITUDE: 151.7 KM KM KG/CU-M K TORR RATIO RATIO 09:48:51.000 GMT HORIZONTAL VELOCITY: 235.0 N/SEC CHURCHILL, MANITOBA, CANADA FLIGHT TIME: 394 SEC 56.0 5.45E-04 256.1 3.01E-01 1.10 1.07 LAT 58 DEG 44 MIN N PRECESSION PERIOD: N/A 57.0 4.81E-04 254.4 2.64E-0! 1.09 1.06 LONG 93 DEG 49 MIN W STABILIZED ROLL RATE: N/A 58.0 4.28E-04 253,4 2.31E-01 I.10 1.06 TRACKING MODE: OCVAP 59.0 3.78E-04 247.8 2.02E-01 1.09 1.05 60.0 3.32E-04 246.3 1.76E-01 1.08 1.05 61.0 2.,2E-04 244.3 1.54E -01 1.3E 1.04 PRESSURE RATIO = P/P STDO. 62.0 2.58E-34 240.8 1.34E-01 1,308 1.04 DENSITY RATIO RHO/RHO STD. 63.0 2.27E-04 238.0 1.16E-01 07 1.03 64.0 1.98E-04 237.0 1.01E-01 1.05 1.03 65.0 1,74E-04 234.0 8.77E-02 1.04 1.02 66.0 1.53E-94 230.4 7.59E-02 1.04 1.02 aLTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 67.0 1.34E-04 227.3 6.56E-02 1.03 1.02 KM KG/CU-M K TORR RATIO RATIO 6b.0 1.17E-04 224.5 5.66E-02 1.03 1.01 69.0 1.02E-04 221.7 4.M7E-02 1.02 1.01 15.0 1.94E-01 223.7 9.35E 01 0.99 1.03 73.0 8.98E-05 216.1 4.10E-02 1.03 1.01 16.0 1.68E-01 221.7 8.02E 01 1.01 1.03 71.0 7.88E-05 210.6 3.57E-02 1.03 1.01 17.0 1.44E-01 221.9 6.88E 01 1.01 1.04 72.0 6.99E-05 202.0 3.04E-02 1.05 1.00 18.0 1.24E-01 221.1 5.91E 01 1.02 1.04 73.0 6.12E-05 195.0 2.57E-02 1.06 0.99 19.0 1.06E-01 221.9 5.07E 01 1.02 1.04 74.0 5.32E-35 188.4 2.16E-02 1.06 0.98 20.0 9.05E-02 223.1 4.35E 01 1.02 1.05 75.0 4,58E-05 182.9 1.80E-02 1.06 0.96 21.0 7.75E-02 223.8 3.74E 01 1.02 1.05 76.0 3.89E-05 179.1 1.50E-02 1.04 0.95 22.0 6.64E-02 224.6 3.21E 01 1.03 1.06 77.0 3.31E-05 174.3 1.24E-02 1.03 0.93 23.0 5.65E-02 227.1 2.76E 01 1.03 1.06 78.0 2.80E-05 169.8 1.02E-02 1.02 0.91 24.0 4.82E-02 229.5 2.38E 01 1.33 1.07 79.0 2.34E-05 166.7 8.40E-03 1.00 0.90 25.0 4.15E-02 230.0 2.06E 01 1.03 1.08 80.0 1.94E-05 164,4 6.87E-03 0.97 0.:8 26.0 3.58E-02 230.1 1.77E 01 1.05 1.08 81.0 1.61E-05 161.5 5.60E-03 0.97 0.87 27.0 3.09E-02 230.1 1.53E 01 1.05 1.09 82.0 1.32E-05 160 3.1 4.55E-03 0.96 0.85 28.0 2.68E-02 228.9 1.32E 01 1.07 1.09 83.0 1.08E-05 158.8 3.69E-03 0.94 0.83 29.0 2.31E-02 229.1 1.14E 01 1.07 1.10 84.0 8.78E-06 158.4 3.00E-03 0.92 0.81 30.0 1.99E-02 229.5 9.84E 00 1.38 1.10 85.0 7.12E-06 158.3 2.43E-03 0.89 0.79 31.0 1.72E-02 229.1 8.49E 00 1.09 1.10 86.0 5.79E-06 157.8 1.97E-03 0.87 0.77 32.0 1.48E-02 229.7 7.32E 00 1.09 1.10 87.0 4.70E-06 157.4 1.59E-03 0.65 0.74 33.0 1.27E-02 231.2 6.32E 00 1.09 1.10 88,0 3.81E-06 157.2 1.29E-03 0.83 0.72 34.0 1.09E-02 232.9 S.47E 00 0.10 1.10 89.0 3.09E-06 156.9 1.04E-03 0.80 0.71 35.0 9.35E-03 235.0 4.73E 00 1.11 1.10 90.0 2.49E-06 157.6 8.450-04 0.79 0.69 36.0 7.99E-03 238.4 4.10E 00 1.00 1.10 91.0 2.000-06 159.1 6.85-04 0.77 0.67 37.0 6.810E-03 243.1 3.570 00 1,09 1.10 92.0 1.60E-06 161.7 5.57E-04 0.75 0.65 38.0 5.85E-03 246.5 3.11E 00 1.09 1.10 93.0 1.270-06 166.4 4.550-04 0.72 0.63 39.0 5.07E-03 248.2 2.71E 00 1.10 1.10 94.0 1-01E-06 171.9 3.74E-04 0.69 0.62 40.0 4.39E-03 250.4 2.370 00 1.10 110 95.0 7.98E-07 180,2 3,10E-04 0.66 0.61 41.0 3.82E-03 251.5 2.070 00 0.10 1.10 96.0 6.300-07 190.9 2.59E-04 0.62 0.60 42.0 3.32E-03 253.2 1.61E 00 1.11 1.10 97.0 5.08E-07 199.7 2.19E-04 0.60 0.60 43.0 2.88E-03 255.7 1.590 00 1. 1.09 98.0 4.21E-07 204.6 1.86E-04 0.60 0.60 44.0 2.500-03 258.4 1 39E 00 11 10 99.0 3.52E-07 206.4 1.58E-04 0.60 0.60 45.0 2.16E-03 262.8 1.220 00 1.10 1.09 100.0 2.98E-07 210.2 1.35E-04 0.60 0.60 46.0 1.88E-03 265.8 1.080 00 1.10 1.09 101.0 2.52E-07 212.5 1.15E-04 0.61 0.60 47.0 1.65E-03 266.9 9.49E-01 1.00 0.09 102.0 2.15E-07 213.2 9.87E-05 0.62 0.59 48.0 1.46E-03 265.9 8.360-01 1. 1.09 103.0 -07 214.6 8.46-05 0.62 0.59 49.0 1.28E-03 267.3 7.370-01 1,00 1.09 104.0 1.55E-07 217.4 7.26E-05 0.62 0.59 50.0 1.13E-03 267.0 6.50E-01 1.10 1.09 105.0 1.32E-07 219.4 6.24E-05 0.62 0.58 51.0 1.00E-03 266.0 5.730-00 1.10 1.08 106.0 1.12E-07 222.7 5.37E-05 0.62 0.57 52.0 8.890-04 263.5 5.050-01 1.11 1.08 107.0 9.550-08 225.3 4.63E-05 0.60 0.57 53.0 7.89E-04 261.2 4.440-01 1.10 1.08 008,0 8.10E-08 229.8 4.010-05 0.61 0.56 54.0 6.99-04 259.1 3.90-01 1.11 1.07 109.0 6.90E-08 233.9 3.48E-05 0.61 0.55 55.0 6.18E-04 257.4 3.43E-01 1.10 1.07 010.0 5.850-08 240.0 3.02E-05 0.60 0.55 109IY 1.0. FL 1. 97 0V.2 0.9IR 8 8 big I 8:18 81 1.. 8

PITUT-STATIC NASA 14.265 FLIGHT PARAMETERS 6LTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 26b AUGUST 1966 ALTITJDE: 148.4 KM K. KG/CU-M K TORR RATIO RATIO 19:11:00.000 GMT HORIZONTAL VELOCITY; 296.3 M/SEC WALLCPS ISLAND, VIRGINIA FLIGHT TIME: 364 SEC 51.0 9.30E-04 265.2 5.31E-01 1.03 1.01 LAT 37 DEG 50 MIN N PRECESSION PERIOD: N/A 52.0 6.25E-04 263.2 4.68E-01 1.03 1.00 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE; N/A 53.0 7.40E-04 258.0 4.11E-01 1.04 1.00 TRACKING MODE: DOVAP 54.0 6.57E-04 254.9 3.61E-01 1.04 0.99 55.0 5.80E-04 253.0 3.16E-01 1.03 0.98 56.0 5.15E-04 249.3 2.77E-01 1.04 0.98 PRESSURE RATIO = P/P STD. 57.0 4.50E-04 249.4 2.42E-01 1.02 0.97 DENSITY RATIO = RHO/RHO STD. 58.0 3.95E-04 248.3 2.11E-01 1.01 0.97 59.U 3.46E-04 247.6 1.85E-01 1.00 0.96 60.0 3.04E-04 246.0 1.61E-01 0.99 0.96 61.0 2.68E-04 243.3 1.40E-01 0.99 0.95 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 62.0 2.33E-04 243.9 1.22E-01 0.97 0.95 KM KG/CU-M K TORR RATIO RATIO 63.0 2.03E-04 244.0 1.07E-01 0.95 0.94 64.0 1.80E-04 239.6 9,29E-02 0.96 0.94 10.0 4.24E8-01 236.7 2.16E 02 1.02 1.09 65.0 1.57E-04 238.9 8.08E-02 0.94 0.94 11.0 3.848-31 225.6 1.87E 02 1.35 1.10 66.0 1.38E-04 236.1 7.O2E-02 0.94 0.94 12.0 3.43E-01 216.5 1.60E 02 1.10 1.10 67.0 1.21E-04 233.5 6.09E-02 0.93 0.94 13.0 3.02E-01 209.6 1.36E 02 1.13 1.10 68.0 1.07E-04 228.5 5.27E-02 0.94 0.94 14.0 2.60E-01 206.8 1.16E 02 1.14 1.09 69.0 9.44E-05 223.3 4.54E-02 0.94 0.94 15.0 2.17E-01 210.5 9.84E 01 1.11 1.08 70.0 8.38E-05 216.1 3.90E-02 0.96 0.94 16.0 1.82E-01 213.8 8.38E 01 1.10 1.08 71.0 7.36E-35 210.4 3.34E-02 0.96 0.94 17.0 1.54E-01 215.8 7.16E 01 1.08 1.08 72.0 6,40E-J5 206.1 2.84E-02 0.96 0.93 18.0 1.33E-01 213.2 6.11E 01 1.09 1.08 73.0 5.58E-05 200.6 2,41E-02 0.96 0.93 19.0 1.11E-01 218.3 5.22E 01 1.07 1.0b 74.0 4.78E-05 198.1 2.04E-02 0.95 0.93 20.0 9.45E-02 219.6 4.47E 01 1.06 1.08 75.0 4.10E-05 194.9 1.72E-02 0.94 0.92 21.0 8.11E-02 219.2 3.83E 01 1.07 1.08 76.U 3.50E-05 192.2 1.45E-02 0.94 0.S2 22.0 6.96E-02 218.8 3.28E 01 1.08 1.08 77.0 2.97E-05 190.2 1.22E-02 0.93 0.91 23.0 5.94E-02 219.6 2.81E 01 1.08 1.08 78.0 2.52E-05 188.0 1.02E-02 0.92 0.91 24.0 5.05E-02 221.5 2.41E 01 1.08 1.08 73.0 2.08E-05 191.0 8.56E-03 0.89 0.92 25.0 4.34E-02 221.1 2.07E 01 1.08 1.08 80.0 1.75E-05 190.6 7.19E-03 0.87 0.92 26.0 3.70E-02 222.7 1.77E 01 1.08 1.08 81.0 1.46E-05 192.0 6.04E-03 0.88 0.93 27.0 3.17E-02 223.3 1.52E 01 1 08 1.08 82.0 1.21E-05 195.0 5.08E-03 0.88 0.94 28.0 2.70E-02 225.4 1.31E 01 1.08 1.08 83.0 1.30E-05 199.3 4.29E-03 0.87 0.96 29.0 2.35E-02 222.7 1.13E 01 1.09 1.08 84.0 8.35E-06 202.2 3.64E-03 0.87 0.98 30.0 2.00E-02 224.9 9.69E 00 1.J9 1.C8 85.0 7.00E-06 204.9 3.09E-03 0.87 1.00 31.0 1.74E-02 222.2 8.33E 00 1.10 1.08 86.0 5.90E-06 206.8 2.63E-03 0.89 1.02 32.0 1.49E-02 222.9 7.16E 00 1.10 1.07 87.0 5.00E-06 207.9 2.24E-03 0.91 1.05 33.0 1.28E-02 223.0 6.15E 00 1.10 1.07 88.0 4.25E-06 208.5 1.91E-03 0.93 1.07 34.0 1.10E-02 223.0 5.28E 00 1.11 1.06 89.0 3.63E-06 208.1 1.63E-03 0.95 1.10 35.0 9.36E-03 225.4 4.55E 00 1.11 1.05 90.0 3.10E-06 237.7 1.39E-03 0.98 1.13 36.0 8.00E-03 227.2 3.91E 00 1.10 1.C5 91.0 2.65E-06 207.1 I.18E-03 1.02 1.16 37.0 6.85E-03 228.8 3.38E 00 1.10 1.04 9o.0 2.26E-06 206.8 1.01E-03 1.06 1.17 38.0 5.80E-03 233.5 2.92E 00 1.08 1.03 93.0 1.90E-06 209.8 8.59E-04 1.08 1.19 39.0 4.89E-03 240.2 2.53E 00 1.06 1.02 94.0 1.60E-06 212 9 7.34E-04 1.10 1.21 40.0 4.18E-03 244.5 2.20E 00 1.05 1.02 95.0 1.35E-06 216.2 6.29E-04 1.12 1.23 41.0 3.60E-03 247.5 1.92E 00 1.04 1.02 96.0 1.16E-06 215.8 5.39E-04 1.15 1.25 42.0 3.10E-03 251.0 1.68E 00 1.04 1.02 97.0 9.85E-37 218.2 4.63E-04.17 1.27 43.0 2.68E-03 254.1 1.47E 00 1.03 1.01 98.0 8.30E-07 222.8 3.98E-04 1.18 1.28 44.0 2.30E-03 259.7 1.29E 00 1.02 1.01 99.0 7.00E-07 228.1 3.44E-04 1.18 1.30 45.0 2.00E-03 262.5 1.13E 00 1.02 1.01 100.0 6.00E-07 233.3 2.98E-04 1.21 1.32 46.0 1.74E-03 265.6 9.95E-01 1.02 1.01 101.0 5.10E-07 235.0 2.58E-04 1.23 1.34 47.0 1.51E-03 269.9 8.78E-01 1.031 1.01 48.0 1.34E-03 268.4 7.75E-01 1.02 1.01 49.0 1.18E-03 268.9 6.83E-01 1.02 1.01 50.0 1.05E-03 266.5 6.03E-01 1.02 1.01 18 0f01i~ 0 n5E T whl 8O 1 1.0 2v. I1TmmUB0 - low U.S. 2o. 61'. ccC e B B e ~ 8 8 - * i.- ( i L:' B. B B% i't 8 %,' DENSITT RATIO,>.~, __TEHPEfRATURE (' K) 52

PITOT-STATIC NASA 14.286 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 28 AUGUST 1966 ALTITUDE: 150.7 KM KM KG/CU-M K TORR RATIO RATIO 04:23:00.000 GMT HORIZONTAL VELOCITY: 264.0 A/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 386 SEC 56.u 4.89E-04 262.8 2.77E-01 0.98 0.98 LAT 37 DEG 50 MIN N PRECESSION PERIOD: N/A 57.0 4.28E-04 264.4 2.44E-01 0.97 0.98 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: N/A 58.0 3.75E-04 265.9 2.15E-01 0.96 0.99 TRACKING MODE: DOVAP 59.0 3.29E-04 267.3 1.89E-01 0.95 0.99 60.0 2.89E-04 268.5 1.67E-01 0.94 0.99 61.0 2.57E-04 266.4 1.47E-01 0.95 1.00 PRESSURE RATIO = P/P STD. 62.0 2.29E-04 263.4 1.30E-01 0.96 1.01 DENSITY RATIO = RHO/RHO STD. 63.0 2.09E-04 253.6 1.14E-01 0.98 1.01 64.0 1.89E-04 245.2 9.98E-02 1.01 1.01 65.0 1.72E-04 234.3 8.68E-02 1.03 1.01 66.0 1.55E-04 224.8 7.50E-02 1.05 1.01 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 67.0 1.38E-04 217.0 6.45E-02 1.06 1.00 KM KG/CU-M K TORR RATIO RATIO 68.0 1.23E-04 208.0 5.51E-02 1.08 0.99 69.0 1.07E-04 203.3 4,68E-02 1.07 0.97 15.0 2.14E-01 209.3 9.65E 01 1.10 1.06 70.0 9.35E-05 196.8 3.96E-02 1.07 0.96 16.0 1.82E-01 209.3 8.20E 01 1.10 1.06 71.0 8.01E-05 193.6 3.34E-02 1.05 0.94 17.0 1.54E-01 210.3 6.98E 01 1.08 1.05 72.0 6.84E-05 190.6 2.81E-02 1.03 0.92 18.0 1.29E-01 213.9 5.94E 01 1.06 1.05 73.0 5.82E-05 187.8 2.35E-02 1.01 0.91 19.0 1.09E-01 216.2 5.08E 01 1.05 1.05 74.0 4.91E-05 186.2 1.97E-02 0.98 0.90 20.0 9.20E-02 219.2 4.34E 01 1.03 1.05 75.0 4.11E-05 185.9 1.65E-02 0.95 0.88 21.0 7.85E-02 220.1 3.72E 01 1.04 1.05 76.0 3.42E-05 186.8 1.38E-02 0.91 0.87 22.0 6.69E-02 221.5 3.19E 01 1.04 1.05 77.0 2.82E-05 189.8 1.15E-02 0.88 0.87 23.0 5.70E-02 223.2 2.74E 01 1.04 1.05 78.0 2.34E-05 192.1 9.68E-03 0.85 0.86 24.0 4.88E-02 224.0 2.35E 01 1.04 1.06 79.0 1.93E-05 196.1 8.15Er.03 0.82 0.87 25.0 4.18E-02 224.9 2.02E 01 1.04 1.06 80.0 1.61E-05 198.6 6.69E-03 0.80 0.89 26.0 3.59E-02 225.2 1.74E 01 1.05 1.06 81.0 1.35E-05 200.4 5.83E-03 0.81 0.90 27.0 3.09E-02 225.1 1.50E.01 1.05 1.06 82.0 1.14E-05 201.0 4.94E-03 0.83 0.92 28.0 2.65E-02 225.9 1.29E 01 1.06 1.07 83.0 9.58E-06 202.9 4.19E-03 0.83 0.94 29.0 2.27E-02 227.1 1.11E 01 1.06 1.07 84.0 8.10E-06 203.7 3.55E-03 0.85 0.96 30.0 1.948E-02 229.1 9.58E 00 1.05 1.07 85.0 6.85E-06 204.7 3.02E-03 0.86 0.98 31.0 1.67E-02 229.7 8.26E 0Q 1.06 1.07 86.0 5.80E-06 205.5 2.57E-03 0.88 1.00 32.0 1.44E-02 229.9 7.13E 00 1.06 1.07 87.0 4.93E-06 205.7 2.18E-03 0.90 1,.02 33.0 1.24E-02 230.6 6.16E 00 1.07 1.07 88.0 4.18E-06 206.5 1.86E-03 0.91 1.04 34.0 1.06E-02 233.1 5.32E 00 1.07 1.07 89.0 3.53E-06 208.3 1.580-03 0.93 1.07 35.0 9.10E-03 235.1 4.61E 00 1.08 1.07 90.0 3.00E-06 209.1 1.35E-03 0.95 1.10 36.0 7.78E-03 238.4 3.99E 00 1.07 1.07 91.0 2.55E-06 209.9 1.15E-03 0.98 1.13 37.0 6.69E-03 240.8 3.47E 00 1.07 1.07 90.0 2.18E-06 209.6 9.84E-04 1.02 1.15 38.0 5.75E-03 243.7 3.02E 00 1.07 1.07 93.0 1.86E-06 209.7 8.40E-04 1.06 1.17 39.0 4.97E-03 245.6 2.63E 00 1.07 1.06 94.0 1.58E-06 210.9 7.18E-04 1.08 1.19 43.0 4.30E-03 247.6 2.29E 00 1.07 1.07 95.U 1.35E-06 213.9 6.13E-04 1.12 1.20 41.0 3.73E-03 249.2 2.00E 00 1.38 1.07 96.0 1.15E-06 211.6 5.24E-04 1.14 1.22 42.0 3.24E-03 250.7 1.75E 00 1.38 1.06 97.0 9,85E-07 211.2 4,48E-04 1.17 1,23 43.0 2.83E-03 251.0 1.53E 00 1.09 1.06 98.0 8.48E-07 209.6 3.83E-04 1.20 1.24 44.0 2.46E-03 252.5 1.34E 00 1.09 1.05 99.0 7.30E-07 207.8 3.27E-04 1.24 1.24 45.0 2.15E-03 252.9 1.17E 00 1.09 1.05 100.0 6.31E-07 204.8 2.78E-04 1.27 1.23 46.0 1.88E-03 253.2 1.03E 00 1.10 1.04 101.0 5.45E-07 201.4 2.36E-04 1.31 1.23 47.0 1.65E-03 252.6 8.98E-01 1.10 1.03 102.0 4.64E-07 200.7 2.01E-04 1.33 1.21 48.0 1.44E-03 253.3 7.86E-01 1.09 1.02 103.0 3.94E-07 200.4 1.70E-04 1.34 1.19 49.0 1.26E-03 253.5 6.88E-01 1.09 1.01 104.0 3.29E-07 203.8 1.44E-04 1.32 1.17 50.0 1.10E-03 254.4 6.03E-01 1.07 1.01 105.0 2.76E-07 206.8 1.23E-04 1.30 1.15 51.0 9.55E-04 256.9 5.29E-01 1.05 1.00 106.0 2.31E-07 210.9 1.05E-04 1.28 1.12 52.0 8.33E-04 258.6 4.64E-01 1.04 0.99 107.0 1.94E-07 215.0 8.98E-05 1.26 1.10 53.0 7.30E-04 259.1 4.07E-01 1.03 0.99 108.0 1.638-07 219.8 7.728-05 1.23 1.08 54.0 6.39E-04 260.1 3.58E-01 1.01 0.98 109.0 1.36E-07 227.2 6.66E-05.19 1.06 55.0 5.60E-04 260.9 3.15E-01 1.00 0.98 110.0 1.14E-07 235.0 5.77E-05 1.16 1.05 8 ggrw~~n ~ s am RHTIO 8 MWIy fgg' To"? 8.. "~* i... Bt~~~~~~~~~~~~,9BS11 U.S. -.. laTH. "8 B 8 8 j8 8 8,.40.60.80 1 10 1.90 1.68 160.00 180.00 10.00 10.10 110. 00 0 0 0.00 DENSITY RFIT~0 psm,.'EHEPRETURE (' K) 53

PITOT-STATIC NASA 14.319 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 31 JANUARY 1967 ALTITUDE: 163.6 KM KM KG/CU-M K TORR RATIO RATIO 23:17:00.028 GMT HORIZONTAL VELOCITY: 240.0 M/SEC CHURCHILL, MANITOBA, CANADA FLIGHT TIME: 408 SEC 71..0 4.15E-05 234.0 2.398-02 0.54 0.59 LAT 58 DEG 44 MIN N PRECESSION PERIOD: 32 SEC 72.0 3.67E-05 229.0.81E-02 0.55 0.60 LONG 93 DEG 49 MIN W STABILIZED ROLL RATE: 7.14 RPS 73.0 3.20E-05 226.9 1.56E-02 0.55 0.60 TRACKING MODE: DOVAP 74.0 2.80E-05 223.6 1.35E-02 0.56 0.61 75.0 2.42E-05 222,8 1.16E-02 0.56 0.62 76.0 2.10E-05 220.9 9.99E-03 0.56 0.63 PRESSURE RATIO = P/P STD. 77.0 1.81E-05 220.4 8.59E-03 0.56 0.65 DENSITY RATIO = RHO/RHO STD.. 78.0 1.52E-05 226.0 7.4QE-03 0.55 0.66 79.0 1.26E-05 236.0 6.40E-03 0.54 0.69 80.0 1.01E-05 257.1 5.59E-03 0.51 0.72 81.0 8.70E-06 262.5 4.92E-03 0.52 0.76 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 82.0 7.60E-06 264.9 4.34E-03 0.55 0.81 KM KG/CU-M K TORR RATIO RATIO 83.0 6.85E-06 258.8 3.82E-03 0.60 0.85 84.0 6.20E-06 251.0 3.35E-03 0.65 0.90 30.0 1.56E,0'2 209.3 7.03E 00 0.85 0.78 85.0 5.558-06 245.2 2.93E-03 0.69 0.95 31.0 1.31E-02 212.2 5.99E 00 0.83 0.77 86.0 5.00E-06 237.1 2.55E-03 0.76 0.99 32.0 10.E-02 215 8 5.11E 00.81 0.77 87.0 4.48E-06 229.5 2.21E0-03 0.81 1.03 33.0 9.38E-03 216.5 4.37E 00 0.81 0.76 88.0 4.00E-06 221.9 1.91f-03 0.87 1.07 34.0 8.00E-03 217.2 3.74E 00 0.81 0.75 89.0 3.55E-06 214.7 1.64E-03 0.93 1.11 35.0 6.80E-03 218.8 3.20E 00 0.80 0.74 90.0 3.16E-36 206.0 1.40E-03 1.00 1 14 36.0 5.72E-03 223.2 2.75E 00 0.79 0.74 91.0 2.78E-06 198.7 1.19E-03 1.07 1 17 37.0 4.81E-03 228.6 2.37E 00 0.77 0.73 92.0 2.40E-06 194.4 1.01E-03.12 1.17 38.0 4.10E-03 231.6 2.05E 00 0.76 0.72 93.0 2.07E-06 189.7 8.46E-04 1.18 1.17 39.0 3.51E-03 234.0 1.77E 00 0.76 0.72 94.0 1.78E-06 184.8 7.08E-04 1.22 1 17 40.0 3.03E-03 234.8 1.53E 00 0.76 0.71 95.0 1.50E-06 183.1 5.92E-04 1.24 1.16 41.0 2.63E-03 234.3 1.33E 00 0.76 0.71 96.0 1.26E-06 181.7 4.93E-04 1.25 1.14 42.0 2.25E-03 237.4 1.15E 00 0.75 0.70 97.0 1.03E-06 185.6 4.12E-04 1.22 1.13 43.0 1.91E-03 243.0 1.OOE 00 0.73 0.69 98.0 8.50E-07 188.4 3.45E-04 1.21 1.11 44.0 1.60E-03 253.2 8.73E-01 0.71 0.69 99.0 7.07E-07 190.1 2.90E-04 1.20 1.10 45.0 1.36E-03 261.3 7.66E-01 0.69 0.68 100.0 6.05E-07 186.4 2.43E-04 1.22 1.07 46.0 1.19E-03 262.6 6.73E-01 0.70 0.68 101.0 5.07E-07 186.2 2.03E-04 1.22 1.05 47.0 1.05E-03 261.8 5.92E,01 0.70 0.68 102.0 3.92E-07 203.1 1.71E-04 1.12 1.03 48.0 9.40E-04 256.9 5.20E-01 0.71 0.68 103.0 3.22E-07 210.7 1.46E-04 1.10 1.02 49.0 8.37E-04 252.8 4.56E-01 0.72 0.67 104.0 2.65E-07 219.5 1.25E-04 1.06 1.02 50.0 7.41E-04 249.8 3.99E-01 0.72 0.67 105.0 2.18E-07 230.3 1.08E-04 1.03 1.01 51.0 6.56E-04 246.4 3.48E-01 0.72 0.66 106.0 1.79E-07 244.0 9.41E-05 0.99 1.01 52.0 5.75E-04 245.2 3.04E-01 0.72 0.65 107.0 1.46E-07 262.5 8.25E-05 0.95 1.01 53.0 5.08E-04 241.8 2.65E-01 0.72 0.64 108.0 1.23E-07 275.5 7.30E-05 0.93 1.02 54.0 4.48E-04 238.4 2.30E-01 0.71 0.63 109.0 1.05E-07 287.0 6.49E-05 0.92 1.04 55.0 3.90E-04 237.9 2.00E-01 0.70 0.62 110.0 8.93E-08 301.6 5.80E-05 0.91 1.05 56.0 3.40E-04 236.9 1.73E-01 0.68 0.62 111.0 7.65E-08 316.4 5.21E-05 0.92 1.07 57.0 2.94E-04 237.8 1.51E-01.0.67 0.60 112.0 6.60E-08 331.2 4.71E-05 0.92 1 09 58.0 2.53E-04 240.2 1.31E-01 0.65 0.60 113.0 5.70E-08 347.9 4.27E-05 0.93 1.11 59.0 2.19E-04 241.4 1.14E-01 0.63 0.59 114.0 4.93E-08 366.8 3.90E-05 0.93 1.13 60.0 1.90E-04 242.2 9.91E-02 0.62 0.59 115.0 4.30E-08 385.2 3.57E-05 0.93 1.15 61.0 1.65E-04 242.9 8.63E-02 0.61 0.58 116.0 3.74E-08 407.6 3.28E-05 0.93 1.18 62.0 1.45E-04 240.7 7.52E-02 0.61 0.58 11'7.0 3.29E-08 428.2 3.03E-05 0.93 1.20 63.0 1.27E-04 239.0 6.54E-02 0.60 0.58 118.0 2.90E-08 450.6 2.81E-05 0.93 1.23 64.0 1.13E-04 233.1 5.67E-02 0.60 0.58 119.0 2.57E-08 473.5 2.62E-05 0.93 1.27 65.0 9.95E-05 229.0 4.91E-02 0.60 0.57 120.0 2.27E-08 501.1 2.45E-05 0.93 1.30 66.0 8.52E-05 231.2 4.24E-02 0.58 0.57 121.0 2.02E-08 528.2 2.30E-05 0.96 1,33 67.0 7.28E-05 234.4 3.68E-02 0.56 0.57 122.0 1.79E-08 561.1 2,16E-05 0.97 1.36 68.0 6.23E-05 237.7 3.19E-02 0.55 0.57 123.0 1.58E-08 600.7 2.04E-05 0.98 1.39 69.0 5.40E-05 238.4 2.77E-02 *0.54 0.58 124.0 1.39E-08 647.7 1.94E-05 0.97 1.43 70.0 4.70E-05 238.0 2.41E-02 0.54 0.58 125.0 1.22E-08 702.9 1.85E-05 0.95 1.47 a8 7lTfUE V. POCITY lD 8 giy8. 08F8o8m8 - D2 U.S. o70. TM. 8 8 8 * d s 8 8 8 8 r~~ r~ =~.

PITJT-STATIC NASA 14.318 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 01 FEBRUARY 1967 ALTITUDE: 164.7 KM KM KG/CU-M K TORR RATIO RATIO 05:38:00.426 GMT HORIZONTAL VELOCITY: 235.0 M/S'EC CHURCHILL, MANITOBA, CANADA FLIGHT TIME: 412 SEC 71.0 4.10-05 219.6 1.94E-02 0.5 0.55 LAT 58 DEG 44 MIN N PRECESSION PERIOD: 52 SEC 72.0 3.51E-05 220.4.67E-02 053 0.55 LONG 93 DEG 49 MIN W STABILIZED ROLL RATE: 4.61 RPS 73.0 2.92E-5 228.2 1.44E-02 0.50 0.55 TRACKING MODE: DOVAP 74.0 2.46E-05 234.5 1,.24E-02 0.49 0.56 75.0 2.09E-05 239.8 1.08E-02 0.48 0.58 76.0 1.79E-05 243.9 9.40E-03 0.48 0.60 PRESSURE RATIO = P/P STE. 77.0 1.54E-05 247.5 8.21E-03 0.48 0,62 DENSITY RATIO = RHO/RHO STD. 78.0 1.35E-05 246.7 7.17E-03 0.49 0.64 79.0 1.20E-05 242.2 6.26E-03 0.51 0.67 80.0 1.06E-05 238.7 5.45E-,03 0.53 0.70 81.0 9.00E-06 245,0 4.75E-03 0.54 0.74 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 82.0 7.53E-06 256.3 4.16E-03 0.55 0.77 KF KG/CU-M K TORR RATIO RATIO 83.0 6.40E-06 265.5 3.66E-03 0.56 0.82 84.0 5.60E-06 267.8 3.23E-03 0.59 0.87 30.0 1.57E-02 209.7 7.09E 00 0.85 0.79 85.0 5.09E-06 259.7 2.85E-03 0.64 0.92 31.0 1.34E-02 209.1 6.03E 00 0.85 0.78 86.0 4.67E-06 248.4 2.50E-03 0.71 0.97 32.0 1.13E-02 211.1 5.14E 00 0.83 0.77 87.0 4.30E-06 235.1 2.18E-03 0.78 1.02 33.0 9.50E-03 214.2 4.38E 00 0.82 0.76 88.0 3.95E-06 221.2 1.88E-03 0.86 1.06 34.0 7.94E-03 219.2 3.75E 00 0.80 0.75 89.0 3.60E-06 207.9 1.61E-03 0.94 1.09 35.0 6.73E-03 221.9 3.22E 00 0.80 0.75 90.0 3.23E-06 196.7 1.37E-03 1.02 1.11 36.0 5.76E-03 222.7 2.76E 00 0.79 0.74 91.0 2.82E-06 189.7 1.15E-03 1.08 1.13 37.0 4.93E-03 223.7 2.38E 00 0.79 0.73 92.0 2.40E-06 186.9 9.66E-04 1.12 1.12 38.0 4.23E-03 224.2 2.04E 00 0.79 0.72 93.0 2.00E-06 187.9 8.09E-04 1.14 1.12 39.0 3.61E-03 226.2 1.76E 00 0.78 0.71 94.0 1.61E-06 196.3 6.81E-04 1.10 1.13 40.0 3.08E-03 228.6 1.52E 00 0.77 0.71 95.0 1.30E-06 206.2 5.77E-04 1.07 1.13 41.0 2.63E-03 231.1 1.31E 00 0.76 0.70 96.0 1.13E-06 201.6 4.91E-04 1.12 1.14 42.0 2.24E-03 234.8 1.13E 00 0.75 0.69 97.0 9.58E-07 201.8 4.16E-04.1.14 1.14 43.0 1.91E-03 238.9 9.83E-01 0.73 0.68 98.0 8.34E-07 196.3 3.53E-04 1.18 1.14 44.0 1.62E-03 245.0 8.55E-01 0.72 0.67 99.0 7.19E-07 191.9 2.97E-04 1.22 1.13 45.0 1.37E-03 253.0 7.47E-01 0.70 0.67 100.0 5.96E-07 195.1 2.51E-04 1.20 1.11 46.0 1.15E-03 264.7 6.56E-01 0.67 0.67 101.0 4.83E-07 204.0 2.12E-04 1.16 1.10 47.0 9.89E-04 271.4 5.78E-01 0.66 0.67 102.0 4.02E-07 208.7 1.81E-04 1.15 1.09 48.0 8.74E-04 271.3 5.11E-01 0.66 0.67 103.0 3.45E-07 207.5 1.54E-04 1.17 1.08 49.0 7.90E-04 264.8 4.51E-01 0.68 0.66 104.0 2.94E-07 207.6 1.31E-04 1.18 1.07 50.0 7.20E-04 255.3 3.96E-01 0.70 0.66 105.0 2.53E-07 205.6 1.12E-04 1,19 1.05 51.0 6.46E-04 249.0 3.46E-01 0.71 0.66 106.0 2.12E-07 209.2 9.55E-05 1.18 1.02 52.0 5.72E-04 245.5 3.02E-01 0.71 0.65 107.0 1.73E-07 219.8 8.19E-05 1.12 1.00 53.0 4.98E-04 245.9 2.64E-01 0.70 0.64 108.0 1.34E-07 246.1 7.10E-05 1.02 0.99 54.0 4.42E-04 241.4 2.30E-01 0.70 0.63 109.0 9.55E-08 306.0 6.29E-05 0.84 1.00 55.0 3.99E-04 232.1 1.99E-01 0.71 0.62 110.0 7.35E-08 359.9 5,70E-05 0.75 1.03 56.0 3.50E-04 228.7 1.72E-01 0.70 0.61 111.0 6.17E-08 392.7 5.22F-05 0.74 1.07 57.0 3.02E-04 228.9 1.49E-01 0.68 0.60 112.0 5.27E-08 424.0 4.81E-05 0.74 1.11 58.0 2.59E-04 230.7 1.29E-01 0.66 0.59 113.0 4.60E-08 450.4 4.46E-05 0.75 1.16 59.0 2.24E-04 230.7 1.11E-01 0.65 0.58 114.0 4.09E-08 471.6 4,15E-05 0.77 1.21 60.0 1.95E-04 229.0 9.62E-02 0.64 0.57 115.0 3.63E-08 496.4 3.88E-05 0.79 1.26 61.0 1.66E-04 232.7 8.32E-02 0.61 0.56 116.0 3.23E-08 522.9 3.64E-05 0.80 1.30 62.0 1.42E-04 235.7 7.21E-02 0.59 0.56 117.0 2.90E-08 547.6 3.42E-05 0.82 1.36 63.0 1.23E-04 236.1 6.26E-02 0.58 0.55 118.0 2.59E-08 578.3 3.23E-05 0.83 1.42 64.0 1.08E-04 233.2 5.42E-02 0.57 0.55 119.0 2.31E-08 613.6 3.05E-05 0.84 1.47 65.0 9.46E-05 230.4 4.70E-02 0.57 0.55 120.0 2.09E-08 643.5 2.90E-05 0.86 1.53 66.0 8.25E-05 228.4 4.06E-02 0.56 0.54 121.0 1.89E-08 677.0 2.76E-05 0.90 1.59 67.0 7.19E-05 226.2 3,50E-02 0,55 0.54 122.0 1.72E-08 709.5 2.63E-05 0.93 1.65 68.0 6.19E-05 226.6 3.02E-02 0.54 0.54 123.0 1.55E-08 752.6 2.51E-05 0.96 1.71 69.0 5.32E-05 227.6 2.61E-02 0.53 0.54 124.0 1.42E-08 787.2 2./1E-05 0.99 1.77 70.0 4.60E-05 227.3 2.25E-02 0.53 0.54 125.0 1.30E-08 825.5 2.31E-05 1.02 1.83 J&8 *oe 18.3138. 10W5113 83018 8 gULT7 VS. TEON RW I R'.31I'.31 ~~~~~I <I~~~~~I.-W' — 8. * ~ 8 81 8 8 55

PITOT-STATIC NASA 14.316 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 01 FEBRUARY 1967 ALTITUDE: 160.0 KM KM KG/CU-S K TORR RATIO RATIO 08:25:59.803 GMT HORIZONTAL VELOCITY: 167.0 M/SEC CHURCIILL, MANITOBA, CANADA FLIGHT TIME: 406 SEC 71.0 3.91E-05 231.9 1.95E-02 0.51 0.55 LAT 58 DEG 44 HIN N PRECESSION PERIOD: 44 SEC 72.0 3.42E-05 229.4 1.69E-02 0.51 0.56 LONG 93 DEG 49 MIN W STABILIZED ROLL RATE: 5.5a RPS 73.0 2.99E-05 226.7 1.46E-02 0.52 0.56 TRACKING MODE: DOVAP 74.0 2.58E-05 226.7 1.26E-02 0.51 0.57 75.0 2.21E-05 228.6 1.09E-02 0.51 0.58 76.0 1.89E-05 231.2 9.41E-03 0.51 0.60 PRESSURE RATIO = P/P STD. 77.0 1.49E-05 255.6 8.20E-03 0.46 0.62 DENSITY RATIO = RHO/RHO STD. 78.0 1.22E-05 275.3 7.24E-03 0.44 0.65 79.0 1.10E-05 270.2 6.40E-03 0.47 0.69 80.0 9.80E-06 268.0 5.66E-03 0.49 0.73 81.0 8.75E-06 26.4.9 4.99E-03 0.53 0.77 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 82.0 7.80E-06 261.9 4.40E-03 0.57 0.82 KM KG/CU-M K TORR RATIO RATIO 83.0 6.94E-06 259.1 3.87E-03 0.60 0.87 84.0 6.10E-06 259.2 3.41E-03 0.64 0.92 30.0 1.53E-02 211.5 6.97E 00 0.83 0.78 85.0 5.46E-06 254.4 2.99E-03 0.68 0.97 31.0 1.29E-32 214.0 5.95E 00 0.82 0.77 86.0 4.94E-06 246.3 2.62E-03 0.75 1.02 32.0 1.09E-02 216.5 5.08E 00 0.80 0.76 87.0 4.48E-06 236.6 2.28E-03 0.81 1.07 33.0 9.26E-03 218.1 4.35E 00 0.80 0.76 88.0 4.05E-36 226.8 1.98E-03 0.88 1.11 34.0 7.91E-33 218.7 3.73E 00 0.80 0.75 89.0 3.65E-06 216.6 1.70E-03 0.96 1.15 35.0 6.82E-03 217.2 3.19E 00 0.81 0.74 90.0 3.30E-06 204.7 1.45E-03 1.04 1.18 36.0 5.83E-03 217,.6 2.73E 00 0.80 0.73 91.0 2.951-06 193.8 1.23E-0S 1.13 1.21 37.0 4.94E-03 220.1 2.34E 00 0.79 0.72 92.0 2.54E-6 189.3 1.04E3 104E-03 1.19 1.21 38.0 4.19E-03 222.8 2.01E 00 0.76 0.71 93.0 2.07E-06 195.4 8.71E-04 1.18 1.21 39.0 3.54E-03 226.9 1.73E 00 0.76 0.70 94.0 1.70E-06 201.3 7.37E-04 1.16 1.22 40.0 3.02E-03 229.4 1.49E 00 0.76 0.69 95.0 1.44E-06 201.6 6.25E-04 1.19 1.23 41.0 2.56E-03 234.0 1.29E 00 0.74 0.69 96.0 1.25E-06 196.6 5.29E-04 1.24 1.23 42.0 2.20E-03 235.9 1.12E 00 0.74 0.68 97.0 1.07E-06 193.9 4.47E-04 1.27 1.22 43.0 1.91E-03 235.5 9.69E-01 0.73 0.67 98.0 9.35E-07 186.4 3.75E-04 1.33 1.21 44.0 1.62E-03 241.0 8.41E-01 0.72 0.66 99.0 7.70E-07 189.8 3.15E-04 1.30 1.09 45.0 1.36E-03 250.3 7.33E-01 0.69 0.65 100.0 6.50E-07 188.7 2.64E-04 1.31 1.17 46.0 1.15E-33 259.4 6.42E-01 0.67 0.65 101.0 5.52E-07 186.3 2.22E-04 1.33 1.15 47.0 9.96E-04 263.3 5.65E-01 0.66 0.65 102.0 4.61E-07 186.8 1.86E-04 1.32 1.12 48.0 8.72E-04 264.7 4.97E-01 0.66 0.65 103.0 3.80E-07 190.1 1.56E-04 1.29 1.09 49.0 7.72E-04 263.2 4.38E-01 0.67 0.65 104.0 3.06E-07 199.2 1.31E-04 1.23 1.07 50.0 6.89E-04 259.3 3.85E-01 0.67 0.64 105.0 2.47E-07 209.9 1.12E-04 1.17 1.04 51.0 6.22E-04 251.9 3.37E-01 0.69 0.64 106.0 2.02E-07 220.1 9.58E-05 1.12 1.02 52.0 5.59E-04 244.8 2.95E-01 0.70 0.63 107.0 1.68E-07 228.4 8.26E-05 1.09 1.01 53.0 5.02E-04 237.1 2.56E-01 0.71 0.62 108.0 1.45E-07 229.0 7.15E-05 1.10 1.00 54.0 4.48E-04 230.1 2.22E-01 0.71 0.61 109.0 1.28E-07 224.3 6.18E-05 1.12 0.99 55.0 3.96E-04 224.6 1.92E-01 0.71 0.60 110.0 1.15E-07 214.8 5.32E-05 1.17 0.96 56.0 3.40E-34 225.4 1.65E-01 0.68 0.59 111.0 9.90E-08 213.9 4.56E-05 1.18 0.94 57.0 2.91E-04 227.0 1.42E-01 0.66 0.57 112.0 7.35E-08 249.7 3.95E-05 1.03 0.92 58.0 2.48E-04 230.0 1.23E-01 0.64 0.56 113.0 5.52E-08 294.3 3.50E-05 0.90 0.91 59.0 2.12E-04 232.8 1.06E-01 0.61 0.55 114.0 4.37E-08 334.6 3.15E-05 0.82 0.92 60.0 1.81E-04 236.3 9.21E-02 0.59 0.55 115.0 3.56E-08 374.1 2.87E-05 0.77 0.93 61.0 1.53E-04 243.1 8.01E-02 0.57 0.54 116.0 2.97E-08 412.3 2.64E-05 0.74 0.95 62.0 1.32E-04 245.7 6.98F-02 0.55 0.54 117.0 2.50E-08 453.9 2.44E-05 0.71 0.97 63.0 1.17E-04 241.6 6.09E-02 0.55 0.54 1d1.0 2. 16E-08 489.9 2.28E-05 0.69 1.00 64.0 1.03E-04 238.7 5.30E-02 0.55 0.54 119.0 1.87E-08 530.5 2.14E-05 0.68 1.03 65.0 9.08.E-05 235.1 4.60E-02 0.54 0.54 120.0 1.64E-08 569.7 2.01E-05 0.67 1.06 66.0 7.92E-05 233.7 3.99E-02 0.54 0.53 121.0 1.46E-08 605.1 1.90E-05 0.69 1.10 67.0 6.85E-05 234.2 3.46E-02 0.53 0.53 122.0 1.32E-08 634.7 1.8OE-05 0.72 1.13 68.0 5.93E-35 234.6 3.00E-02 0.52 0.54 123.0 1.21E-08 658.0 1.71E-05 0.75 1.17 69.0 5.13E-05 235.2 2.60E-02 0.51 0.54 124.0 1.11E-08 683.0 1.63E-05 0.78 1.20 70.0 4.46E-05 234.6 2.25E-02 0.51 0.54 125.0 1. 03E-08 701.9 1.56E-05 0.80 1.24 8 ~; sa5c100 VS. 0W1 16m110 8 s.TI-tn VS10 w. UlII ----- 116 U.3. 170. FRt. 8~:. 8 ~ - ~ 8 8 DENSITY..ATH) p~.....E E OENSITTI RflTIO P^m~r ~1EMPERR7'RE I I ) 56

PITJT-STATIC NASA 14.322 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 01 FEBRUARY 1967 ALTITUDE: 152.9 KM K "' KG/CU-M K TORR RATIO RATIO 11:58:00.289 GMT HORIZONTAL VELOCITY: 213.0 M/SEC CHURC-IILL, MANITOBA, CANADA FLIGHT TIME: 396 SEC 71.0 4.11E-05 226.3 2.00E-02 0.54 0.56 LAT 58 DEG 44 MIN N PRECESSION PERIOD: 48 SEC 72.0 3.51E-05 228.8 1.73E-02 0.53 0.57 LONG 93 DEG 49 MIN W STABILIZED ROLL RATE: 5.11 RPS 73.0 3.00E-J5 231.6 1.50E-02 0,52 0.58 TRACKING MODE: DOVAP 74.0 2.56E-05 235.2 1.30E-02 0.51 0.59 75.0 2.20E-05 237.6 1.13E-02 0.51 0.60 76.0 1.91E-05 237.9 9.79E-03 0.51 0.62 PRESSURE RATIO = P/P STD. 77.0 1.64E-05 241.1 8.52E-03 0.51 0.64 DENSITY RATIO= RHO/RHO STD. 78.0 1.41E-05 244.4 7.42E-03 0.51 0.66 79.0 1.23E-05 244.4 6.48E-03 0.52 0.69 80.0 1.10E-05 238.1 5.64E-03 0.55 0.73 81.0 9.65E-06 235.8 4.90E-03 0.58 0.76 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 82,0 8.50E-06 232.2 4.25E-03 0.62 0.79 KM KG/CU-N K TORR RATIO RATIO 83.0 7.50E-06 227.7 3.68E-03 0.65 0.82 84.0 6.60E-06 223.3 3.17E-03 0.69 0.85 30.0 1.52E-02 214.2 7.01E 00 0.83 0.78 85.0 5.80E-06 218.6 2.73E-03 0.72 0.88 31.0 1.30E-02 213.8 5.99E 00 0.82 0.77 86.0 5.05E-06 215.4 2.34E-03 0.76 0,91 32.0 1.12E-02 211.7 5.11E 00 0.82 0.77 87.0 4.42E-06 210.5 2.00E-03 0.80 0.94 33.0 9.52E-03 212.3 4.35E 00 0.82 0.76 88.0 3.86E-06 205.5 1.71E-03 0.84 0.96 34.0 8.04E-03 214.6 3.72E 00 0.81 0.75 89.0 3.34E-06 201.8 1.45E-03 0.88 0.98 35.0 6.78E-03 217.6 3.18E 00 0.80 0.74 90.0 2.89E-06 197.4 1.23E-03 0.91 1.00 36.0 5.70E-03 222.0 2.73E 00 0.79 0 73 91.0 2.48E-06 194.2 1.04E-03 0.95 1.02 37.0 4.76E-03 228.8 2.35E 00 0.76 0.72 92.0 2.11E-D06 192.2 8.74E-04 0.99 1.02 38.0 4.02E-03 234.2 2.03E 00 0.75 0.72 93.0 1.81E-06 188.3 7.34E-04 1.03 1.02 39.0 3.43E-03 237.9 1.76E 00 0.74 0.71 94.0 1.54E-06 185.3 6.15E-04 1.05 1.02 40.0 2.96E-03 239.4 1.53E 00 0.74 0.71 95.0 1.30E-06 183.3 5.13E-04 1.07 1.01 41.0 2.57E-03 239.5 1.33E 00 0.74 0.71 96.0 1.08E-06 184.3 4.29E-04 1.07 0.99 42.0 2.23E-03 239.8 1.15E 00 0.75 0.70 97.0 8.70E-07 191.7 3.59E-04 1.03 0.98 43.0 1.92E-03 242.1 I.OE 00 0.74 0.69 98.0 7.30E-07 192.3 3.02E-04 1.04 0.98 44.0 1.65E-03 245.4 8.72E-01 0.73 0.69 99.0 6.15E-07 192.1 2.55E-04 1.04 0.96 45.0 1.42E-03 248.8 7.61E-01 0.72 0.68 100.0 5.03E-07 198.3 2.15E-04 1.01 0.95 46.0 1.22E-03 253.2 6.65E-01 0.71 0.68 101.0 4.21E-07 200.6 1.82E-04 1.01 0.94 47.0 1.08E-03 250.2 5.82E-01 0.72 0.67 102.0 3.27E-07 220.7 1.55E-04 0.94 0.94 48.0 9.55E-04 247.2 5.08E-01 0.72 0.66 103.0 2.79E-07 222.8 1.34E-04 0.95 0.94 49.0 8.50E-04 242.1 4.43E-01 0.73 0.65 104.0 2.41E-07 222.3 1.15F-04 0.97 0,94 50.0 7.50E-04 238.5 3.85E-01 0.73 0.64 105.0 2.10E-07 219.7 9.94E-05 0.99 0.93 51.0 6.55E-04 237.1 3.35E-01 0.72 0.63 106.0 1.81E-07 219.3 8.55E-05 1.01 0.91 52.0 5.72E-04 235.5 2.90E-01 0.71 0.62 137.0 1.58E-07 215.8 7.35E-05 1.03 0.90 53.0 5.00E-04 233.5 2.51E-01 0.70 0.61 108.0 1.37E-07 213,4 6.30E-05 1.04 0.88 54.0 4.31E-04 234.7 2.18E-01 0.68 0.60 109.0 1.17E-07 214.1 5.40E-05 1.03 0.86 55.0 3.71E-04 236.4 1.89E-01 0.66 0.59 110.0 1.01E-07 212.5 4.62E-05 1.03 0.84 5t.0 3.20E-04 237.9 1.64E-01 0.64 0.58 111.0 8.62E-08 213.2 3.96E-05 1.03 0.81 57.0 2.74E-04 241.5 1.43E-01 0.62 0.57 112.0 7.48E-08 210.3 3.39E-05 1.05 0.78 58.0 2.33E-04 247.6 1.24E-01 0.60 0.57 113.0 6.34E-08 212.2 2.90E-05 1.03 0.75 59.0 2.02E-04 249.6 1.09E-01 0.58 0.57 114.0 5.00E-08 231.9 2.50E-05 0.94 0.73 60.0 1.80E-04 244.6 9.48E-02 0.59 0.56 115.0 3.80E-08 267.2 2.19E —05 0..82 0.71 61.0 1.60E-04 239.6 8.26E-02 0.59 0.56 116.0 3.12E-08 289.1 1.94E-05 0.77 0.70 62.0 1.40E-04 237.9 7.18E-02 0.59 0.56 117.0 2.70E-08 298.6 1.74E-05 0.76 0.69 63.0 1.21E-04 239.3 6.24E-02 0.57 0.55 118.0 2.38E-08 303.6 1.56E-05 0.77 0.68 64.0 1.03E-04 244.7 5.43E-02 0.55 0.55 119.0 2.08E-08 312.2 1.40E-05 0.76 0.68 65.0 8.97E-05 245.1 4.74E-02 0.54 0.55 120.0 1.80E-08 325.4 1.26E-05 0.74 0.67 66.0 7.90E-05 242.7 4.13E-02 0.54 0.55 121.0 1.55E-08 342.4 1.14E-05 0.73 0.66 67.0 7.02E-05 237.6 3.59E-02 0.54 0.56 122.0 1.35E-08 357.8 1.04E-05 0.73 0.65 68.0 6.24E-05 231.8 3.12E-02 0.55 0.56 123.0 1.17E-08 377.5 9.51E-06 0.72 0.65 69.0 5.50E-05 227.4 2.69E-02 0.55 0.56 124.0 1.01E-08 401.9 8.74E-06 0.71 0.64 70.0 4.80E-05 224.7 2.32E-02 0.55 0.56 125.0 8.90E-09 421.1 8.07E-06 0.70 0,64 |"*; fey^-00 ^""~II0 VS. 0T 0nTTU 8 VFLTITW VS. TSoEft8T ~ 1862 U.9. 3TO. AT". 8I* I.> 8 * 8 8 8 * __8: g8 N40.60.80 1.o0 1.28 1 160.0. 150.08 158.1 208.8- 2i200 2110.08 10.08 288. 00 OENSITT RA7IO Ap TEMERIUE. ~) 57

PITUT-STATIC NASA 14.97 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 03 AUGUST 1967 ALTITUDE: 155.3 KM KM KG/CU-M K TOPR RATIO RATIO 11:10:01.409 GMT HORIZONTAL VELUCITY: 332.3 M/SEC POINT BARROW, ALASKA FLIGHT TIME: 398 SEC 52.0 9.13E-04 233.4 5.575-01 1.14 1.19 LAT 71 DEG 21 MIN N PRECESSION PERIOD: 30 SEC 53.0 b.20E-04 280.1 4.95E-01 1.15 1.20 LONG 157 DEG 36 MIN W STABILIZED ROLL RATE: 8.40 RPS 54.0 7.38E-04 275.8 4.39E-01 1.17 1.20 TRACKING MUDE: DOVAP 55.0 6.63E-04 271.6 3.86E-01.18 1.21 56.0 5.07E-04 271.1 3.43F-01 1.18 1.22 57.0 5.20E-04 270.3 3.03F-01 1.18 1.22 PRESSURE RATIO = P/P STD. 58.0 4.60E-04 269.9 2.67F-01 I.18 1.23 DENSITY RATIO = RHO/RHO STD. 59.0 4.39E-04 268.0 2.36F-01 1.19 1.23 60.0 3.60Eb-04 269.7 2.0hE-01 1.18 1.24 61.u 3.21E-04 265.8 I.P4E-01 1.19 1.24 62.0 2.87E-04 261.9 1.62E-01 1.20 1.25 ALTITUDE DENSITY TEMP. PRESSURE CENSITY PRESSURE 63.0 2.57E-04 257.0 1.42E-01 1.21 1.26 K KG/CU-M K TORR RATIO RATIO 64.0 2.29E-04 253.0 1.25F-01 1.22 1.27 65. 2.04E-04 248.5 1.09E-01 1.22 1.27 11.0 3.60E-01 218.1 1.69E 02 0.99 0.99 66.U 1.31E-04 244.5 9.53E-02 1.23 1.28 12.0 3.08E-01 218.1 1.45E 02 0.99 0.99 67.U 1.60E-04 241.0 8.31E-02 1.23 1.29 13.0 2.63E-01 218.5 1.24E 02 0.99 1.00 68.0 1.41E-04 237.9 7.22E-02 1.24 1.29 14.0 2.25E-01 218.6 1.O6E 02 0.99 1.00 69.0 1.24E-04 234.8 6.27E-02 1.24 1.30 15.0 1.92E-01 219.4 9.C7E 01 0.98 1.00 73.0 1.10E-04 229.2 5.43E-02 1.26 1.31 15.0 1.63E-01 221.5 7.78E 01 0.98 1.00 71.0 9.65E-05 1.26 17.0 1.39E-01 222.9 6.67E 01 0.98 1.01 72.0 8.47E-05 1.27 18.0 1.18E-01 225.7 5.74E 01 0.97 1.01 73.0 7.44E-05 1.28 19.0 1.02E-01 224.5 4.93E 01 0.98 1.02 74.0 6.48F-05 1.29 20.0 8.70E-02 226.4 4.24E 01 0.98 1.02 75.0 5.62E-05 1.29 21.0 7.45E-02 227.7 3.65E 01 0.98 1.03 76,.0 4.87E-05 1.30 22.0 6.40E-02 228.5 3.15E 01 0.99 1.04 77.0 4.23E-05 1.32 23.0 5.50E-02 229.2 2.72E 01 1.00 1.04 79.0 3.66E-05 1.33 24.0 4.73E-02 230.0 2.34E 01 1.01 1.05 79.0 3.18E-05 1.35 25.0 4.08E-02 230.1 2.02E 01 1.02 1.06 80.0 2.72E-05 1.36 26.0 3.52E-02 230.2 1.75E 01 1.03 1.06 81.0 2.33E-05 I 0 27.0 3.03E-02 230.9 1.51 E 01 1.03 1.07 82.0 1.98E-05 1.43 25.U 2.60E-02 232.4 1.30F 01 1.04 1.08 83.0 1.68E-05 1.46 29.0 2.24E-02 233.3 1.13E 01 1.04 1.08 84.U 1.41E-05 1.47 33.0 1.93E-02 234.3 9.74E 00 1.05 1.08 85.0 1.17E-05 1.46 31.0 1.66E-02 235.9 8.43E 00 1.05 1.09 86.0 9.63E-06 1.45 32.0 1.43E-02 237.4 7.31E 00 1.05 1.10 33.0 1.25E-02 235.4 6.34E 00 1.08 1.10 34.0 1.08E-02 236.0 5.49E 00 1.09 1.10 35.0 9.35E-03 236.3 4.76E 00 1.11 1.10 36.0 8.05E-03 238.0 4.13E 00 1.11 1.10 37.0 6.84E-03 243.5 3.59E 00 1.10 1.10 35.0 5.84E-03 248.6 3.13E 00 1.09 1.11 39.0 5.06E-03 250.6 2.73E 00 1.09 1.11 40.0 4.32E-03 257.0 2.39E 00 1.08 1.11 41.0 3.68E-03 265.2 2.10E 00 1.06 1.12 42.0 3.18E-03 270.6 1.85E 00 1.06 1.12 43.0 2.78E-03 273.4 1.64E 00 1.07 1.13 44.0 2.43E-03 276.7 1.45E 00 1.08 1.14 45.0 2.13E-03 279.7 1.28E 00 1.08 1.15 46.0 1.88E-03 281.1 1.14E 00 1.10 1.16 47.0 1.66E-03 282.5 1.01E 00 1.11 1.16 48.0 1.47E-03 283.2 8.97E-01 1.11 1.17 49.0 1.31E-03 282.2 7.96E-01 1,.13 1.17 50.0 1.16E-03 282.9 7.07E-01 1.13 1.18 51.0 1.03E-03 282.9 6.28E-01 1.14 1.19 8 FITITIUE VS. OOITT 8BT10 8lLTITU0e W5. TWEmrum -- 02 8U.S..70. 8T#. 8 8 8 8 8 8 8 8 8 8 8* 8:,8,8 8;' 9t /J I.0MTQT' l10. 180.00 00.00 m20.00 2.40.W. o0 280.00 2m80.00 DENSITY RATIO p^'.,. ~ TEMPERATURE (' K) 58

PITOT-STATIC NASA 14.290 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 05 AUGUST 1967 ALTITUDE: 150.4 KM KM KG/CU-M K TORR RATIO RATIO 09:56:00.313 GMT HORIZONTAL VELOCITY: 344.9 M/SEC POINT BARROW, ALASKA FLIGHT TIME: 392 SEC 51.0 1.08E-03 284.4 6.62E-01 1.19 1.25 LAT 71 DEG 20.8 MIN N PRECESSION PERIOD: 32 SEC 52.0 9.62E-04 283.7 5.88E-01 1.20 1.26 LONG 157 DEG 35.5 MIN W STABILIZED ROLL RATE: 7.20 RPS 53.0 8.62E-04 281.1 5.22E-01 1.21 1.27 TRACKING MODE: DOVAP 54.0 7.75E-04 277.2 4.63E-01 1.23 1.27 55.0 6.90E-04 275.7 4.10E-01 1.23 1.28 56.0 6.13E-04 274.7 3.63E-01 1.23 1.29 PRESSURE RATIO = P/P STD. 57.0 5.50E-04 270.8 3.21E-01 1.25 1.29 DENSITY RATIO= RHO/RHO STD. 58.0 4.90E-04 268.4 2.83E-01 1.26 1.30 59.0 4.37E-04 265.4 2.50E-01 1.26 1.30 60.0 3.90E-04 261.9 2.20E-01 1.27 1.31 61.0 3.46E-04 259.6 1.93E-01 1.28 1.31 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 62.0 3.08E-04 256.1 1.70E-01 1.29 1.32 KM KG/CU-M K TORR RATIO RATIO 63.0 2.73E-04 253.3 1.49E-01 1.28 1.32 64.0 2.422-04 250.2 1.30E-01 1.29 1.32 10.0 4.54E-01 203.5 1.99E 02 1.10 1.00 65.0 2.162-04 244.9.146-01 1.29 1.33 11.0 3.72E-01 210.7 1.69E 02 1.02 0.99 66.0 1.91E-04 241.3 9.93E-02 1.30 1.33 12.0 3.10E-01 215.5 1.44E 02 0.99 0.99 67.0 1.71E-04 234.2 8.62E-02 1 32 1.34 13.0 2.60E-01 219.8 1.23E 02 0.97 0.99 68.0 1.51E-04 229.6 7,47E-02 1.32 1.34 14.0 2.20E-01 222.7 1.06E 02 0.96 1.00 69.0 1.33E-04 225.0 6.45E-02 1.33 1.34 15.0 1.86E-01 226.4 9.07E 01 0.95 1.00 70.0 1.16E-04 222.2 5.55E-02 1.33 1.34 16.0 1.59E-01 228.1 7.81E 01 0.96 1.01 71.0 1.02E-04 217.0 4.77E-02 I.34 1.34 17.0 1.36E-01 229.9 6.73E 01 0.96 1.01 72.0 8.88E-05 213.4 4.080-02 1.33 1.34 18.0 1.17E-01 233.5 5.81E 01 0.96 1.02 73.0 7.71E-05 210.0 3.49E-02 1.33 1.35 19.0 1.01E-01 230.5 5.01E 01 0.97 1.03 74.0 6.68E-05 206.5 2.976-02 1.33 1.35 20.0 8.78E-02 228.7 4.32E 01 0.99 1.04 75.0 5.80E-05 202.0 2.52E-02 1.34 1.35 21.0 7.54E-02 229.6 3.73E 01 1.00 1.05 76.0 5.03E-05 197.0 2.13E-02 1.34 1.35 22.0 6.53E-02 228.7 3.22E 01 1.01 1.06 77.0 4.37E-05 191.0 1.80E-02 136 1.35 23.0 5.67E-02 227.0 2.77E 01 1.03 1.07 78.0 3. 75E 05 186.5 1.5E-02 1.36.35 24.0 4.92E-02 225.1 2.39E 01 1.05 1.07 79.0 3.25E-05 179.4 1.26E-02 1.36 1.35 25.0 4.20E-02 227.0 2.05E 01 1.05 1.08 80.0 2. 79E-05 173.0 1.04E-02 1.39 1.34 26.0 3.58E-02 229.6 1.77E 01 1.05 1.08 81.0 2.40E-05 165.2 8.54E03 1.45 1.32 27.0 3.06E-02 231.9 1.53E 01 1.04 1.08 82.0 2.06E-05 156.5 6.940-03 1.49 1.29 28.0 2.62E-02 234.3 1.32E 01 1.04 1.09 83.0 1.72E-05 150.9 5.590-03 1.50 1.25 29.0 2.26E-02 235.1 1.14E 01 1.05 1.10 84.0 1.420-05 146.1 4.470-03 1.49 1.20 30.0 1.932-02 238.6 9.92E 00 1.05 1.10 85.0 1.15E-05 143.4 3.55E-03 1.44 1.15 31.0 1.670-02 239.4 8.61E 00 1.06 1.11 86.0 9.15E-06 142.9 2.9 0-03 1.38.10 32.0 1.470-02 235.9 7.470 00 1.08.12 87.0 7.136-06 145.6 2.24E-03 1.30 1.04 33.0 1.286-02 234.7 6.47E 00 1.10 1.12 88.0 5.580-06 148.4 1.78E-03 1.22 1 00 34.0 1.110-02 234.3 5.600 00 1.12 1.12 89.0 4.436-06 149.6 1.430-03 1,16 0.96 35.0 9.566-03 235.6 4.85E 00 1.13 1.13 9.0 3.566-06 149.0 1. -03 1.12 0.93 90.0 3.562-06 149.0 1.142-03 1.12 0.93 36.0 8.216-03 237.9 4.21E 00 1.13 1.12 91.0 2.76-06 154.4 9.18-04 1.06 0.90 91.0 2.762-06 154.4 9.182-04 1.06 0.90 37.0 7.00E-03 242.4 3.650 00 1.12 1.12 92.0 2.180-06 158.0 7.420-04 1.02 0.86 38.0 5.94E-03 249.0 3.19E 00 1.11 1.13 39.0 5.08E-03 254.6 2.79E 00 1.10 1.13 40.0 4.33E-03 262.1 2.44E 00 1.08 1.14 41.0 3.72E-03 268.7 2.15E 00 1.08 1.15 42.0 3.21E-03 275.0 1.90E 00 1.07 1.15 43.0 2.78E-03 281.3 1.68E 00 1.07 1.16 44.0 2.42E-03 287.1 1.50E 00 1.07 1.18 45.0 2.12E-03 291.7 1.33E 00 1.08 1.19 46.0 1.90E-03 289.9 1.19E 00 1.11 1.20 47.0 1.69E-03 290.2 1.06E 00 1.13 1.22 48.0 1.51E-03 289.2 9.41E-01 1.14 1.23 49.0 1.35E-03 287.9 8.37E-01 1.16 1.23 50.0 1.21E-03 285.6 7.44E-01 1.17 1.24 W a VS.,e10iITY,i, B q TIVS~. TVSTUor 8~*~~~~~~~~~~~~~~~' —~~~~~~ - 1182 U.S. 9T8. 8Th. 8 B Z i 88 8'8 i_ _ _ __________.UO.eo8 T rI 1 2. 1.50 188.88 188.88 288.1800 228.98 38.080 288.88 281.88o DENSITY RTIO,, TEMPERATURE ( K) 59

PITUT-STATIC NASA 14.344 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 17 4A;CH 1968 ALTITUDE: 148.2 KM KM KG/CU-M K TORR RATIO RATIO 06:59:01.143 GMT HORIZiNTAL VELOCITY: 366.2 M/SEC PUERTO RICO FLIGHT TIME: 383 SEC 72.0 5.53E-35 216.2 2.58E-02 3.83 0.85 LAT 18 DEG 26 MIN N PRECESSION PERIOD: N/A 73.0 4.74E-05 21.1 2.21E-02 0.82 0.85 LUNG 66 DEG 28 MIN W STABILIZED ROLL RATE: 6.08 RPS 74.0 4.06E-05 216.2 1.89E-02 0.81 0.86 TRACKING MODE: DOVAP 75.U 3.46E-05 217.6 1.62F-02 0.80 0.67 76.0 2.95E-305 219.0 1.39E-02 0.79 0.88 77.0 2.52E-05 220.3 1.20E-02 0.79 0.90 PRESSURE RATIO = P/P STD. 78.0 2.16E-05 220.9 1.03f-02 0.79 0.92 DENSITY RATIO = RHO/RHO STD. 79.0 1.84E-05 223.2 9.85F-03 3.76 0.95 80. Q 1.59E-05 222.5 7.t2E-03 0.79 C.98 81.0 1.35E-J5 225.6 6.57E-03 O.dl 1.C2 82.0 1.17E-05 224.8 5.66E-03 0.85 1.05 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 83.U 1.01E-05 224.5 4.88E-03 0,86 1.C9 KM KG/CU-M K TURR RATIO RATIO 84.0 8.73E-06 223.9 4.21E-03 0.91 1.13 85.0 7.57E-36 222.5 3.63F-03 0.95 1.17 31.0 1.34E-02 238.4 6.886E 00 0.85 0.89 86.0.60E-06 219.6 3.12F-03 1.30 1.21 32.0 1.15E-02 241.3 5.98E 00 0.85 0.90 87.0 b~.81E-06 214.0 2.68E-03 1.36 1.25 33.0 9.85E-03 245.2 5.20E 00 0.85 0.90 88.0 5.13E-36 207.0 2.29 -03 1.12 1.28 34.0 8.52E-03 247.1 4.53E 00 0.86 0.91 8:.U 4.58E-36 196.6 1.94E-03 1.20 1.31 35.0 7.34E-03 250.4 3.96E 00 0,87 0.92 90.u 4.12E-06 183.6 1.63i-03 1.30 1.32 36.0 6.35E-03 253.1 3.46E 00 0.87 0.93 91.0 3.53E-06 179.3 1,36E-03 1.36 1.33 37.0 5.50E-03 255.9 3.03E 03 0.88 0.93 92.0 2.92E-36 179.0 1.13E-03 1.36 1.31 38.0 4.77E-03 258.7 2.66E 03 0.89 0.94 93.0 2. 8- E-6 182.8 9.37E-04 1.35 1.30 39.0 4.16E-03 260.5 2.33E 00 0.90 0.95 94.0 1.93E-'6 188.6 7.64E-04 1.32 1.30 40.0 3.60E-03 264.8 2.05E 00 0.90 0.95 95.0 1.58E-06 193.6 6.59E-04 1.31 1.29 41.0 3.13E-03 268.3 1.81E 00 0.80 0.96 96.0 1.31E-06 197.1 5.56E-04 1.30 1.29 42.0 2.72E-03 272.6 1.60E 00 0.91 0.97 97.U 1.09E-06 200.5 4.71E-04 1.30 1.29 43.0 2.37E-03 276.7 1.41E 00 0.91 0.97 98.U 9.13E-J7 203.1 3.99E-C4 1.30 1.29 44.0 2.o0E-03 279.3 1.25F 00 0.92 0.99 9Y9. 7.67E-U7 205.6 3.40E-04 1.30 1.29 45.0 1.83E-03 281.5 1.11E 00 0.93 0.99 130.U 6.54E-07 205.3 2.e9E-04 1.32 1.28 46.0 1.62E-03 232.2 9.05E-01 0.95 1.00 101.0 5.57E-37 205.1 2.46E-04 1.34 1.27 47.0 1.44E-03 281.8 8.74E-01 0.96 1.01 102.0 4.76E-37 204.2 2.09P-04 1.36 1.26 48.0 1.30E-03 276.7 7.75E-01 0.98 1.01 103.0 4.30E-07 206.8 1.78E-04 1.36 1.25 49.0 1.178-03 272.0 6.85E-01 1,01 1.01 104.0 3.38E-07 208.8 1.52E-04 1.36 1.24 50.0 1.06E-03 264.9 6.05E-01 1.33 1.01 105.0 2.85E-07 211.5 1.30E-04 1.34 1.21 51.0 9.40E,04 262.9 5.32E-0101 14.01 106.0 2.38E-37 217.1 1.11E-04 1.32 1.19 52.0 8.35E-04 260.3 4.68E-01 1.04 1.00 107.0 1.98E-07 224.7 9.58E-05 1.29 1.17 53.0 7.37E-04 259.2 4.11E-01 1.04 1.00 138.u 1.59E-07 242.9 8.32E-05 1.20 1.16 54.0 6.48E-04 258.9 3.61E-01 1.33 0.99 109.0 1.23E-37 276.3 7.32=-05 1.38 1.17 55.0 5.72E-04 257.6 3.17E-,01 1.32 0.99 113.0 93.'1E-38 306.1 6.530:-05 1.01 1.18 56.0 5.07E-04 254.9 2.78E-01 1.32 0.99 111.0 8.27E-08 333.7 5.89E-05 3.99 1.21 57.0 4.51E-04 251.0 2.44E-01 1.02 0.98 112.0 7.19E-08 344.,9 5.34E-05 1.31 1.24 58.0 4.02E-04 246.0 2.13E-01 1.33 0.98 113.0 6.52E308 345.7 4.86E-05 1.36 1.26 59.0 3.608-04 239.3 1.86E-01 1.04 0.97 11.G 6.00E-38 341.3 4.41E-05 1.13 1.28 60.0 3.23E-04 231.3 1.61E-01 1.06 0.96 115.0 5.48E-08 339.2 4.00-P5 1.19 1.30 61.0 2.85E-04 226.4 1.39E-01 1.06 0.94 116.0 4.95E-38 340.9 3.6f3E-05 1.23 1.30 62.0 2.47E-04 225.3 1.208E-01 1.33 0.93 117.0 4.47E-08 342.6 3.3F -05 1.26 1.31 63.0 2.12E-04 226.3 1.03E-01 1.30 0.91 118.0 4.00E-08 348,2 3.300-05 1,29 1.32 64.0 1.86E-04 222.1 8.90E-02 0.99 0.90 119.0 3.57E-38 355.3 2.73E-05 1.30 1.32 65.0 1.63E-04 217.7 7.64E-02 0.98 0.89 123.0 3.18E-08 364.0 2.49E-05 1.33 1.32 66.0 1.41E-04 215..7 6.558-02 0.96 0.88 67.0 1.22E-04 213.3 5.60E-02 0.94 0.87 68.0 1.03E-34 216.2 4.80E-02 0.90 0.86 69.0 8.90E-05 214.2 4.11E-02 0.89 0.85 70.0 7.62E-05 214.0 3.51E-02 0.87 0.85 71.0 6.48E-05 215.4 3.01E-02 0.85 0.85 BLTITW VS.a"ron8 ra.TrTu V. TrEa1mWW A U.S. STO. aT. 8~ 8 8 8 8 8 8 -..8 ~ f; /. OEN5ITT RFATIO,ff,~ mTEMPEARTURE (' K) 60

PITOT-STATIC NASA 14.345 FLIGHT PARAMETERS ALTITU)D DENSITY TEMP. PRESSURE DENSITY PRESSURE 17 HACHr 1968 ALTITJDE: 135.8 KM KP KG/CU-M K TURR RATIO RATIO 18:45:01.100 GMT HORIZONTAL VELOCITY: 400.8 M/SEC PUERTO RICO FLIGHT TIME: 368 SEC 71.0 7.32E-05 206.9 3.26E-02 0,96 0.92 LAT 18 DEG 26 MIN N PRECESSION PERIOD: N/A 72.0 6.23E-35 206.8 2.78E-02 0.94 0.91 LONG 66 DEG 28 MIN W STABILIZED ROLL RATE: 5.95 RPS 73.0 5.29E-05 237.3 2.36E-02 0.91 0.91 TRACKING MODE: DDVAP 74.0 4.48E-U5 208.5 2.01E-02 0.89 0.91 75.0 3.82E-J5 208.4 1.71E-02 0.88 0.92 76.0 3.23E-05 210.1 1.46E-02 0.86 0.93 PRESSURE RATIO = P/P STD. 77.0 2.73E-D5 212.3 1.25E-02 0.85 0.94 DENSITY RATIO = RHO/RHO STD. 78.0 2.30E-05 215.6 1.07F-02 P.84 0.95 79.0 1.95E-05 218.1 9.16E-03 0.83 0.98 80.0 1.66E-35 223.0 7.87E-03 0.83 1.01 81.0 1.41E-U5 222.8 6.77E-03 0.65 1.05 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 82.0 1.21E-05 223.7 5.83F-03 0.88 1.08 KM KG/CU-4 K TORR RATIO RATIO 83.0 1.05E-05 222.0 5.022-03 3.91 1.12 84.0 9.34E-06 214.3 4.31F-03 0.98 1.16 30.0 1.58E-02 249.1 8.48E 00 0.86 0.94 85.0 8.26E-06 206.9 3.680-03 1.33 1.19 31.0 1.42E-02 241.5 7.39E 00 0.90 0.95 86.0 7.09E-06 205.2 3.13F-03 1.07 1.22 32.0 1.25E-02 238.3 6.42E 00 0.92 0.96 87.0 5.91E-06 209.7 2.67E-03 1.07 1.25 33.0 1.09E-02 237.1 5.57E 00 0.94 0.97 88.0 5.00E-36 211.7 2.28E-03 1.09 1.28 34.0 9.36E-03 239.5 4.83E 00 0.95 0.97 89.0 4.27E-06 211.9 1.95E-03 1.12 1.32 35.0 8.00E-03 243.7 4.20E 00 0.95 0.97 90.0 3.73E-06 207.0 1.66E-03 1.18 1.35 36.0 6.88E-03 246.9 3.66E 00 0.95 0.98 91.0 3.26E-06 201.3 1.41E-03 1.25 1.39 37.0 5.94E-03 249.6 3.19E 00 0.95 0.98 92.0 2.80E-06 198.5 1.20E-03 1.31 1.39 38.0 5.12E-03 253.2 2.79E 00 0.95 0.99 93.0 2.45E-06 191.4 1.01E-03 1.39 1.40 39.0 4.41E-03 257.6 2.45E 00 0.95 0.99 94.0 2.15E-36 182.6 8.46E-04 1.47 1.40 40.0 3.83E-03 260.4 2.15E 00 0.96 1.00 95.0 1.86E-06 175.4 7.03E-04 1.54 1.38 41.0 3.32E-03 264.1 1.89E 00 0.96 1.00 96.0 1.59E-06 169.3 5.80E-04 1.57 1.35 42.0 2.90E-03 266.3 1.66E 00 0.97 1.01 97.0 1.32E-06 167.5 4.76E-04.1.57 1.31 43.0 2.53E-03 269.1 1.47E 00 0.97 1.01 98.0 1.02E-06 179.0 3.93E-04 1.45 1.27 44.0 2.22E-03 270.7 1.29E 00 0.98 1.02 99.0 7.73E-07 198.0 3.30E-04 1.31 1.25 45.0 1.96E-03 270.8 1.14\E 00 0.99 1.02 100.0 6.40E-07 202.8 2.80E-04 1.29 1.24 46.0 1.73E-03 270.9 1.01E 00 1.01 1.02 101.0 5.35E-07 206.3 2.38E-04 1.29 1.23 47.0 1.52E-33 272.4 8.92E-01 1.01 1.03 132.0 4.41E-07 213.8 2.03E-04 1.26 1.22 48.0 1.35E-03 271.0 7.88E-01 1.02 1.03 103.0 3.64E-37 222.6 1.74E-04 1.24 1.22 49.0 1.19E-03 271 6 6.96E-01 1.03 1.03 104.0' 3.13E-07 223.1 1.50E-04 1.26 1.22 50.0 1.05E-03 272.0 6.15E-01 1.02 1.03 105.0 2.74E-07 219.5 1.30E-04 1.29 1.21 51.0 9.32E-34 273.7 5.43E-01 1.03 1.03 136.0 2.43E-07 212.4 1.1IE-04 1.35 1.19 52.0 8.30E-04 268.3 4.80E-01 1.04 1.03 107.0 2.15E-37 204.9 9.49E-05 1.40 1.16 53.0 7.38E-34 266,1 4.23E-01 1.04 1.03 138.0 1.88E-07 199.0 8.06E-05 1.42 1.13 54.0 6.52E-04 265.5 3.73E-01 1.03 1.02 109.0 1.63E-07 194.1 6.81E-05 1.43 1.09 55.0 5.80E-04 262.8 3.28E-01 1.03 1.02 110.0 1.37E-07 194.9 5.75E-r05 1.39 1.04 56.0 5.16E-04 259.8 2.89E-01 1.04 0.02 111.0 1.09E-07 207.9 4.88E-05 1.30 1.00 57.0 4.59E-34 256.5 2.54E-01 1.34 1.02 112.0 8.61E-08 225.9 4.19E-05 1.20 0.97 58.0 4.08E-34 253.0 2.22E-01 1.05 1.02 113.0 6.89E-08 245.4 3.64E-05 1.12 0.95 59.0 3.63E-04 248.8 1.94E-01 1.05 1.01 114.0 5.61E-08 264.8 3.20E-05 1.05 0.93 63.0 3.22E-04 244.8 1.70E-01 1.35 1.01 115.0 4.61E-08 285.8 2.84E-05 1,.00 0.92 61.0 2.87E-34 239.2 1.48E-01 1.36 1.00 116.0 3.86E-08 305.3 2.54E-05 0.96 0.91 62.0 2.56E-04 232.6 1.28E-01 1.07 0.99 117.0 3.30E-08 321.5 2.29E-05 3.93 0.91 63.0 2.27E-04 226.8 1.11E-01 1.7 0.98 118.0 2.85E-08 336.8 2.07E-05 0.92 0.91 64.0 1.99E-04 222,9 9.55E-02 1.06 0.97 119.0 2.50E-08 348.7 1.88E-05 0.91 0.91 65.0 1.71E-04 223.2 8.22E-02 1.02 0.96 120.0 2.20E-08 361.2 1.71E-05 0.90 0.91 66.0 1.46E-04 22-5.2 7.08E-02 0.99 0.95 67.0 1.27E-04 223.0 6.10E-02 0.98 0.94 68.0 1.12E-04 217.3 5.24E-02 0.98 0.94 69.0 9.79E-35 212.8 4.49E-02 0.98 0.93 70.0 8.50E-05 209.2 3.83E-02 0.97 0.93 Teu13 VS. I TT 8 wTITm. V aS..um mm IL -E. ss |. * * ~maIl U.. No. am. 8 1 81 8 8 B~ * Il'.' IX 61 ~ u 8: DESTI~CTO p,,TEPRIUE~H 61~"

PITOT-STATIC NASA 14.333 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 18 MARCH 1968 ALTITUDE: 148.1 KM KM KG/CU-N K TORR RATIO RATIO 07100t05.100 GMT HORIZONTAL VELOCITY:'383.6 M/SEC PUERTO RICO FLIGHT TIME: 388 SEC 73.0 6.11E-05 208.6 2.75E-02 1.06 1.06 LAT 18 DEG 26 MIN N PRECESSION PERIOD: 37 SEC 74.0 5.27E-05 205.9 2.34E-02 1.05 1.06 LONG 66 DEG 28 MIN W STABILIZED ROLL RATE: 6.53 RPS 75.0 4.47E-05 206.5 1.99E-02 1.03 1.06 TRACKING MODE: DOVAP 76.0 3.81E-05 206.1 1.69E-02 1.02 1.07 77.0 3.25E-05 205.5 1.44E-02 1.01 1.08 78.0 2.79E-05 203.4 1.22E-02 1.01 1.09 PRESSURE RATIO - P/P STD. 79.0 2.36E-05 204.1 1.04E-02 1.00 1.11 DENSITY RATIO r RHO/RHO STD. 80.0 2.03E-05 201.4 8.81E-03 1.01 1.13 81.0 1.73E-05 200,2 7.46E-03 1.04 1.15 82.0 1.47E-05 199.4 6.32E-03 1.07 1.17 83.0 1.27E-05 195.0 5.33E-03 1.10 1.19 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 84.0 1.09E-05 191.3 4.49E-03 1.14 1.21 KM KG/CU-M K TORR RATIO RATIO 85.0 9.47E-06 184.4 3.76E-03 1.18 1.22 86.0 8.09E-06 179.9 3.13E-03 1.22 1.22 32.0 1.33E-02 239.2 6.85E 00 0.98 1.03 87.0 6.79E-06 178.0 2.60E-03 1.23 1.22 33.0 1.14E-02 242.5 5.96E 00 0.98 1.03 88.0 5.63E-06 178.1 2.16E-03 1.23 1.21 34.0 9.92E-03 242.5 5.18E 00 1.00 1.04 89.0 4.65E-06 179.1 1.79E-03 1.22 1.21 35.0 8.57E-03 244.3 4.51E 00 1.01 1.05 90.0 3.82E-06 181.3 1.49E-03 1.21 1.21 36.0 7.42E-03 245.8 3.93E 00 1.02 1.05 91.0 3.20E-06 180.1 1.24E-03 1.23 1.22 37.0 6.39E-03 249.0 3.43E 00 1.02 1.05 92.0 2.63E-06 182.4 1.03E-03 1.23 1.20 38.0 5.51E-03 252.4 3.00E 00 1.03 1.06 93.0 2.18E-06 183.6 8.62E-04 1.24 1.20 39.0 4.73E-03 257.6 2.62E 00 1.02 1.06 94.0 1.80E-06 185.8 7.20E-04 1.23 1.19 40.0 4.14E-03 258.2 2.30E 00 1.03 1.07 95.0 1.49E.06 188.0 6.03E-04 1.23 1.A1 41.0 3.64E-03 257.7 2.02E 00 1.05 1.07 96.0 1.25E-06 187.8 5.06E-04 1.24 1.17 42.0 3.19E-03 258.0 1.77E 00 1.07 1.07 97.0 1.04E-06 189,4 4.24E-04 1,24 1.16 43.0 2.73E-03 265.0 1.56E 00 1.05 1.07 98.0 8.52E-07 194.5 3.57E-04 1.21 1.15 44.0 2.34E-03 272.8 1.37E 00 1.04 1.08 99.0 6.96E-07 201.4 3.02E-04 1.18 1.14 45.0 2.06E-03 273.9 1.22E 00 1.05 1.09 100.0 5.73E-07 208.0 2.57E-04 1.15 1.14 46.0 1.83E-03 272.6 1.07E 00 1.07 1.09 101.0 4.76E-07 214.1 2.19E-04 1.14 14 47.0 1.64E-03 268.6 9.49E-01 1.09 1.09 102.0 4.02E-07 217.4 1.88E-04 1.15 1.13 48.0 1.45E-03 268.0 8.37E-01 1.10 1.09 103.0 3.49E-07 214.9 1.62E-04 1.19 1.13 49.0 1.27E-03 270.1 7.39E-01 1.09 1.09 104.0 3.03E-37 212.0 1.38E-04 1.22 1.13 50.0 1.13E-03 267.9 6.52E-01 1.10 1.09 105.0 2.61E-07 210.5 1.18E-04 1.23 1.11 51.0 9,99E-04 267.2 5.75E-01 1.10 1.09 106.0 2.24E-07 209.6 1.01E-04 1.24 1.08 52.0 8.84E-04: 266.2 5.07E-01 1.10 1.09 107.0 1.89E-07 212.4 8.64E-05 1.23 1.06 53.0 7.84E-04 264.5 4.47E-01 1.10 1.08 108.0 1.58E-07 217.9 7.41E-05 1.20 1.04 54.0 6.93E-04 263.5 3.93E-01 1.10 1.08 109.0 1.31E-07 226.4 6.39E-05 1.15 1.02 55.0 6.14E-04 261.7 3.46E-01 1.09 1.08 110.0 1.15E-07 222.7 5.52E-05 1.17 1.00 56.0 5.47E-04 258.2 3.04E-01 1.10 1.08 111.0 1.01E-07 218.3 4.75E-05 1.21 0.98 57.0 4.88E-04 253.8 2.67E-01 1.11 1.07 112.0 8.47E-08 224.3 4.09E-05 1.18 0.95 58.0 4;38E-04 247.4 2.33E-01 1.12 1.07 113.0 7,00E-08 235.1 3.54E-05 1.14 0.92 59.0 3.88E-04 243.6 2.04E-01 1.12 1.06 114.0 5.62E-08 255.9 3.10E-05 1.06 0.90 60.0 3.42E-04 240.7 1.77E-01 1.12 1.06 115.0 4.58E-08 277.5 2,74E-05 0.99 0.89 61.0 2.99E-04 239.4 1.54E-01 1.11 1.04 116.0 3.81E-08 297.4 2.44E-05 0.94 0.87 62.0 2.60E-04 239.4 1.34E-01 1.09 1.04 117.0 3.20E-08 318.1 2.19E-05 0.90 0.87 63.0 2.25E-04 240.6 1.17E-01 1.06 1.03 118.0 2.76E-08 333.3 1.98E-05 0.89 0.87 64.0 1.93E-04 244.3 1.02E-01 1.03 1.03 119.0 2.41E-08 346.4 1.80E-05 0.88 0.87 65.0 1.67E-04 246.3 8.86E-02 1.00 1.03 120.0 2.14E-08 355.2 1.64E-05 0.88 0.87 66.0 1.46E-04 245.9 7.73E-02 0.99 1.04 67.0 1.29E-04 242.7 6.75E-02 0.99 1.04 68.0 1.16E-04 234.7 5.86E-02 1.02 1.05 69.0 1.03E-04 228.8 5.08E-02 1.03 1.06 70.0 9.12E-05 222.9 4.38E-02 1.04 1.06 71.0 8.05E-05 216.9 3.76E-02 1.05 1.06 72.0 7.06E-05 211.6 3.22E-02 1.06 1.06 8 n. n no8 WCIR ~1.~5 IZ -l;o U.1. 1T. am.I i sg i I I S. S. s8:8./.40.80.80 1.0 100 b 1X 1. 1.0 1 1.' l. 08.0 2.8.90 21.98 2w88. 2 80'.9 OENSITY RWTIO,^P,,.N TEMPERflTURE (' K) 62

PITOT PROBE NASA 14.187 FLIGHT PARAMETERS 08 AUGUST 1968 ALTITUDE: 152.7 KM 19:35:00.109 GMT HORIZONTAL VELOCITY: 287.4 H/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 389 SEC LAT 37 DEG 50 MIN N PRECESSION PERIOD: 25 SEC LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 7.87 RPS TRACKING MODE: DOVAP PRESSURE RATIO = P/P STO. DENSITY RATIO = RHO/RHO STD.. ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE KM KG/CU-M K TORR RATIO RATIO 27.U 3.27E-02 223.1 1.57E 01 1.12 1.11 28.0 2.76E-02 227.5 1.35E 01 1.10 1.12 29.0 2.35E-02 230.5 1.17E 01 1.09 1.12 30.0 2.02E-02 231.6 1.01E 01 1.10 1.12 31.0 1.74E-02 232.4 8.71E 00 1.10 1.13 32.0 1.52E-02 229.8 7.52E 00 1.12 1.13 33.0 1.32E-02 228.3 6.49E 00 1.14 1.13 34.0 1.13E-02 230.1 5.60E 00 1.14 1.12 35.0 9.60E-03 234.2 4.84E 00 1.13 1.12 36.0 8.10E-03 240.7 4.20E 00 1.12 1.12 37.0 6.92E-03 245.2 3.66E 00 1.11 1.12 38.0 5.97E-03 247.9 3.19E 00 1.11 1.13 39.0 5.14E-03 251.5 2.78E 00 1.11 1.13 40.0 4.43E-03 255.4 2.44E 00 1.11 1.13 41.0 3.86E-03 257.0 2.14E 00 1.12 1.14 42.0 3.37E-03 258.3 1.87E 00 1.13 1.14 43.0 2.93E-03 260.9 1.65E 00 1.13 1.14 44.0 2.56E-03 262.5 1.45E 00 1.13 1.14 45.0 2.24E-03 264.0 1.27E 00 1.14 1.14 46.0 1.97E-03 264.3 1.12E 00 1.15 1.14 47.0 1.72E-03 266.6 9.88E-01 1.15 1.14 48.0 1.51E-03 267.8 8.71E-01 1.14 1.14 49.0 1.33E-03 268.2 7.68E-01 1.15 1.13 50.0 1.20E-03 261.8 6.77E-01 1.17 1.13 51.0 1.07E-03 258.0 5.95E-01 1.18 1.13 52.0 9.59E-04 252.3 5.21E-01 1.20 1.12 53.0 8.48E-04 249.6 4.56E-01 1.19 1.11 54.0 7.41E-04 249.7 3.99E-01 1.17 1.09 55.0 6.48E-04 249.6 3.48E-01 1.16 1.09 56.0 5.62E-04 251.8 3.05E-01 1.13 1.08 57.0 4.98E-04 248.4 2.67E-01 1.13 1.07 58.0 4.45E-04 242.5 2.32E-01 1.14 1.07 59.0 3.95E-04 237.6 2.02E-01 1.14 1.05 60.0 3.48E-04 234.0 1.75E-01 1.14 1.04 61.0 3.07E-04 229.5 1.52E-01 1.14 1.03 62.0 2.71E-04 224.3 1.31E-01 1.13 1.02 63.0 2.37E-04 220.7 1.13E-01 1.11 1.00 64.0 2.06E-04 218.0 9.67E-02 -1.10 0.98 65.0 1.77E-04 217.5 8.29E-02 1.06 0.97 66.0 1.50E-04 220.3 7.12E-02 1.02 0.95 8 RLTI1 VS. ODE3ITT WrlO8 W FLTIGa I. 1T7ftR8IE 8 U.S. SI.'0 RT-. 88 8 8 8 8 (2.' O p8 |8.8,0.6 0.8 1 0 1. 1.,.0 16. 00,. 0.0 000.0 0 1.O0 4.8 0 6o.o0 OENSITT:lT /P.,,,,. EHPEqRRTUfE [' K) 63

PITOT-STATIC NASA 14.357 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 09 AUGUST 196d ALTITUDE: 146.3 KM KM KG/CU-, K TORR RATIO RATIO 07:24:00.118 GMT HORIZONTAL VELOCITY: 343.4 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 383 SEC 87.0 5.83E-06 193.8 2.43E-03 1.06 1.14 LAT 37 DEG 50 MIN N PRECESSION PERIOD:'5 SEC 88.0 5.11E-06 185.6 2.04E-03 1.12 1.15 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 6.78 RPS 89.0 4.37E-06 181.1 1.70E-03 1.15 1.15 TRACKING MODE: DOVAP 90.0 3.74E-06 175.6 1.41E-03 1.18 1.15 91.0 3.15E-06 172.3 1.17E-03 1.21 1.15 92.0 2.61E-06 171.4 9.64E-04 1.22 1.12 PRESSURE RATIO = P/P STD. 93.0 2.12E-06 174.2 7.95E-04 1.20 1.10 DENSITY RATIO = RHO/RHO STD. 94.0 1.72E-06 177.8 6.59E-04 1.18 1.09 95.0 1.41E-06 180.2 5.47E-0D 1.17 1.07 96.0 1.19E-06 177.4 4.55E-04 1.18 1.06 97.0 9.95E-07 175.9 3.77E-04 1.18 1.03 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 98.0 8.38E-07 172.7 3.12E-04 1.19 1.01 KM KG/CU-M K TORR RATIO RATIO 99.0 7.03E-07 169.6 2.57E-04 1.19 0.97 100.0 5.97E-07 163.8 2.11E-04 1.20 0.93 46.0 1.86E-03 267.7 1.07E 00 1.09 1.09 101.0 5.09E-07 156 2 1.71E-04 1,.22 0.89 47.0 1.62E-03 271.3 9.47E-01 1.08 1.09 102.0 4.23E-07 151.7 1.38E-04 1.21 0.83 48.0 1.44E-03 269.4 8.36E-01 1.09 1.09 103.0 3.47E-07 148.3 1.11E-04 1.18 0.78 49.0 1.28E-03 267.4 7.37E-01 1.10 1.09 104.0 2.74E-07 150.5 8.88E-05 1.10 0.72 50.0 1.13E-03 267.1 6.50E-01 1.10 1.09 105.0 2.05E-07 162.8 7.19E-05 0.97 0.67 51.0 1.01E-03 263.3 5.73E-01 1.11 1.08 106.0 1.43E-07 193.6 5.96E-05 0.79 0.64 52.0 8.96E-04 261.1 5.04E-01 1.12 1.08 107.0 1.04E-07 227.4 5.09E-05 0.68 0.62 53.0 7.94E-04 258.9 4.43E-01 1.12 1.07 108.0 8.30E-08 247.8 4.43E-05 0.63 0.62 54.0 7.02E-04 257.1 3.89E-01 1.11 1.07 109.0 6.78E-08 266.8 3.90E-05 0.59 0.62 55.0 6.22E-04 254.5 3.41E-01 1.11 1.06 110.0 5.67E-08 282.9 3.46E-05 0.58 0.63 56.0 5.53E-04 250.6 2.99E-01 1.11 1.06 111.0 4.77E-08 300.3 3.09E-05 0.57 0.63 57.0 4.89E-04 247.7 2.61E-01 1.11 1.05 112.0 4.03E-08 319.5 2.77E-05 0.56 0.64 58.0 4.31E-04 245.3 2.28E-01 1.11 1.04 113.0 3.45E-08 337.5 2.51E-05 0.56 0.65 59.0 3.80E-04 242.5 1.99E-01 1.10 1.03 114.0 2.98E-08 355.2 2.28E-05 0.56 0.66 60.0 3.37E-04 237.9 1.73E-01 1.10 1.03 115.0 2.60E-08 371.9 2.08E-05 0.56 0.67 61.0 2.97E-04 234.2 1.50E-01.10 1 01 116.0 2.31E-08 383.6 1.91E-05 0.57 0.68 62.0 2.59E-04 232.6 1.30E-01 1.08 1.01 117.0 2.07E-08 393.2 1.75E-05 0.58 0.70 63.0 2.26E-04 230.7 1.12E-01 1.06 0.99 118.0 1.86E-08 402.9 1.61E-05 0.14 0.23 64.0 1.97E-04 228.8 9.71E-02 1.05 0.98 109.0 1.69E-08 754.8 2.75E-05 0.61 1.33 65.0 1.72E-04 226.2 8.38E"02 1.03 0.98 120.0 1.54E-08 448.4 1.49E-05 0.63 0.79 66.0 1.49E-04 225.1 7.23E-02 1.01 0.97 67.0 1.30E-04 222.2 6.22E-02 1.00 0.96 68.0 1.12E-04 221.9 5.35E-02 0.98 0.96 69.0 9.70E-05 220.2 4.60E-02 0.97 0.96 70.0 8.33E-05 220.3 3.95E-02 0.95 0.95 71.0 7.15E-05 220.6 3.40E-02 0.94 0.96 72.0 6.14E-05 220.8 2.92E-02 0.92 0.96 73.0 5.31E-05 219.4 2.51E-02 0.92 0.97 74.0 4.58E-05 218.4 2.15E-02 0.91 0.98 75.0 3.95E-05 217.3 1.85E-02 0.91 0.99 76.0 3.41E-05 215.8 1.59E-02 0.91 1.00 77.0 3.OOE-Q5 209.7 1.36E-02 0.93 1.02 78.0 2.63E-05 203.6 1.15E-02 0.96 1.C3 79.0 2.31E-05 196.2 9.76E-03 0.98 1.05 80.0 1.99E-05 191.8 8.22E-03 0.99 1.06 81.0 1.71E-05 187.3 6.90E-03 1.03 1.07 82.0 1.45E-05 184.7 5.77E-03 1.05 1.07 83.0 1.20E-05 186.5 4.82E-03 1.04 1.C8 84.0 9.84E-06 190.7 4.04E-03 1.03 1.09 85.0 7.95E-06 198.9 3.41E-03 0.99 1.10 86.0 6.72E-06 199.1 2.88E-03 1.02 1.12 1982 U.S. 30o. Nm. ~ S. Si ^i 8* B *BTT o J * o* 0 " 1B,. r e 64 6; 8 B DENSITY RATIO p,.... YENFRFITURE' ('. 64 cc ~. ~ ~~~~~~~~~~~~T

PITOT PROBE NASA 14.386 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 19 NOVEMBER 1968 ALTITUDE: 148.0 KM KM KG/CU-M K TORR RATIO RATIO 20:04:59.815 GMT HORIZONTAL VELOCITY: 270.6 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME; 389 SEC 71.0 6.32E-05 210.4 2.86E-02 0.83 0.81 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 47 SEC 72.0 5.54E-05 204.4 2.44E-02 0.83 0.80 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 4.81 RPS 73.0 4.87E-05 196.9 2.07E-02 0.84 0.80 TRACKING MODE: DOVAP 74.0 4.20E-05 192.3 1.74E-02 0.84 0.79 75.0 3.30E-05 207.0 1.47E-02 0.76 0.79 76.0 2.69E-05 217.0 1,26E-02 0.72 0.80 PRESSURE RATIO = P/P STD. 77.0 2.25E-05 222.9 1.08E-02 0.70 0.81 DENSITY RATIO = RHO/RHO STD. 78.0 1.94E-05 222.6 9.30E-03 0.71 0.83 79.0 1.67E-05 222.6 8,D01E03 0.71 0.86 80.0 1.47E-05 217.3 6.88E-03 0.74 0.88 81.0 1,28E-05 213.9 5.90E-03 0.77 0.91 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 82.0 1.09E-05 215.1 5.05E-03 0.79 0.94 KM KG/CU-M K TORR RATIO RATIO 83.0 9.44E-06 212.5 4.32E-03 0.82 0.97 84.0 8.40E-06 203.5 3.68E-03 0.88 0.99 30.0 1.76E-02 222.3 8.43E 00 0.96 0.94 85.0 7.20E-06 231.5 3.13E-03 0,90 1.01 31.0 1.49E-02 225.7 7.24E 00 0.94 0.94 86.0 5.64E-06 219.6 2.67E-03 0.85 1.04 32.0 1.26E-02 230.1 6.25E 00 0.93 0.94 87.0 4.83E-06 220.4 2.29E-03 0.88 1.07 33.0 1.10E-02 227.4 5.39E 00 0.95 0.94 88.0 4.18E-06 219.0 1.97E-03 0.91 1.11 34.0 9.20E-03 234.9 4.65E 00 0.93 0.93 89.0 3.67E-06 213.9 1.69E-03 0.96 1.14 35.0 7.95E-03 235.4 4.03E 00 0.94 0.94 90.0 3.18E-06 211.2 1.45E-03 1.00 1.18 36.0 6.96E-03 232.8 3.49E 00 0.96 0.93 91.0 2.77E-06 206.8 1.23E-03 1.07 1.21 37.0 5.90E-03 237.9 3.02E 00 0.95 0.93 92.0 2.36E-06 206.8 1.05E-03 1.10 1.22 38.0 5.12E-03 237.9 2.62E 00 0.95 0.93 93.0 2.078-06 200.3 8.93E-04 1.18 1.24 39.0 4.35E-03 243.4 2.28E 00 0.94 0.92 94.0 1.77E-06 198.3 7.56E-04 1.21 1.25 40.0 3.73E-03 247.4 1.99E 00 0.93 0.92 95.0 1.46E-06 203.9 6.41E-04 1.21 1.26 41.0 3.19E-03 252.7 1.74E 00 0.92 0.92 96.0 1.24E-06 204.1 5.45E-04 1.23 1.26 42.0 2.74E-03 257.8 1.52E 00 0.92 0.92 97.0 1.08E-06 198.8 4.62E-04.1,28 1.27 43.0 2.37E-03 261.8 1.34E 00 0.91 0,92 98.0 9.40E-07 192.8 3.90E-04 1.34 1.26 44.0 2.10E-03 259.7 1.17E 00 0.93 0.92 99.0 8.20E-07 185.5 3.28E-04 1.39 1.24 45.0 1.86E-03 257.4 1.03E 00 0.94 0.92 100.0 7.15E-07 177.3 2.73E-04 1.44 1.21 46.0 1.63E-03 257.7 9.05E-01 0.95 0.92 101.0 6.15E-07 170.4 2.26E-04 1.48 1.17 47.0 1.44E-03 255.9 7.94E-01 0.96 0.91 102.0 5.00E-07 172.9 1.86E-04 1.43 1.12 48.0 1.26E-03 256.4 6.96E-01 0.95 0.91 103.0 3.84E-07 187.2 1.55E-04 1.31 1.08 49.0 1.09E-03 260.2 6.118-01 0.94 0.90 104.0 2.86E-07 212.9 1.31E-04 1.07 50.0 9.51E-04 262.2 5.37E-01 0.92 0.90 105.0 2.31E-07 226.8 1.13E-04 1.09 1.05 51.0 8.51E-04 257.5 4.72E-01 0.94 0.89 106.0 1.99E-07 227.6 9.76E-05 1.11 1.04 52.0 7.52E-04 255.6 4.14E-01 0.94 0.89 107.0 1.75E-07 223.6 8.43E-05 1.14 1.03 53.0 6.64E-04 253.7 3.63E-01 0.94 0.88 108.0 1.54E-07 218.8 7.26E-05 1.17 1.02 54.0 5.76E-04 256.4 3.18E-01 0.91 0.87 109.0 1.34E-07 216.1 6.24E-05 1.18 0.99 55.0 5. 09E-04 254.4 2.79E-01 0.91 0.87 110.0 1.17E-07 212.1 5.35E-05 1.19 0.97 56.0 4.43E-04 256.3 2.45E-01 0.89 0.87 111.0 9.74E-08 218,6 4.59E-05 1.17 0.94 57.0 3.90E-04 255.4 2.15E-01 0.88 0.86 112.0 7.30E-08 253.4 3.98E-05 1.02 0.92 58.0 3.45E-04 253.0 1.88E-01 0.88 0.86 113.0 5.40E-08 304.1 3.54E-05 0.88 0.92 59.0 3.04E-04 251.4 1.65E-01 0.88 0.86 114.0 4.19E-08 354.4 3.20E-05 0.79 0.93 60.0 2.70E-04 247.5 1.44E-01 0.88 0.86 115.0 3.42E-08 397.7 2.93E-05 0.74 0.95 61.0 2.40E-04 242.9 1.26E-01 0.89 0.85 116.0 2.94E-08 427.0 2.70E-05 0.73 0.97 62.0 2.13E-04 238.1 1.09E-01 0.89 0.85 117.0 2.61E-08 446.1 2.51E205 0.74 1.00 63.0 1.86E-04 236.8 9.49E-02 0.87 0.84 118.0 2.33E-08 464.8 2.33E-05 0.75 1.02 64.0 1.63E-04 234.4 8.23E-02 0.87 0.83 119.0 2.11E-08 478.7 2,18E-05 0.77 1.05 65.0 1.43E-04 231.4 7.13E-02 0.86 0.83 120.0 1.93E-08 488.9 2.03E-05 0.79 1.08 66.0 1.27E-04 225.0 6.16E-02 0.86 0.83 121.0 1.76E08 501.6 1.90E-05 0.83 1.10 67.0 1.11E-04 221.7 5.30E-02 0.85 0.82 122.0 1.62E-08 510.7 1.78E-05 0.88 1.12 68.0 9.70E-05 217.9 4.55E-02 0.85 0.82 123.0 1.508-08 517.4 1.67E-05 0.93 1.14 69.0 8.23E-05 220.4 3.91E-02 0.82 0.81 124.0 1.39E-08 524.2 1.57E-05 0.97 1.15 70.0 7.24E-05 214.9 3.35E-02 0.83 0.81 125.0 1.288-08 535.0 1.47E-05 1.00 1.17 8. * ^yImIIT rrwo 8 ggr^. mTerm — ~**81~;'.'= ]'I= u.S. o. AT1. o; bigS ~ ~ ~ 81 /**8 *..1 8u. 0 ~8hj bu8 8i ~ 8 8 i~: DENSITY RIO8.TER E (K) 8 ii I E!~~ 6j5

PITOT PROBE NASA 14.362 FLIGHT PARANETERS ALTITVDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 12 MAY 1969 ALTITUDE: 203.4 KMKM KG/CU- K TOR RATIO RATIO 19:23:00.000 GMT HORIZONTAL VELOCITY: 312.9 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 453 SEC 76.0 4.08E-05 199.9 1.76E-02 1.09 1.12 LAT 37 DEG 50 MIN N PRECESSION PERIOD: N/A 77.0 5E05 95.2 1.8E-02 1.1 1.1 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 7.07 RPS 78.0 3.05E-05 900 15E- 1.11 1 TRACKING MODE: RADAR 79.0 2.59E-05 187.6 1.DSE-02 1.10 1.12 80.0 2.04E-05 200.5 8.81E-03 1.02 1.13 81.0 1.68E-05 206.7 7.48E-03 1.01 1.16 PRESSURE RATIO = P/P STO. 82.0 1.49E-05 197.7 6.35E-03 1.08 1.18 DENSITY RATIO = RHO/RHO STD. 83.0 126E-05 197.6 5.36E-03 1.10 1.20 84.0 1.08E-05 194.5 4.53E-03 1.13 1.22 85.0 9.20E-06 192.3 3.81E-03 1.15 1.23 86.0 7.58E8-06 196.7 3.21E-03 1.15 1.25 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 87.0 6.48E-06 194.1 2.71E-03 1.18 1.27 KM KG/CU-M K TORR RATIO RATIO 88.0 5.50E-06 192.6 2.28E-03 1.20 1.28 89.0 4.67E-06 190.7 1.92E-03 1.23 1.30 35.0 8.53E-03. 248.3 4.56E 00 1.01 1.06 90.0 3.94E-06 189.9 1.61E-03 1.24 1.31 36.0 7.30E-03 253.6 3.99E 00 1.01 1.07 91.0 3.30E-06 190.4 1.35E-03 1.27 1.33 37.0 6.37E-03 254.5 3.49E 00 1.02 1.07 92.0 2.77E-06 190.6 1.14E-03 1.29 1.32 38.0 5.53E-03 256.9 3.06E 00 1.03 1.08 93.0 2.35E-06 188.5 9.54E-04 1.34 1 33 39.0 4.78E-03 260.9 2.69E 00 1.03 1.09 94.0 2.01E-06 184.5 7.99E-04 1 38 1.32 40.0 4.16E-03 263.6 2.36E 00 1.04 1.10 95.0 1.67E-06 185.7 6.68E-04 1.38 1.31 41.0 3.64E-03 265.1 2.08E 00 1.05 1.11 96.0 1.34E-06 194.3 5.61E-04 1.33 1.30 42.0 3.19E-03 266.5 1.83E 00 1.07 1.11 97.0 1.13E-06 194.3 4.731-04 1.34 1.30 43.0 2.83E-03 264.6 1.61E 00 1.09 1.11 98.0 9.54E-07 194.1 3.99E-04 1.36 1.29 44.0 2.46E-03 268.2 1.42E 00 1.09 1.12 99.0 7.58E-07 207.0 3.38E-04 1.28 1.28 45.0 2.13E-03 273.6 1.26E 00 1.08 1.12 100.0 6.48E-07 206.3 2.881-04 1.30 1.27 46.0 1.88E-03 274.1 1.11E 00 1.10 1.13 101.0 5.65E-07 201.1 2.451-04 1436 1.27 47.0 1.66E-03 274.6 9.82E-01 1.11 1.13 102.0 4.87E-07 197.7 2.D7E-04 1.40 125 48.0 1.48E-03 272.3 8.68E-01 1.12 1.13 103.0 3.85E-07 212.8 1.76E-04 1.31 1.23 49.0 1.32E-03 269.7 7.67E-01 1.14 1.13 104.0 3.22E-07 218.2 1.51E-04 1.29 1.23 50.0 1.17E-03 268.5 6.77E-01 1.14 1.13 105.0 2.76E8-07 218.8 1.30-04 1.30 1.22 51.0 1.03E-03 269.2 5.97E-01 1.14 1.13 106.0 2.38E-07 218.1 1.12E-04 1.32 1.20 52.0 9.07E-04 269.9 5.27E-01 1.13 1.1 3 107.0 2.05E-07 217.6 9.61E-05 1.33 1.18 53.0 8.07E-04 267.7 4.65E-01 1.14 1.13 108.0 1.74E-07 220.5 8.26E-05 1.32 1.16 54.0 7.16E-04 266.0 4.10E-01 1.13 1.13 109.0 1.53E-07 215.5 7.10E-05 1.34 1.13 55.0 6.24E-04 269.2 3.62E-01 1.11 1.13 110.0 1.33E-07 212.5 6.09E-05 1.35 1.10 56.0 5.53E-04 268.1 3.19E-01 1.11 1.13 111.0 1.10E-07 220.6 5.231-05 1.32 1.07 57.0 4.93E-04 265.2 2.82E-01 1.12 1.13 112.0 8.64E-08 243.6 4.53E-05 1.21 1.05 58.0 4.41E-04 261.0 2.48E-01 1.13 1.14 113.0 6.48E-08 286.5 4.00E-05 1.05 1.04 59.0 3.96E-04 255.3 2.18E-01 1.14 1.13 114.0 5.13E-08 324.8 3.59E-05 0.96 1.04 60.0 3.51E-04 252.4 1.91E-01 1.15 1.14 115.0 4.22E-08 358.5 3.26E-05 0.91 1.05 61.0 3.13E-04 247,5 1.67E-01 1.16 1.13 116.0 3.65E-08 379.0 2.98E-05 0.90 1.07 62.0 2.77E-04 244.0 1.46E-01 1.16 1.13 117.0 3.24E-08 392.0 2.74E-05 0.92 1.09 63.0 2.46E-04 239.2 1.27E-01 1.15 1.12 118.0 2.93E-08 398.8 2.521-05 0.94 1.10 64.0 2.16E-04 236.7 1.10E-01 1.15 1.12 119.0 2.67E-08 403.2 2.32E-05 0.97 112 65.0 1.90E-04 233.4 9.55E-02 1.14 1.11 120.0 2.47E-08 401.6 2.14E-05 1.01 1.13 66.0 1.66E-04 231.3 8.27E-02 1.13 1.11 121.0 2.29E-08 399.0 1.97E-05 1.09 1.14 67.0 1.45E-04 229.0 7.15E-02 1.12 1.11 122.0 2.10E-08 400.7 1.81E-05 1.14 1.14 68.0 1.27E-04 225.7 6.17E-02 111 1.11 123.0 1.91E-08 406.1 1.67E-05 1.18 1.14 69.0 1.10E-04 224.7 5.32E-02 1.10 1.11 124.0 1.72E-08 416.3 1.54E-05 1.20 1.13 70.0 9.75E-05 217.9 4.58E-02 1.11 1.11 125.0 1.53E-08 433.2 1.43E-05 1.20 1.13 71.0 8.43E-05 216.1 3.92E-02 1.10 1.11 126.0 1.37E-08 449.1 1.33E-05 1.20 1.12 72.0 7.37E-05 211.4 3.36E-02 1.11 1.10 127.0 1.21E-08 473.5 1.23E-05 1.19 1.12 73.0 6.38E-05 208.3 2.86E-02 1.10 1.11 128.0 1.07E-08 500.5 1.15E-05 1.16 1.12 74.0 5.46E-05 207.3 2.44E-02 1.09 1.11 129.0 9.67E-09 519.3 1.08E-05 1.16 1.11 75.0 4.73E-05 203.5 2.07E-02 1.09 1.11 130.0 8.70E-09 542.6 1.02E-05 1.15 1.11 8 FnTIE VS. OEiSrM TIO.- 8 MTITUE. TwoITjC t~* *, * "~. --- j ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ tB1B U.g. fo. H#. 81'1'' * 8 8 *'*.8 66

PITUT PROBE NASA 14.384 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 13 JANUARY 1970 ALTITUDE: 171.6 KM KM KG/CU-M K TORR RATIO RATIO 23:50:50.100 GMT HORIZONTAL VELOCITY: 279.9 M/SEC CHURCHILL, MANITOBA, CANADA FLIGHT TIME: 416 SEC 78.0 1.47E-05 241.4 7.64E-03 0.53 0.68 LAT 58 DEG 44 NIN N PRECESSION PERIOD: N/A 79.0 1.28E-05 241.5 6.66E-03 0.54 0.71 LONG 93 DEG 49 MIN W STABILIZED ROLL RATE: 6.85 RPS 80.0 1.08E-05 249.9 5.81E-03 0.54 0.75 TRACKING MNODE: DOVAP 81.0 9.51E-06 248.3 5.09E-03 0.57 0.79 82.0 7.64E-06 271,8 4.47E -03 0.55 0.83 83.0 6.89E-06 266.4 3.95E-03 0.60 0.88 PRESSURE RATIO = P/P STD. 84.0 6.38E-06 253.1 3.48E-03 0.67 0.93 DENSITY RATIO = RHO/RHO STD. 85.0 5.66E-06 249.9 3.05E-03 0.71 0.99 86.0 4.99E-06 248.0 2.67E-03 0.75 1.04 87.0 4.40E-06 245.9 2.33E-03 0.80 1.09 88.0 3.94E-06 239.5 2.03E-03 0.86 1.14 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 89.0 3.49E-06 235.0 1.77E-03 0,392.19 KM KG/CU-M K TORR RATIO RATIO 90.0 3.00E-06 237.6 1.54E-03 0,95 1.25 91.0 2.57E-06 241.4 1.34E-03 0.99 1.31 37.0 6.42E-03 212.1 2.93E 00 1.03 0.90 92.0 2.16E-06 251.0 1.17E-03 1.0 1.36 38.0 5.58E-03 207.8 2.50E 00 1.04 0.88 93.0 1.85E-06 257.1 1.02E-03 1.05 1.42 39.0 4.78E-03 206.0 2.12E 00 1.03 0.86 94.0 1.64E-06 254.8 9.00E-04 1.12 1.49 40.0 4.07E-03 205.4 1.80E 00 1.02 0.64 95.0 1.47E-06 249.2 7.89E-04 1.21 1.55 41.0 3.45E-03 205.6 1.53E 00 1.00 0.81 96.0 1.34E-06 238.7 6.89E-04 1.33 1.60 42.0 2.96E-03 2U3.3 1.30E 00 0.99 0.79 97.0 1.20E-06 231.5 5.98E-04 1.43 1.64 43.0 2.46E-03 207.5.10E 00 0.95 0.76 98.0 1.06E-06 226.8 5.18E-04 1.51 1.67 44.0 2.07E-03 209.9 9.36E-01 0.92 0.74 99.0 9.15E-07 227.1 4.48E-04 1.55 1.70 45.0 1.73E-03 214.2 7.98E-01 0.88 0.71 100.0 8.09E-07 221.6 3.86E-04 1.63 1.71 46.0 1.45F-0O 218.8 6.83E-01 0.85 0.69 101.0 7.18E-07 214.5 3.32E-04 1.73 1.72 47.0 1.24E-0O 219.4 5.86E-01 0.83 0.67 102.0 6.18E-07 213.5 2.84E-04 1.77 1.71 48.0 1.06E-03 220.2 5.03E-01 0.80 0.66 103.0 5.01E-07 226.6 2.45E-04 1.70 1.71 49.0 8.77E-04 229.2 4.33E-01 0.76 0.64 104.0 4.09E-07 240.9 2.12E-04 1.64 1.73 50.0 7.43E-04 233.9 3.74E-01 0.72 O.63 105.0 3.50E-07 245.8 1.85E-04 1.65 1.73 51.0 6.38E-04 236.1 3.24E-01 0.70 0.61 106.0 3.08E-07 244.0 1.62E-04 1.71 1.73'^.^ ) 5.63E-04 231.8 2.8 1E-01 0.70 0.60 107.0 2.71E-07 242.1 1.41E-04 1.76 1.73 53.0 4.78E-04 236.5 2.43E-01 0.67 0.59 108.0 2.40E-07 238.3 1.23E-04 1.82 1.73 54.0 4.21E-04 232.7 2.11E-01 0.67 0.58 109.0 2.10E-07 237.0 1.07E-04 1.84 1.71 55.0 3.61E-04 235.1 1.83E-01 0.64 0.57 110.0 1.81E-07 239.4 9.33E-05 1.84 1.69 56.0 3.16E-04 232.7 1.58E-01 0.64 0.56 111.0 1.54E-07 245.5 8.14E-05 1.84 1.67 57.0 2.73E-04 233.2 1.37E-01 0.62 0.55 112.0 1.31E-07 252.8 7.13E-05 1.83 1.65 58.0 2.37E-04 232.6 1.19E-01 0.61 0.54 113.0 1.12E-07 260.0 6.27E-05 1.82 1.63 59.0 2.04E-04 234.0 1.03E-01 0.59 0.54 114.0 9.10E-08 283.4 5.55E-05 1.71 1.61 60.0 1.78E-04 232.3 8.91E-02 0.58 0.53 115.0 7.12E-08 324.8 4.98E-05 1.54 1.61 61.0 1.53E-04 234.1 7.71E-02 0.57 0.52 116.0 6.05E-08 346.5 4.52E-05 1.50 1.62 62.0 1.32E-04 235.2 6.69E-02 0.55 0.52 117.0 5.30E-08 360,3 4.11E-05 1.50 1.63 63.0 1.13E-04 238.5 5.81E-02 0.53 0.51 118.0 4.65E-08 375.5 3.76E-05 1.50 1.65 64.0 9.70E-05 241.7 5.05E-02 0.52 0.51 119.0 4.08E-08 392.8 3.45E-05 1.48 1.67 65.0 8.22E-05 248.8 4.41E-02 0.49 0.51 120.0 3.52E-08 419.8 3.18E-05 1.44 1.68 66.0 7.16E-05 249.8 3.85E-02 0.49 0.52 121.0 3.09E-08 443.1 2.95E-05 1.46 1 70 67.0 6.18E-05 253.4 3.37E-02 0.48 0.52 122.0 2.72E-08 468.3 2.74E-05 1.48 0.73 68.0 5.41E-05 253.7 2.96E-02 0.47 0.53 123.0 2.42E-08 491.5 2.56E-05 1.49 1.74 69.0 4.80E-05 250.4 2.59E-02 0.48 0.54 124.0 2.16E-08 515.9 2.40E-05 1.51 1.76 70.0 4.18E-05 251.7 2.27E-02 0.48 0.55 125.0 1.96E-08 534.0 2.25E-05 1.53 1.79 71.0 3.66E-05 251.8 1.98E-02 0.48 0.56 72.0 3.28E-05 245.7 1.74E-02 0.49 0.57 73.0 2.91E-05 241.4 1.51E-02 0.50 0.50 74.0 2.52E-05 242.9 1.32E-02 0.50 0.60 75.0 2.17E-05 246.1 1.15E-02 0.50 0.62 76.0 1.88E-05 248.2 1.00E-02 0.50 0.64 77.0 1.68E-05 242.4 8.77E-03 0.52 0.66 8 LTITUI VS. DI1SITTY NTIO 8 FLTITUDE VS. TEIIRTWnE ~ ""' - -'8! Ie~ U.s. 370. m'. 8.. 8 8 8 8 8. " 8. Ie.88.8.8 1.10 1. 1. 1.8 8.8 1.8 1.8 02 8 1.9 8 67

PITUT PROBE NASA 14.426 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 06 MARCH 1970 ALTITUDE: 161.9 KM KM KG/CU-M K TORR RATIO RATIO 18:24:00.000 GMT HORIZONTAL VELOCITY: 359.0 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 406 SEC 72.0 5.34E-05 218.4 2.51E-02 0.80 0.83 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 35.5 SEC 73.0 4.43E-05 226.6 2.16E-02 0.77 0.83 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 7.14 kPS 74.0 3.78E-05 229.4 1.87E-02 0.75 0.85 TRACKING MODE: RADAR 75.0 3.29E-05 227.7 1.61E-02 0.76 0.86 76.0 2.75E-05 235.9 1.40E-02 0.74 0.88 77.0 2.39E-05 235.7 1.21E-02 0.74 0.91 PRESSURE RATIO = P/P STO. 78.0 2.06E-05 237.5 1.35E-02 0.75 0.94 DENSITY RATIO = RHO/RHO STD. 79.0 1.82E-05 233.3 9.15E-03 0.77 0.98 80.0 1.60E-05 229.8 7.92E-03 0.60 1.02 81.0 1.42E-05 223.6 6.84E-03 0.86 1.06 82.0 1.26E-35 216.6 5.88E-03 0.91 1.09 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 83.0 1.01-05.0 0 5.07E-03 0.98 1.13 KM KG/CU-M K T3RR RATIO RATIO 84.0 9.55E-06 212.2 4.37E-03 1.00 1.13 85.0 8.20E-06 211.2 3.73E-03 1.02 1.21 31.0 1.57E-02 232.7 7.87E 00 0.99 1.02 86.0 7.02E-06 210.8 3.19E-03 1.06 1.24 32.0 1.37E-02 230.5 6.80E 00 1.31 1.02 87.0 6.01E-06 210.2 2.72E-03 1.09 1.27 33.0 1.17E-02 233.2 5.88E 00 1.01 1.02 87.0 4.85E-06 223.4 2.33E-03 1.06 1.31 34.0 9.97E-03 237.0 5.09E 00 1.01 1.02 89.03 4.21E-06 221.7 2.01E-03 1.10 1.36 35.0 8.47E-03 242.3 4.42E 00 1.00 1.03 90.0 3.59E-06 224.0 1.73E-03 1.13 1.41 36.0 7.24E-03 246.9 3.85E 00 1.30 1.03 91.0 3.14E-06 220.6 1.49E-03 1.21 1.46 37.0 6.39E-03 243.8 3.36E 00 1.32 1.03 92.0 2.76E-06 215.5 1.28E-03 1.29 1.49 38.0 5.58E-03 243.1 2.92E 00 1.04 1.03 93.U 2.41E-{06 211.3 1.10E-03 1.37 1.52 39.0 4.91E-03 240.3 2.54E 00 1.06 1.03 94.0 2.l10-J6 206.9 9.36E-04 1.44 1.55 40.0 4.26E-03 240.7 2.21E 00 1.07 1.03 95.0 1.83E-06 201.9 7.96E-04 1.51 1.56 41.0 3.65E-03 244.4 1.92E 00 1.05 1.02 96.0 1.61E-06 194.1 6.73E-04 1.59 1.56 42.0 3.14E-03 247.8 1.68E 00 1.05 1.02 97.0 1.38E-06 190.6 5.67E-04 1.64 1.55 43.0 2.73E-03 248.8 1.46E 00 1.05 1.01 98.0 1.20E-06 183.7 4.75E-04 1.70 1.53 44.0 2.36E-03 251.5 1.28E 00 1.04 1.01 99.0 1.03E-06 178.2 3.95E-04 1.74 1.50 45.0 2.04E-03 254.7 1.12E 00 1.04 1.00 100.0 8.65E-07 176.0 3.28E-04 1.74 1.45 46.0 1.78E-03 255.9 9.81E-01 1.04 1.00 101.0 7.16E-07 176.2 2.72E-04 1.72 1.41 47.0 1.57E-03 254.3 8.60E-01 1.05 0.99 102.0 5.77E-07 181.7 2.26E-04 1.65 1.36 48.0 1.38E-03 253.4 7.53E-01 1.05 0.98 103.0 4.72E-07 185.5 1.89E-04 1.61 1.32 49.0 1.21E-03 253.0 6.59E-01 1.04 0.97 104.0 3.89E-07 I 18.6 1.56E-04 1.56 1.29 50.0 1.07E-03 250.3 5.77E-01 1.04 0.96 105.0 3.13E-07 197.5 1.33F-04 1.48 1.24 51.0 9.20E-04 254.9 5.05E-01 1.01 0.96 106.0 2.58E-07 203.2 1.13E-04 1.43 1.21 52.0 7.89E-04 260.8 4.43E-01 0.99 0.95 107.0 2.08E-07 215.1 9.64E-05 1.35 1.18 53.0 7.01E-04 257.9 3.89E-01 0.99 0.95 108.0 1.56E-07 248.6 8.35E-05 1.18 1.17 54.0 6.20E-04 255.9 3.42E-01 0.98 0.94 109.0 1.23E-07 278.0 7.37E-05 1.98 1.17 55.0 5.49E-04 253.3 3.00E-01 0.98 0.93 110.0 1.04E-07 292.9 6.56E-05 1.36 1.19 56.0 4.88E-04 249.3 2.62E-01 0.98 0.93 111.0 9.28E-08 293.3 5.86E-05 1.11 1.20 57.0 4.30E-04 247.2 2.29E-01 0.98 0.92 112.0 8.38E-38 290.0 5.24E-05 1.17 1.21 58.0 3.78E-04 245.4 2.DOE-01 0.97 0.92 113.0 7.54E-08 287.6 4.67E-05 1.23 1.21 59.0 3.31E-04 244.4 1.74E-01 0.96 0.91 114.0 6.79E-08 284.6 4.16E-05 1,28 1.21 60.0 2.94E-04 239.6 1.52E-01 0.96 0.90 115.0 6.13E-08 280.5 3.70E-05 1.33 1.20 61.0 2.60E-04 235.2 1.32E-01 0.96 0.8I9 116.0 5.50E-08 277.9 3.29E-05 1.36 1.18 62.0 2.29E-04 231.4 1.14E-01 0.96 0.88 117.0 4.93E-08 275.2 2.92E-05 1.39 1.16 63.0 2.01E-04 227.8 9.86E-02 0.94 0.87 118.0 4.41E-08 272.8 2.59E-05 1.42 1.14 64.0 1.72E-04 230.0 8.52E-02 0.91 0.86 119.0 3.92E-08 272.0 2.30E-05 1.43 1.11 65.0 1.51E-04 226.2 7.36E-02 0.90 0.86 120.0 3.44E-08 274.8 2.04E-05 1.41 1.08 66.0 1.33E-04 221.2 6.34E-02 0.90 0.85 121.0 2.95E-08 254.9 1.81E-05 1.40 1.05 67.0 1.15E-04 219.8 5.44E-02 0.88 0.84 122.0 2.47E-08 304.3 1.62E-05 1.34 1.02 68.0 1.01E-04 214.6 4.67E-02 0.89 0.84 123.0 2.06E-08 328.8 1.46E-05 1.27 0.99 69.0 8.74E-05 212.0 3.99E-02 0.87 0.83 124.0 1.75E-08 351.3 1.32E-.05 1.22 0.97 70.0 7.34E-05 215.9 3.41E-02 0.84 0.82 125.0 1.49E-08 377.0 1.21E-05 1.16 0.96 71.0 6.22E-05 218.5 2.93E-02 0.81 0.82 B TIrT.! 11~ i'o*. * 8 gW82. TWtn i ~~.~i~~~~ I.- "-. -- )6w U.S. NO. fTH. B1 ** B B 8 8 X~ I B' I, NJ...***' ~ 8-~~~~~~~ *: B-~~~~~~~~~D. Bj B ee ~ DENSITY RflTO /.TEMPERATURE (* K),~8 ~~~~~~68 ~~~t II I ~~~~~~~~~~~t ~~~~. 81 r: r 8~~~~~~~~~~~~~~~~~~~~~~~~~' d ~ ~ ~ 1 I si~~~.w e 88 ta ~ w;o ~ e.a taa oo o p. o zo a i8ao 23.O OENSITI RATIO p~~~~ln. TWEF'U (H:i'..~6

PITUT PROBE NASA 14.427 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 07 MARCH 1970 ALTITUDE: 171.2 KM K KG/CU-" K T OR RATIO RATIO 17:59:00.070 GMT HORIZONTAL VELOCITY: 254.4 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 420 SEC 71.0 6.51E-05 217.8 3.05E-02 0.85 0.86 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 28 SEC 72.0 5.56E-05 218.9 2.62E-02 0.83 0.86 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 7.60 RPS 73.0 4.78E-05 218.5 2.25E-02 0.83 0.87 TRACKING MODE: DOVAP 74.0 4.02E-05 223.4 1.93E-02 0.80 0.88 75.0 3.58E-05 215.5 1.66E-02 0.82 0.89 76.0 3.06E-05 216.0 1.42E-02 0.82 0.90 PRESSURE RATIO = P/P STA. 77.G 2.54E-US 223.6 1.22E-02 0.79 0.92 DENSITY RATIO = RHO/RHO ST. 78. 2.24E-5 218.0 1.05E-C2 0.8 0.94 79.0 1.91E-05 219.5 9.03E-03 0.81 0.97 80.0 1.63E-05 221.2 7.76E-03 0.81 1.00 81.0 1.43E-05 216.5 6.67E-03 0.86 1.03 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 82.0 1.28E-05 206.7 5.70E-03 0.93 1.06 KM KG/CU-M K TORR RATIO RATIO 83.0 1.09E-05 206.6 4.95E-03 0.95 1.09 84.0 9.65E-06 198.0 4.12E-03 1.01 1.11 30.0 1.78E-02 235.8 9.04E 00 0.97 1.01 85.0 7.94E-06 203.9 3.49E-03 0.99 1.13 31.0 1.57E-02 231.3 7.82E 00 0.99 1.01 86.0 6.63E-06 207.7 2.97E-03 1.0 1.00 15 32.0 1.34E-02 234.4 6.76E 00 0.99 1.01 87.0 5.74E-76 204.2 2.52E-03 1.34 1.13 33.0 1.17E-02 232.2 5.85E 00 1.01 1.02 88.0 4.98E-06 199.6 2.14E-03 1.09 1.20 34.0 9.95E-03 236.4 5.07E 00 1.01 1.02 89.u 4.29E-06 195.9 1.81E-03 1.13 1.22 35.0 8.58E-03 237.7 4.39E 00 1.01 1.02 90.0 3.51E-06 202.7 1.53E-03 1.11 1.25 36.0 7.46E-03 237.1 3.81E 00 1.03 1.02 91.0 2.95E-06 204.9 1.30E-03 1.13 1.28 37.0 6.41E-03 239.5 3.31E 00 1.03 1.02 92.0 2.56E-06 200.5 1.11E-03 1.20 1.29 38.0 5.47E-03 244.1 2.88E 00 1.02 1.02 93.0 2.18E-06 199.4 9.36E-04 1.24 1.30 39.0 4.67E-03 249.4 2.51E 00 1.01 1.02 94.0 1.83E-06 201.3 7.93E-04.25 1.31 40.0 4.03E-03 252.6 2.19E 00 1.01 1.02 95.0 1.53E-06 204.5 6.74E-04 1.26 1.32 41.0 3.51E-03 253.9 1.92E 00 1.01 1.02 96.0 1.28E-06 208.1 5,74E-04 1.27 1.33 42.0 3.12E-03 249.9 1.68E 00 1.04 1.02 97.0 1.11E-06 204.4 4.89E-04 1.32 1.34 43.0 2.68E-03 254.5 1.47E 00 1.03 1.01 98.0 9.42E-07 204.8 4.16E-04 1.34 1.34 44.0 2.32E-03 257.8 1.29E 00 1.03 1.01 99.0 8.00E-07 205.2 3.54E-04 1.35 1.34 45.0 2.02E-03 259.9 1.13E 00 1.03 1.01 100.0 6.97E-07 200.0 3.OOE-04 1.40 1.33 46.0 1.80E-03 256.0 9.93E-01 1.05 1.01 101.0 5.89E-07 200.6 2.55E-04 1.42 1.32 47.0 1.57E-03 257.5 8.71E-01 1.05 1.00 102.0 4.87E-07 206.2 2.16E-04 1.40 1.30 48.0 1.37E-03 259.0 7.64E-01 1.04 1.00 103.0 4.10E-07 208.9 1.84E-04 1.39 1.29 49.0 1.20E-03 259.7 6.71E-01 1.03 0.99 104.0 3.49E-07 209.5 1.57E-04 1.40 1.28 50.0 1.07E-03 255.6 5.89E-01 1.04 0.99 105.0 3.02E-07 206.5 1.34E-04 1.42 1.26 51.0 9.35E-04 256.6 5.17E-01 1.03 0.98 106.0 2.62E-07 202.5 1.14E-04 1.46 1.22 52.0 8.01E-04 263.2 4.54E-01 1.30 0.97 107.0 2.25E-07 200.2 9.70E-05 1.46 1.19 53.0 6.98E-04 266.0 4.00E-01 0.98 0.97 108.0 1.94E-07 196.6 8.21E-05 1.47 1.15 54.0 6.12E-04 267.5 3.53E-01 0.97 0.97 109.0 1.68E-07 191.5 6.93E-05 1.47 1.11 55.0 5.58E-04 258.2 3.10E-01 0.99 0.97 110.0 1.42E-07 190.6 5.83E-05 1.44 1.06 56.0 4.69E-04 258.7 2.73E-01 0.98 0.97 111.0 1.08E-07 212.6 4.95E-05 1.29 1.02 57.0 4.35E-04 255.2 2.39E-01 0.99 0.96 112.0 8.15E-08 243.7 4.28E-05 1.14 0.99 58.0 3.88E-04 250.6 2.09E-01 0.09 0.96 113.0 6.47E-08 269.9 3.76E-05 1.05 0.98 59.0 3.45E-04 246.3 1.83E-01 1.30 0.95 114.0 5.32E-08 291.8 3.34E-05 1.00 0,97 60.0 3.06E-04 242.1 1.60E-01 1.00 0.95 115.0 4.50E-08 309,1 3.00E-C5 0.97 0.97 61.0 2.72E-04 236.8 1.39E-01 1.31 0.94 116.0 3.88E-08 323.0 2.70E-05 0.98 0. 97 62.0 2.36E-04 236.9 1.20E-01 0.99 0.93 117.0 3.37E-08 336.5 2.44E-05 0,95 0.97 63.0 2.11E-04 229.5 1.04E-01 0.99 0.92 118.0 2.95E-08 349.2 2.22E-05 0.95 0.97 64.0 1.88E-04 222.1 8.99E-02 1.00 0.91 119.0 2.60E-08 361.1 2.02E-05 0.95 0.98 65.0 1.62E-04 221.7 7.74E-02 0.97 0.90 120.0 2.31E-08 371.5 1.85E-0 0.95 0. 98 66.0 1.38E-04 223.9 6.66E-02 0.94 0.89 121.0 2.05E-08 383.7 1.69E-05 0.97 0.98 67.0 1.20E-04 221.6 5.73E-02 0.92 0.89 122.0 1.83E-08 395.0 1.56E-05 0.99 0.98 68.0 1.06E-04 215.3 4.92E-02 0.93 0.88 123.0 1.62E-08 411.2 1.44E-05 1.00 0.98 69.0 9.36E-05 208.2 4.20E-02 0.94 0.87 124.0 1.45E-08 424.7 1.33E-05 1.01 0.98 70.0 8.00E-05 207.4 3.57E-02 0.91 0.86 125.0 1.30E-08 439.0 1.23E-05 1.02 0.98 ~~8 8.111018J 5.....L 10.513,ro10 8 F TITUE V3. TevMmTUE ~mp 1.NI7 1561ll.27 - l U.S. 06. R. 8 8 8' 88 ~.I 8 8 69 69

PITOT PROBE NASA 14.428 FLIGHT PARAMETERS ALTITUDE PRESSURE DENSITY PRESSURE 07 MARCH 1970 ALTITUDE: 175.7 KM KM KG/CU-M K TORR RATIO RATIO 18:26:00.080 GMT HORIZONTAL VELOCITY: 187.1 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 424 SEC 71.0 6.41E-05 216.3 2.99E-02 0.84 0.84 bAT 37 DEG 50 MIN N PRECESSION PERIOD: 31 SEC 72.0 5.39E-05 220,7 2.56E-02 0.81 0.84 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 7.25 RPS 73.0 4.56E-05 224.6 2.21E-02 0.79 0.85 TRACKING MODE: DOVAP 74.0 3.90E-05 226.4 1.90E-02 0.78 0.86 75.0 3.43E-05 221.9 1.64E-02 0.79 0.88 76.0 2.91E-05 225.3 1.41E-02 0.78 0.89 PRESSURE RATIO = P/P STD. 77.0 2.57E-05 219.6 1.22E-02 0.80 0.91 DENSITY RATIO = RHO/RHO STD. 78.0 2.23E-05 217.2 1.04E-02 0.81 0.93 79.0 1.91E-05 217.6 8.95E-03 0.81 0.96 80.0 1.66E-05 214.6 7.67E-03 0.83 0.99 81.0 1.47E-05 206.9 6.55E-03 0.89 1.01 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 82.0 1.28E-05 201.9 5.57E-03 0.93 1.03 KM KG/CU-M K TORR RATIO RATIO 83.0 1.09E-05 201.0 4.72E-03 0.95 1.06 84.0 9.22E-06 201.4 4.00E-03 0.96 1.08 30.0 1.79E-02 231.3 8.92E 00 0.97 0.99 85.0 7.53E-06 209.7 3.40E-03 0.94 1.10 31.0 1.56E-02 229.2 7.70E 00 0.99 0.99 86.0 6.52E-06 206.5 2.90E-03 0.98 1.13 32.0 1.34E-02 230.3 6.65E 00 0.99 1.00 87.0 5.63E-06 203.3 2.47E-03 1.02 1.15 33.0 1.15E-02 231.8 5.74E 00 0.99 1.00 88.0 4.93E-06 196.6 2.09E-03 1.08 1.17 34.0 9.64E-03 239.6 4.97E 00 0.97 1.00 89.0 4.18E-06 195.8 1.76E-03 1.10 1.19 35.0 8.32E-03 241.2 4.32E 00 0.98 1.00 90.0 3.48E-06 198.8 1.49E-03 1.10 1.21 36.0 7.23E-03 241.3 3.76E 00 1.00 1.00 91.0 2.95E-06 198.4 1.26E-03 1.13 1.24 37.0 6.28E-03 241.5 3.27E 00 1.01 1.01 92.0 2.54E-06 194.6 1.06E-03 1.19 1.24 38.0 5.43E-03 243.0 2.84E 00 1.01 1.00 93.0 2.19E-06 189.9 8.96E-04 1.24 1,24 39.0 4.62E-03 249.0 2.48E 00 1.00 1.00 94.0 1.78E-06 196.8 7.55E-04 1.22 1.25 40.0 3.95E-03 254.7 2.17E 00 0.99 1.01 95.0 1.49E-06 198.8 6.38E-04 1.23 1.25 41.0 3.47E-03 253.9 1.90E 00 1.00 1.01 96.0 1.29E-06 194.0 5.39E-04 1.28 1.25 42.0 3.02E-03 255.6 1.66E 00 1.01 1.01 97.0 1.10E-06 191.6 4.54E-04 1.31 1.24 43.0 2.63E-03 257.3 1.46E 00 0.01 1.01 98.0 9.13E-07 194.4 3.82E-04 1.30 1.23 44.0 2.30E-03 258.2 1.28E 00 1.02 1.01 99.0 7.84E-07 190.6 3.22E-04 1.33 1.22 45.0 2.01E-03 259.4 1.12E 00 1.02 1.00 100.0 6.30E-07 200.2 2.72E-04 1.27 1.20 46.0 1.78E-03 257.1 9.868-01 1.04 1.00 101.0 5.11E-07 210.0 2.318-04 1.23 1.20 47.0 1.56E-03 257.4 8.65E-01 1.04 1.00 102.0 4.268-07 215.6 1.98E-04 1.22 1.19 48.0 1.358-03 261.3 7.60E-01 0.02 0.99 103.0 3.72E-07 211.5 1.69E-04 1.27 1.18 49.0 1.208-03 258.2 6.68E-01 1.03 0.98 104.0 3.27E-07 205.3 1.458-04 1.31 1.18 50.0 1.06E-03 256.6 5.8 6E-01 1,33 0.98 105.0 2.80E-07 204.0 1.23E-04 1.32 1.15 51.0 9.35E-04 255.0 5.14E-01 1.03 0.97 106.0 2.38E-07 204.1 1.05E-04 1.32 1.12 52.0 8.05E-04 260.0 4.51E-01 1.00 0.97 107.0 2.03E-07 203.4 8.90E-05 1.32 1.09 53.0 7.05E-04 260.9 3.96E-01 0.99 0.96 108.0 1.73E-07 202.9 7.56E-05 1.31 1.06 54.0 6.18E-04 261.8 3.48E-01 0.98 0.96 109.0 1.44E-07 207.5 6.44E-05 1.26 1.03 55.0 5.51E-04 258.0 3.06E-01 0.98 0.95 110.0 1.13E-07 227.1 5.53E-05 1.15 1.00 56.0 4.87E-04 256.2 2.69E-01 0.98 0.95 111.0 8.63E8-08 259.5 4.82E-05 1.03 0.99 57.0 4.34E-04 251.9 2.36E-01 0.98 0.95 112.0 6.66E-08 298.6 4.28E-05 0.93 0.99 58.0 3.87E-04 247.0 2.06E-01 0.99 0.94 113.0 5.39E-08 332.3 3.86E-05 0.88 1.00 59.0 3.38E-04 246.9 1.80E-01 0.98 0.94 114.0 4.58E-08 355.2 3.50E-05 0.86 1.02 60.0 3.03E-04 240.0 1.57E-01 0.99 0.93 115.0 4.03E-08 368.5 3.20E-05 0.87 1.04 61.0 2.68E-04 235.7 1.36E-01 0.99 0.92 116.0 3.58E-08 379.9 2.93E-05 0.89 1.05 62.0 2.34E-04 234.1 1.18E-01 0.98 0.91 I17.0 3.19E-08 391.4 2.69E-05 0.90 1.07 63.0 2.08E-04 227.8 1.02E-01 0.98 0.90 118.0 2.83E-08 406.3 2.46E-05 0.91 1.09 64.0 1.83E-04 223.2 8.80E-02 0.97 0.89 119.0 2.51E-08 423.1 2.29E-05 0.91 1.11 65.0 1.57E-04 224.0 7.57E-02 0.94 0.88 120.0 2.25E-08 437.2 2.12E-05 0.92 1.12 66.0 1.35E-04 224.3 6.52E-02 0.92 0.87 121.0 2.01E-08 454.6 1.97E-05 0.95 1.14 67.0 1.19E-04 218.8 5.61E-02 0.92 0.87 122.0 1.82E-08 467.5 1.83E-05 0.99 1.15 68.0 1.04E-04 214.6 4.81E-02 0.91 0.86 123.0 1.63E-08 487.2 1.71E-05 1.01 1.16 69.0 9.26E-05 205.6 4.10E-02 0.93 0.85 124.0 1.48E-08 502.1 1.60E-05 1.03 1.18 70.0 7.708E-05 210.6 3.49E-02 0.88 0.84 125.0 1.34E-08 520.0 1.50E-05 1.05 1.19 8 *'.lTuO ". ONIITn RRTII0 8 FTIT0E V3. TrwlMPE ~ NR3R Il.li0' ~ 1.188 188.7428 1*'- 188w8 U.S. o0. m. I1 1 8 81 1`''.;8 8 Wit 8 8: it ~C i s^.88.60.89 1.8.2 1w i.080 1.8 188. 188.00 208.00 020.00 2. 0.8 0 280..0o 2a0.0 DENSITY RATIO'/p,''. TEMPERTURE ['( K) 70

PITOT PROBE NASA 14.429 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 07 MARCH 1970 ALTITUDE: N/A KM KG/CU-M K TORR RATIO RATIO 18S41I00.110 GMT HORIZONTAL VELOCITY: N/A WALLOPS ISLAND, VIRGINIA FLIGHT TIME: N/A 102.0 4.74E-07 206.3 2.11E-04 1.36 1.27 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 29.0 SEC 103.0 4.20E-07 197.7 1.79E-04 1.43 1.25 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 7.57 RPS 104.0 3.59E-07 195.5 1.51E-04 1,44 1.23 TRACKING MODE: DOVAP 105.0 3.08E-07 192.1 1.27E-04 1.45 119 106.0 2.65E-07 187.7 1.07E-04 1.47 1.15 107.0 2.25E-07 185.1 8.97E-05 1,46 1.10 PRESSURE RATIO ~ P/P STD. 108.0 1.83E-07 190.9 7.53E-05 1.39 1.05 DENSITY RATIO a RHO/RHO STD. 109.0 1.45E-07 203.8 6.37E-05 1.27 1.02 110.0 1.12E-07 226.2 5.46E-05 1.14 0.99 111.0 8.36E-38 264.7 4.77E-05 1.00 0.98 112.0 6.65E-08 295.7 4,24E-05 0.93 0.98 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 113.0 5.57E-08 317.0 3.80E-05 0.91 0.99 KM KG/CU-M K TORR RATIO RATIO 114.0 4.84E-08 329.4 3.43E-05 0.91 1.00 115.0 4.32E-08 334.1 3.11E-05 0.94 1.01 30.0 1.80E-02 229.7 8.91E 00 0.98 0.99 116.0 4.06E-08 321.5 2.81E-05 1.00.01 31.0 1.56E-02 228.7 7.68E 00 0.99 0.99 117.0 3.65E-08 322.9 2.54E-05 1.03 1.01 32.0 1.34E-02 229.7 6.63E 00 0.99 0.99 118.0 3.26E-08 326.7 2.29E-05 1.05 1.01 33.0 1.14E-02 233.3 5.73E 00 0.98 0.99 119.0 2.90E-08 332.3 2.08E-05 1,05 1.00 34.0 9.75E-03 236.2 4.96E 00 0.99 1.00 120.0 2.58E-08 338.6 1.88E-05 1.06 1.00 35.0 8.25E-03 242.4 4.31E 00 0.98 1.00 121.0 2.29E-08 346.6 1.71E-05 1.09 0.99 36.0 7.15E-03 243.3 3.75E 00 0.98 1.00 122.0 2.03E-08 356.0 1.56E-05 1.10 0.98 37.0 6.31E-03 239.8 3.26E 00 1.01 1.00 123.0 1.79E-08 368.7 1,42E-05 1.10 O.97 38.0 5.36E-03 245.6 2.84E 0 00 1.00 124.0 1.58E-8 382.7 1.30E-05 1.10 0.96 39.0 4.68E-03 245.1 2.47E 00 1.01 1.00 125.0 1.42E-08 391.2 1.20E-05 1.11 0.95 40.0 3.99E-03 251.0 2.16E 00 1.00 1.00 41.0 3.46E-03 253.2 1.89E 00 1.00 1.00 42.0 3.08E-03 248.7 1.65E 00 1.03 1.00 43.0 2.65E-03 252.7 1.44E 00 1.02 0.99 44.0 2.30E-03 254.9 1.26E 00 1.02 0.99 45.0 2.01E-03 255.6 1.11E 00 1.02 0.99 46.0 1.77E-03 254.4 9.70E-01 1.04 0.98 47.0 1.55E-03 254.5 8.50E-01 1.03 0.98 48.0 1.35E-03 256.1 7.45E-01 1.02 0.97 49.0 1.17E-03 259.4 6.54E-01 1.01 0.96 50.0 1.05E-03 253.5 5.73E-01 1.02 0.96 51.0 9.14E-04 255.2 5.02E-01 1.01 0.95 52.0 7.82E-04 261.9 4.41E-01 0.98 0.94 84.0 8.58E-06 213.8 3.95E-03 0.90 1.06 85.0 7.41E-06 211.7 3.38E-03 0.93 1.09 86.0 6.32E-06 212.2 2.89E-03 0.95 1.12 87.0 5.53E-06 207.0 2.47E-03 1.01 1.15 88.0 4.81E-06 202.3 2.10E-03 1.05 1.18 89.0 4.11E-06 200.8 1.78E-03 1.08 1.20 90.0 3.49E-06 200.3 1.51E-03 1.10 1.22 91.0 3.00E-06 197.2 1.27E-03 1.15 1.25 92.0 2.55E-06 196.0 1.08E-03 1.19 1.25 93.0 2.12E-06 199.3 9.10E-04 1.20 1.26 94.0 1.78E-06 201.1 7.71E-04 1.22 1.27 95.0 1.51E-06 201.0 6.54E-04 1.25 1.28 96.0 1.30E-06 197.8 5.54E-04 1.29 1.28 97.0.10OE-06 197.7 4.68E-04 1.31 1.28 98.0 9.28E-07 198.2 3.96E-04 1.32 1.28 99.0 7.49E-07 208.6 3.37E-04 1.27 1.27 130.0 6.21E-07 215.2 2.88E-04 1.25 1.27 101.0 5.37E-07 213.2 2.47E-04 1.29 1.28 ~8 SB,"jOeg * Bet T mrn S_8 - 0n m u.S. T, wM ~~81~~ ~~~:..' j 1 ~Le g 8. / I8'**~. ^-~I 8:* 8: 8 8.,...,3 4 1 16 18.... IS' \''>)~~~~~~~~~~ el ~

PITOT PROBE NASA 14.430 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 08 MARCH 1970 ALTITUDE: 166.7 KM K KG/CU- K TURR RATIO RATIO 17t25:30.000 GMT HORIZONTAL VELOCITY: 191.0 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 410 SEC 71.0 6.79E-05 217.5 3.18E-02 0.89 0.90 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 18 SEC 72.0 5.95E-05 212.5 2.72E-02 0.89 0,90 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 11.90 RPS 73.0 5.12E-05 210.9 2.33E-02 0.88 0.90 TRACKING MODE: RADAR 74.0 4.15E-05 223.0 1.99E-02 0.83 0.91 75.0 3.55E-05 224.6 1.72E-02 0.82 0.92 76.0 3.12E-05 220.0 1.48E-02 0.83 0.94 PRESSURE RATIO = P/P STD. 77.0 2.68E-05 220.1 1.27E-02 0.83 0.96 DENSITY RATIO = RHO/RHO STO. 78.0 2.32E-05 218.4 1.09E-02 0.94 0.97 79.0 2.01E-05 216.2 9.36E-03 0.06 1.00 80.0 1.73E-05 215.3 8.02E-03 0.86 1.03 81.0 1.50E-05 212.5 6.86E-03 0.90 1.06 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 82.0 1.26E-05 216.6 5.88E-03 0.91 1.09 KM KG/CU-M K TORR RATIO RATIO 83.0 1.05E-05 223.4 5.05E-03 0.91 1.13 84.0 9.40E-06 214.3 4.34E-03 0.98 1.17 30.0 1.73E-02 237.3 8.84E 00 0.94 0.98 85.0 8.39E-06 204.9 3.70E-03 1.05 1.20 31.0 1.50E-02 237.3 7.67E 00 0.95 0.99 86.0 7.40E-06 196.9 3.1,4E-03 1.12 1.22 32.0 1.32E-02 233.6 6.64E 00 0.97 1.00 87.0 6.45E-06 190.3 2.64E-03 1.17 1.24 33.0 1.14E-02 234.1 5.75E 00 0.98 1.00 88.0 5.49E-06 187.5 2.22E-03 1.20 1.25 34.0 9.70E-03 238.5 4.98E 00 0.98 1.00 89.0 4.55E-06 189.7 1.86E-03 1.19 1.26 35.0 8.32E-03 241.5 4.33E 00 0.98 1.00 90.0 3.55E-06 205.4 1.57E-03 1.12 1.28 36.0 7.16E-03 244.2 3.77E 00 0.99 1.01 91.0 2.90E-06 214.6 1.34E-03 1.12 1.31 37.0 6.20E-03 245.7 3.28E 00 0.99 1.01 92.0 2.51c-06 212. 3 1.15F-03 1.17 1.34 38.0 5.41E-03 245.4 2.86E 00 1.01 1.01 93.0 2.16E-06 210.9 9.81E-04 1.23 1.36 39.0 4.66E-03 248.5 2.49E 00 1.01 1.01 94.0 1.79E-06 218.0 8.40E-04 1.23 1.39 40.0 4.06E-03 249.1 2.18E 00 1.01 1.01 95.0 1.53E-06 219.1 7.22E-04 1.26 1.42 41.0 3.54E-03 249.5 1.90E 00 1.02 1.01 96.0 1.32E-06 218.2 6.21E-04 1.31 1.44 42.0 3.07E-03 251.5 1.66E 00 1.03 1.01 97.0 1.15E-06 215.0 5.33E-04 1.37 1.46 43.0 2.67E-03 253.0 1.45E 00 1.03 1.00 98.0 1.00E-06 211.7 4.56E-04 1.42 1.47 44.0 2.31E-03 256.2 1.27E 00 1.02 1.00 99.0 8,71E-07 207.5 3.89E-04 1.47 1.47 45.0 2.01E-03 258.3 1.12E 00 1.02 1.00 00.0 7.55E-07 203.8 3.31E-04 1.52 1.47 466.0 1.75E-03 260.5 9.82E-01 1.02 1.00 101.0 6.50E-07 201.0 2.81E-04 1.56 1.46 47.0 1.54E-03 260.2 8.63E-01 1.03 0.99 102.0 5.50E-07 201.5 2.39E-04 1.58 1.44 48.0 1.35E-03 260.8 7.58E-01 1.02 0.99 103.0 4.64E-07 202.8 2.03E-04 1.58 1.42 49.0 1.18E-03 262.4 6.67E-01 1.02 0.98 104.0 3.95E-07 202.4 1.72E-04 1.59 1.40 50.0 1.05E-03 259.2 5.86E-01 1.02 0.98 105.0 3.38E-07 200.8 1.46E-04 1.59 1.37 51.0 9.22E-04 259.3 5.15E-01 1.02 0.98 106.0 2.82E-07 204.4 1.24E-04 1.57 1.33 52.0 8.05E-04 261.0 4.53E-01 1.30 0.97 107.0 2.19E-07 225.6 1.06E-04 1.42 1.30 53.0 7.15E-04 258.2 3.98E-01 1.01 0.97 108.0 1.78E-07 240.9 9.24E-05 1.35 1.29 54.0 6.40E-04 252.9 3.49E-01 1.01 0.96 109.0 1.54E-G7 242.9 8.06E-05 1.35 1.29 55.0 5.57E-04 254.6 3.05E-01 0.99 0.95 110.0 1.32E-07 247.7 7.04E-05 1.34 1,28 56.0 4.96E-04 250.3 2.67E-01 1.00 0.95 111.0 1.1E-07 258.6 6.18E-05 1.33 1.27 57.0 4.38E-04 247.7 2.34E-01 0.99 0.94 112.0 9.32E-08 271.9 5.46E-05 1.30 1.26 58.0 3.89E-04 243.3 2.04E-01 1.00 0.94 113.0 7.95E-08 283.0 4.95E-05 1.29 1.26 59.0 3.38E-04 244.0 1.78E-01 0.98 0.93 114.0 6.80E-08 295.2 4.32E-05 1.28 1.26 60.0 3.02E-04 237.7 1.55E-01 0.99 0.92 115.0 5.85E-08 307.6 3.88E-05 1.27 1.25 61.0 2.65E-04 235.0 1.34E-01 0.98 0.91 116.0 5.01E-08 323.5 3.49E-05 1.24 1.25 62.0 2.30E-04 234.8 1.16E-01 0.96 0.90 1i7.0 4.40E-08 333.2 3.16E-05 1.24 1.25 63.0 2.00E-04 234.1 1.01E-01 0.94 0.89 118.0 3.88E-08 342.8 2.86E-05 1.25 1.26 64.0 1.75E-04 231.7 8.73E-02 0.93 0.89 119.0 3.45E-08 350.6 2.61E-05 1.25 1.26 65.0 1.50E-04 234.2 7.57E-02 0.90 0.88 120.0 3.04E-08 362.8 2.38E-05 1.25 1.26 66.0 1.27E-04 240.2 6.57E-02 0.86 0.88 121.0 2.69E-08 375.0 2.17E-05 1.27 1.26 67.0 1.12E-04 236.7 5.71E-02 0.86 0.88 122.0 2.38E-08 388.8 1.99E-05 1.29 1.25 68.0 9.80E-05 234.7 4.96E-02 0.86 0.89 123.0 2.10E-08 405.7 1.83E-05 1.30 1.25 69.0 8.69E-05 229.2 4.29E-02 0.87 0.89 124.0 1.85E-08 425.4 1.70E-05 1.29 1.25 70.0 7.70E-05 223.1 3.70E-02 0.88 0.89 125.0 1.64E-08 445.0 1.57E-05 1.28 1.25 5 - ea UIt.. air. topT.T gM 1N.N8% 8!8, 8 8 I, \ bi. Ue 8 B gt N'.8.8 18 12 1.8 10181 18.~ 0.0 ~08000 0100 1000 00 72 72

PITUT PROBE NASA 14.466 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 03 AUGUST 197U ALTITUDE: 170.1 KM KM KG/CU-M K TORR RATIO RATIO 16:09:00.000 GMT HORIZONTAL VELOCITY: 254.8 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 412 SEC 73.0 5.79E-05 195.3 2.44E-02 1.00 0.94 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 10 SEC 74.0 4.90E-05 194.5 2.05E-02 0.98 0.93 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 10.60 RPS 75.0 4.23E-05 189.3 1.73E-02 0.97 0.92 TRACKING MODE: RADAR 76.0 3.48E-05 193.3 1.45E-02 0.93 0.92 77.0 2.80E-05 203.0 1.22E-02 0.87 0.92 78.0 2.37E-05 203.6 1.04E-02 0.86 0.93 PRESSURE RATIO = P/P STD. 79.0 2.08E-05 196.4 8.80E-03 0.89 0.94 DENSITY RATIO = RHO/RHO STD. 80.0 1.81E-05 089.9 7.41E-03 0.90 0.95 81.0 1.55E-05 185.1 6.20E-03 0.93 0,96 82.0 1.30E-05 185.1 5.18E-03 0.94 0.96 83.0 1.12E-05 179.0 4.32E-03 0.97 0.97 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 84.0 9.55E-06 173.8 3.58E-03 1.00 0.96 KM KG/CU-M K TORR RATIO RATIO 85.0 7.90E-06 173.5 2.95E-03 0.99 0.96 86.0 6.53E-06 173.3 2.44E-03 0.99 0.95 32.0 1.41E-02 238.1 7.23E 00 1.04 1.08 87.0 5.15E-06 182.2 2.02E-03 0.94 0.94 33.0 1.21E-02 241.0 6.28E 00 1.04 1.09 88.0 4.23E-06 185.1 1.69E-03 0.92 0.95 34.0 1.04E-02 243.9 5.46E 00 1.05 1.10 89.0 3.61E-06 180.9 1.4lE-03 0.95 0.95 35.0 9.05E-03 244.0 4.76E 00 1.07 1.10 90.0 2.89E-06 188,7 1.17E-03 0.91 0.96 36.0 7.87E-03 244.4 4.14E 00 1.08 1.11 91.0 2.47E-06 184.9 9.84E-04 0.95 0.96 37.0 6.90E-03 242.6 3.61E 00 1.11 1.11 92.0 2.05E-06 186.3 8.23E-04 0.96 0.96 38.0 6.09E-03 239.0 3.13E 00 1.13 1.11 93.0 1.57E-06 205.2 6.94E-04 0.89 0.96 39.0 5.17E-03 244.8 2.73E 00 1.12 1.10 94.0 1.32E-06 207,9 5.91E-04 0.90 0.98 40.0 4.39E-03 251,7 2.38E 00 1.10 1.11 95.0 1.13E-06 206.9 5.04E-04 0.93 0.99 41.0 3.74E-03 258.9 2.09E 00 1.08 1.11 96.0 9.07E-07 220.8 4.31E-04 0.90 1.00 42.0 3.24E-03 262.6 1.83E 00 1.08 1.11 97.0 7.48E-07 231.1 3.72E-04 0.89 1.02 43.0 2.84E-03 263.5 1.61E 00 1.09 1.11 98.0 6.56E-07 228.1 3.22E-04 0.93 1.04 44.0 2.47E-03 266.9 1.42E 00 1.09 1.12 99.0 5.91E-07 218.3 2.78E-04 1.00 1.05 45.0 2.22E-03 261.4 1.25E 00 1.13 1.12 100.0 5.29E-07 208.9 2.38E-04. 1.06 1.05 46.0 1.94E-03 263.0 1. 10E 00 1.13 1.12 101.0 4.62E-07 203.8 2.03E-04 1.11 1.05 47.0 1.71E-03 262.6 9.67E-01 1.14 1.11 102.0 4.02E-07 198.7 1.72E-04 1.15 1.04 48.0 1.49E-03 265.3 8.51E-01 1.13 1.11 103.0 3.47E-07 194.5 1.45E-04 1.18 1.02 49.0 1.32E-03 263.7 7.50E-01 1.14 1.11 104.0 2.67E-07 215,0 1.24E-04 1.07 1.01 50.0 1.161-03 264.1 6.601-01 1.13 1.10 105.0 2.08E-07 238.5 1.07E-04 0.98 1.00 51.0 1.03E-03 261.8 5.81E-01 1.14 1.10 106.0 1.73E-07 250.4 9.33E-05 0.96 1.00 52.0 9.08E-04 261.1 5.11E-01 1.13 1.09 107.0 1.46E-07 260.7 8,20E-05 0.95 1.00 53.0 8.04E-04 259.2 4.49E-01 1.13 1.09 108.0 1.27E-07 264.3 7.23E-05 0.96 1.01 54.0 7.02E-04 260.9 3.94E-01 1.11 1.08 109.0 1.12E-07 264.5 6.38E-05 0.98 1.02 55.0 6.23E-04 258.3 3.47E-01 1.11 1.08 110.0 9.60E-08 272.9 5.64E-05 0.98 1.02 56.0 5.51E-04 256.3 3.04E-01 1.11 1.08 111.0 8.04E-08 289.8 5.02E-05 0.96 1.03 57.0 4.87E-04 254.3 2.67E-01 1.10 1.07 112.0 6.75E-08 309.1 4.49E-05 0.94 1.04 58.0 4.33E-04 250.4 2.34E-01 1.11 1.07 113.0 5.72E-08 328.9 4.05E-05 0.93 1.05 59.0 3.87E-04 244.7 2.04E-01 1.12 1.06 114.0 4.85E-08 352.1 3.68E-05 0.91 1.07 60.0 3.45E-04 239.0 1.78E-01 1.13 1.06 115.0 4.19E-08 372.0 3.36E-05 0.91 1.09 61.0 3.02E-04 237.2 1.54E-01 1.12 1.04 116.0 3.69E-08 387.3 3.08E-05 0.91 1.10 62.0 2.64E-04 235.5 1.34E-01 1.10 1.04 117.0 3.31E-08 397.0 2.83E-05 0.94 1.12 63.0 2.34E-04 230.1 1.16E-01 1.10 1.03 118.0 3.00E-08 403.4 2.61E-05 0.96 1.14 64.0 2.10E-04 221.0 1.OE-01 1.12 1.01 119.0 2.73E-08 408.8 2.40E-05 0.99 1.16 65.0 1.85E-04 215.2 8.58E-02 1.11 1.00 120.0 2.50E-08 412.0 2.22E-05 1.02 1.17 66.0 1.61E-04 211.4 7.33E-02 1.10 0.98 121.0 2.30E-08 413.5 2.05E-05 1.09 1.18 67.0 1.31E-04 222.6 6.28E-02 1.01 0.97 122.0 2.12E-08 414.4 1.89E-05 1.15 1.19 68.0 1.12E-04 224.2 5.41E-02 0.98 0.97 123.0 1.93E-08 420.7 1.75E-05 1.19 1.19 69.0 9.84E-05 219.5 4.65E-02 0.98 0.97 124.0 1.76E-08 426.9 1.62E-05 1.23 1.19 70.0 8.75E-05 211.4 3.98E-02 1.00 0.96 125.0 1.59E-08 438.0 1.50E-05 1.24 1.19 71.0 7.68E-05 205.2 3.39E-02 1.31 0.96 72.0 6.61E-05 202.4 2.88E-02 0.99 0.95 8 gIS O IT 8 I ITUIZ vs. RTeR18m S' * --- 182 U.S 8. STo. RT. 8 8 8' * *8. * ^^<% 8. *'8*.I I:. 8 8 DN R,. T E * ** ~Tn ~'~"7: 8 73

PITOT PROBE NASA 14.431 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 21 AUGUST 1970 ALTITUDE: 196.7 KM KM KG/CU-M K TORR RATIO RATIO 15139:00.000 GMT HORIZONTAL VELOCITY: 325.2 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 446 SEC 74.0 4.72E-05 202.2 2.06E-02 0.94 0.93 LAT 37 DEG 50 MIN N PRECESSION PERIOD: N/A 75.0 4.03E-05 200.6 1.74E-02 0.93 0.93 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 9.26 RPS 76.0 3.43E-05 199.6 1.47E-02 0.92 0.93 TRACKING MODE: RADAR 77.0 2.91E-05 199.0 1.25E-02 0.91 0.94 78.0 2.41E-05 203.6 1.06E-02 0.88 0.94 79.0 2.09E-05 198.9 8.96E-03 0.89 0.96 PRESSURE RATIO = P/P STD. 80.0 1.82E-05 192.7 7.55E-03 0.91 0.97 DENSITY RATIO = RHO/RHO STD. 81.0 1.57E-05 187.5 6.34E-03 0.95 0.98 82.0 1.36E-05 180.7 5.29E-03 0.99 0.98 83.0 1.15E-05 177.4 4.39E-03 1.00 0.98 84.0 9.30E-06 182.3 3.65E-03 0.97 0.98 ALTITUDE DENSITY TEMP, PRESSURE DENSITY PRESSURE 85.0 6.85E-06 208.6 3.08E-03 0.86 1.00 KM KG/CU-M K TORR RATIO RATIO 86.0 5.86E-06 207.9 2.62E-03 0.89 1.02 87.0 5.05E-06 205.4 2.23E-03 0.92 1.04 33.0 1.24E-02 235.9 6.30E 00 1.07 1.09 88.0 4.33E-06 203.6 1.90E-03 0.95 1.07 34.0 1.07E-02 237.0 5.46E 00 1.08 1.10 89.0 3.72E-06 201.1 1.61E-03 0.98 1.09 35.0 9.18E-03 239.7 4.74E 00 1.09 1.10 90.0 3.18E-06 199.3 1.37E-03 1.00 1.11 36.0 7.92E-03 241.5 4.12E 00 1.09 1.10 91.0 2.73E-06 196.3 1.15E-03 1.05 1.13 37.0 6.88E-03 241.7 3.58E 00 1.10 1.10 92.0 2.22E-06 204.5 9.78E-04 1.04 1.14 38.0 5.91E-03 244.9 3.12E 00 1.10 1.10 93.0 1.92E-06 200.8 8.30E-04 1.09 1.15 39.0 5.05E-03 250.1 2.72E 00 1.09 1.10 94.0 1.66E-06 196.5 7.03E-04 1.14 1.16 40.0 4.37E-03 252.7 2.38E 00 1,.09 1.11 95.0 1.39E-06 198.4 5.94E-04 1.15 1.16 41.0 3.81E-03 253.7 2.08E 00 1.10 1.11 96.0 1.17E-06 199.5 5.03E-04 1.16 1.17 42.0 3.29E-03 257.5 1.83E 00 1.10 1 97.0 9.84E-07 201.1 4.26E-04 1.17 1.17 43.0 2.87E-03 259.1 1.60E 00 1.10 1.10 98.0 8.27E-07 203.1 3.62E-04 1.17 1.17 44.0 2.52E-03 259.1 1.41E 00 X.12 1.11 99.0 6.84E-07 209.1 3.08E-04 1.16 1.17 45.0 2.20E-03 260.8 1.24E 00 1.12 1.10 100.0 5.77E-07 211.7 2.63E-04 1.16 1.16 46.0 1.93E-03 261.3 1.09E 00 1.13 1.10 101.0 4.93E-07 212.0 2.25E-04 1.19 1.17 47.0 1.69E-03 262.4 9.55E-01 1.13 1.10 102.0 4.20E-07 212.9 1.93E-04 1.20 1.16 48.0 1.49E-03 261.8 8.40E-01 1.13 1.10 103.0 3.59E-07 213.3 1.65E-04 1.22 1.15 49.0 1.30E-03 264.0 7.39E-01 1.12 1.09 104.0 3.09E-07 212.1 1.41E-04 1.24 1.15 50.0 1.13E-03 267.6 6.51E-01 1.10 1.09 105.0 2.53E-07 222.5 1.21E-04 1.19 1.13 51.0 1.00E-03 266.6 5.74E-01 1.10 1.09 106.0 2.03E-07 240.3 1.05E-04 1.13 1.12 52.0 8.84E-04 265.8 5.06E-01 1.10 1.08 107.0 1.68E-07 254.0 9.19E-05 1.09 1.13 53.0 7.93E-04 260.9 4.46E-01 1.12 1.08 108.0 1.38E-07 272.8 8.11E-05 1.05 1.14 54.0 7.10E-04 255.9 3.91E-01 1.13 1.07 109.0 1.17E-07 285.8 7.20E-05 1.03 1.15 55.0 6.27E-04 254.0 3.43E-01 1.12 1.07 110.0 9.69E-OB 308.8 6.44E-05 0.99 1.17 56.0 5.54E-04 251.7 3.00E-01 1.11 1.07 111.0 8.05E-08 335.4 5.82E-05 0.96 1.19 57.0 4.92E-04 247.8 2.63E-01 1.12 1.05 112.0 6.70E-08 366.8 5.29E-05 0.94 1.23 58.0 4.38E-04 242.8 2.29E-01 1.12 1.05 113.0 5.72E-08 393.9 4.85E-05 0.93 1.26 59.0 3.83E-04 241.8 1.99E-01 1.11 1.04 114.0 4.98E-08 417.1 4.47E-05 0.94 1.30 60.0 3.33E-04 242.1 1.74E-01 1.09 1.03 115.0 4.40E-08 437.0 4.14E-05 0.95 1.34 61.0 2.93E-04 239.4 1.51E-01 1.09 1.02 116.0 3.94E-08 453.2 3.85E-05 0.98 1.38 62.0 L.60E-04 234.2 1.31E-01 1.09 1.02 117.0 3.56E-08 466.9 3.58E-05 1.01 1.42 63.0 2.28E-04 231.3 1.14E-01 1.07 1.01 118.0 3.24E-08 478.5 3.34E-05 1.04 1.46 64.0 1.99E-04 229.1 9.82E-02 1.06 1.00 119.0 2.97E-08 487.6 3.12E-05 1.08 1.51 65.0 1.77E-0Q4 222.1 8.47E-02 1,.06 0.99 120.0 2.70E-08 501.9 2.92E-05 1.11 1.54 66.0 1.56E-04 216.3 7.27E-02 1.06 0.97 121.0 2.46E-08 516.4 2.74E-05 1.17 1.58 67.0 1.31E-04 221.1 6.24E-02 1.01 0.97 122.0 2.26E-08 527.8 2.57E-05 1.23 1.62 68.0 1.13E-04 220.3 5.36E-02 0.99 0,96 123.0 2.09E-08 536.5 2.42E-05 1.29 1.64 69.0 9.98E-05 213.8 4.60E-02 1.00 0.96 124.0 1.93E-08 546.8 2.27E-05 1.35 1.67 70.0 8.70E-05 209.4 3.92E-02 0.99 0.95 125.0 1.79E-08 555.4 2.14E-05 1.40 1.70 71.0 7.47E-05 207.8 3.34E-02 0.98 0.94 72.0 6.38E-05 207.2 2.85E-02 0.96 0.94 73.0 5.48E-05 205.1 2.42E-02 0.95 0.93 iFTIIZ VW DE8ITT TIO. 8 ILTIT3oE VS. 1tENIIm| ~,T1 ~3 ~cis~' —- 1~ U.9. an,. MI'. uo'. e.u ~ 8 P8T' 8: 8.' ***.48~811.80 1.10 0:20 1.10 110 188.08 188k.8 100.00 220.00 240.08 280.00 280.00 DENSITY RRTIO fl',..'EMPERPITURE (' K) 74

PITOT PROBE NASA 14.385 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 17 SEPTEMBER 1970 ALTITUDE: 155.2 KM KM KG/CU-M K TORR RATIO RATIO 15:58:00.000 GMT HORIZONTAL VELOCITY: 234.0 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 396 SEC 76.0 3.68E-05 187.2 1.48E-02 0.98 0.94 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 12 SEC 77.0 3.13E-05 183.9 1.24E-02 0.98 0.93 LONG 75 DEC 29 MIN W STABILIZED ROLL RATE: 9.30 RPS 78,0 2.56E-05 188.0 1.04E-02 0.93 0.93 TRACKING MODE: RADAR 79.0 2.10E-05 192.3 8.70E-03 0.89 0.93 80.0 1.58E-05 217.0 7.39E-03 0.79 0.95 81.0 1.34E-05 219.7 6,34E-03 0.81 0.98 PRESSURE RATIO = P/P STD. 82.0 1.17E-05 215.9 5.44E-03 0.85 1.01 DENSITY RATIO = RHO/RHO STD. 83.0 1.02E-05 212.0 4.66E-03 0.89 1.04 84.0 8.82E-06 209.4 3.98E-03 0.92 1.07 85.0 7.74E-06 203.1 3.39E-03 0.97 1.10 86.0 6.54E-06 204.1 2.88E-03 0,99 1.12 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 87.0 5.74E-06 197.1 2.44E-03 1.04 1.14 KM KG/CU-M K TORR RATIO RATIO 88.0 5.04E-06 189.0 2.05E-03 1.10 1.15 89.0 4.30E-06 185.5 1.72E-03 1.13 1.16 35.0 9.19E-03 237.0 4.69E 00 1.09 1.09 90.0 3.75E-06 177.1 1.43E-03 1.18 1.16 36.0 7.95E-03 237.6 4.07E 00 1.10 1.09 91.0 3.18E-06 172.7 1.18E-03 1.22 1.16 37.0 6.80E-03 241.3 3.53E 00 1.09 1.09 92.0 2.67E-06 169.5 9.75E-04 1.25 1.13 38.0 5.84E-03 244.5 3.08E 00 1.09 1.09 93.0 2.16E-06 172.5 8.03E-04 1.23 1.11 39.0 5.07E-03 245.4 2.68E 00 1.10 1.08 94.0 1.69E-06 182.9 6.66E-04.16 1.10 40.0 4.36E-03 249.0 2.34E 00 1.09 1.09 95.0 1.34E-06 193.3 5.58E-04 1.11 1.09 41.0 3.79E-03 250.2 2.04E 00 1.10 1.09 96.0 1.06E-06 207.1 4.73E-04 1.05 1.10 42.0 3.30E-03 251.2 1.79E 00 1.10 1.08 97.0 9.25E-07 201.8 4.02E-04 1.10 1.10 43.0 2.84E-03 255.5 1.56E 00 1.09 1.08 98.0 7.58E-07 209.6 3.42E-04 1.08 1.10 44.0 2.44E-03 261.0 1.37E 00 1.08 1.08 99.0 6.44E-07 210.7 2.92E-04 1.09 1.11 45.0 2.14E-03 261.6 1.21E 00 1.09 1.08 100.0 5.44E-07 213.4 2.50E-04 1.09 1.11 46.0 1.85E-03 266.4 1.06E 00 1.08 1.08 101.0 4.70E-07 211.4 2.14E-04 1.13 1.11 47.0 1.63E-03 266.5 9.36E-01 1.09 1.08 102.0 4.09E-07 207.4 1.83E-04 1.17 1.10 48.0 1.42E-03 269.8 8.25E-01 1.08 1.08 103.0 3.54E-07 204.0 1.56E-04 1.20 1.09 49.0 1.27E-03 266.1 7.28E-01 1.09 1.07 104.0 3.01E-07 204.0 1.32E-04 1.21 1.08 50.0 1.13E-03 263.4 6.41E-01 1.10 1.07 105.0 2.55E-07 204.9 1.13E-04 1.20 1.05 51.0 1.00E-03 261.9 5.64E-01 1.10 1.07 106.0 2.09E-07 213.4 9.61E-05 1.16 1.03 52.0 8.89E-04 259.0 4.96E-01 1.11 1.06 107.0 1.68E-07 228.6 8.27E-05 1.09 1.01 53.0 7.84E-04 257.8 4.35E-01 1.10 1.06 108.0 1.27E-07 264.3 7.23E-05 096 1.01 54.0 6.89E-04 257.6 3.82E-01 1.09 1.05 109.0 9.75E-08 306.5 6.44E-05 0.86 1.03 55.0 6.10E-04 255.2 3.35E-01 1.09 1.04 110.0 7.96E-08 338.8 5,81E-05 0.81 1.05 56.0 5.43E-04 251.1 2.94E-01 1.09 1.04 111.0 6.77E-08 362.5 5.29E-05 0.81 1.09 57.0 4.76E-04 250.6 2.57E-01 1.08 1.03 112.0 5.95E-08 377.3 4.84E-05 0.83 1.12 58.0 4.19E-04 248.9 2.25E-01 1.07 1.03 113.0 5.32E-08 387.1 4.44E-05 0.87 1.15 59.0 3.73E-04 244.0 1.96E-01 1.08 1.02 114.0 4.79E-08 395.1 4.08E-05 0.90 1.19 60.0 3.30E-04 240.2 1.71E-01 1.08 1.02 115.0 4.35E-08 400.5 3.75E-05 0.94 1.21 61.0 2.94E-04 234.1 1.48E-01 1.09 1.00 116.0 3.98E-08 403.3 3.46E-05 0.99 1.24 62.0 2.52E-04 236.9 1.29E-01 1.05 1.00 117.0 3.64E-08 406.5 3.19E-05 1.03 1.26 63.0 2.21E-04 234.3 1.12E-01 1.04 0.99 118.0 3.32E-08 411.2 2.94E-05 1.07 1.29 64.0 1.94E-04 231.1 9.66E-02 1.03 0.98 119.0 3.01E-08 419.0 2.72E-05 1.09 1.31 65.0 1.70E-04 228.0 8.35E-02 1.02 0.97 120.0 2.70E-08 432.3 2.51E-05 1.11 1.33 66.0 1.47E-04 227.7 7.21E-02 1.00 0.97 121.0 2.46E-08 440.0 2.33E-05 1.17 1,35 67.0 1.30E-04 221.8 6.21E-02 1.00 0.96 122.0 2.26E-08 444.7 2.16E-05 1.23 1.36 68.0 1.09E-04 228.0 5.35E-02 0.96 0.96 123.0 2.08E-08 448.9 2.01E-05 1.28 1.37 69.0 9.65E-05 222.0 4.61E-02 0.96 0.96 124.0 1.93E-08 449.6 1.87E-05 1.35 1.37 70.0 8.39E-05 219.5 3.97E-02 0.96 0.96 125.0 1.78E-08 453.3 1.74E-05 1.39 1.38 71.0 7.32E-05 215.8 3.40E-02 0.96 0.96 72.0 6.46E-05 208.9 2.91E-02 0.97 0.96 73.0 5.64E-05 203.5 2.47E-02 0.97 0.95 74.0 4.91E-05 198.0 2.09E-02 0.98 0.95 75.0 4.21E-05 194.9 1.77E-02 0.97 0.94 8 FRLTI1UDE VW. IIBIITY PRTIO. %.uam,. vs *- 8 |. J eoe ~inr 8 #s,* 8~ -tim u.s. srT. m. 8 8L O.0.. 0 O 8 8 ENSITY TIO. E T (K) i... ~,, u _8!:t

PITOT PROBE NASA 10.327 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 21 SEPTEMBER 1970 ALTITUDE: 144.9 KM. KM KG/CU-M K TORR RATIO RATIO 16:14(00.000 GMT HORIZONTAL VELOCITY: 168.0 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 372 SEC 73.0 5.06E-05 224.4 2.45E-02 0.87 0.94 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 15 SEC 74.0 4.35E-05 225.0 2.11E-02 0.87 0.96 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 5.10 RPS 75.0 3.75E-05 225.1 1.82E-02 0.86 0.97 TRACKING MODE: RADAR 76.0 3.35E-05 216.6 1.56E-02 0.90 0.99 77.0 2.95E-05 210.5 1.34E-02 0.92 1.01 78.0 2.51E-05 211.2 1.14E-02 0.91 1.02 PRESSURE RATIO = P/P STO. 79.0 2.14E-05 211.6 9.75E-03 0.91 1.05 DENSITY RATIO = RHO/RHO STD. 80.0 1.84E-05 210.1 8.33E-03 0.92 1.07 81.0 1.58E-05 208.7 7.10E-03 0.95 1.10 82.0 1.32E-05 213.3 6.07E-03 0.96 1.13 83.0 1.08E-05 223.9 5.21E-03 0.94 1.17 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 84.0 9.00E-06 232.2 4.50E-03 0.94 1.21 KM KG/CU-M K TORR RATIO RATIO 85.0 7.61E-06 238.4 3.91E-03 0.95 1.26 86.0 6.58E-06 239.9 3.40E-03 0.99 1.32 32.0 1.38E-02 230.8 6.86E 00 1.01 1.03 87.0 5.76E-06 238.5 2.96E-03 1.05 1.38 33.0 1.18E-02 233.3 5.93E 00 1.02 1.03 88.0 4.96E-06 241.1 2.58E-03 1.08 1.45 34.0 1.03E-02 231.1 5.13E 00 1.04 1.03 89.0 4.25E-06 245.5 2.25E-03 1.12 1.52 35.0 8.68E-03 237.4 4.44E 00 1.03 1.03 90.0 3.73E-06 244.2 1.96E-03 1.18 1.60 36.0 7.39E-03 242.2 3.86E 00 1.02 1.03 91.0 3,36E-06 236.1 1.71E-03 1.29 1.68 37.0 6.51E-03 239.0 3.35E 00 1.04 1.03 92 0 300E-06 229.3 1.48E-03 1.40 1.72 38.0 5.61E-03 240.9 2.91E 00 1.04 1.03 93.0 2.73E-06 217.2 1.28E-03 1.55 1.77 39.0 4.80E-03 245.1 2.53E 00 1.04 1.03 94.0 2.43E-06 208.8 1.09E-03 1.66 1.81 40.0 4.09E-03 251.0 2.21E 00 1.02 1.03 95.0 2.15E-06 200.7 9.30E-04 1.78 1.82 41.0 3.52E-03 255.3 1.94E 00 1.02 1.03 96.0 1.87E-06 195.2 7.86E-04 1.85 1.82 42.0 3.05E-03 258.4 1.70E 00 1.02 1.03 97.0 1.62E-06 189.7 6.62E-04 1.93 1.81 43.0 2.67E-03 259.1 1.49E 00 1.03 1.03 98.0 1.40E-06 183.9 5.54E-04 1.99 1.79 44.0 2.34E-03 259.7 1.31E 00 1.04 1.03 99.0 1.20E-06 178.7 4.62E-04 2.03 1.75 45.0 2.06E-03 259.0 1.15E 00 1.05 1.03 100.0 1.01E-06 176.2 3.83E-04 2.03 1.70 46.0 1.81E-03 258.9 1.01E 00.06 1.02 101.0 8.25E-07 179.0 3.18E-04 1.98 1.65 47.0 1.59E-03 258.7 8.86E-01 1.06 1.02 102.0 6.83E-07 179.8 2.65E-04 1.96 1.59 48.0 1.37E-03 264.0 7.79E-01 1.04 1.02 103.0 5.55E-07 184.5 2.20E-04 1.89 1.54 49.0 1.22E-03 260.8 6.85E-01 1.05 1.01 50.0 1.08E-03 258.9 6.02E-01 1.05 1.01 51.0 9.45E-04 259.9 5.29E-01 1.04 1.00 52.0 8.19E-04 263.7 4.65E-01 1.02 1.00 53.0 7.26E-04 261.8 4.09E-01 1.02 0.99 54.0 6.39E-04 261.7 3.60E-01 1.01 0.99 55.0 5.69E-04 258.3 3.17E-01 1.01 0.99 56.0 5.07E-04 254.3 2.78E-01 1.02 0.98 57.0 4.48E-04 252.0 2.43E-01 1.02 0.98 58.0 3.94E-04 250.8 2.13E-01 1.01 0.98 59.0 3.53E-04 244.5 1.86E-01 1.02 0.97 60.0 3.14E-04 239.3 1.62E-01 1.03 0.96 61.0 2.76E-04 236.4 1.41E-01 1.02 0.95 62.0 2.44E-04 231.8 1.22E-01 1.02 0.94 63.0 2.08E-04 235.6 1.06E-01 0.98 0.93 64.0 1.78E-04 239.1 9.17E-02 0.95 0.93 65.0 1.56E-04 237.0 7.97E-02 0.93 0.93 66.0 1.38E-04 232.4 6.91E-02 0.94 0.93 67.0 1 23E-04 225.3 5.97E-02 0.95 0.92 68.0 — r, 223.1 5.14E-02 0.94 0.92 69.0 0 0' 227.1 4.43E-02 0.91 0.92 70.0 t.iIc-05 222.5 3.82E-02 0.91 0.92 71.0 6.70E-05 228.2 3.29E-02 0.88 0.93 72.0 5.91E-05 223.1 2.84E-02 0.89 0.93 8FITIIWE VSI. OIfT 10 TI8. 8F Tt 10 TEW rTURE _il ~ ~ ~ ~ ~ ~ ~ ~'-.- U.. ur- O6 U... o. R. 8 8 8- 28 76 8 i r r.42.80.82 1.8 11.8 OENSITY RATIO E.PE TURE ( K 76

PITUT PROBE NASA 14.460 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 20 4OVE4BER 1970 ALTITUDE: 181.1 KM KM KG/CU-N K TORR RATIO RATIO 23:29:00.000 GMT HORIZONTAL VELOCITY: 148.8 M/SEC EGLIN AIR FORCE BASE, FLORIDA FLIGHT TIME: 426 SEC 75.0 3.64E-05 200.7 1.57E-02 0.4 0.84 LAT 30 DEG 23 MIN N PRECESSION PERIOD: 25 SEC 76.0 3.12E-05 198.1 1.33E-02 0.83 0.84 LONG 86 DEC 468 MIN W STABILIZED ROLL RATE: 8.4 RPS 77.0 2.39E-05 220.4 1.13E-02 0.74 0,85 TRACKING MODE: DOVAP 78.0 2.02E-05 224.5 9.77E-03 0.73 0.87 79.0 1.75E-05 223.2 8.42E-03 0.74 0.90 80.0 1.48E-05 227.7 7.26E-03 0.74 0.93 PRESSURE RATIO = P/P STD. 81.0 1.26E-05 231.3 6.28E-03 0,76 0.97 DENSITY RATIO * RHO/RHO STD. 82.0 1.09E-05 231.6 5.44E-03 0.79 1.01 83.0 9.73E-06 224.2 4.70E-03 0.85 1.05 84.0 8.68E-06 216.1 4.04E-03 0.91 1.09 85.0 7.77E-06 206.2 3.45E-03 0.97 1.12 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 86.0 6.87E-06 197.8 2.93E-03 1.04 1.14 KM KG/CU-N K TURR RATIO RATIO 87.0 5.79E-06 198.5 2.48E-03 1.05 1.16 88.0 4.83E-06 201.5 2.10E-03 1.05 1.18 34.0 8.96E-0.3 240.6 4.64E 00 0.91 0.93 89.0 4.12E-06 200.2 1.78E-03 1.08 1.20 35.0 7.62E-03 246.2 4.04E 00 0.90 0.94 90.0 3.53E-06 197.8 1.50E-Q3 1.11 1.22 36.0 6.58E-03 248.7 3.53E 00 0.91 0.94 91.0 3.01E-06 196.0 1.27E-03 1.16 1.25 37.0 5.71E-03 250.4 3.08E 00 0.92 0.95 92.0 2.57E-06 193.5 1.07E-03 1.20 1.25 38.0 4.94E-03 253.1 2.69E 00 0.92 0.95 93.0 2.21E-06 189.3 9.01E-04 1,26 1.25 39.0 4.26E-03 257.1 2.36E 00 0.92 0.96 94.0 1.86E-06 188.7 7.56E-04 1.27 1.25 40.0 3.73E-03 257.6 2.07E 00 0.93 0.96 95.0 1.58E-06 186.1 6.33E'-04 1.31 1.24 41.0 3.24E-03 260.3 1.82E 00 0.94 0.97 96.0 1.36E-06 180.4 5.29E-04 1.35 1.23 42.0 2.85E-03 260.0 1.60E 00 0.95 0.97 97.0 1.15E-Gb 177.3 4.39E-04 1.37 1.20 43.0 2.51E-03 259.2 1.40E 00 0.97 0.97 98.0 9.65E-07 175.1 3.64E-04 1.37 1.17 44.0 2.21E-03 258.5 1.23E 00 0.98 0.97 99.0 8.06E-07 173.3 3.01E-04 1.36 1.14 45.0 1.92E-03 261.4 1.08E 00 0.97 0.97 100.0 6.76E-07 170.5 2.48E-04 1.36 1.10 46.0 1.66E-03 266.1 9.51E-01 0.97 0.97 101.0 5.61E-07 169.0 2.04E-04.1.35 1.06 47.0 1.45E-03 268.6 8.39E-01 0.97 0.97 102.0 4.51E-07 173.3 1.68E-04 1.29 1.01 48.0 1.27E-03 270.7 7.41E-01 0.96 0.97 103.0 3.57E-07 181.7 1.40E-04 1.21 0.98 49.0 1.12E-03 271.1 6.54E-01 0.97 0.96 104.0 2.93E-07 184.8 1.17E-04 1.18 0.95 50.0 9.91E-04 270.6 5.78E-01 0.96 0.97 105.0 2.15E-07 213.1 9.87E-05 1.01 0.92 51.0 8.78E-04 269.7 5.10E-01 0.97 0.97 106.0 1.60E-07 247.9 8.54E-05 0.89 0.91 52.0 7.85E-04 266.1 4.50E-01 0.98 0.96 107.0 1.25E-07 279.8 7.53E-05 0.81 0.92 53.0 7.10E-04 258.9 3.96E-01 1.00 0.96 108.0 1.02E-07 306.3 6.73E-05 0.77 0.94 54.0 6.35E-04 254.0 3.47E-01 1.01 0.95 109.0 8.56E-08 328.8 6.06E-05 0.75 0.97 55.0 5.63E-04 250.8 3.04E-01 1.00 0.95 110.0 7.16E-08 357.0 5.51E-05 0.73 1.00 56.0 4.94E-04 249.9 2.66E-01 0.99 0.94 111.0 6.02E-08 388.6 5.04E-05 0.72 1.03 57.0 4.35E-04 248.0 2.32E-01 0.99 0.93 112.0 5.34E-08 603.0 4.64E-05 0.75 1.07 58.0 3.83E-04 246.0 2.03E-01 0.98 0.93 113.0 4.84E-08 410.0 4.27E-05 0.79 1.11 59.0 3.34E-04 246.1 1.77E-01 0.97 0.92 114.0 4.44E-08 412,5 3.95E-05 0.83 1.15 60.0 2.92E-04 245.6 1.54E-01 0.95 0.92 115.0 4.02E-08 421.0 3.65E-05 0.87 1.18 61.0 2.54E-04 246.4 1.35E-01 0.94 0.91 116.0 3.60E-08 435,3 3.38E-05 0.89 1.21 62.0 2.23E-04 244.9 1.18E-01 0.93 0.91 117.0 3.23E-08 450.3 3.13E-05 0.91 1.24 63.0 1.96E-04 242.9 1.03E-01 0.92 0.91 118.0 2.91E-08 465.2 2.92E-05 0,94 1.28 64.0 1.73E-04 239.5 8.92E-02 0.92 0.91 119.0 2.64E-08 478.2 2.72E-05 0.96 1.31 65.0 1.53E-04 235.2 7.75E-02 0.92 0.90 120.0 2.41E-08 489.3 2.54E-05 0.99 1.34 66.0 1.36E-04 229.1 6.71E-02 0.93 0.90 121.0 2.22E-08 496.9 2.38E-05 1.05 1.37 67.0 1.19E-04 226.0 5.79E-02 0.92 0.90 122.0 2.05E-08 503,9 2.23E-05 1.11 1.40 68.0 1.05E-04 220.6 4.99E-02 0.92 0.89 123.0 1.91E-08 506.8 2.09E-05 1.18 1.42 69.0 9.23E-05 215.2 4.28E-02 0.92 0.89 124.0 1.77E-08 512.7 1.95E-05 1.24 1.44 70.0 8.11E-05 209.3 3.66E-02 0.93 0.88 125.0 1.65E-08 516.0 1.83E-05 1.29 1.46 71.0 7.10E-05 203.3 3.11E-02 0.93 0.88 72.0 6.18E-05 197.8 2.63E-02 0.93 0.87 73.0 5.32E-05 193.7 2.22E-02 0.92 0.86 74.0 4.54E-05 190.9 1.87E-02 0.90 0.85 8 gTI~rrtu0. 151Y rmro ~T8 IqLTITUOE V. Toramj. ~' ** I l IS 8 8 ~ *!118l U.S. 1 /. Wr. 8 I II.8. r0.80 1.00 1.0 0 1.80 1.80 188.00 188.00 200.00 200.00 210.00 280.00 280.00 DENSITY RRTIO ~',. TEMPERTURE (' K) 77

PITOT PROBE NASA 14.478 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 10 MARCH 1971 ALTITJDE: 179.0 KM KM KG/CU-4 K TOUR RATIO RAT IO 17:59:00.000 GMT HORIZONTAL VELOCITY: 203.0 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 424 SEC 75.0 4.23E-05 203.2 1.85E-02 0.97 0.99 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 29 SEC 76.0 3.62E-05 201.4 1.57E-02 0.97 0.99 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 8.10 RPS 77.0 3.13E-05 197.0 1.33E-02 0.98 1.00 TRACKING MODE: RADAR 78.0 2.59E-35 201.4 1.12E-02 0.94 1.00 79.0 2.23E-05 198.0 9.51E-03 0.95 1.02 80.0 1.92E-05 194.0 8.02E-03 0.96 1.03 PRESSURE RATIO = P/P STD. 81.0 1.68E-05 186.1 6.74E-03 1.01 1.04 DENSITY RATIO = RHO/RHU STD.- 82.0 1.43E-05 182.6 5.62E-03 1.04 1.05 83.0 1.20E-35 181.2 4.6SE-03 1.04 1.05 84.0 1.04E-35 173.3 3.88E-03 1.09 1.04 85.0 8.62E-06 172.5 3.20E-03 1.08 1.04 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 86.0 6.76E-06 182.3 2.65E-03 1.02 1.03 KM KG/CU-M K TORR RATIO RATIO 87.0 5.40E-06 190.9 2.22E-03 0.98 1.04 88.0 4.63E-06 186.7 1.86E-03 1.01 1.05 34.0 9.45E-03 240.9 4.90E 00 0.96 0.98 89.0 3.83E-06 189.1 1.56E-03 1.01 1.05 35.0 8.03E-03 246.8 4.27E 00 0.95 0.99 90.0 3.19E-06 190.7 1.31E-03 1.01 1.07 36.0 6.92E-03 250.0 3.73E 00 0.95 1.00 91.0 2.56E-06 203.4 1.I1E-03 0.98 1.08 37.0 6.02E-03 251.1 3.26E 00 0.96 1.00 92.0 2.11E-06 206.6 9.39E-04 0.99 1.09 38.0 5.28E-03 250.3 2.85E 00 0.98 1.01 93.0 1.80E-06 206.2 7.99E-04 1.02 1.11 39.0 4.68E-03 246.5 2.48E 00 1.01 1.01 94.0 1.43E-06 222.2 6.85E-04 0.98 1.13 40.0 4.00E-03 251.9 2.17E 00 1.00 1.01 95.0 1.20E-06 228.6 5.91E-04 0.99 1.16 41.0 3.40E-03 259.7 1.90E 00 0.98 1.01 96.0 1.06E-06 223.5 5.10F-04 1.05 1.18 42.0 2.89E-03 269.0 1.67E 00 0.97 1.01 97.0 9.00E-07 227.2 4.40E-04 1.07 1.21 43.0 2.50E-03 274.7 1.48E 00 0.96 1.02 98.0 7.45E-07 238.0 3.82E-04 1.06 1.23 44.0 2.23E-03 272.2 1.31E 00 0.99 1.03 99.0 6.40E-07 241.3 3.33E-04 1.08 1.26 45.0 1.99E-03 269.4 1.15E 00 1.01 1.03 100.0 5.57E-07 241.8 2.90E-04 1.12 1.28 46.0 1.78E-03 265.6 1.02E 00 1.04 1.03 101.0 4.98E-07 235.4 2.53E-04 1.20 1.31 47.0 1.58E-03 263.4 8.97E-01 1.05 0.03 102.0 4.42E-07 230.1 2.19E-04 1.27 1.32 48.0 1.39E-03 263.5 7.89E-01 1.05 1.03 103.0 3.92E-07 224.3 1.89E-04 1.33 1.32 49.0 1.20E-03 269.0 6.95E-01 1.03 1.03 104.0 3.48E-07 217.5 1.63E-04 1.40 1.33 50.0 1.07E-03 266.1 6.13E-01 1.04 1.03 105.0 3.07E-07 211.4 1.40E-04 1.45 1.31 51.0 9.55E-04 262.5 5.40E-01 1.05 1.02 106.0 2.67E-07 207.6 1.19E-04 1.48 1.28 52.0 8.43E-04 261.6 4.75E-01 1.05 1.02 107.0 2.31E-07 204.4 1.02E-04 1.50 1.25 53.0 7.44E-04 260.7 4.18E-01 1.05 1.01 108.0 1.99E-07 201.6 8.64E-05 1.51 1.21 54.0 6.60E-04 258.2 3.67E-01 1.05 1.01 109.0 1.71E-07 199.0 7.33E-05 1.50 1.17 55.0 5.87E-04 254.7 3.22E-01 1.05 1.00 110.0 1.46E-07 197.3 6.20E-05 1.49 1.12 56.0 5.22E-04 250.8 2.82E-01 1.05 1.00 111.0 1.23E-07 198.2 5.25E-05 1.47 1.08 57.0 4.58E-04 249.9 2.47E-01 1.04 0.99 112.0 1.02E-07 202.7 4.45E-05 1.43 1.03 58.0 4.03E-04 248.3 2.16E-01 1.03 0.99 113.0 8.33E-08 211'. 6 3.80E-05 1.35 0.99 59.0 3.58E-04 243.9 1.88E-01 1.03 0.98 114.0 6.52E-08 233.1 3.27E-05 1.23 0.95 60.0 3.13E-04 243.1 1.64E-01 1.02 0.98 115.0 4.94E-08 269.6 2.87E-05 1.07 0.93 61.0 2.72E-04 243.7 1.43E-01 1.01 0.96 116.0 3.88E-08 306.0 2.56E-05 0.96 0.92 62.0 2.37E-04 243.8 1.24E-01 0.99 0.96 117.0 3.20E-08 33 4.7 2.31E-05 0.90 0.92 63.0 2.08E-04 242.1 1.08E-01 0.98 0.96 118.0 2.73E-08 356.6 2.10E-05 0.88 0.92 64.0 1.80E-04 2 43.7 9.45E-02 0.96 0.96 119.0 2.38E-08 373.8 1.92E-05 0.87 0.93 65.0 1.57E-04 24'3.5 8.24E-02 0.94 0.96 12.0.0 2.12E-08 384.8 1.76E-05 0.87 0.93 66.0 1.38E-04 241.3 7.17E-02 0.94 0.96 121.0 1.91E-08 392.4 1.61E-05 0.91 0.93 67.0 1.23E-04 235.3 6.23E-02 0.95 0.97 122.0 1.74E-08 396.3 1.49E-05 0.95 0.93 68.0 1.08E-04 232.3 5.40E-02 0.95 0.97 123.0 1.58E-08 401.9 1.37E-05 0.98 0.93 69.0 9.50E-05 228.4 4.67E-02 0.95 0.97 124.0 1.43E-08 409.5 1.26E-05 1.00 0.93 70.0 8.43E-05 221.9 4.03E-02 0.96 0.97 125.0 1.30E-08 416.0 1.16E-05 1.02 0.92 71.0 7.34E-05 219.0 3.46E-02 0.96 0.98 72.0 6.38E-05 216.2 2.97E-02 0.96 0.98 73.0 5.48E-05 215.6 2.54E-02 0.95 0.98 74.0 4.80E-05 210.5 2.18E-02 0.96 0.99 |^:~T 8LTI3J 85. 1 8@n RITi 8 T R. lTUGI V3. TOrEAmuRT ~'' I Ig r 1I. 78 1g.Ijl1" 8 j t8 8 88~ ~ ~ ( ESf~~~~~~~~~~~~~~~~~~~*.',8 8, 1 8. 78 Y. 5'8 78

PITOT PADBE NASA 14.479 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 10 MARCH 1971 ALTITUDE: 181.6 KM KM KG/CU-M K TOR RATIO RATIO 18:26:00.000 GMT HORIZONTAL VELOCITY; 226.0 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 428 SEC 74.0 4.64E-05 213.4 2.13E-02 0.92 0.97 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 26 SEC 75.0 4.15E-35 203.3 1.82E-02 0.96 0.97 LUNG 75 DEG 29 MIN W STABILIZED ROLL RATE: 8.60 RPS 76.0 3.59E-05 199.1 1.54E-02 0,.96 0.97 TRACKING MODE: RADAR 77.0 3.13E-05 192.7 1.30E-02 0.98 0.98 78.0 2.62E-05 193.7 1.09E-02 0.95 0.98 79.0 2.18E-05 196.2 9.21E-03 0.93 0.99 PRESSURE RATIO = P/P STD. 80.0 1.88E-05 191.6 7.76E-03 0.94 1.00 DENSITY RATIO: RHO/RHO STD. 81.0 1.63E-35 185.2 6.50E-03 0.98 1.01 82.0 1.37E-35 183.9 5.43E-03 0.99 1.01 83.0 1.17E-05 179.3 4.52E-03 1.02 1.C1 84.0 9.94E-06 175.0 3.75E-03 1.04 1.01 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 85.0 7.49E-06 193.7 3.13E-03 0.94 1.01 KM KG/CU-M K TORR RATIO RATIO 86.0 6.28E-06 194.7 2.63E-03 0.95 1.02 87.0 5.45E-36 188.7 2.21E-03 0.99 1.03 33.0 1.08E-32 238.9 5.56E 00 0.93 0.96 88.0 4.64E-06 18a5.5 1.85E-03 1.01 1.04 34.0 9.29E-03 241.2 4.83E 00 0.94 0.97 89.0 3.87E-36 186.0 1.55E-03 ~ 1.02 1.05 35.0 7.84E-33 249.0 4.20E 00 0.93 0.98 90.0 3.10E-06 195.1 1.30E-03 0.98 1.06 36.0 6.76E-03 252.4 3.67E 00 0.93 0.98 91.0 2.53E-06 202.2 1.10E-03 0.97 1.08 37.0 5.90E-03 253.0 3.22E 00 0.95 0.99 92.0 2.13E-06 203.9 9.36E-04 1.00 1.09 38.0 5.21E-03 250.6 2.81E 00 0.97 0.99 93.0 1.74E-06 212.9 7.98E-04 0.99 1.11 39.0 4.57E-03 249.6 2.46E 00 0.99 0.99 9:4.0 1.46F-06 217,4 6.84E-04 1.00 1.13 40.0 3.91E-03 255.2 2.15E 00 0.98 1.00 95.0 1.25E-36 218.1 5.87E-04 1.03 1.15 41.0 3.36E-03 260.6 1.89E 00 0.97 1.00 96.0 1.07E-06 218.9 5.05E-04 1.06 1.17 42.0 2.86E-03 269.6 1.66E 00 0.96 1.01 97.0 8.86E-07 227.9 4.35E-04 1.05 1.19 43.0 2.49E-03 273.5 1.47E 00 0.96 1.01 98.0 7.46E-07 234.6 3.77E-04 1.06 1.22 44.0 2.22E-03 271.1 1.30E 00 0.98 1.02 99.0 6.26E-07 243.3 3.28E-04 1.06 1.24 45.0 1.99E-03 266.8 1.14E 00 1.01 1.02 100.0 5.50E-07 241.6 2.86E-04 1.11 1.27 46.0 1.78E-03 262.7 1.01E 00 1.04 1.02 131.0 4.97E-37 232.5 2.49E-04 1.19 1.29 47.0 1.57E-03 262.0 8.86E-01 1.05 1.02 102.0 4.48E-07 223.1 2.15E-04 1.28 1.30 48.0 1.39E-03 260.1 7.79E-01 1.05 1.02 103.0 3.97E-07 216.6 1.85E-04 1.35 1.30 49.0 1.20E-03 265.1 6.85E-01 1.03 1.01 104.0 3.45E-07 213.8 1.59E-04 1.39 1.29 50.0 1.07E-03 261.6 6.03E-01 1.04 1.01 135.0 2.93E-7 215.8 1.36E-04 1.38 1.27 51.0 9.39E-04 262.2 5.30E-01 1.04 1.00 106.0 2.49E-07 218.0 1.17E-04 1.38 1.25 52.0 8.38E-04 258.2 4.66E-01 1.05 1.00 107.0 2.13E-07 219.1 1.01E,-04 1.38 1.23 53.0 7.39E-04 257.0 4.09E-01 1.04 0.99 108.0 1.85E-07 216.8 8.64E-05 1.40 1.21 54.0 6.49E-04 256.8 3.59E-01 1.03 0.99 109.0 1.61E-07 213.7 7.41E,05 1.41 1.18 55.0 5.68E-04 257.5 3.15E-01 1.01 0.98 110.0 1.37E-07 215.3 6.35E-05 1.39 1.15 56.0 5.04E-04 254.6 2.76E-01 1.01 0.98 111.0 1.15E-07 220.5 5.46E-05 1.38 1.12 57.0 4.51E-04 249.0 2.42E-01 1.02 0.97 112.0 9.68E-08 225.9 4.71E-05 1.35 1.09 58.0 4.00E-04 245.1 2.11E-01 1.03 0.97 113.0 8.04E-08 235.8 4.08E-05 1.31 1.06 59.0 3.51E-04 243.6 1.84E-01 1.01 C.96 114.0 6.48E-08 255.8 3.57E-05 1.22 1.04 60.0 3.11E-04 239.2 1.60E-01 1.02 0.95 115.0 5.18E-08 283.0 3.16E-05 1.12 1.02 61.0 2.70E-04 239.6 1.39E-01 1.30 0.94 116.0 4.21E-08 311.6 2.83E-05 1.04 1.01 62.0 2.35E-04 239.3 1.21E-01 0.98 0.94 117.0 3.43E-08 345.9 2.56E-05 0.97 1.01 63.0 2.05E-34 238.5 1.05E-01 0.96 0.93 118.0 2.89E-08 374.7 2 338-05 0.93 1.02 64.0 1.77E-U4 240.1 9.15E-02 0.94 0.93 119.0 2.49E-08 399.4 2.14E-05 0.91 1.03 65.0 1.52E-04 243.5 7.97E-02 0.91 0.93 120.0 2.20E-38 417.0 1.98E-05 0.90 1.05 66.0 1.33E-04 242.5 6.95E-02 0.90 0.93 121.0 1.97E-08 430.9 1.83E-05 0.93 1.06 67.0 1.18E-04 237.7 6.04E-02 0.91 0.94 122.0 1.76E-08 447.5 1,70E-05 0.96 1.07 68.0 1.06E-04 229.4 5.24E-02 0.93 0.94 123.0 1.55E-08 473.1 1.58E-05 0.96 1.07 69.0 9.17E-05 229.2 4.53E-02 3.92 0.94 124.0 1.39E-08 492.8 1.48E-05 0.97 1.08 70.0 8.08E-35 224.5 3.91E-02 0.92 0.94 125.0 1.27E-08 505.0 1.388-05 0.99 1.10 71.0 7.05E-05 221.5 3.36E-02 0.92 0.95 72.0 6.07E-35 221.2 2.89E-02 0.91 0.95 73.0 5.22E-05 221.2 2.49E-02 0.90 0.96 sa."" R LT[IU _'. 1flT]o 8 RFTITIL PS. TI WOTUn " \}g --- mR19 U.S. STO...r. d~ ~ _1 eI ~ 8 ~ 8, ~ S 8 8 8: s. 8 81~~~~~~.. -.~~~~~

PITUT PROBE NASA 14.480 FLIGHT PARAMETERS ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 10 MARCH 1971 ALTITUDE: 171.0 KM KM KG/CU-M K TORR RATIO RATIO 18:41:00.000 GMT HORIZONTAL VELOCITY: 370.0 M/SEC WALLOPS ISLAND, VIRGINIA FLIGHT TIME: 418 SEC 74.0 4.79E-05 212.3 2.19E-02 0.95 1.00 LAT 37 DEG 50 MIN N PRECESSION PERIOD: 24 SEC 75.0 4.25E-05 203.9 1.87E-02 0.98 1.00 LONG 75 DEG 29 MIN W STABILIZED ROLL RATE: 9.40 RPS 76.0 3.72E-05 197.2 1.58E-02 0.99 1.00 TRACKING MODE: RADAR 77.0 3.21E-05 192.7 1.33E-02 1.00 1.00 78.0 2.67E-05 195.0 1.12E-02 0.97 1.00 79.0 2.21E-05 198.9 9.47E-03 0.94 1.01 PRESSURE RATIO = P/P STD. 80.0 1,92E-05 193.2 7.99E-03 0.96 1.03 DENSITY RATIO = RHO/RHO STD. 81.0 1.67E-05 186.4 6.70E-03 1.01 1.04 82.0 1.39E-05 187.4 5.61E-03 1.01 1.04 83.0 1.20E-05 181.2 4.68E-03 1.04 1.05 84.0 1.02E-05 177.1 3.89E-03 1.07 1.05 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE 85.0 7.76E-06 194.5 3.25E-03 0.97 1.05 KM KG/CU-M K TORR RATIO RATIO 86.0 6.40E-06 199.2 2.75E-03 0.97 1.07 87.0 5.55E-06 193.9 2.32E-03 1.01 1.08 33.0 1.07E-02 243.1 5.60E 00 0.92 0.97 88.0 4.75E-06 190.6 1.95E-03 1.04 1.10 34.0 9.26E-03 244.6 4.88E 00 0.94 0.98 89.0 3.95E-06 192.8 1.64E-03 1.04 1.11 35.0 7.96E-03 248.0 4.25E 00 0.94 0.99 90.0 3.23E-06 198.9 1.38E-03 1.02 1.13 36.0 6.86E-03 251.4 3.71E 00 0.94 0.99 91.0 2.71E-06 200.8 1.17E-03 1.04 1.15 37.0 6.04E-03 249.5 3.25E 00 0.97 1.00 92.0 2.20E-06 210.5 9.97E-04 1.03 1.16 38.0 5.31E-03 247.8 2.83E 00 0.99 1.00 93.0 1.81E-06 219.2 8.55E-04 1.03 1.19 39.0 4.67E-03 245.8 2.47E 00 1.01 1.00 94.0 1.55E-06 220.1 7.35E-04 1.06 1.21 40.0 4.01E-03 249.8 2.16E 00 1.00 1.00 95.0 1.35E-06 217.1 6.31E-04 1.12 1.24 41.0 3.42E-03 256.3 1.89E 00 0.99 1.00 96.0 1.15E-06 219.0 5.42E-04 1.14 1.26 42.0 2.93E-03 262.7 1.66E 00 0.98 1.00 97.0 9.63E-07 225.2 4.67E-04 1.15 1.28 43.0 2.50E-03 271.4 1.46E 00 0.96 1.01 98.0 8.04E-07 233.4 4.04E-04 1.14 1.30 44.0 2.21E-03 271.2 1.29E 00 0.98 1.02 99.0 6.86E-07 237.7 3.51E-04 1.16 1.33 45.0 1.97E-03 268.5 1.14E 00 1.00 1.02 100.0 6.01E-07 235.9 3.05E-04 1.21 1.35 46.0 1.76E-03 264.9 1.ODE 00 1.03 1.02 101.0 5.39E-07 228.1 2.65E-04 1.30 1.37 47.0 1.56E-03 263.1 8.84E-01 1.04 1.02 102.0 4.84E-07 219.1 2.286E-04 1.39 1.38 48.0 1.38E-03 261.7 7.78E-01 1.05 1.01 103.0 4.29E-07 212.0 1.96E-04 1.46 1.37 49.0 1.19E-03 267.2 6.85E-01 1.03 1.01 104.0 3.69E-07 210.8 1.68E-04 1.48 1.36 50.0 1.07E-03 261.7 6.03E-01 1.04 1.01 105.0 3.12E8-07 213.4 1.43E-04 1.47 1.34 51.0 9.50E-04 259.0 5.30E-01 1.05 1.00 106.0 2.64E-07 216.2 1.23E-04 1.47 1.31 52.0 8.44E-04 255.9 4.65E-01 1.05 1.00 107.0 2.26E-07 216.8 1.06E-04 1.7 1.29 53.0 7.46E-04 253.7 4.08E-01 1.05 0.99 108.0 1.95E-07 215.7 9.06E-05 1.48 1.27 54.0 6.56E-04 252.7 3.57E-01 1.04 0.98 109.0 1.67E-07 216.1 7.77E-05 1.46 1.24 55.0 5.61E-04 259.2 3.13E-01 1.00 0.98 110.0 1.43E-07 216.7 6.67E-05 1.45 1.21 56.0 5.04E-04 253.1 2.75E-01 1.01 0.97 111.0 1.22E-07 218.2 5.73E-05 1.46 1.18 57.0 4.45E-04 250.9 2.40E-01 1.01 0.97 112.0 1.02E-07 224.9 4.94E-05 0.43 1.14 58.0 3.95E-04 247.0 2.1OE-01 1.01 0.96 113.0 8.36E-08 237.9 4.28E-05 1.36 1.11 59.0 3.48E-04 244.6 1.83E-01 1.01 0.96 114.0 6.55E-08 266.3 3.76E-05 1.23 1.09 60.0 3.04E-04 244.2 1.60E-01 0.99 0.95 115.0 5.10E-08 304.6 3.35E-05 1.10 1.08 61.0 2.65E-04 244.2 1.39E-01 0.98 0.94 116.0 4.09E-08 342.9 3.02E-05 1.01 1.08 62.0 2.31E-04 244.2 1.22E-01 0.97 0.94 117.0 3.39E-08 377.5 2.76E-05 0.96 1.09 63.0 2.01E-04 244.7 1.06E-01 0.94 0.94 118.0 2.94E-08 399.9 2.53E-05 0.95 1.11 64.0 1.73E-04 248.2 9.25E-02 0.92 0.94 119.0 2.60E-08 417.2 2.34E-05 0.95 1.13 65.0 1.51E-04 248.5 8.08E-02 0.90 0.94 120.0 2.34E-08 428.9 2.16E-05 0.96 1.14 66.0 1.34E-04 244.5 7.06E-02 0.91 0.95 121.0 2.12E-08 438.8 2,OOE-05 1.00 1.16 67.0 1.19E-04 239.8 6.15E-02 0.92 0.95 122.0 1.91E-08 452.4 1.86E-05 1.04 1.17 68.0 1.06E-04 233.8 5.34E-02 0.93 0.96 123.0 1.72E-08 467.7 1.73E-05 1.06 1.18 69.0 9.27E-05 231.6 4.62E-02 0.93 0.96 124.0 1.55E-08 484.4 1.62E-05 1.08 1.19 70.0 8.13E-05 228.3 4.00-02 0.93 0.97 125.0 1.418-08 498.0 1.518-05 1.10 1.20 71.0 7.10E-05 225.7 3.45E-02 0.93 0.97 72.0 6.19E-05 223.1 2.97E-02 0.93 0.98 73.0 5.42E-05 219.1 2.56E-02 0.94 0.99 8 FITIYU1W VS. IBOITY FTIO 5~.* -- 186 2 U.S. ITO. rTm. 8'. 81 g 8 8:, 8a;~~~~~~~~~~~~~~ 8 8 ~ ~8y^^':~ 8 8'8 8 *8...- 8~8 8 DE:NSITY MIlD vg,.. TEMPEt.)TURE ( ) 80

6. REFERENCES 1. F. A. Schultz, N. W. Spencer, and A. Reifman, Atmospheric Pressure and Temperature Measurements between the Altitudes of 40 and 110 Kilometers, Report No. 2, Space Physics Research Laboratory, The University of Michigan, July 1948. 2. W. G. Dow and N. W. Spencer, The Measurement of Ambient Pressure and Temperature of the Upper Atmosphere, Final Report, Project M824, Space Physics Research Laboratory, The University of Michigan, August 1953. 3. W. Nordberg, A Method of Analysis for the Rocket-Grenade Experiment, Technical Memorandum M-1856, U.S. Army Research and Development Laboratories, Fort Monmouth, New Jersey, 1957. 4. F. L. Bartman, L. W. Chaney, L. M. Jones, and V. C. Liu, "Upper-Air Density and Temperature by the Falling Sphere Method," Journal of Applied Physics, 27, pp. 706-712, 1956. 5. K. S. W. Champion and A. C. Faire, Falling Sphere Measurements of Atmospheric Density, Temperature, and Pressure up to 115 km, AFCRL-64-554, Air Force Cambridge Research Laboratories, July 1964. 6. Langley Research Center, Status of Passive Inflatable Falling-Sphere Technology for Atmospheric Sensing to 100 km, NASA SP-219, Washington, D.C., September 1969. 7. G. F. Rupert, Engineering Design of a Pitot-Static Probe Payload, Engineering Report 05776-2-E, Space Physics Research Laboratory, The University of Michigan, April 1967. 8. P. 0. Handy, D. J. Beechler, and D. B. Jones,' An Ejectable Nosetip for Sounding Rocket Experiments, Technical Report 036320-2-T, Space Physics Research Laboratory, The University of Michigan, July 1971. 9. S. Chaikin, The Densatron Model G Electrometer Amplifier System for the Pitot Probe, Internal Technical Note 036320-1-ITN, Space Physics Research Laboratory, The University of Michigan, 1970, 10. D. E. Boyland, An Analysis of Initial Static Pressure Probe Measurements in a Low-Density Hypervelocity Wind Tunnel, AEDC-TDR-63-94, Arnold Engineering Development Center, April 1963. 11. M. Cooper and R. A. Webster, The Use of an Uncalibrated Cone for Determination of Flow Angles and Mach Numbers at Supersonic Speeds, NACA Technical Note 2190, Washington, D.C., 1950. 12. D. J. Rigali and K. J. Touryan, Analysis of Pressure Measurements Taken at Altitudes between 30 and 90 km by Cone-Cylinder Pitot-Static Probes, SC-RR-67-251, Sandia Corporation, Albuquerque, New Mexico, June 1967. 13. K. J. Touryan, Static Pressures on Cone-Cylinders in Slip to Transition Flows (U), SC-RR-64-1689, Sandia Corporation, Albuquerque, New Mexico, January 1965. 81

14. R. W. Simmons, An Introduction to the Theory and Data Reduction Method for the Pitot-Static Technique of Upper Atmosphere Measurement, Scientific Report 05776-1-S, Space Physics Research Laboratory, The University of Michigan, March 1964. 15. Ames Research Staff, Equations, Tables, and Charts for Compressible Flow, NACA Report No. 1135, Washington, D.C., 1953. 16. J. A. Laurmann, Low Density Characteristics of an Aerobee-Hi PitotStatic Probe, Technical Report HlE-150-156, Institute of Engineering Research, University of California, May 1950. 17. J. E. Ainsworth, D. F. Fox, and H. E. LaGow, "Upper Atmosphere Structure Measurement Made with the Pitot-Static Tube," Journal of Geophysical Research, 66, pp. 3191-3212, 1961. 18. J. Potter, et al., Pressures in the Stagnation Regions of Blunt Bodies in the Viscous-Layer to Merged-Layer Regimes of Flow, AEDC-TDR-63-168, Arnold Engineering Development Center, September 1963. 19. F. S. Sherman, New Experiments on Impact-Pressure Interpretation in Supersonic and Subsonic Rarefied Air Streams, NACA Technical Note TN 2995, Washington, D.C., September 1953. 20. L. Talbot, Viscosity Corrections to Cone Probes in Rarefied Supersonic Flow at Nominal Mach Number of 4, NACA Technical Note 3219, Washington, D.C., November 1954. 21. J. B. Wainwright and K. W. Rogers, Impact Pressure Probe Response Characteristics in High Speed Flows, with Transition Knudsen Numbers, NASA Contractor Report CR-61119, NASA-George C. Marshall Space Flight Center, Huntsville, Alabama, February 1966. 22. U. Vogel, A Correction Factor to the Function F(s), Internal Memorandum, Brookhaven National Laboratory, May 1966. 23. P. B. Hines, DOVAP Systems and Data-Reduction Methods, Physical Science Laboratory, New Mexico State University, University Park, New Mexico, January 31, 1962. 24. P. B. Hines, Error Study, Physical Science Laboratory, New Mexico State University, University Park, New Mexico, October 1, 1962. 25. R. J. Murgatroyd, "Winds and Temperatures between 20 km and 100 km —A Review," Quarterly Journal of the Royal Meteorological Society, 83, No. 358, pp. 417-454, October 1957. 26. S. M. Matson, Apache Motor Bending Test ABT-1, Interim Test Report, Missile Systems Division, Raytheon Company, January 1966. 82

7. BI BLI OGRAP HY Arney, G. D., Jr., and A. B. Bailey, An Investigation of the Equilibrium Pressure Along Unequally MHated Tubes, AEDC-TDR-62-26, Arnold Engineering Development Center, February 1962. Arney, G. D., Jr., and A. B. Bailey, Addendum to An Investigation of the Equilibrium Pressure Along Unequally Heated Tubes, AEDC-TDR-62-188, Arnold Engineering Development Center, October 1962. Ashkenas, H., Pitot Tube Corrections in Low Density Flows, JPL Space Programs Summary No. 37-15, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, June 1962. Astro-Met Division, Aeroelastic Flight Loads on a Pitot-Static Probe Payload, Thiokol Chemical Corporation, Ogden, Utah, July 1966. Bailey, A. B., and D. E. Boyland, "Some Experiments on Impact Pressure Probes in a Low-Density Hypervelocity Flow," Proceedings of Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, California, pp. 62-75, 1962. Bailey, A. B., Further Experiments on Impact-Pressure Probes in a Low-Density Hypervelocity Flow, AEDC-TDR-62-208, Arnold Engineering Development Center, November 1962. Caldwell, J., The Space Physics Research Laboratory Data Conditioning System, Engineering Report 05776-1-E, Space Physics Research Laboratory, The University of Michigan, January 1966. Chambre, P. L., and S. A. Schaaf, "The Theory of the Impact Tube at Low Pressures," Journal of the Aeronautical Sciences, 15, pp. 735-737, 1948. Chambre, P. L., and S. S. Schaaf, "The Impact Tube," from Physical Measurements in Gas Dynamics and Combustion, Volume IX of High Speed Aerodynamics and Jet Propulsion, Princeton University Press, Princeton, New Jersey, pp. 111-123, 1954. Davis, W. T., Lag in Pressure Systems at Extremely Low Pressures, NASA Technical Note TN 433, Washington, D.C., September 1958. de Leeuw, J. H., and D. E. Rothe, A Numerical Solution for the Free-Molecule Impact-Pressure Probe Relations for Tubes of Arbitrary Length, UTIA Report 88, University of Toronto, December 1962. DeMarcus, W. C., The Problem of Knudsen Flow, Report No. K-1302, Union Carbide Nuclear Company, September 1956. El-Moslimany, M. A., Theoretical and Experimental Investigation of Radio — active Ionization Gauges, Scientific Report 03554-4-S, $ace Physics Research Laboratory, The University of Michigan, May 1960. 83

Flanick, A. P., and J. Ainsworth, A Thermistor Pressure Gauge, NASA Technical Note TN D-504, Washington, D.C., November 1960. Harris, E. L., and G. N. Patterson, Properties of Impact Pressure Probes in Free Molecule Flow, UTIA Report 52, University of Toronto, April 1958. Horvath, J. J., R. W. Simmons, and L. H. Brace, Theory and Implementation of the Pitot —Static Technique for Upper Atmospheric Measurements, Scientific Report 04673-1-S, Space Physics Research Laboratory, The University of Michigan, March 1962. Horvath, J. J., and G. F. Rupert, Pitot Measurements on an X-15 Rocket Plane, Scientific Report 06093-1-F, Space Physics Research Laboratory, The University of Michigan, August 1968. Horvath, J. J., Pitot Measurements on Sparrow Arcas Vehicles, Scientific Report 07301-1-F, Space Physics Research Laboratory, The University of Michigan, June 1969. Hsu, Y. S., The Thermal Transpiration Equation; Tables of F(S) vs. S, Scientific Report MS-2, Space Physics Research Laboratory, The University of Michigan, June 1963. Jenkins, R. B., Nike-Apache Performance Handbook, NASA Technical Note TN D-1699, Washington, D.C., March 1963. Lafrance, J. C., Pressure Measurement in Transition and Free Molecular Flows Using Orifice Probes, UTIA Technical Note 67, University of Toronto, June 1963. Larson, T. J., and E. J. Montoya, "Stratosphere and Mesosphere Densities Measured with the X-15 Airplane," Journal of Geophysical Research, 69, pp.51235130, December 1964. Lee, R. H. C., and T. A. Zierten, Merged Layer Ionization in the Stagnation Region of a Blunt Body, TR-1001(S2240-10)-1, Aerospace Corporation, June 1967. Liepmann, H. W., and A. E. Puckett, Aerodynamics of a Compressible Fluid, John Wiley and Sons, Inc., New York, 1947. Liu, V. C., "On Pitot Pressure in an Almost-Free-Molecule-Flow —A Physical Theory for Rarefied-Gas Flows," Journal of the Aero/Space Sciences, 25, No. 1, December 1958. Minzner, R. A., and W. S. Ripley, The ARDC Model Atmosphere, 1956, AFCRC TN-56-204, Air Force Cambridge Research Laboratories, December 1956. Newell, H. E., High Altitude Rocket Research, Academic Press, New York, 1953. Patterson, G. N., Theory of Free-Molecule, Orifice-Type Pressure Probes in Isentropic and Nonisentropic Flows, UTIA Report 41, University of Toronto, November 1956. 84

Potter, J., et al., An Influence of the Orifice on Measured Pressures in Rarefied Flow, AEDC-TDR-64-175, Arnold Engineering Development Center, September 1964. Potter, J., et al., "Pressures in the Stagnation Regions of Blunt Bodies in Rarefied Flow," AIAA Journal, 2, pp. 743-745, 1964. Schaaf, c. A., and R. R. Cyr, "Time Constants for Vacuum Gage Systems," Journal of Applied Physics, 20, pp. 860-863, 1949. Schaaf, S. A., The Pitot Probe in Low-Density Flow, Advisory Group for Aerospace Research and Development Report 525, North Atlantic Treaty Organization, January 1966. Shapiro, A. H., Dynamics and Thermodynamics of Compressible Fluid Flow, Vols. 1 and 2, The Ronald Press, New York, 1953. Spencer, N. W., Research in the Measurement of Ambient Pressure, Temperature, and Density of the Upper Atmosphere by Means of Rockets, Final Report 2096-18-F, Space Physics Research Laboratory, The University of Michigan, June 1958. U.S. Standard Atmosphere, 1962, U.S. Government Printing Office, Washington, D.C., December 1962. U.S. Standard Atmosphere Supplements, 1966, U.S. Government Printing Office, Washington, D.C., 1966. 85

APPENDIX A: DESIGN OF A RADIOACTIVE IONIZATION GAUGE FOR UPPER ATMOSPHIERE MEASUREM1ENTS

THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING Department of Electrical Engineering Space Physics Research Laboratory Instrumentation Report DESIGN OF A RADIOACTIVE IONIZATION GAUGE FOR UPPER ATMOSPHERE MEASUREMENTS Prepared on behalf of the project by P. 0. Handy ORA Project 05776 under contract with: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER CONTRACT NO. NAS5-3335 GREENBELT, MARYLAND administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR February 1970

TABLE OF CONTENTS Page LIST OF FIGURESiv 1. INTRODUCTION1 2. GAUGE REQUIREMENTS 2 3. RADIOACTIVE SOURCE SELECTION 4. MEASUREMENTS OF AMERICIUM-241 FOIL5 4.1. Ion Current Measurements 5 4.2. Radiation Intensity Measurements 6 5. GAUGE CONSTRUCTION8 6. GAUGE CHARACTERISTICS 13 6.1. Cylindrical Ionization Chamber 13 6.1.1. Effect of operating potentials on ion current 13 6.1.2. Ion current characteristics 17 6.1.3. Residual current at "zero" pressure 21 6.2. Planar Ionization Chamber 25 6.2.1. Chamber design 23 6.2.2. Effects of various cylinder potentials 24 6.2.5. Ion current characteristics (planar chamber) 28 7. GAUGE OPERATION 30 8. GAUGE PERFORMANCE 52 8.1. Linearity 32 8.2. Long Term Stability 32 8.3. Temperature Effects 34 8.4. Hysteresis 35 9. CONCLUSIONS 37 10. REFERENCES 38 APPENDIX A —ION CURRENT DETECTOR 59 APPENDIX B —VACUUM SYSTEM 42 iii

LIST OF FIGURES Figure Page 1. Foil cross section. 5 2. Ion current vs. overcoat thickness. 6 3. Radiation intensity vs. overcoat thickness. 7 4. Gauge assembly. 10 5. Active surface pattern, Americium-241 source. 10 6. Gauge body, polarization cylinder, radioactive source and header assembly, and Teflon seal. 11 7. Assembled prototype gauge and associated electronics. 12 8. Cylindrical chamber characteristics, P = 10, 1, and 10-1 torr. 14 9. Cylindrical chamber characteristics, P = 10-2, 103 and "0" torr. 15 10. Potential distribution within the ionization chamber. 16 11. Summary, cylindrical chamber characteristics. 18 12. Effect of polarization potential (energetic electron region). 12 13. Residual current vs. source activity and vs. collector surface area. 22 14. Planar chamber configuration. 23 15. Potential variation with and without ion repeller. 24 16. Planar chamber characteristics, P = 10, 100, and 1000 torr. 25 17. Planar chamber potential distribution. 27 18. Summary, planar chamber characteristics. 29 19. Dual collector gauge op'erating region, ion current vs. pressure. 31 iv

LIST OF FIGURES (Concluded) Figure Page 20. Gauge nonlinearity, both chambers. 3 21. Temperature test setup. 34 22. Percent ion current change vs. temperature for constant gas density. 35 23. Electrometer amplifier block diagram. 40 24. Electrometer amplifier switching sequence. 41 25. Vacuum system and calibration control console. 43 26. Vacuum system. 44 27. Calibration control console. 45 28. Vacuum system control panel. 46 v

1. INTRODUCTION During the last decade, increased knowledge of the earth's atmosphere has been due largely to the use of a variety of successful measurement techniques. With this increased knowledge, the necessity for basic measurement accuracy is generally accepted as being fundamental for a further understanding of the physical processes and the dynamics of the atmosphere. Hence, the development of new and improved measurement sensors and associated instrumentation continues to be a basic requirement for upper atmosphere research. To date, soundings of the atmosphere up to altitudes of 30 to 35 km have been made and continue on a widespread synoptic basis by aeans of the balloon radiosonde which has been very successful due to its simplicity and low cost. At present, however, the neutral properties of the atmosphere in the region above 30 km up to orbital altitudes can be effectively monitored only by the use of sounding rocket techniques. The pitot probe technique (Ainsworth, Fox, and LaGow, 1961; Simmons, 1964), which has been used by the Space Physics Research Laboratory of The University of Michigan, requires a measurement of the total gas pressure at the stagnation point on a sounding probe. Since the atmosphere up to altitudes of about 100 km is thoroughly mixed due to turbulence and convection, the need for an accurate total pressure gauge is quite evident. The gauge that inherently possesses several desirable features and is particularly well-suited for application on sounding rockets in the 30- to 100-km altitude region is the radioactive ionization gauge. This gauge is similar to other types of ionization gauges in that it has a source of particles which cause ionization of the gas molecules. However, instead of a large number of low energy electrons employed as the ionizing agent, a small number of high energy particles emitted from a radioactive source are utilized. The positive ions created in the ionization process are then sensed on a collecting probe. This collected ion current is related to a wide range of neutral gas pressures. Several reports describing radioactive ionization gauges have been published. A theoretical and experimental investigation of these gauges has been made by El-Moslimany (1960). Most of his work was concerned with understanding ion-ion recombination effects in an effort to extend the dynamic range of these gauges. Vacca (1956) also experimentally investigated these gauges and optimized the linear response of the Alphatron by adjusting its operating parameters. For operation over a wide dynamic range the Alphatron employs two radioactive sources in two separate chambers. Other investigations of radioactive ionization gauges have been published (Downing and Mellen, 1946; Spencer, Boggess, Brace, and El-Moslimany, 1958). 1

2. GAUGE REQUIREMENTS For application in the 30- to 100-km region of the atmosphere, the ionizaticn gauge on board sounding rockets is required to have a pressure-measuring capability over the wide dynamic range of approximately 1000 to 1 x 10-3 torr. For the accuracies guardedly acknowledged, stable, repeatable measurements demanded of the gauge were absolute requirements which proved difficult and timeconsuming to attain. For use on sounding rockets, the gauges must also fulfill other design criteria. The gauges must withstand the experienced acceleration and vibration during the thrusting phase of the rockets and subsequently must perform their intended function. Because sounding rocket experiments are destined for a single application, gauge reliability is, of course, of paramount importance. The presence of radioactive material is a distinct disadvantage of this type of gauge and consequently special precautions must be imposed. Since considerable preparation both in the laboratory and in the field is necessary to ready the experiments for launch, the radioactive health hazard and contamination problems must be minimized. 2

3. RADIOACTIVE SOURCE SELECTION Initially radioactive tritium, which is a low energy beta emitter, was selected as the ionizing source. One reason for this choice is the less toxic or hazardous nature of tritium in comparison to other radioactive materials that yield more penetrating particles. Another factor which was considered in the choice of tritium is the electron energy loss through ionization. This is the most important process for electron energies below and about 1 MeV and varies approximately as the inverse of the electron energy. Tritium, which emits electrons with an energy of only 15 KeV (Liverhant, 1960), is therefore a very effective ionizing source. However, the use of tritium as the ionizing source proved undesirable. Tritium in its pure form is a gas. The usable source normally contained two curies of activity of tritium which was gettered in titanium (which was previously vacuum-deposited on a stainless steel backing plate) at elevated temperatures. Consequently, considerable care was required to control the spread of contamination during the installation of the unsealed sources of relatively high activity in the gauges. Another drawback encountered in attempting to utilize tritium as the ionizing source was in designing a mechanical configuration which would be compatible with the desired electrical configuration. In addition, the short half-life of tritium (about twelve and one-half years) was a factor influencing long-term gauge stability. The use of tritium as the ionizing source also fixes an upper pressure measurement limit somewhat dependent on the gauge design. The limit is due to the low kinetic energy of an emitted beta particle expended in the ionization process in a relatively short pathlength at the higher pressures. When the pathlength becomes less than the dimensions of the ion chamber, a constant number of ion pairs are created. The ion current will then become independent of pressure. One of the gauge requirements, however, was to be able to sense the higher pressures. Thus, the effects of more energetic particles emitted from a source of Americium-241 were investigated. The nuclear properties of Americium-241 (Strain and Leddicottee, 1962), that is, its half-life and radiation characteristics, were considered most favorable for this application. The 5.5 MeV alpha particles serve as an excellent ionizing source, The half-life of 462 years is sufficiently long to preclude decay corrections. The low energy gamma rays of 0.060 MeV which accompany the alpha decay, being sufficiently weak, are easily shielded. Other important factors were considered in the selection of Americium for 5

this application. The sources could be fabricated in a form compatible with the electrical configuration desired in the gauge design. Preliminary information also indicated some alleviation of the contamination problems which had been previously encountered with the use of the tritium sources.

4. MEASUREMENTS OF AMERICIUM-241 FOIL A number of test samples of Americium-241 impregnated foils were manufactured by United States Radium Corporation (now supplied by Nuclear Radiation Developments, Inc., a subsidiary of Electronics Associates of Canada, Ltd.) with varying activity content and sealing overcoat thickness. The characteristics of the test samples are listed below. Figure 1 shows the foil cross section. Sample Au Active Sample Activity Size Overcoat Thickness Number (mc/in2) (in ) () \L\ (in.) ( _ ( ) __ (_ A-1 8.35 1/2 x 1/2 1.62 4 A-3 8.35 1/2 x 1/2 4.07 4 A-5 8.35 1/2 x 1/2 5.69 4 A-7 8.35 1/2 x 1/2 7.32 4 B-1 16.7 1/2 x 1/2 3.27 8 B-3 16.7 1/2 x 1/2 4.91 8 B-5 16.7 1/2 x 1/2 6.54 8 B-7 16.7 1/2 x 1/2 8.03 8 PLATED Au FLASH.5p -' - / / / / / - / / / / /-.. -- Au OVERCOAT SEAL \'//." RADIOACTI V E AM-2 41////// V/ Z///// // // /// // //// _//_//_ BACKING MATERIAL Figure 1. Foil cross section. 4.1. ION CURRENT MEASUREMENTS Positive ion current measurements were taken with each of the samples used as the ionizing source. The ion chamber employed was a. parallel-plate type air ionization chamber with a 4-in. diameter collector plate. The plate separation distance was 1.5 in., and the potential difference applied between the plates was 5000 V. At this potential the ion current measurements were 5

taken well into the saturated current characteristics at atmospheric pressure. The instrument used to measure the ion current was a Keithley Model 414 Ap ammeter. The results of these measurements are shown in Figure 2. The effective ionizing strength of a source for a given activity is greater with reduced gold overcoat thickness. Note that in doubling the activity of the sample, i.e., the active thickness, the effective ionizing strength for a given gold overcoat thickness does not appear to increase. The reason for this is that in the more buried portion of the active layer the alpha particles are almost completely absorbed before they can reach the surface of the foil and escape. This portion of the active layer then yields no contribution for the gas ionization. i0-e SOURCE ACTIVITY - |~~~__ ~~~~~~~~~~x - 8.35 mC/ in.^ W~~~_ e^s^^^~~0 - 16.7 mc/in1, om E I Q I0 0 2 4 6 8 10 12 14 Au OVERCOAT THICKNESS (M) Figure 2. Ion current vs. overcoat thickness. 4.2. RADIATION INTENSITY MEASUREMENTS The gamma output from the samples was measured by means of a Beckman Model MX-4 meter. The meter is a battery-powered instrument with a 1000-ml volume ion chamber, and was calibrated with the use of NBS certified Ra226 needles. The construction of the chamber permits windows of varying thickness to be placed over the front of the chamber. Readings were obtained from the sample foils by using each of two different windows on the meter so that calculations for air absorption could be made. One of the windows was 1.3 mg/cm2 and the other was a 553 mg/cm2 window. 6

The results shown in Figure 3 were taken at a distance of 10 cm from the meter window to the samples and are fairly low level intensities. In the manner in which the sources would be handled, the radiation intensity levels would not present a health hazard. From the measurement results, a foil with an activity level of 8.35 mc/in.2 and a gold overcoat seal 1.62 t thick was selected for the ionizing source in the gauges. This is the minimum recommended gold overcoat thickness for a source of this activity, and results in a source with a relatively high effective ionizing strength. 100 __011%^~~~~ _ - ~~SOURCE ACTIVITY 8.35 mc/in _ El l - 13mg/cm2 WINDOW _> "- =*"'"" *0-353mg/cm2 WINDOW ---- 2 4 6 8 10 12 14 W 0 2 4 6 1 10 12 Au OVERCOAT THICKNESS () Figure 3. Radiation intensity vs. overcoat thickness. 7

5. GAUGE CONSTRUCTION In the design of the gauge, attention was given to a simple, rugged construction. The mechanical assembly is shown in Figure 4a. Wherever practical, stainless steel is used. Teflon seals under compression provide the vacuum seals as well as the electrical insulation of the polarization cylinder from the gauge body. The use of ceramic to metal vacuum-sealed feedthroughs provides the high electrical impedance required for the measurement of the fairly low ion currents. In order to obtain measurements over the desired pressure range, two ionization chambers are employed. These two chambers are shown in Figures 4b and 4c. The planar ionization chamber is designed for measurements of high pressures, and the cylindrical ionization chamber for measurements of the lower pressures. For direct emission of the alpha particles into each ionization chamber, the radioactive source is manufactured with both sides active and placed so that the two chambers can be constructed on either side of it. From earlier efforts, which resulted in the present gauge design, a particular electrical configuration for the operation of each of the ionization chambers proved desirable. In order to duplicate these configurations, the radioactive source was mounted on feedthrough pins. For this application the source is in the form of a flat washer approximately 0.035 in. thick with an outside diameter of 0.937 in. and an inside diameter of 0.375 in. However, the active surface lies within these two dimensions, being blanked out with an outside diameter of less than 0.937 in. and an inside diameter greater than 0.375 in. as shown in Figure 5. In addition, the outside diameter is blanked in a special pattern which enables the source to be mounted to the 0.040 in. diameter feedthrough pins. The ion collector for the cylindrical chamber in a 0.005 in. diameter stainless steel wire. The ion collector and ion repeller for the planar chamber are stainless steel screens and are spot-welded into position. The collector support is also spot-welded into position. Both feedthrough headers, i.e., the collector support and the large header, are at ground potential in order to minimize current leakage to the collectors. An end view of an assembled prototype gauge is shown in Figure 6. The collector support for the cylindrical chamber ion collector which is spotwelded to the gauge body can be seen in front of the gas admittance port. An additional polarization chamber with a 0.005 in. diameter wire (barely visible) extending through its admittance port can also be seen, as can the radioactive source mounted on the feedthrough pins of the header assembly along with the stainless steel screens which are spot-welded into position just below the source. One of the Teflon seals used as a vacuum seal and also as an insulator for the polarization cylinder from the gauge body is shown at the right. 8

A view of the assembled prototype gauge and associated electronics (i.e., the high impedance and low impedance sections of the electrometer amplifier which is used for the ion current measurements and is described briefly in a later section, and the control unit for the amplifier) is shown in Figure 7. The sealing cover of the high impedance section of the electrometer amplifier is separated somewhat from the gauge with some of the electrical connections visible. Again, the Teflon seals, polarization cylinder, and radioactive source/header assembly for the gauge are also shown. 9

TEFLON SEAL - POLARIZATION CYLINDER GAS | ION COLLECTOR (PLANAR CHAMBER) ADMITTANCE - PORT IN=== ION COLLECTOR(CYLINDRICAL CHAMBER) COLLECTOR SUPPORT l ION REPELLER B SOURCE FEEDTHROUGH //HEADER PLATE AMERICIUM-241 SOURCE a) Mechanical assembly _ b) Cylindrical ion chamber c) Planar ion chamber Figure 4. Gauge assembly. FEEDTHROUGH PIN SURACTIVE EFEEDTHROUGH SURFACE PINS SILVER BACKING Figure 5. Active surface pattern, Americium-241 source. 10

go, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~,% VT~~~~~A'~~ Figuire 6. Gauge body, polarization cylinc'er, aiatv oreadhae assembly, and Teflon seal.

j~~~~ii ~ ~ M imv.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i Figure 7o Assembled prototype gauge and associated electronics.

6. GAUGE CHARACTERISTICS 6,1, CYLINDRICAL IONIZATION CHAMBER 6.1.1. Effect of Operating Potentials on Ion Current Measured positive ion current as a function of polarization cylinder potential for various pressure levels is shown in Figures 8 and 9 for three different potentials applied to the source. For operating potentials greater than approximately +20 V, the majority of the electrons and positive ions created in the ionization process are attracted to their respective collectors. For the purpose here, attention will be generally limited to this region of operation. It is immediately apparent from the results that the ion current is highly affected by the operating potentials. Since one of the characteristics of radioactive ionization gauges is an almost uniform ionization rate throughout their entire ionization chambers, the magnitude of the measured ion current is then determined, to a large extent, for a given pressure and source activity by the size of the volume or region from which the ions are collected. As shown in Figure 10, a collected ion boundary is set up by the potential distribution within the ionization chamber, Only those positive ions created within the volume bounded by the polarization cylinder and the collected ion boundary are attracted to the ion collector. The potential distribution, which is determined by the operating potentials, is then the controlling factor in the size of the ion collection region. For potentials applied to the radioactive source either greater or less than the electrical potential applied to the polarization cylinder, the ion collection region is smaller in volume than the ionization chamber and quite sensitive to changes in these applied potentials. Consequently, the measured ion current is less than the total current created and is also sensitive to changes in the operating potentials. However, these effects can be practically avoided by maintaining the polarization cylinder and the source at the same potential. For this condition, the collected ion boundary encompasses the entire ionization chamber as shown in Figure 10b. The volume from which the ions are collected is then the chamber volume, a constant, independent of the operation potential. As a result, the measured ion current becomes insensitive to changes in the operating potential (ignoring recombination effects, field intensified ionization effects, etc., which will be discussed later). In addition, the ion current magnitude is also a maximum for a given pressure. 13

10-7 -x SOURCE CYLINDER POTENTI -~~~~-.~~~~* SOURCE- 80v + SOURCEnGROUND POTENTIAL 10g W X <===P —, — ~. g- - ^ ---.P_..torr () I Ia- - Z w = — _-9- 10 w -- _ --— * *~ }PmIO Itorr'_10_. i -— 1 —1 —1-_____________P1 1 l 0 10 20 30 40 50 60 70 POLARIZATION CYLINDER POTENTIAL (volts) Figure 8. Cylindrical chamber characteristics, P = 10, 1, and 101 torr. 14

*oo,o,, pue'._OT' _O1T = d's oTa:s oo.:a ~t jaqumqeo T'3TFpUTTS *6 arm.Tj (S410) VIllN310d 83aNI-A3 NO1.LVZIVtOd OL o-09 o o0 0 Z0 09~ 00 I L I w.I-I I [ w 01 t-0' 0 -- -01 JJ- $lot$ mdm *0 It m 0 s-XI01 I,,,.,...~~~~~~~~~~~~~~~~~~~~~~~g0

POLARIZATION CYLINDER I- A -~ ^ RADIOACTIVE SOURCE o) SOURCE POTENTIAL < CYLINDER POTENTIAL I I b) SOURCE POTENTIAL: CYLINDER POTENTIAL'| J I M --- COLLECTED ION BOUNDARY ---- EQUAL POTENTIAL LINES I I c) SOURCE POTENTIAL > CYLINDER POTENTIAL Figure 10. Potential distribution within the ionization chamber. 16

In the design of a radioactive ionization gauge, one of the simplest possible configurations for construction would be to design the gauge so that the radioactive source will be electrically at ground potential. If this design had been used, a more detrimental effect would have been observed in addition to the collected ion boundary effect described above. With the ion collector at ground potential bias in order to minimize stray current leakages, electrons liberated by the passage of alpha particles through the sealing overcoat of the source would be able to strike the ion collector. The current measurement would then be the sum of the positive ion current and this electron (negative) current. The effect of this electron current is easily seen in Figure 9 for the condition when the source was maintained at 0 V. At the higher pressure levels, this effect is greatly reduced because of the shielding afforded by the neutral gas particles. However, at low pressures the effect of this electron current is quite pronounced. For the configuration mentioned, at a given operating potential the ion current-pressure linearity would be very poor. Of greater importance, however, is the fact that the energy of these electrons is less than about 20 eV and, of course, that the electrons have little mass. As a result, the electron current would be sensitive to such things as surface contaminants, temperature changes, and collector bias changes. These factors are believed to be the causes of the erratic and nonrepeatable current measurements observed at low pressures for this particular design. In summary, the conditions at the ends of the cylindrical ionization chamber have an important effect on the ion current output. By maintaining the ends of the chamber at the same potential as the outer cylinder, flat, stable current characteristics are obtained. In addition, by applying a potential to the source, which in this design is one end of the ionization chamber, electrons liberated from the source are not able to strike the ion collector. As a result, stable characteristics are obtained even at the low pressures. 6.1.2. Ion Current Characteristics A more' complete mapping of the ion current characteristics for the source and cylinder maintained at the same operating potential is shown in Figure 11. In general, the curves exhibit flat saturated current characteristics over a wide range of both pressure and operating potential. However, there are a number of regions encountered in the characteristics which produce a collected ion current that is nonlinear with pressure for a given operating potential. 17

-7 (source a cylinder potential) — 8t P= lOOXi62 RECOMBINAT ION 108 P=3.17XIO 0 16- _ 3 I" ha 809___ P=_.13XIO 0 1.0. / E3 - z | />> f | FIELD INTENSIFIED z,QO _ /g IONIZATION REGION Q 10 S r ____________/\. [/______/ _ P= 1.00X/ I0 ENERGETIC ELECTRON -12 -0 REGION a a — 10______________^,,,,, P=P3.20X I0, 0 20 40 60 80 100 120 140 CYLINDER POTENTIAL (volts) Figure 11. Summary, cylindrical chamber characteristics. 18

One of these regions is the recombination region. As can be seen, the nonlinear effect occurs predominantly at higher pressures. The effect is the result of electrons which have just been released in the ionization process becoming attached, yielding negative molecular ions. These negative ions and the positive ions which were also created in the ionization process are attracted to one another and may neutralize their charges to become neutral particles. This will have the result of reducing the ion current measurement to less than the expected saturated current level. Much of El-Moslimany's reported work (1960) dealt with the recombination region. Another region encountered is at lower pressures and is the fieldintensified ionization region. At the lower pressures, the probability of electron attachment is decreased and the free electrons are accelerated by the force caused by the electric field. When the kinetic energy gained by such electrons becomes high enough to ionize the gas molecules, an increase in the ionization occurs in addition to that due to irradiation by the alpha particles. This effect is the well known gas amplification phenomenon and can be circumvented by maintaining low operating potentials. At the lowest operable pressures another effect is observed, noted in Figure 11 as the energetic electron region. This effect is believed to be due to electrons released in the gas ionization process having sufficient energy to enable a fraction of these to strike the ion collector. This has the result of reducing the ion current measurements to less than the expected saturated current level. At the higher pressures this effect shows a relative reduction due to the shielding provided by the increased neutral gas density. As could be expected, higher operating potentials also have the result of reducing the energetic electron effect. The energetic electron effect was investigated in somewhat more detail in the 10-3 torr pressure region. At these pressures the neutral gas shielding mentioned above is minimal. The results are shown in Figure 12. The linear relation of ion current to pressure is also shown. S1 is the sensitivity of the gauge determined in the 3 to 5 torr pressure range and IR is the observed residual current at "zero" pressure. As can be seen in Figure 12, the linear relation is more closely followed at the higher operating potential. This result, with the residual current observed to be insensitive to the operating potential, lends much support to the belief that the energetic electrons are created from the gas ionization process and that the electrons are not, for example, ejected from the walls of the chamber because of irradiation by the alpha particles. 19

6 OPERATING POTENTIAL 04 +^ + 4-Ov V i SI: P +IR O ~~ a^ I+= lP+"R I.~-R 0 I 2 3 4 5 3 6r) 7 8 9 1 PRESSURE (10 torr) Figure 12. Effect of polarization potential (energetic electron region).

6.1.3. Residual Current at "Zero" Pressure Also characteristic of these gauges is the relatively high residual current existing at "zero" pressure. The residual current is shown in Figure 15 to be dependent on the amount of source activity as well as on the collector surface area. The residual current is due to electrons being ejected from the ion collector and in effect appears to be the same as a positive ion currento Various theories have been proposed to explain the mechanism causing this current, Two of the more plausible theories are these: (1) Soft X-rays, emitted from the walls of the chamber because of irradiation by the alpha particles, strike the ion collector and eject electrons; (2) electrons are ejected from the ion collector because of direct alpha particle bombardment. The results of some laboratory testing using different collector materials favor the theory of direct bombardment by alpha particles. However, these results are not conclusive. A thorough investigation has not been undertaken to determine the exact nature of the mechanism causing the residual current. An effort directed at reducing the residual current so that lower pressure measurements could be made is not warranted at the present time because of the practical limitations imposed by the difficulties encountered with the signal conditioning of these low currents, 21

6 H4 22 a. 4. E 0 00 U5 — 2 0 0.4.8 1.0 1.4 ACTIVITY (mc) 6 Tz| / 0 2 0. 0 2 4 6 8 COLLECTOR SURFACE AREA (xlo-2 in2 ) Figure 13. Residual current vs. source activity and vs. collector surface area. 22

6.2. PLANAR IONIZATION CHAMBER 6.2.1. Chamber Design As can be seen in Figure 11, the recombination effects limit the cylindrical ionization chamber to measurements below approximately 20 torr. The design objective for the radioactive ionization gauge, however, was to be able to measure pressures to 1000 torr, so a planar ionization chamber was designed to measure pressures from approximately 10 to 1000 torr. The planar configuration was chosen because of the geometries involved and.because of the greater electric field strengths and shorter ion travel distances to the ion collector that are needed in order to retard the recombination effects at these higher pre sures. The planar configuration is constructed by utilizing the source as one of the boundaries of the chamber, and by using a stainless steel screen, attached to the same feedthrough pins that the source is mounted on, as the other electrical boundary. A second stainless steel screen serving as the ion collector is immersed between the two boundaries as shown in Figure 14. HEADER PLATE POLARIZATION CYLINDER R i i _ PLANAR CHAMBER _ — ION COLLECTOR ibt = ^ FEEDTHROUGH TO ION REPELLER i SOURCE Figure 14. Planar chamber configuration. A sketch of the potential variation between the source and screen is shown in Figure 15. The use of an ion repeller eliminates a neutral region between the ion collector and the header which would have existed if the ion repeller had not been used. Associated with the neutral region have been hysteresis and repeatability problems. The use of an ion repeller eliminates these problems and produces relatively strong field strengths throughout the major portion of the ionization chamber. 25

SOURCE ION COLLECTOR Ady" ION REPELLER, i Ji -- HEADER I I..... SOURCE 8 ION REPELLER POTENTIAL DISTANCE o) PLANAR CHAMBER POTENTIAL VARIATION ( WITH ION REPELLER) SOURCE /h e ION COLLECTOR opi, HEADER i | —-— SOURCE POTENTIAL z., DISTANCE b) PLANAR CHAMBER POTENTIAL VARIATION (WITHOUT ION REPELLER) Figure 15. Potential variation with and without ion repeller. 6.2.2. Effects of Various Cylinder Potentials Positive ion currents measured as a function of plate potential show the effect of different potentials applied to the cylinder for three different pressures (Figure 16). As can be seen from these results, the conditions imposed around the outer diameter of this planar chamber greatly affect the ion current measurements. Similar to the various configurations involving the cylindrical chamber, a collected ion boundary also exists around the outer portion of this chamber. The position or location of this collected ion boundary is, of course, determined by the potential applied to the cylinder for a given pressure and source potential. 24

* CYLINDER - 40v x CYLINDER ~ GROUND POTENTIAL + CYLINDER SOURCE POTENTIAL P = IOOOtorr A'7 Ir 1G r -. 0 z z > P =l0 torr e n " - x -., -.. I-L 10 0 10 20 30 40 50 60 T) SOURCE POTENTIAL (volts) Figure 16. Planar chamber characteristics, P = 10, 100, and 1000 torr. 25

A sketch of the potential distribution and the approximate location of the collected ion boundary about the outer perimeter of this planar chamber is shown in Figure 17. At the high pressures, ion-ion recombination effects will completely dominate in any portion of the gauge which has weak electric fields or dead spots. At low pressures the effect of ion-ion recombination may be negligible, and consequently the location of the collected ion boundary may be significantly different for the two pressure regions. The transitional ion-ion recombination effect is quite pronounced when the polarization cylinder and the radioactive source are operated at the same positive potential. The effect can be observed in the results shown in Figure 16 as a distinct bump occurring in the current characteristics at a pressure of 10 torr but not at 100 torr. Actually, the change occurred rapidly between 20 and 30 torr, causing severe nonlinearity and loss of stability in this pressure range. Operating the planar chamber with the cylinder at a higher potential than the source considerably improves the situation described above. However, the electrical configuration found most satisfactory was to ground the polarization cylinder potentially. With the cylinder at ground potential, the collected ion boundary is pulled in much closer to the ion collector. Practically, the local recombination effects in the dead region between the ion collector and the cylinder are kept out of the ion collection region. Consequently, the current characteristics with the cylinder at ground potential are observed to be quite flat and stable, except at 1000 torr where recombination effects are significant throughout the entire chamber volume at low electric field strengths. 26

POLARIZATION CYLINDER EQUAL POTENTIAL LINES -— COLLECTED ION BOUNDARY a) POLARIZATION CYLINDER POTENTIAL> SOURCE/ION REPELLER POTENTIAL /^tS^.\ hi,: _^^R RECOMBINATION 00/"~ s\~~ ~REGION I LOW-PRESSURE ii HI- PRESSURE ( > 30 torr ) b) POLARIZATION CYLINDER POTENTIALS SOURCE/ION REPELLER POTENTIAL c) POLARIZATION CYLINDER POTENTIAL.0 VOLTS Figure 17. Planar chamber potential distribution. 27

6.2.3. Ion Current Characteristics (Planar Chamber) A more complete mapping of the ion current measurements with the cylinder maintained at ground potential is shown in Figure 18. The ion-ion recombination region and the field intensified ionization region are both quite evident for the planar chamber. The energetic electron effects are completely masked at the higher pressures. Between the two pronounced regions, from pressures of approximately 10 torr to 1000 torr, stable, saturated current characteristics exist. This is the desired operating range and meets the design objective for this chamber. An interesting effect is observed in the characteristics shown in Figure 18. The saturated current levels for the 1000 torr and 316 torr pressure values are slightly closer together than the spacing of the other saturated current levels just below these. This effect occurs only at high pressures and is due to the finite kinetic energy of an emitted alpha particle being expended in the ionization process in a relatively short pathlength. At a pressure of 1000 torr, the alpha particles emitted from the Americium-241 source have a mean range in air of approximately 1 in. or slightly less. This is of the order of the planar chamber dimensions. Consequently, those alpha particles which are stopped before they traverse completely across the chamber will produce essentially a constant number of ion pairs independent of pressure. The result of this is a loss of linearity at the higher pressures. 28

(polarization cylinder potential = v) RECOMBINATION REGION -7 3 P 100 I) o w - - 2 P=31.6 U I REGIIN P=.316 10 w 10,.,,- I' -______________ D" - 0 _ P-_=I.00_ — / IONIZATION RE 0 20 40 60 80 1oo 120 SOURCE POTENTIAL (volts) Figure 18. Summary, planar chamber characteristics. 29

7. GAUGE OPERATION The collected positive ion current from the dual collector ionization gauge in its useful pressure measurement range of 10-3 torr to 1000 torr is shown in Figure 19. The sensitivity of the gauge in the planar ionization chamber operating region is approximately 1.75 x 10-10 amps/torr, while in the cylindrical ionization chamber operating region the sensitivity is 6.5 x 10-10 amps/torr. The ratio of these two sensitivities is essentially the ratio of the two ionization chamber volumes. From a pressure of 1000 torr to 10 torr, the high pressure ion collector in the planar ionization chamber is used. The source-plates in this pressure range are maintained at a potential of +90 V and the polarization cylinder is maintained at ground potential. The low pressure ion collector which is not used in this pressure region is also maintained at ground potential, At a pressure of 10 torr and below, the low pressure ion collector in the cylindrical ionization chamber is used. Both the source-plates and the polarization cylinder in this range of pressures are maintained at +90 V potential. The high pressure ion collector which was used above a pressure of 10 torr is now maintained at ground potential. The operating potential of +90 V was chosen in order to achieve good linearity from both ionization chambers over the entire pressure measurement range. During operation, when the 10 torr pressure level is crossed, a change in the potential applied to the polarization cylinder of 90 V occurs and coincides with the collector change. Overall, the gauge has a pressure-measuring capability of approximately six orders of magnitude. 50

o-7 id-8 -— ~ — CYLINDRICAL IONIZATION CHAMBER -_T~~ ~ OPERATING REGION' VSOURCE = + 90V.F: VCYL + 90v 0 6 9 / I-PLANAR IONIZATION CHAMBER I OPERATING REGION t- - " VSOURCE; 90V =: - VcYL a OV w RESIDUAL CURRENT - 162" -4 I3 -2 o10~ lo 2 3 PRESSURE (torr) Figure 19. Dual collector gauge operating region, ion current vs. pressure. 31

8. GAUGE PERFORMANCE 8,1. LINEARITY For general information the percent deviation of the ion currentpressure relationship from linear behavior for both the cylindrical chamber and the planar chamber is shown in Figure 20. The various regions, discussed previously and also shown in Figures 12 and 18, are clearly evident. For the cylindrical chamber operating range, zero percent deviation was established at a pressure of 4 torr, and for the planar chamber operating range, a pressure of 50 torr was chosen. The operating potential of +90 V was selected to achieve good linearity with both chambers over the entire pressure range of 1 x 10-3 torr to atmospheric pressure. The percent deviation for an operating potential of +75 V is also shown and illustrates the relative insensitivity of the gauge to the operating potential. To date, no concentrated effort has been made to improve the linearity of the gauge. To take into account the nonlinearity, a detailed calibration of each gauge is always performed. 8.2. LONG TERM STABILITY Although gauge repeatability over relatively short time periods of a few days proved excellent, long term stability remained of some concern because in the present aeronomy program the gauges are calibrated approximately five weeks before their final use. Consequently, a calibration before and after a seven and one-half month time lapse was performed and was believed sufficient to detect any significant systematic change that might show up in the ion current. The results of this test were somewhat as expected: less than +2% changes were observed over the entire pressure measurement range of 1 x 10-3 torr to atmospheric pressure. The combined variations and changes due to the vacuum calibration system and in the electrometer amplifier used in the ion current measurements, even without considering any changes occurring within the radioactive ionization gauge, were anticipated to be of the order of the observed ~2% over this time period. Long term stability is consequently recognized as being one of the several merits of the gauge. 52

PRESSURE (torr) 0, 0, Os 0. 0. 0, _ o - b- o t0l I I FIII I I.,-I I III I I I I 111 I I I I r1 11 I I I l liiI ENERGETIC I I. ELECTRONS RECOIBIATIO FETS EFFECTS t —-- FIELD INTENSIFIED IONIZATION EFFECTS RECOINATION EFFCTS o _____ ^. < _ CYLINDRICAL CHAMBER i I R O I D ol r I II 0 0 j I Iz,lo o0|~ ~ ~ ~~~YIOIA C HA M BjF.___________________ RPLANAR CHAMBER +75 //+90 FIELD INTENSIFIED _I LOSS OF ALPHA <:+* -10'IONIZATION EFFECTS IPARTICLE ENERGY o0 0, 0, 00 0. 0. 0o PRESSURE (torr) Figure 20. Gauge nonlinearity, both chambers.

8.3. TEMPERATURE EFFECTS As one would expect, the radioactive ionization gauge is sensitive primarily to gas density. However, over a wide range of operating conditions, temperature effects might have been significant. Consequently, tests were conducted to determine the importance of these effects by operating the gauge at constant density and varying only its temperature. A simple experiment was set up for these tests and is shown in schematic form in Figure 21. Ion current measurements were subsequently recorded in both increasing and decreasing temperature directions to eliminate possible errors due to temperature lag and to insure the absence of outgassing effects. - _ —_ TO ELECTRONICS F' —- -- I......I - 1 -...... —-..THERMISTOR OVEN --.....' RADIOACTIVE IONIZATION GAGE /........ - PUMP REMOVED FOR TEMPERATURE VALVE. l____ TEST VACUUM PUMP Figure 21. Temperature test setup. Typical results of these tests conducted at constant gas density are shown in Figure 22, and illustrate the relative insensitivity of the gauge to temperature changes. The ion current variation is only approximately +0.02^/~C, also indicating a slight enhancement of the gas ionization process for increased temperatures. Of passing interest was the residual current, described earlier, which remained completely unchanged with increased temperatures. 5^

+4 Z Wz <y + ___ __ _ _ _ Ad-r740 torr 0 290 300 310 320 330 340 35 0+2. z 0.-I TEMPERATURE (~K ) Figure 22. Percent ion current change vs. temperature for constant gas density. 8.4. HYSTERESIS At the relatively high pressures over which the radioactive ionization gauge effectively operates, a change in vacuum system pressure is accompanied by a drop or rise in gas temperature due to the gas expansion or compression. Simultaneously, heat transfer tends to restore the gas temperature to the temperature of the confining walls. As a result, the absolute pressure as well as the time rate of change in pressure are determining factors in the gas temperature during a change in vacuum system pressure. The variation in gas temperature was observed indirectly when pressure cycling with the vacuum system was performed. An apparent hysteresis was noted during the pressure cycling if the measurements from the radioactive ionization gauge, which is a gas density sensor, were interpreted directly as pressure measurements. However, this effect is the result of considering pressure and density synonymous, which, of course, is invalid if the gas temperature does not remain constant. The magnitude of the effect was found to depend not only on the time rate of change in pressure, but also on the decade of pressure in which the changes were performed. At lower pressures, the ef55 35

feet became vanishingly small as the result of longer mean free paths and more rapid accommodation of the gas to the wall temperature. Hence, for pressure measurements with a radioactive ionization gauge, knowledge of the gas temperature is mandatory.

9. CONCLUSIONS In the design of the radioactive ionization gauge for upper atmosphere measurements several objectives were pursued, A simple, rugged construction for use on sounding rockets was conceived and has since proved reliable. For the ionizing source in the gauge, Americium-241 impregnated foil, nominally of 7 mc activity, was found quite acceptable although the gauge sensitivity is an order of magnitude lower than what would be considered ideal, Flat, stable operating characteristics were one of the major objectives in the design of the gauge and for these, the electrical configuration proved most importanto For measurements over the wide dynamic range of 1000 to 10-3 torr, two ion collectors were necessarily employed. In general, the performance of this gauge has been quite satisfactory, 37

10. REFERENCES Ainsworth, J. E., D. F. Fox, and H. E. LaGow, "Upper Atmosphere Structure Measurement Made with the Pitot-Static Tube," Journal of Geophysical Research, 66, No. 10, pp. 3191-3212, 1961. Downing, J. R. and Glenn Mellen, "A Sensitive Vacuum Gauge with Linear Response," The Review of Scientific Instruments, 17, No. 6, June 1946. El-Moslimany, M. A., Theoretical and Experimental Investigation of Radioactive Ionization Gauges, University of Michigan Scientific Report 03554-4-S, May 1960. Flanick, A. P. and J. E. Ainsworth, "Vacuum Gauge Calibration System (10-2 to 101 mmHg)," The Review of Scientific Instruments, 32, No. 4, pp. 408410, April 1961. Horvath, J. J., R. W. Simmons, and L. H. Brace, Theory and Implementation of the Pitot-Static Technique for Upper Atmosphere Measurements, University of Michigan Scientific Report 04673-1-S, March 1962. Liverhant, S., Elementary Introduction to Nuclear Reactor Physics, John Wiley and Sons, New York, 1960. Simmons, R. W., An Introduction to the Theory and Data Reduction Method for the Pitot-Static Technique of Upper Atmosphere Measurement, University of Michigan Scientific Report 05776-1-S, March 1964, Spencer, N. W., R. L. Boggess, L. H. Brace, and M. A. El-Moslimany, A Radioactive-Ionization-Gage Pressure-Measurement System, University of Michigan Scientific Report ES-1, 2597-3-S, May 19580 Strain, J. E. and G. W. Leddicottee, The Preparation, Properties, and Uses of Americium-241, Alpha-, Gamma-, and Neutron Sources, Analytical Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, September 1962. Vacca, R. H., "Recent Advances in the'Alphatron' Vacuum Gauge," 1956 National Symposium on Vacuum Technology Transactions, Edmond S. Perry and John H. Durant, editors, Pergamon Press, New York, pp. 93-100. Zito, George V., Appendix D: Radioactive Ionization Air Density Sensors: The State of the Art 1959, Fifth Monthly Progress Report submitted to Wright Air Development Center by Litton Industries Electronic Equipment Division, Beverly Hills, California, December 1959.

APPENDIX A ION CURRENT DETECTOR For the measurement of the small ion currents, a multirange electrometer amplifier was used. A detailed description of this amplifier, which was developed, built, and flown by this laboratory, will not be presented here since a report on the instrument is in preparation elsewhere. However, a brief explanation will be given. A block diagram of the amplifier is shown in Figure 23. The current to be measured is, in effect, passed through a high-meg resistor, and the voltage drop appears as a portion of the voltage in the feedback loop of the amplifier stage, for which P, the feedback factor, is near unity. Thus, a voltage change at the output of the amplifier is nearly equivalent in magnitude to the voltage change across the high-meg resistor but opposite in sense, The ion currents, as shown in Figure 19, vary over more than five orders of magnitude. For measurements over this range of ion current five high-meg resistors are employed. These resistors are changed or switched by glass encapsulated reed relay switches utilizing fully automatic range switching circuitry. A ratio of 16 for the high-meg resistor ranges was chosen except where collector switching occurso The upper switch point of -20.0 V and the lower switch point of -lo10 V were selected to provide switch point hysteresis and minimize the possibility of switching chatter when a range change occurso The normal output of 0 to -20 V from the electrometer amplifier is then inverted in sign and sub-ranged by an inverter amplifier, providing an output of 0 to +5 V which is compatible with existing telemetry systemso For the sub-ranging, gains of lo0 and 0,25 were selected for the two-gain state inverter amplifier. A Schmitt trigger is used which senses the electrometer amplifier output and provides the control of a solid state switch that determines the feedback impedance and consequently the gain of the inverter amplifier. The set points of the Schmitt trigger are adjusted for -5 V and -404 V, again providing switch point hysteresiso The scheme and sequence for the switching logic is shown in Figure 24. For the switching of the polarization cylinder potential and ion collectors, the existing logic employed for the fully automatic switching of high-meg resistor No. 4 was utilized. Again, glass encapsulated reed relay switches were used. The high-meg resistor values were selected so that switching of the polarization cylinder potential and ion collectors occurred simultaneously at a pressure of approximately 10 torro 39

I 28 r -- - - ----- j | AMER POL HI-MEG COMM INVERTER | POWER ___ |VOLT DRIVE HOLD LSR TRIG RNGIND HOLD +22 ej DC-DC CONVERTER + T rF —— E-~141 I ^ --- -- IHI-IMEG SELECTOR INVERTER nl~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IVRE OUTPUTTE O I.. 8-E 1086A - --- RANGE INDICATE CONTROL +25 -25 REGULATOR REGULATOR ____ RELAY DRIVES -- 15R- - 1R Comm - LT-1 ^r^ — wr ~ —ir-rJL, ^ -h +1 -' 1 t R TRIG ~1 S|' --------------------------------------— I +15R -15R B-E 1088 A I + 15R +15+ 22< Di'""REGULATOR 221 — - -— 5R -15R +15 | ---- * —- | _ IO 9-0 -A - 2 2 REGULATOR + 20R INVE REGULATOR INVERTER A OUTPUT ~~~~~~~~~~~~~~~~~~~~~~0,^W\.T 1 ^ ^ 1,1 EAO L - __ _- _ _ _ _ _-I go- 4~~~~~~~~~~~~~~~~~~~~~~~~~-1 __ _ _ __ __ BURR S ELECTROMETER AMP OUTPUTS ^t l t^ BROWN EAOF LJS ---- \ —-------------------------------------------------------------------— ^T^O —-I 3083 /15 a [ EAOINPUT -5 IT I ^725R ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~ ~1 B-E 1440 INTERCONNECT CABLE 3,4,5 RNGHI-MEG B-E 1412 PLUG WIRING DENS G, 5 RNG UNIT B-E 1095 BACKSWITCH DELAY. RNG CONT. LEVELSEN DENS B-E 1087 FLIP-FLOP 8 DELAY MODULES. DENS G 8-E1088A POWER CONVERTER FOR DENS G B-E1241 INVERTER BOARD, DENS G L'~~~~ —--— T —--------- — +-~~~~ —--- B-E1086A HI-MEG SELECTOR, DENS G B-E 1385A 3 a 5 - RANGE HI-MEG PACKS B-E 1090A ELECTROMETER AMPLIFIER, DENS G \7S~~~~~~~~~ \ I I (<*-'P1~~~~~~~ B-E 1089A BLOCK DIAGRAM, 5 RANGE DENS G HE2RELAY DWG NO. TITLE FREO ------- [ DRIVES ENGINEER S.E.C. DRAFTSMAN AB a CD -26 FRED — Ar^ -- COMPe^ -- I *SPACE PHYSICS RESEARCH LABORATORY BLOCK DIAGRAM, 5 RANGE 41169 MEG-I —- E10868 DEPARTMENT OF ELECTRICAL ENGINEERING DENSATION G 1-17-69 DENSATION G - - __ _ _ _ B- E 1385Aj UNIVERSITY OF MICHIGAN 10-7-68 ANN ARBOR, MICHIGAN B- E 1089 A ATE LAST u"D R C D L Figure 23. Electrometer amplifier bloc. diagram.

LO- PR ESS. COLLECTOR HI-PRESS. COLLECTOR W U z D 0 W INVERTER GAIN- I- cn CD ~~~~~~~~~~~NM # 01 CD NM _4 z |: _______ HM*3____________i —------------ HMI* HM*2 HM*3 HM*4 HM*5 ELECTROMETER AMP. 4.98 X10" 3.I KIO /A/ 1.9 Ki|a1 /l 5.9ex|100/l 3.72 IOTx I 0 INVERTER AMP. / 0~~~~~~~~~~~~~~~~~~~~~~~~~~4?O I I II^/'/ ^| > II -I~~~~~~~0y /j // r nl /l / /r I n Ld rr~~~~~~~~~~DC 0 W 0 ID JD I' - 4I: 1 ~- 0. W w ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ w 0 ow wJ z 0.1I 10 | Z -13 -- I Ij 5~ Ct-'L i/Xl0~ i ~:610 /xl6 lj1t6- i ~ lo u E I i' I4,iI i l 0 Ioi-4 logo. lo-' 10 00-010 10+2 iO PRESSURE (tbrr) Figure 24. Electrometer amplifier switching sequence.

APPENDIX B VACUUM SYSTEM For the assembly, handling, and pressure calibration of the radioactive ionization gauges, a special facility was constructed. Part of this facility houses the monitoring equipment and the air ventilation system which are necessary in work with radioactive materials. For the purpose of calibrating the ionization gauges, a rather complete vacuum laboratory is enclosed by the other part. The low vacuum (high pressure) calibration system used for the gauge investigation, fabricated over a period of time, is continually being modified and updated. The pump for this system is a turbo-molecular vacuum pump manufactured by the Welsh Scientific Company. One of the chief advantages of this pump is its relatively high pumping speed which is useful for dynamic pressure studies. Figures 25 and 26 are views of the vacuum system. The prototype radioactive ionization gauge can be recognized on the top of the vacuum system at the left in Figure 25 and on the right in Figure 26. Part of a pitot probe rocket payload, mounted on the vacuum system for calibration, is at the right in Figure 25 and at the left in Figure 26. Views of the calibration control console and vacuum system control panel are shown in Figures 27 and 28. Pressure measurements are obtained by employing the slug-input technique (Flanick and Ainsworth, 1961) in conjunction with the MKS capacitance manometer manufactured by the Baratron Corporation, This calibration system is believed capable of pressure measurements within an accuracy of +1/ absolute from atmospheric pressure to 10 torr, which do not exceed +4% absolute at a pressure of 1 x 10- torr. On a relative basis, from calibration to calibration, pressure measurement capability with the use of this vacuum system is believed to be within +1% over the entire pressure range from atmospheric pressure to 1 x 10-3 torr. During the present gauge investigation ultradry air was used exclusively. 42

iii:ib:i~ *: -::::::::-:-:-:-:.::: -:-:: iiiiii~:::::::::::::: -i-iiili i:i::iiiiiii:gia:'i:: —: —ii:-ii:;ii-i ii-~i-ii-l::'-. i -~ ii~:'i:'-~:si:;ii-:li~i-::-iLJa::::: ei;::::.. F.:B1-:ii i._~- -- Zii -i-~~-i.i i. liiiii i:i:i:i: iiiii'i ~ —;iii-i-iiiii-i-i-iri:i:il~i~;i-iWg:i:iiii-iil':::li:~':'li::" i.::j:Si'4ii~li:::::i:~:'i:~l'-ili5':i'::iili~ ii'i:iii~ii-i:'ii9i' i:i ii"iii' iiil-ii:iii —i:i ~~:iaep iiil -i.r i$i-: ~~lli ii:':'ILlliiiiii:i-i: i:;~i:~:i.iQI:i — I el.:.::: _"il —i-iiii~i:i iiii-iiii_ i:: iC4a; i i-, "::il rr. :: ts::::i: r-P ~ir- EL ~I- —-:-~*.~rjijlj ~j~:::::i.~i ~;: 4;.~:: P ~:- ~l:Si ~~ " "~: I~;~-:~-I~,~::B ;~: a:i:" ...61;1:12:2:; B aa~m I51i i —-ii-: ~npl,`i?"i~ w a 1 ^.~?~;1'~-".::.- ri::W,, bR Ir::::-;~..,:::sgpa:::_ _::-i:-...-:..:.: -:_-::::::::_....-.-.. -::; _ -i:-: i-: -:::: -:~:-:i-:i-i:i:i-ii.:i: i:: —:::i-i::i:i:_-i::.ii:i: —ii:ii~ —:::::__:i —i:: —-::.i-i-i:i i-:.:i-:::i-.::: —::-'-~:i-i:i~'-_-i-:i:i:i:-:-::-i:i:i::i-i8-:"x;l;lx1dsrasea"8~iii,, i-isiiii:lii-c-li i~::-i::~_:~:r:;::-:~: —,5_i~:::!::::i:j:_::_:::::_:_ ji:iii:__::i~jl_~lj/!i -_ —;: ~__-i: — I::-i"""";~:::i-i"iiiiiiii:-I.: Figure 25. Vacuum system and calibration control console.

-Maqsjs uin-noe w GarOij Wm............ Benedetti! RI others Milo.!Calculations!.! Palestinian!!!. -------------

15, VA ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i jj -I, — ~ ~ ~ ~ ~ ~ ~.;::::-.:::~:~-:-:r:. —:-:i::.:~:I~:::::::;::~~r i;,,::~ i~ I'M "It I18~~~~~~~~~~~~~~~~~~~~~~~~~~f::-'::-:::i~:::i:::: i::-:::~:-:::::j-iiir,::i~-:::j:k?~~.MM!g~B:: O M N I,:~:`~:::::-:-.-:s'iiii::::i'~ l'i,::;-:-:::::.................~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-::-::: —::.:i::X'9ii:::_.: now~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~D~ia-i'~:,~~::::::'::::::: \J1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~::I-:::-f-:::::i:i:~2_"a.::::::-. ~:::~::-:::-:~::::::::-::: ~~~~ 7kj pg~~~~~~~~~~~~~~~~~~~~!Mf X ~ ~ ~ ~ ~ ~ ~ ~ ~ ~.:::r'Ii, ~:~:.'iii:ii M MS.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i;ar~*La~a:~:~~B.~t Figure 27. Calibration Control console.~~~~~~~~~~~~~~~~~~~~~~i,~~~~~~'99:': 9li-''': iil:iii~ —::ii::::i:::::::

::::si:: ——:::: —m:: —::'r-rr:jj::: ::- a::::::i:::::j —::::: -:::;::~ —-::~-:~-~: -—:a-i Biiiiiii -""'IE:ELI ~":' g::::i-:::::-::-a:::ij_ -~~:ii.::~i::i-~::-i~:ii-LiiF":: ::::::' -::::::;-:~ iiii';aiiii-i-iiii:i':-iiiii'-:`;:::r:: _;::Ziil i:::i::i$::a:il-::`~:::::N:::a:: -iii::j-iiJi:iliili -L:1:-::':ii'io:s:::::-:cii:il::-:::::-:.i,,:..:l:.:i;~:ii: iiiiiigii I —.-: -:-:: —-::-i:3i:'~':::PIX-I:: _:::::-.-::::i:::O::::::::: —a-::-:-::::: -:--iii:: -iiini::iali i-siiAili isii -,ii ""f-B- ::-:::i: -:::-::;::::r::i::,::::::::::i:i-ii:::-r:::::-i:--:~,:~-:: — i —::::::-~i:i:::_:ji:::-l:-::: —_: iii iiiiiii~i z:a —-:::~-:i:_ :::::i: I:::::::-::::;:::::I:::;:;:::;::-:::is::i~i~~:::i-ii;:iji:i.iiiiiirl;i Xiiiii( ::::::~~:`~: ":::" ":::::':::':":::' j:::::i;,::.,:.:,j:: -.. —---- —: -; i3i~'::-iiiii,~:n:i~::::,:,i: iiiiiiiiii iiiii:ii:iisi -i:i--i 1:::-:::-:::::::-::::i:: -::p:-::_:_-_:-:: —:g,::L::i:::::3i:-;-::'-:i —-::t:l;::: -:i —-;:- — I::-:-: iiiiiiiiiii;i:-iiiiia:,OLli( iiLiZii Fiure 28, Vacuum system contrsl pnel, 46

APPENDIX B: THEORY AND DATA PROCESSING FOR THE PITOT TECHNIQUE OF UPPER ATMOSPHERE MEASUREMENT

THE UNIVERSIT Y OF MI CHIGAN COLLEGE OF ENGINEERING Department of Electrical Engineering Space Physics Research Laboratory Scientific Report THEORY AND DATA PROCESSING FOR THE PITOT TECHNIQUE OF UPPER ATMOSPHERE MEASUREMENT Prepared on behalf of the project by R. J. Cittadini R. W. Simmons G. T. Poole ORA Project 03632 under contract with: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER CONTRACT NO. NAS5-21147 GREENBELT, MARYLAND administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR April 1970

TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF SYMBOLS v 1. INTRODC TION 1 2. CALCULATION OF ATMOSPHERIC DENSITY 2.1, Continuum Flow Region 2 2.2, Free Molecular Flow Region 5 2<3. Transition Flow 5 3, ATMOSPHERIC PRESSURE AND TEMPERATURE CALCULATION 9 3.1o Pressure Calculation 9 3.2. Temperature Calculation 11 4. ASPECT DETERMINATION 12 4,1. Angle Between the Probe and the Earth's Magnetic Field Vector 12 4.2. Angle Between the Probe and the Sun (Moon) Vector 14 34,5 Orientation of the Probe in Space 15 4.4. Angle of Attack 17 4.5. Special Case: Precession Cone Method 17 5. PROCESSING OF FLIGHT DATA 24 5olo Ground Support Requirements 24 5ololo Tracking 24 5o o 2 Te'lemetry 24 5,2o Data Conditioning, Analog to Digital Conversion 52 5.35 Processing of Aspect Data 32 5o3.1i Angle between the rocket vector and the geomagnetic field vector 32 5o3.2. Angle of attack 5.4 Processing of Gauge Output Data 44 5.50 Obtaining Final Data 63 6. REFERENCES 73 iii

LIST OF FIGURES Figure Page 1. Correction factor which accounts for the effect of gas-wall collisions within the gauge antechamber versus angle of attack. 6 2. Pitot probe gauge and antechamber geometry. 7 3. Transition number versus p.8 4. Relationship between iB and 0 for dV/dt = 0. 14 5. Sun-axis coordinate system. 16 6. Angular-momentum-axis coordinate system. 18 7. Determination of precession period. 19 8. DOVAP trajectory information format. 27 9. Telemetry format. 28 10. Oscillograph record format, summary. 29 11. Oscillograph record format, data. 30 12. Oscillograph record format, aspect. 51 13. MOP abbreviated flow chart. 36 14. MOP output format. 37 15. Pitot Aspect Program output format. 41 16. Timing functions and gauge output versus time. 47 17. Analog oscillograph record of flight data. 48 18. PITOT abbreviated flow chart. 49 19. PITOT output format. 50 20. FLOP abbreviated flow chart. 64 21. FLOP output format. 65 iv

LIST OF SYMBOLS a local speed of sound in the undisturbed region of the gas flow b instrument sensitivity factor (a constant) B geomagnetic field vector BD distorted geomagnetic field vector B component of B along the axis of the magnetometer sensor M D c output bias voltage (a constant) d characteristic dimension of the probe g gravitational acceleration g standard sea level gravitational acceleration o h geometric altitude H geopotential altitude k Boltzmann's constant K transition number K(M) function of Mach number (defined in Equation (5)) Kn Knudsen number Q, m, n direction cosines in thLe X, Y, Z directions, respectively L angular momentum vector L1 unit vector parallel to the angular momentum vector m molecular mass M Mach number of the probe M magnetometer vector (a unit vector along the magnetometer sens:o axis) p atmospheric pressure v

P. impact pressure behind the shock wave created by the blunt nose of the probe r radius of the earth o R gas constant R rocket vector (a unit vector along the longitudinal axis of the probe) S speed ratio, v /u G S sun (or moon) vector S speed ratio, v/u T temperature of the gas in the undisturbed region of the flow, atmospheric temperature T. internal temperature of the gauge u most probable thermal speed of a molecule v speed of flight of the probe v velocity vector VG velocity component along the gauge orifice axis V magnetometer voltage output X,Y,Z cartesian coordinate axes a angle of attack of the probe 3 projection of t on the XY plane y ratio of specific heats of a gas ai correction factor which accounts for the effect of gas-wall collisions within the antechamber 9 angle between B and M \ molecular mean free path + -+ IBB angle between R and B vi

pB,),Ih minimum and maximum angles between R and B MIN BMAX 5 precession cone half angle p atmospheric density Pi atmospheric density calculated by using continuum flow theory P2 P cosa pfmf atmospheric density calculated by using free molecular flow theory angle between R and S a angle between R and S 0 angle between S and B CD spin rate of the probe vii

1. INTRODUCTION The pitot probe, as well as its predecessor the pitot static probe, is a rocket-borne instrumentation system designed for the purpose of measuring atmospheric density, temperature, and pressure in the region of the earth's atmosphere between 30 and 120 km (Ainsworth, Fox, and LaGow, 1961; Horvath, Simmons, and Brace, 1962). The technique utilizes a' straightforward application of pressure sensing technology to obtain a measurement of the pressure at the stagnation point of a suitably designed rocket nose cone (Handy, 1970). The interpretation of this impact pressure data in terms of atmospheric density follows from basic aerodynamic theory (Simmons, 1964). The following sections review the theory and present the procedures recessary for the reduction and presentation of data acquired through the implementation of the pitot technique by investigators at the Space Physics Research Laboratory (SPRL) of The University of Michigan. The theory which forms the basis of the pitot measurement is presented in terms of the equations used in the reduction of the data and is treated separately from the detailed processing of the actual numerical data. In the sections pertaining to the processing of the data, emphasis is placed upon the acquisition and application of auxiliary data necessary for obtaining the final atmospheric density profile. The design and implementation of the pitot probe system in conjunction with available analog to digital data conditioning equipment has resulted in the achievement of nearly 100% automatic processing of these data, A detailed account of the software and procedures used along with sample outputs from the various phases of the processing of a recent data set are given. 1

2. CALCULATION OF ATMQSPHERIC DENSITY By measuring the impact pressure at the tip of a suitably designed rocket probe, atmospheric density can be calculated by means of equations appropriate to the fluid flow regime being encountered. A detailed discussion of the flow theories, the derivation of pertinent equations, and a statement of the involved assumptions is given by Simmons (1964). Because of the wide range of atmospheric density covered by the pitot probe, there is a large variation in the mean free path of the atmospheric particles and in the characteristics of the flow field surrounding the probe. At low altitudes, compressible, nonviscous fluid flow theory adequately describes the flow field around the probe, and at high altitudes, particle theory or free molecular flow theory applies. 2.1. CONTINUUM FLOW REGION In that portion of the atmosphere where the mean free path, X, of the molecules is much smaller than a characteristic dimension, d, of the probe, the flow behaves as a continuum. With the Knudsen number defined as Kn = N/d, (1) the condition for continuum flow is that Kn ~< 1. In the case of the pitot probe, the characteristic length, d, corresponds to the diameter of the blunt nose of the probe. Atmospheric density is found from the impact pressure measurement by using the following equation, derived from the well-known Rayleigh supersonic pitot tube formula, P. V (7 I\ (7 ^+ 1) M2 2y 4 M2 - 2y + 22 where pi = atmospheric density for continuum flow, Pi = impact pressure behind the shock wave created by the blunt nose of the probe, v = speed of flight of the probe, 2

y = ratio of specific heats of the gas, and M = Mach number of the probe, defined as V V M = - = 3) where a = local speed of sound in the undisturbed region of the fowa where a = local speed of sound in the undisturbed region of the flow, R = gas constant, k/m, where k = Boltzmann's constant and m = molecular mass of the specie considered, T = temperature of the gas in the undisturbed region of the flow (atmospheric temperature). To obtain p, in units of kg/m3, Equation (2) can be written 1553.218 P. Pl = K(M) v (4) with the gauge pressure, P., given in torr and velocity from the trajectory in m/sec. The function of Mach number, K(M) = ( )2 [ +1 2 (5) cannot be evaluated exactly because M requires a knowledge of T (Equation (3)), which is one of the atmospheric parameters unknown at the time of measurement. However, in the region of measurement, because of the weak dependence of K(M) upon M, K(M) can be approximated to an uncertainty of less than 1% by K(M1), where Ml is calculated by using the Standard Atmosphere speed of sound in Equation (5)2.2. FREE MOLECULAR FLOW REGION As the probe reaches higher altitudes, X increases as the atmospheric density decreases. When the mean free path of the molecules is much larger than the characteristic length of the probe, the flow is free molecular flow, The condition for free molecular flow is that Kn >> 1. The equation linking atmospheric density, p, and impact pressure, Pi, in the free molecular flow region is P. p = - (6) R3JT'f F(S) 5

where T. = internal temperature of the gauge, S = speed ratio, v /u, where v = velocity component along the gauge orifice axis, defined as v = v cosa (7) G where a = angle of attack of the probe (see the section on probe aspect), i = most probable thermal speed of a molecule, and (2kT (8) u = \ —. (8) The function F(S), defined as _S F(S) = e + slR [1 + erf S] (9) can be approximated quite accurately for S > 1.5 by F(S) " 24S. (10) By substituting Equations (7) and (10) into Equation (6), we obtain P. P- -1 - (11) rfRT. v cosa If we now let P., - p cosa, (1_) we can write 5.1263 P. P2 = 1 (1_3) \[ V Equation (13) gives P2 in kg/m:3 for air provided that P. is given in torr, T. in ~K, and v in rm/sec. 4

In the free molecular flow region, a correction for the geometry of the gauge and antechamber is necessary (Pearl, 1970). The correction factor, r, is a function of the angle of attack of the probe, a, and of the speed ratio, So = v/u. Figure 1 shows il(a,So) versus a for the pitot probe geometry shown in Figure 2. The speed ratio can be written as a function of Mach number: S = M. (14) o ~2 It was mentioned earlier that we do not know M, and therefore we approximate S by using M1. Atmospheric density in the free molecular flow region is then given by fmf C cosa 2.3. TRANSITION FLOW Neither continuum nor free molecular flow exists in the region where Kn ~ 1, the transition flow region. To date, there is no satisfactory theoretical approach that would allow us to calculate atmospheric density easily in this region. In looking for a means of using the impact pressures measured in the transition zone to calculate atmospheric density, a numerical model was derived by using actual pitot probe data and extrapolated experimental data. from Wainwright and Rogers (1966). A transition number, K, has been obtained for the particular pitot probe geometry shown in Figure 2 and is presented in Figure 3. The atmospheric density in the transition region is approximated by using the following formula. P = Pi1 + K - ] (16) \pi where pi = density according to the continuum flow theory (Equation (4)), and fmf = density according to the free molecular flow theory, (Equation (15)). An iterative procedure is necessary for the calculation of p since K is a strong function of p. 5

1- I I I I I So = 3.6 1.10 3.0 1.08.6 2.0 1.5 1606 0 I — 01.04 0 Ir 0 1.02 0 > 1.00 LL0 LLi.98 So 6 2.8.96 2.6 ANGLE OF ATTACK c (DEGREES) Figure 1. Correction factor which accounts for the effect of gas-wall collisions within the gauge antechamber versus angle of attack. 6

KNIFE EDGE ORIFICE HEMISPHERICAL NOSE TIP BAFFLE GAUGE BODY ANTECHAMBER HOT FILAMENT IONIZATION GAUGE RADIOACTIVE IONIZATION GAUGE Figure 2. Pitot probe gauge and antechamber geometry.

co Iz41 \ 1' 1.0.9.8 -.7 W.6 Q\ Z.5 z CC 0 4 c\ (F).3 z 2\ 10'8 10-7 10-6 10-5 104 DENSITY (KG/M3) Figure 3. Transition number versus p.

3. ATMOSPHERIC PRESSURE AND TEMPERATURE CALCULATION In the preceding section, the necessary equations for obtaining atmospheric density are given. From this density, atmospheric pressure and temperature may be obtained. The following paragraphs describe in detail the method used. 3.1. PRESSURE CALCULATION Pressure is calculated by means of the hydrostatic equation: dp dp e (17) dh where p = atmospheric pressure, p = atmospheric density, h = geometric altitude, and g = gravitational acceleration. We assume that the density can be represented locally as an exponential of geopotential altitude of the type P(Hi) = (H) exp(-C(H. - H i)) (18) where H denotes geopotential altitude, i is a positive integer, and H > H, > H i-1 - By rearranging Equation (18), In p(Hi) - n p(Hi_l) C = C H= H -- H. i-l 1 By integrating Equation (17), hi Ap. = - f1 p(h) g(h) dh. (20) h. i From the definition of geopotential altitude, g dh = g dH (21) 9

where go = standard sea level gravitational acceleration. If we use the approximation r2 g _9~~~~~~ 0 ~(22) g (r + h)2 where r0 = radius of the earth, we arrive at r h H = - (23) r + h 0 If we express Equation (20) in terms of geopotential altitude, we obtain H. Ap = g p(H) dH. (24) 1 H. i By substituting Equation (18) into Equation (24), H. g Ap = go (Hi) H exp - C(H - H.) dH = [p(H ) - p(H) 1 0 i'H e 1 i-l ( i-1 (25) Then by substituting for C as given by Equation (19) and by reverting to geometric altitude, r2(h - h.) i-l i (r +h. )(r +h) (2) o 1-l1 o we arrive at (h - h) p(h i) -p(h ) APi = goro (/ + h "~(27) 1Pi = gor (r 0+ hi_ )('r + hi) In P(h i) in p(h27) o i-l o i i-l i Therefore, the change in atmospheric pressure between altitudes hi and h is given by n n n (h - h) p(h i-l) - p(hi) Z',p. - g s=( (28)g2 Z11 1 1i o o-l (r + hi )(r + h.) n p(hi ) - ~n p(hi) (28) 10

Thus, n P + i A P (29) n 2- i where pi = atmospheric pressure at altitude hi. From Equation (29) and the equation of state of an ideal gas, P = pRT,(0) we obtain n kT + Ap.(31) n m i-k Xpi where pi (determined from the impact measurement described previously) and T1 are the density and temperature at a reference altitude hio Since T1 is not available, it is approximated by using the Standard Atmosphere temperature at the reference altitude, The numerical integration for Apn, Equation (28), is carried from high altitude downwardo As the integration proceeds, the summation term in Equation (31) increases rapidly and pn quickly becomes insensitive to T1, the assumed reference temperature, 3.2. TEMPERATURE CALCULATION From Equations (30) and (31) we can write n kp i ( 11

4. ASPECT DETERMINATION It is evident from Equation (7) (Section 2.2) that knowledge of the angle of attack of the probe is necessary for the calculation of atmospheric density. The angle of attack of the probe changes with altitude. At low altitudes the main aerodynamic forces acting upon the probe are largely due to high atmospheric density and to the high speed of the probe. The angle of attack is essentially zero because of the influence of the restoring moments generated by aerodynamic forces acting on the fins. Throughout this portion of the flight, the spin rate is high and the angle of the precession cone is negligible. When the probe reaches an altitude at which the restoring moments become vanishingly small, the precession cone increases. How large this cone becomes depends on the flight configuration of the probe. In those cases in which the precession cone angle is very noticeable, the angle of attack can become significant long before the probe gets close to the peak of its trajectory. The angle of attack is determined if the orientations in space of the pitot probe and of the velocity vector, v, are known. Velocity vector orientation is readily obtained from the trajectory information. The orientation of the pitot probe is calculated from data supplied by a magnetic sensor (magnetometer) and an optical sensor (sun or moon sensor). 4.1. ANGLE BETWEEN THE PROBE AND THE EARTH'S MAGNETIC FIELD VECTOR As part of its instrumentation the pitot probe carries a magnetometer whose output is used to determine the angle between the probe and the geomagnetic field vector. The cylindrical sensor of the magnetometer assembly is mounted with its axis normal to the longitudinal axis of the probe. Magnetometer output is a voltage proportional to the component of the geomagnetic field parallel to the axis of the sensor. V = b(B.M) + c b(B coso) + c (33) where V = magnetometer voltage output, b = instrument sensitivity factor (a constant), B = geomagnetic field vector, A = magnetometer vector (a unit vector along the axis of the sensor of the magnetometer), c = output bias voltage (a constant), and 9 = angle between S and 1. 12

Let us now define a vector R, called the rocket vector, a unit vector along the pitot probe longitudinal axis. We adopt a cartesian coordinate system defined by unit vectors i, j, and k such that k is parallel to R, and impose the following restrictions: (1) the probe's spin rate, c, is much higher than its precession rate, (2) the spin rate varies very slowly with time, that is, it is nearly constant during a spin period, and (3) B stays constant during a spin period. A + Let t = 0 be the instant at which i is parallel to M, and we can now write ~~~R ~= f~~~~ ~(34) M = (cost) i + (sinot) j, and (35) B= B +B +B. (56) x y z By substituting Equations (34), (35), and (36) into Equation (35), we obtain V = b(B coswt + B sinwt) + c. (37) x y The magnetometer output is shown in Figure 17 in Section 5.3. At a maximum or minimum, dV/dt = 0, and dV (R x M) B = d = 0 (38) dt Since none of the three vectors is zero, they must be coplanar when dV/dt = 0. If we call LB the angle between the rocket vector and the magnetic field vector, we have the situation depicted in Figure 4 for V = V Xand for V = V N. Using Equation (33), we can write an equation for the voltage difference, AV, between maximum and minimum in magnetometer output. AV V - VI = (b B[cos(2- I )] + c) - (b B[cos(- + lB)] + c) = 2b B sing. (59) B 15

/ 9 - LB 9 FdV=o if dt=0 t V =VMAX 1V=VMIN 2 2 Figure 4. Relationship between A B and e for dV/dt = 0. By means of Equation (39), B can be calculated from the measured AV provided that b and B are known. The quantity 2b represents a calibration constant. The value of B can be obtained from a geomagnetic field model. Assuming that the distortion caused by the probe in the magnetic field seen by the magnetometer sensor is negligible, we can say that B is known. As mentioned before, at low altitudes the angle of attack of the probe is negligible and R and v can be considered to have the same orientation in space. Since the velocity vector and the magnetic field vector are known (Cain, Daniels, Hendricks, and Jensen, 1965), at low altitudes v-B t = arc cos. (40) B v-B From the value of JB calculated at low altitudes, the value of the calibration constant 2b can be determined, 2b = A- (41) B sinB where iB is given by Equation (40) and AV is taken at the same altitude at which [iB was calculated. Equation (59) is used to calculate LB for that portion of the flight which is of interest. 4.2. ANGLE BETWEEN THE PROBE AND THE SUN (MOON) VECTOR Let us define a vector S, called the sun (moon) vector, as a unit vector 14

having the direction of the line joining the center of the probe and the center of the sun (moon). The angle a between the rocket vector and the sun (moon) vector is given by the output of the optical sensor. The measurement is direct and will not be treated in detail. The position of the sun (moon) can be obtained from the ephemeris. 4.3. ORIENTATION OF THE PROBE IN SPACE Once the angle LB between the rocket vector and the geomagnetic field vector, and the angle a between the rocket vector and the sun (moon) vector are known, the orientation of the probe can be calculated. The angle t between the sun vector and the geomagnetic field vector is given by S.B cos = B (42) Now we introduce, for the sake of simplicity, a right-handed cartesian coordinate system in which the Z axis is defined by a unit vector k parallel to the sun (moon) vector S, and the X axis is contained in the plane determined by the vectors B and S (see Figure 5). This coordinate system is called the sun-axis coordinate system. The loci of possible positions of R with respect to B determine a cone with its axis parallel to B and with a cone angle of 2SB. The loci of possible positions of R with respect to S determine another cone with its axis parallel to S and a cone angle of 2a. The intersection of the two cones gives the possible positions of the R vector in space. The following equations can be written in the sun-axis coordinate system: S =. (43) B - = sini + cos,2. (44) R =R + R +R. (45) x y z - -+ R-S = cosa = R z R-B - = cOSiB = sinl R + cosl R (46) R2 + R2 + R2 = 1 x y z 15

z i' Y $ Figure 5. Sun-axis coordinate system. 16

From the system of equations numbered (46), the following solutions are obtained: Cosl - cos4 cosC R = (47) x sin( R = + - (R2 + R2),and (48) y - x z R = cosa. (49) z Equations (47), (48), and (49) give the direction cosines of the rocket vector R. In the most general case, there are two solutions for the vector R. The choice of one of the solutions should be based on the physics of the problem. 4.4. ANGLE OF ATTACK The rocket vector is then converted from the sun-axis coordinate system to the launch pad coordinate system, a cartesian coordinate system with positive Y north, positive X east, and positive Z perpendicular to the earth's tangent plane at the site. Calculation of the angle of attack is straightforward. v.R cosa = - (50) v 4.5. SPECIAL CASE: PRECESSION CONE METHOD When the flight configuration of the probe is such that significant precession takes place, another method can be used to solve the aspect problem and to determine the angle of attack. It is believed that, in general, the probe causes some distortion in the geomagnetic field; hence, the magnetometer sensor does not sense the geomagnetic field vector B, but rather a somewhat distorted geomagnetic field vector, BD. The alternate method has the advantage of obtaining the geomagnetic field vector from flight data without having to resort to geomagnetic field models, thereby resulting in what is believed to be improved accuracy. The probe precesses about the total angular momentum vector L which remains unchanged when there are no exterior moments acting on the probe. For the sake of simplicity, we use a unit vector L1 parallel to L. We then define a right-handed cartesian coordinate system which we call the angular-momentumaxis coordinate system. The Z axis is defined by a unit vector k parallel to the angular momentum vector L of the probe. The Y axis, defined by a vector j, 17

is such that the YZ plane contains the sun vector S. The X axis completes the right-handed system (see Figure 6). PRECESSION CONE Figure 6. Angular-momentum-axis coordinate system. Consider a precession period at the apogee of the trajectory for a given probe. A precession period is easily distinguished in the magnetometer output or by plotting the optical sensor output (see Figure 7). Let 2~ be the angle of the precession cone. The rocket vector R describes in time a cone with its axis parallel to L1 and a cone half angle 5. The angle ~ can be calculated easily from optical (sun or moon) sensor data (see Figure 7). 2 = MAX MN (51) The angle between the rocket vector R and the distorted geomagnetic field vector BD varies during a precession period from a minimum, 4B, to a maximum, MB, such that MIN MAX Li F-I + 2B. (52) MAX MIN 18

6BM MAGNETIC FIELD STRENGTH o ANGLE TO THE SUN (MOON) FROM MAGNETOMETER OUTPUT (MILLIGAUSS) _- MAX,9 - f -..__ _, ______2 BM MIN (D ct ~D t -n H*- r o -I 0 0 I-' 0 0 4 0 c Fd

The component of BD along the axis of the magnetometer sensor is denoted as BM. Magnetometer output given in volts can be converted to magnetic flux density in milligauss through the calibration data supplied by the manufacturer. BDsin BMN = B, and (53) B sin = BM (54) MAX MAX Solving the system of Equations (52), (55), and (54) for BD and B yields MIN B = arc sin, and (55) MIN D /B - B cos 25\2 ( - -MIN o + B/ + (56) D = ( sin 2 M A MMI The quantity BD is determined quite accurately at apogee where all the intervening quantities can be measured without much error because of the large precession half cone angle t. Because the geomagnetic field strength varies with altitude above the earth's surface, the values of BD at different altitudes can be approximated by applying to BD, as calculated by Equation (56), the same percentage variation with altitude suffered by B as given in the geomagnetic field model. In this case, we have used only the rate of decay in the field from the geomagnetic field model, as opposed to using the geomagnetic field vector (direction, magnitude, and their rates of change) from the model as required in the method described in Section 4.1. At apogee the following equations can be written (see Figure 6): + -) L1 S cos( MIN+ ) (57) BDL1 = cos(pL + 5) B (58) D cNB D (L1 x S) (L1 x B) BD[cos sin( )[sin(] n( + ) B - B)IX.MIN = (L 1i)(SB ) - (BL *S)(SL). (59) 20

The angle (see Figure 6) is the projection on the XY plane of the angle $ between the sun vector S and the distorted geomagnetic field vector BD. The angle 8 can be calculated (see Figure 7) by means of the following relationship: = t2 - tl 2 (60) ts - tl Combining Equations (57), (58), and (59), we obtain S-B = B (cosj[sin(o I + 0 ][sin(ji + i)] + [cos(lN + i)] cos(a I+)il D D MIN B B MIN MIN MIN (61) The general equation R~B -B cosi + B 1 -( (62) D P B - BL can be written in a different form when the probe is in the low-altitude region. At low altitudes, where the aerodynamic restoring moments are the controlling factor in the orientation of the probe, the velocity vector v and the rocket vector R can be considered to be coincident. Equation (62) then becomes / \2 11/2 v+ ~ BF v~B vB cosi = + v 1 - (63) PD B - L The previous equations can then be grouped into systems of equations that would allow us to obtain the orientation of the rocket vector Ro In order to find the orientation of BD we use Equations (61) and (65) and add the condition which must be satisfied by the direction cosines of a vector in a cartesian coordinate system. The following system results. BD MIN- Bin(MIN + [cos(BIN + )][co(MIN + )] (6) MIN VBD = vB + v +B + v[1 ( --, and (65) 21

B2 + B + = 1. (66) D2 Dm Dn The subscripts I, m, and n denote direction cosines of the subscripted quantity in the X, Y, and Z directions, respectively. The solution of the system of Equations (64), (65), and (66) gives the direction cosines BD~, BDm, and BDn of the distorted geomagnetic field vector BD. In Equation (65), BM and BD should be given for the same low altitude at which v~, vm, and vn are taken. Although the orientation of the geomagnetic field vector changes with altitude, the change in the region of interest (between 70 and 140 km) is so small that it can be neglected. On these grounds we disregard any variation in BD, B Dm, and BDn with altitude. In order to find the orientation of the rocket vector, we resort to the following system of equations. Notice that the following equations apply to any point along the trajectory. They are not restricted to near apogee conditions like Equations (61) and (64) or to low altitudes like Equations (63) and (65). R'S R S + R S + R S = os, (67) I mm m n n _ + - = RB D + RB + R = +1 -B ) and (68) B I Di m Dm n Dn B Y BD Ln DDn R + R2 + R = 169) Q I m n Solution of the system constituted by Equations (67), (68), and (69) provides the direction cosines RR, Rm, and Rn of the rocket vector for the time and altitude corresponding to the values of a, BM, and BD used in Equations (67) and (68). Once the rocket vector R is known along the trajectory, the angle of attack can be calculated by means of Equation (50). Note that although the equations were derived for the sake of simplicity by using the angular-momentumaxis coordinate system, any other coordinate system can be used, for example, the launch pad coordinate system. The systems of Equations (64), (65), and (66), and (67), (68), and (69) are of the following type: aX+aY+aZ = K1, x y z bX+bY+bZ = K2, x y z X2 + y2 + Z2 = 1, (70) 22

and the general solution is of the following form: - ( K - C K ) + C(C K - C K )2 - [(2 + C + c )(K2 +]K2 - )fl1/2 zx z xy y - zx z xy y xy yz zx z y yz C2 + C2 + C2 xy yz zx (71) (C K - C K ) + ((C K - C K )2 - [(C2 + C2 + C2 )(K2 + K2 - C2 )]31/2 Y y zz xy x - yz z xy x xy yz zx z x zx (C2 + C2 + C2 ) xy yz zx (72) Z = (1 - X2 _ y2)1/2, (7) where K = Kb - K2a, x x x K = Kb - K2a, y y y K = Klb - K2a, z z z and C = a b -a b xy x y yx C = a b - ab yz y z z y C = ab - a b zx z x x z 23

5. PROCESSING OF FLIGHT DATA 5.1. GROUND SUPPORT REQUIREMENTS Because of the automated data processing techniques used in the reduction of pitot data, the following modest ground support requirements must be met for each flight. Failure to fulfill these requirements can result in a degradation of the overall quality of the final data as well as jeopardize the automatic data processing procedures. 5.1.1. Tracking The complete time history of the position and velocity of the probe during flight may be obtained from either radar or DOVAP (Doppler Velocity and Position) tracking. The fully processed tracking (trajectory) data may be supplied in the form of either a digital magnetic tape or punched tape decks along with a formatted listing of the contents of either. These data should be presented in either common metric or English units and should include the geometric position and velocity of the probe referred to a launch pad coordinate system versus time. Figure 8 illustrates the required punched card format (two decks: one for velocity data and one for position data). The required magnetic tape format is 7-track, BCD mode recorded at 556 BPI with even longitudinal parity. The information contained must include, at least, that which is shown in Figure 8. It is common, however, to provide more information than that specified for the card decks. Upon receipt, this information is read into and stored on a disc file at The University of Michigan Computing Center for future use as input to the main processing programs. 5.1.2. Telemetry Since the pitot probe utilizes an IRIG FM/FM telemetry system, the range must provide an appropriate telemetry receiving station for acquiring and recording the data from the probe in flight. In addition, the station must provide a source of range timing suitable for both magnetic and strip chart or oscillograph recording, and a source of 100 kHz to be used for magnetic tape wow and flutter compensations. Range timing should be a modulated carrier BCD type. Usable codes are: NASA 56 Bit, AMR D5, IRIG A and IRIG B for both tape and oscillograph recording; and NASA 28 Bit for oscillograph recordings only. Figure 9 shows a typical telemetry format for the pitot probe. As stated previously, the pitot probe data are processed automatically using the SPRL Data Conditioning System (Caldwell, 1966), and The University of 24

Michigan Computing Center's IBM 560/67. For this reason, the quality and format of the analog magnetic tape is of primary importance and a few words regarding this format are in order. The SPRL Data Conditioning System is primarily an FM/FM Analog to Digital conversion facility. Included in the equipment of this system is an analog instrunmentation recorder which is used to play back the analog tape. The data output of the recorder is then demodulated and the individual data channels are digitized and recorded in digital form on an IBM compatible magnetic tape. The analog recorder is of the low band direct record type and is capable of processing 7-track, 1/2 in. wide direct recorded magnetic tapes at speeds of 60 or 30 ips. The tape drive is capable of the other standard lower tape speeds, but proper equalization electronics are not available. For this low band recorder (Range Commanders Council, 1966) the frequency response at 60 ips is 100-120,000 Hz while at 30 ips it is 50-60,000 Hz, At 30 ips the maximum "flat" frequency response (-3 db) is 60 kHz; above 60 kHz the nonlinearity in response can introduce severe cross-talk and distortion in the telemetry signals of higher frequency. In addition, the tape speed (wow and flutter) compensation hardware of the Data Conditioning System will accept only 100 ktHz reference signals. If only VCO frequencies lower than 60 kHz are used in a telemetry video, it is still desirable to record a 100 kHz reference signal, for it has been found that if the signal is strong, enough of it can be recovered at 30 ips for use by the compensation discriminator. However, when maximum VCO frequencies exceed 60 kHz, as is the general case with the pitot probe, a tape speed of 60 ips is mandatory, Recording levels should be adjusted to give 1% (or less) third-harmonic distortion. Tracks 2 and 4 of the magnetic tape should not carry signals with strong 100-500 Hz components (such as voice) because of the cross-talk characteristics of magnetic tape recorders, A suggested use for tracks 2 and 4 is that of back-up data. Tracks 1, 5, 5, and 7 should carry the most valuable signals and those with the most critical time relationships because these tracks are all in the same head stack, and at Cb0 ips the time delay between head stacks is 25 msec, Taking into consideration the preceding observations, the following magnetic tape format should be requested. This format insures high data quality and compatibility with automatic processing procedures, Recording Mode: Direct Tape Speed: 60 ips Tape Width: 1/2 in, Tape Thickness: At least 1 mil Head Format: IRIG Recording Levels: Normal (see above) 25

TRACK INFORMATION REMARKS 1 NASA 36 Bit Time Code 100 pps/1 kHz 2 Rx #A Video Backup 3 Diversity Combiner #A Video Primary Data Track 4 Diversity Combiner #B Video Backup 5. 100 kHz Ref. ONLY 6 Station Multiplex Reference 100 kHz NASA 36 Bit 70 kHz + 7.5% NASA 28 Bit 40 kHz + 7.5% Voice 52.5 kHz + 7.5% AGC A 10.5 kHz AGC B 7.35 kHz AGC C 5.4 kHz AGC D 5.9 kHz 7 Rx #D Video Backup Note: Record 100 kHz and time code at maximum level. The paper oscillograph record requirements are straightforward and are of secondary importance to the data processing techniques used for the pitot probe. Figures 10, 11, and 12 show typical oscillograph record formats required for visual analysis. 26

GMT TIME v v v v.x y z t Day Hr Min Sec (m/sec) (m/sec) (m/sec) (m/sec) 324 20' 5 5 0. 019 2 4. 7. 7 -14.5 8 1-E.. 1 1392. 13 t O0000000 0000000000 0 0000000000 000000000000000000000080000000000000000000000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 2 64 67 69 70 71 72 7 4 75 7 7 78 79 1111111111111111111111 1111111111111111 11111111 1111 11111 1111 111111111111111 22 222 22222222222222222222 222222222222222222222 2222222 222222222222222 3 333333333333333 33333333333 333333 33333333 333 33 3 3 3 33333 33 333333333333333 444 44444444444444444444444444444444 44444444444 44 444444444444444444444444444444444444444 5555555555555 5555 5555555555555555555555 55555555555555555555555555555555555555 666666666666666666666666666666666666666666666666666 66666666666666666666666666666 7777777 7 77 7 7 7 77 7777777777777777777777777 7 777777777777777777 7777777777777777777777777777 88888888888888888888 8888888888a 8 88888888 88888888 8888888888 888888888888R888 99 99 9999999999999999 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 99999 9 9 9 99 9 9 9 999999 9 9999999999 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2,3 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 HACKETT M 5081 GMT TIME X Y Z Lat Long Alt Day Hr Min Sec (meters) (meters) (meters) (deg) (deg) (meters) 34.8 2,;.1 156. 9 4 - 15.-5'; C;43. 37, -9 7.,8 747. 7 000000 00000 0 0000000000 000000000000000000 00000000000 0000000000000000 00000 22 2222222222222222222222222222222222 222222 22222222222222222222222222222 2222 3 33333333333 333333333333 3333333333 333333333 333 3 333333333 333333333333 3 444 444444444444444444444 44 44444444444 444444444444 444444444 44444444 44 555555555 5 55555555555 55555555555 555555 555 55555555555 555555555 55555 666666666666666666666666 6666666666666666666666666666666666666666666666666666666 7 7 7 7 7 7 7 777 7 7777 7 777 7 77777777 7 7 7 777 7 7 7 7 7777777 7 7 777 7 7 77777777 8888888888888888 8888888 8 8 888 888888 86888 88888888 8888 88888888 8 88888888888 8 999999999999999 9999999999 9999 9999999999 9 999999999999 999999 999999999999999 1 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31? ^3 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 HACKETT M 5081 Figure 8. DOVAP trajectory information format. 27

NOSE CONE PRIMARY TM 244.3 RF LINK TOTAL DEVIATION 155 KHZ DESCRIPTION IRIG CHANNEL NO. CENTER FREQ FREQ DE LP FILTER FREQ FILTER TYPE GAGE I 18 70kHz 7-1/2 % 1050 CD DUAL COLLECTOR ___ RADIOACTIVE FREE RUN SAMPLE TIME 1Z SEC EGMENT WIDTH IONIZATION COMMUTATOR OR RANGE CHANGE FORCED SAMPLE msaITO GAGE 3 E INFORM a PURPOSE LAUNsH SUPPLY R91 R,2 THERM I G 1 GAGE THERM 3.7 V 5.003 10K 30 K 2 0 VOLT REF +.004 3 5 VOLT REF 5.003 4 2.5 VOLT REF 2.503 5 RANGE INDICATE 4.5 V DATA GAGE OUTPUT DESCRIPTION IRIG CHANNEL NO. CENTER FREQ FREQ DEV LP FILTER FREQ FLTER TYP GAGE U 17 52.5kHz 7-1/2 % 790 CD HOT FILAMENT IONIZATION COMMUTATOFREE RUN SAMPLE TIME 15 SEC SEGMENT WIDTH GAGE OR RANGE CHANGE FORCED SAMPLE mcec To %G INFORM a PURPOSE |tiDH SUPPLY RlI R I THERM I +28 BAT. REF. 4.3V BATT.-I 33K 5.1K 2 0 VOLT REF +.004 3 5 VOLT REF. 5.003 4 2.5 VOLT REF 2.503 5 RANGE INDICATE 3.5 V ~___ _____ DATA GAGE OUTPUT DESCRIPTION IRIG CHANNEL NO CENTER FREQFREQ DEV LP FILTER FREQ FILTER TYPE 13 14.5 kHz 7-1/2% 220 CD MAGNETOMETER COMMUTAToR[FREE RUN SAMPLE TIME 14,5 SEC SEGMENT WIDTH COMMUTATOR me~ TO G INFORM a PURPOSE IC^1S SUPPLY Rs, Re, THERM I 4 THERM 4.9 V 5.003 1.8K I MEG 2 0 VOLT REF +.004 3 5 VOLT REF 5.003 4 3 THERM 4.9V 5.003 3.3 K 300 K 5 2 THERM 4.9 V 5.003 3.3K 300 K _________ DATA MAG. OUTPUT DESCRIPTION IRIG CHANNEL NO. CENTER FREQFREQ DEV LP FILTER FREQ FILTER TYPE SOLAR ASPECT 1 30 kHz 7-1/2 % 450 C D Figure 9. Telemetry format. 28

K&E 19 1153 6-67e ROCKET | 14.362 AGC 30kHz/450Hz C 14.5kHz/220Hz CD 52.5 kHz/ 90 Hz CD 70kHz/ 1050 Hz CD a I UPER PPER UPPERR UPP UPER UE CENTE CENTER CENTER CENTER LOWER LOWER LOWER LOWER LOWER AGC ASPECT MAGNETOMETER DATA 2 DATA 1 STATIC STATIC STATIC STATIC NASA REFERENCE REFERENCE REFERENCE REFERENCE NASA 28 BIT 28 BIT GENERAL: ALL CHANNELS ARE 7 % REALTIME FLIGHT DATA FINAL FLIGHT DATA PAPER SPEED I ips I ipl TAPE SPEED COMPENSATION USED ON ALL PLAYBACKS PAPER PERMANENT WIMB PERMANENT WIB STATION CALIBRATE AT THE BEGINNING AND END OF EACH RECORD SOURCE REALTI ME PLAYBACK TIME -30 SEC TO LOS -60 SEC TO LOS NO.OF RECORDS I PER FLIGHT 3 COPIES PER FLIGHT ENGINEER POH DRAFTSMAN MLH SPACE PHYSICS RESEARCH LABORATORY NASA 14.362 SUMMARY DEPARTMENT OF ELECTRICAL ENGINEERING FLIGHT RECORD 1 -1-6 UNIVERSITY OF MICHIGAN't-SB ANN ARBOR, MICHIGAN B- E 1420 DATE Figure 10. Oscillograph record format, summary.

ROCKET 14.362 30 kHz/450 Hz CD 52.5 kHz/79O Hz CD | 70 kHz/1050H CD UPPER UPPER UPPER ac 1 $ CENTER CENTER CENTER LOWER LOWER LOWER \ -A - - I v 2" 4o f 4i s^'0 0 ASPECT DATA 2 DATA 1 STATIC STATIC NASA 3 BIT REFERENCE REFERENCE 36 BIT GENERAL: ALL CHANNELS ARE 7L- % FINAL FLIGHT DATA PAPER SPEED 10 ips TAPE SPEED COMPENSATION USED ON ALL PLAYBACKS PAPER PERMANENT STATION CALIBRATE AT THE BEGINNING AND END OF EACH RECORD SOURCE PLAYBACK TIME -30 SEC TO LOS NO. OF RECORDS I PER TEST ENGINEER POH DRAFTSMAN MLH SPACE PHYSICS RESEARCH LABORATORY NASA 14.362 DATA 3-14-69 DEPARTMENT OF ELECTRICAL ENGINEERING FLIGHT RECORD 2' — UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIG., I B-E 1421 DATE Figure 11. Oscillograph record format, data.

K&E 19 1153 6-67ROCKET |14.362 1 AGC | 30kHz/450Hz CD | 14.5kHz/220Hz CD | 70kHz/1050Hz CD PPER UPER UPPER UPPER * 1 1 CtENTER CENTER CENTER CENTER LOWR LOWER LOWER LOWER — H AGC ASPECT MAGNETOMETER GAGE 1 NASA STATIC STATIC STATIC NASA 36 BIT REFERENCE REFERENCE REFERENCE 36 BIT *ENERAL: ALL CHANNELS ARE 7- % FINAL FUOHT DATA PAPER SPEED 10 ips TAPE SPEED COMPENSATION USED ON ALL PLAYBACKS PAPER PERMANENT STATION CALIBRATE AT THE BElINNIN AND END OF EACH RECORD SOURCE PLAYBAC K TIME -30 SEC TO LOS NO. OF RECORDS I PER TEST ENGINEER POH DRAFTSMAN MLH SPACE PHYSICS RESEARCH LABORATORY NASA 14.362 ASPECT DEPARTMENT OF ELECTRICAL ENGINEERING FLIGHT RECORD 3 -W UNIVESITY OF MICHIGAN -- ANN ARBOR. MICHIGAN B-E 1422 DATo Figure 12. Oscillograph record format, aspect.

5o2o DATA CONDITIONING, ANALOG TO DIGITAL CONVERSION When the magnetic tape containing analog telemetry data is received at SPRL, it is processed in the Data Conditioning System of the laboratory. The discriminators in the system are set so that the upper band edge produces an output of -8v and the lower band edge produces a +8v output. The 12-bit successive approximation A/D converter has a resolution of plus or minus half the least significant bit, or + 2.4 mV referred to a -10V to +10V full scale signal, Channel-to-channel spacing can be adjusted between 5703,'i 500 isec; 5735 (isec is the spacing used for pitot probe dataO Three channels are sampled in every pitot probe flight. Multiplexer scans are triggered by an external signal which is commonly either the 100 kHz reference signal recorded on the tape or the BCD time code carrier, For the pitot probe, the reference signal is divided so as to provide a sampling rate of 100 samples per sec per channel when the data are sampled, The overall data sampling rate capability of the system is 13 kHz, and for pitot probe data the overall sampling rate is 500 samples/seco The 100 kHz reference is also used to compensate for tape wow and fluttero The BCD time code can be sampled without missing a data sample, and the sampling is done either on external command signal or at the beginning of each digital tape record, The second procedure is standard when pitot probe data are processed, The BCD time code carrier normally used is one kHz, providing one msec time resolution, During normal processing of pitot probe data, the time taken is that corresponding to the first data sample in each record, Each record of data contains 334 samples per channel, As the converter digitizes one data record, the record is accumulated in one buffer of the PDP-8 computer of the Data Conditioning System until the buffer (with a capacity of 1028 words) is filled, Then the following data record starts filling the second buffer while the first buffer is written onto the digital magnetic tape, The recorded digital tape is a standard seven-track magnetic tape recorded in binary mode at 556 characters/ino 5o5, PROCESSING OF ASPECT DATA 53oo1, Angle Between the Rocket Vector and the Geomagnetic Field Vector Throughout the upleg portion of the flight, measurements of the voltage difference AV in the magnetometer output and the OV and 5V calibrations from the magnetometer channel are made at 1-sec intervals, Of these data, the first 20 or 30 sec are selected as calibration data for calculation of the calibration constanto A computer program called MOP (Magnetometer Orientation Program) is used for the calculations, and was written for the IBM 360/670 Inputs to MOP are these: 32

(1) launch site coordinates, (2) height of the launch site above the mean radius of the earth, (3) time from launch and magnetometer data (AV and channel calibrations), and (4) trajectory information (velocity components and altitude versus time). The program includes subroutines which generate the geomagnetic field model (Breckenridge, 1965). The generation is achieved by means of Legendre polynomials using Gaussian-normalized coefficients derived from spherical harmonics analysis. A calibration constant is calculated (see Equations (40) and (4i)) for every second of calibration data. These calibration constants are averaged into one which is then used to calculate the angle between the rocket vector and the geomagnetic field vector (see Equation (59))o An abbreviated flow chart for MOP is given in Figure 13. Output from the program (see Figure 14) follow: Calibration information: (1) time from launch (TIME) in sec (2) altitude (ALTITUDE) in km (3) angle between the geomagnetic field vector and the velocity vector (ANGLE) in deg (4) elevation of the geomagnetic field vector (EL B) in deg (5) azimuth of the geomagnetic field vector (AZ B) in deg (6) elevation of the velocity vector (EL TRAJ) in deg (7) azimuth of the velocity (AZ TRAJ) in deg (8) calibration constant (CAL CO-IST) Other information: (1) relation between voltage and magnetic field (Average Calibration Constant) (2) time from launch (TIME) in sec (3) altitude (ALTITUDE) in km 33

(4) angle between the geomagnetic field vector and the rocket vector, iB (ANGLE 2) in deg (5) supplement to LB (ANGLE 1) in deg (6) elevation of the geomagnetic field vector (EL B) in deg (7) azimuth of the geomagnetic field vector (AZ B) in deg (8) elevation of the velocity vector (EL TRAJ) in deg (9) zenith of the velocity vector (ZEN TRAJ) in deg (10) azimuth of the velocity vector (AZ TRAJ) in deg 5.3.2. Angle of Attack Once the angle iB between the rocket vector and the geomagnetic field vector, and the angle a between the sun (moon) vector and the rocket vector are known, the angle of attack is calculated by a computer program called Pitot Aspect Program. The program is written for the IBM 360/67. Inputs to the program are (1) GMT launch time in hr, min, and sec (2) latitude and longitude of the launch site in deg (3) apparent right ascension of the sun (moon) in hr (4) apparent sidereal time in hr (5) declination of the sun (moon) in deg (6) time from launch (7) angle between the rocket vector and sun (moon) vector in deg (8) angle between the rocket vector and geomagnetic field vector in deg The first five are used for the purpose of defining the sun vector. The last three are given at 1-sec intervals over the region of interest. The program calculates the rocket vector from Equations (47), (48), and (49), and the angle of attack from Equation (50). There are two possible solutions for the rocket vector and for the angle of attack. Output from the program (see Figure 15) are 34

(1) zenith angle of the sun (moon) in deg (2) azimuth of the sun (moon) in deg (3) time from launch (TIME) in sec (4) zenith angle of the rocket vector (ZENITH) in deg Fit (5) azimuth of the rocket vector (AZIMUTH) in deg (6) angle of attack (ALPHA) in deg (7) cosine of the angle of attack (COS ALPHA) (8) zenith angle of the rocket vector (ZENITH) in deg Secod (9) azimuth angle of the rocket vector (AZIMUTH) in deg Second ( Solution(10) angle of attack (ALPHA) in deg (11) cosine of the angle of attack (COS ALPHA) (12) zenith angle of the velocity vector (VEL ZEN) in deg (13) azimuth angle of the velocity vector (VEL AZ) in deg 55

READ FLIGHT ID NFCAL (NUMBER OF FLIGHT CALIBRATES) NDAT (NUMBER OF DATA POINTS) NTRAJ (NUMBER OF TRAJECTORY CARDS) ITH, ITM, TS (HOURS, MINUTES, SECONDS OF LAUNCH TIME GMT) DELTAT (TIME CORRECTION) ALTL (ALTITUDE OF LAUNCH SITE ABOVE EARTH MEAN RADIUS) SW (ALTITUDE UNITS) DLAT (LATITUDE OF LAUNCH SITE) 1 =1 DLONG (LONGITUDE OF LAUNCH SITE) I>NFCAI, I T__________ ___________ ----------- ~^ ___________ ^'" —-^^ A = DA/NFCAL DETERMINE NUMBER OS CARDS INE LT IS ELCT TO BE PROCESSED Y I I+NMC A NFCAL + NDAT GTE -----— ( —- [ ---------— ULT~~ CALIBRATE), EI>~NMC~~ ALTITEE R = ACG(U= NFCI T IU(/(VB GUS1~~~~~ (FIVE —------ ~ TULT'~ CALIBRATE)READ VELOCITY TRAJECTORY, T. I = 1+1'-^. --— 1 KH (HOUR) I~ j l ----------- -FKM (MINUTE) I A N ETEM) = T H TSEC (SECOND) UMUN —' ___________XDOT (X COMPONENT)U/( —T STOP YDOT (Y COMPONENT) I>NMC ZDOT (Z COMPONENT) I M A 1 S^ ----------— READ ALTITUDE TRAJECTORY (MA-U KH (HOUR) - KM (MINUTE) INTERPOLATE IN VELOCITY I>NMC SEC (SECOND) TRAJECTORY FOR VX,VY,VZ N-^^ ^ TALT (ALTITUDE) AT TIME DTIM(I) CALL FIELD1(DLAT,DLONG,ALT(I),BE,BN,BV,B) STH = DELTAV(I)/(A~B) THETA1 = ARCSIN(STH)~57.29578 SELTAR(S) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~TEA = URGE-THEN READ CALIBRATION DATA CALL FIELD1(DAT,DLONG,ALT(I),BE,BN,BV,B) THETA2 = 180-THETA DFTIM (FLIGHT TIME) INTERPOLATE IN ALTITUDE TH = ARCOS((VX'BE+VY BN-VZ-BV)/(V-B)) GVO (ZERO VOLT CALIBRATE) TRAJECTORY FOR ALT(I) DA = DELTAV(I)/(B-SIN(TH)) GVMIN (MINIMUM OF MAGNETOMETER OUTPUT) AT TIME DTIM(I) AS = AS + DA GVMAX (MAXIMUM OF MAGNETOMETER OUTPUT) PRINT RESULTS CY\ GV5 (FIVE VOLT CALIBRATE) 1 DTIM(I),ALT(I),THETAl,THETA2,DDIP,AZB,ELT,ZENT,AZT PRINT CALIBRATION DATA DTIM(I),ALT(I),TH,DDIP,AZB,ELT,AZT,DA CORRECT TIME DTIM(I) = DFTIM + DELTAT VMIN = 5.0/(GV5-GVO) + (GVMIN-GVO) VMAX = 5.0/(GV5-GVO) + (GVMAX-GVO) DELTAV(I) = VMAX-VMIN Figure 15. MOP abbreviated flow chart.

CALIBRATION INFORMATION TIME ALTITUDE ANGLE EL B AZ B FL TRAJ AZ TRAJ CAL C0NST 20.185 11.401 158.959 -69.821 351.526 77.240 95.100 4.8707 21.185 11.787 158.756 -69.821 351.527 76.801 94.906 4,5386 22.185 12.160 158.897 -69.820 351.528 76.681 95.7824.6515 23.185'12.556 160.279 -69.820 351.529 77.501 101.074 4.8752 24.185 13.,13 162.058 -69.819 351.530 78.587 108.840 5,5362 25.185 13.851 163.044 -69.818 351.532 79.029 113.830 5.8502 26.185 14.787 163.497 -69.817 351.534 79.225 116.273 6.0616 27.185 15.958 163.826 -69.816 351.537 79.437 118.162 6.4003 28.185 17.414 164.019 -69.815 351.541 79.466 119.256 6.5895 29.185 19,.064 164.225 -69.813 351.545 79.393 120.349 6.7895 30.185 20.708 164.329 -69.811 351.550 79.329 120.8776.9503 31.1855 _ 22.327 164.369 -69.809 351.554 79.258 121.045 7.0289 32.185 23.924 164.421 -69.808 351.558 79.217 121.307 6.8337 33.185 25.501 164.334 -69.806 351.56? 79.280 120.896 6.8465 34.185 27.060 164.367 -69.805 351.566 79.237 121.054 6.9221 35.185 28.602 164.434 -69.803 351.570 79.150 121.359 6.7324 36.185 30.128 164.405 -69.801 351.573 79.085 121.159 6.7812 37.185 31.640 164.372 -69.800 351.577 79.045 120.964 6.7725 38.185 33.138 164.354 -69.798 351.581 79.029 120.8706.7143 39.185 34.623 164.332 -69.797 351.585 78.970 120.724 6.5425 Figure 14. MOP output format.

MAGNETOMETER DATA REDUCTION FOR NASA 14.386 FROM THE INFLIGHT CALIBRATION THE FOLLOWiNG RELATION BETWEENI LAUNCH TIME 72299.815 VOLTAGE AND MAGNETIC FIELD HAS BEEN DETERMINED LATITUDE 37, 840 ~~___~_______________________________________ ~____LONGITUDE -75.480 P-P VOLTAGE= 6.214382 *MAG.FIELD*SIN(ANGLE) TIME ALTITUDE ANGLE1 ANGLE2 FL 8 AZ B EL TRAJ ZEN TRAJ AZ TRAJ 40.185 36.095 17.259 162.741 -69.795 351.589 78.825 11.175 120.823 41.185 37.555 17.272 162.728 -69.794 351.592 78.797 11.203 120.637 42.185 39.005 17.140 162.860 -69.792 351.596 78.740 11.260 120.501 43.185 40.444 16.715 163.285 -69.791 351.600 78.549 11.451 120.566 44.185 41.872 16.436 163.564 -69.789 351.603 78.414 11.586 120.421 45.185 43.288 16.302 163.698 -69.788 351.607 78.571 11.429 120.322 46.185 44.697 15.296 164.704 -69.786 351.610 78.612 11.388 120.634 47.185 46.095 15.505 164.495 -69.785 351.614 78.315 _ 11.685 120.757 48.185 47.483 15.370 164.630 -69.783 351.617 78.320 11.680 120.589 49.185 48.861 14.944 165.056 -69.782 351.621 78.238 11.762 120.788 50.185 50.229 15.831 164.169 -69.780 351.624 78.087 11.913 120.488 51.185 51.587 16.429 163.571 -69.779 351.628 78.058 11.942 120.412 52.185 52.935 15.414 164,586 -69.778 351.631 77.937 12.063 121.057 53.185 54.273 14.111 165.889 -69.776 351.634 77.830 12.170 121.536 54.185 55.602 14.558 165.442 -69.775 351.638 77.851 12.149 120.616 55.185 56.921 15.886 164.114 -69.773 351.641 77.711 12.289 120.977 56.185 58.230 17.373 162.627 -69.772 351.644 77.488 12r512 121.871 57.185 59.529 18.128 161.872 -69.771 351.647 77.448 12.552 121.263 58.185 60.818 17.248 162.752 -69.770 351.651 77.413 12.587 121.289 OD 59.185 62.098 16.077 163.923 -69.768 351.654 77.323 12.677 121.387 60.185 63.368 14.764 165.236 -69.767 351.657 77.228 12.772 121.318 61.185 64.628 14.236 165.764 -69.766 351.660 77.129 12.871 121.307 62.185 65.879 14.392 165. 608 -69.764 351.663 77.018 12.982 121.380 63.185 67.120 15.286 164.714 -69.763 351.666 76.925 13.075 121.375 64.185 68.352 16.779 163.221 -69.762 351.669 76.807 13.193 121.465 65.185 69.573 17.836 162.164 -69.760 351.672 76.727 13.273 121.387 66.185 70.785 18.750 161.250 -69.759 351.676 76.671 13.329 121.339 67.185 71.988 _ 19.518 160.482 -69.758 351.678 76.565 13.435 121.416 68.185 73.181 19.530 160.470 -69.757 351.681 76.466 13.534 121.384 69.185 74.365 19.391 160.609 -69.756 351.684 T 76.368 13.632 121.333 70.185 75.540 18.948 161.052 -69,754 351.687 76.286 13.714 121.278 71.185 76.705.18.204 161.796 -69.753 351.690 _ 76.178 13.822 121.321 72.185 77.860 17.914 162.086 -69.752 351.693 76.066 13.934 121.366 73.185 79.006 16.873 163.127 -69,751 351.696 75.957 14.043 121.350 74.185 80.142 16.434 163.566 -69.750 351.698 75.841 14.159 121.350 75.185 81.269 16.063 _ 163.937 -69.748 351.701 75.736 14.264 121.282 76.185 82.386 16.072 163.928 -69.747 351.704 75.616 14.384 121.254 77.185 83.494 16.230 163.770 -69.746 351.707 75.465 14.535 121.340 78.185 84.591 16.538 163.462 -69.745 351.709 75.321 14.679 121.433 79.185 85.679 16,846 163.154 -69.744 351.712 75.191 14.809 121.424 80.185 86.758 17.305 162.695 -69.743 351.715 75.075 14.925 121.471 81.185- 87.827 17.916 162.084 -69.742 351.718 74.972 15.028 121.578 82.185 88.886 18.681 161.319 -69.741 351.720 74.858 15.142 121.550 83.185 89.936 19.603 160.397 -69.740 351.723 74.712 15.288 121.590 84.185 90.976 20.224 159.776 -69.738 351.725 74.557 15.443 121.664 Figure 14. (Continued)

85.185 92.007 21.002 158.998 -69.737 351.728 74.499 15.501 121.496 86.185 93.028 21.785 158.215 -69.736 351.730 74.381 15.619 121.480 87.185 94.040 22.573 157.427 -69.735 351.733 74.206 15.794 121.539 88.185' 95.043 23.250 156.750 -69.734 351.735 74.095 15.905 121.453 89.185 96.036 23.892 156.108 -69.733 351.738 73.961 16.039 121.499 90.185 97.019 24.696 155.304 -69.732 351.740 73.848 16.152 121.529 91.185 97.993 25.186 154.814 -69.731 351.742 73.707 16.293 121.523 92.185 98.958 25.679 154.321 -69.730 351.745 73.535 16.465 121.553 93.185 99.9t13 26.335 153.665 -69.729 351.747 73.413 16.587'121.582 94.185 100.859 26.671 153.329 -69.728 351.749 73.279 16.721 121.590 95.185 101.795 26.847 153.153 -69.727 351.751 73.104 16. 896 121.631 96.185 102.721 27.023 152.977 -69.726 351.754 72.913 17.087 121.722 97.185 103.638 27.036 152.964 -69.725 351.756 72.750 17.250 121.878 98.185 104.545 27.212 152.788 -69.725 351.758 72.648 17.352 122.001 99.185 105.443 27.063 152.937 -69.724 351.760 72.517 17.483 121.999 100.185 106.332 26.913 153.087 -69.723 351.762 72.398 17.602 122.161 101.185 107.211 26.926 153.074 -69.722 351.765 72.249 17.751 122.228 102.185 108.081 26.614 153.386 -69.721 351.767 72.093 17.907 122.166 103.185 108.941 26.303 153.697 -69.720 351.769 71.935 18.065 122.291 104.185 109.792 25.508 154.492 -69.719 351.771 71.752 18.248 122.332 105.185 110.633 25.198 154.802 -69.718 351.773 71.566 18.434 122.270 106.185 111.465 24.409 155.591 -69.718 351.775 71.335 18.665 122.395 107.185 112.288 23.942 156.058 -69.717 351.777 71.168 18.832 122.372 108.185 113.101 23.318 156.682 -69.716 351.779 71.059 18.941 122.264 109.185.113.905 22.696 157.304 -69.715 351.781 70.884 19.116 122.361 110.185 114.700 21.762' 158.238 -69.714 351.783 70.685 19.315 122.340 111.185 115.485 21.146 158.854 -69.713 351.785 70.461 19.539 122.300 112.185 116.261 20.531 159.469 -69.713 351.787 70.236 19.764 122.345 113.185 117.027 19.764 160.236 -69.712 351.788 70.052 19.948 122.321 114.185 117.784 18.999 161.001 -69.711 351.790 69.815 20.185 122.309 115.185 118.532 18.237 161.763 -69.710 351.792 69.582 20.418 122.264 116.185 119.270 17.449 162.551 -69.710 351.794 69.408 20.592 122.235 117.185 120.000 17.150 162.850 -69.709 351.796 69.204 20.796 122.329 \. 118.185 120.720 16.852 163.148 -69.708 351.797 68.973 21.027 122.216 k~O ~ 119.185 121.430 16.402 163.598 -69.707 351.799 68.748 21.252 122.046 120.185 122.131 16.408 163.592 -69.70i 351.801 68.497 21.503 122.037 121.185 122.823 16.262' 163.738 -69.706 351.802 68.224 21.776 122.128 122.185 123.506 16.11 5 163.885 -69.705 351.804 67.992 22.008 122.195 123.185 124.179 16.730 163.270 -69.705 351.806 67.728 22.272 122.218 124.185 124.843 16.735 163.265 -69.704 351.807 67.372 22.628 122.183 125.185 125.497 17.046 162.954 -69.703 351.809 67.041 22.959 122.156 126.185 126.141' 17.818 162.182 -69.703 351.810 66.754 23.246 122.087 127.185 126.777 18.439 161.561 -69.702 351.812 66.462 23.538 121.987 128.185 127.403 18.908 161.092 -69.701 351.813 66.180 23.820 122.040 129.185 128.019 19.689 160.311 -69.701 351.815 65.856 24.144 122.041 130.185 128.626 20.388 159.612 -69.700 351.816 65.472 24.528 121.993 131.185 129.224 21.179 158.821 -69.700 351.818 65.112 24.888 122.135 132.185 129.812 22.134 157.866 -69.699 351.819 64.779 25.221 122.188 133.185 130.391 22.777 157.223 -69.698 351.821 64.453 25.547 122.022 134.185 130.961 23.103 156.897 -69.698 351.822 -64.077 25.923 122.008 135.185 131.522 23.911 156.089 -69.697 351.823 63.671 26.329 122.066 136.185 132.073 24.563.155.437 -69.697 351.824 63.306 26.694 122.037 137.185 132.614 25.056 154.944 -69.696 351.826 62.930 27.070 121.875 138.185 133. 146 25.551 154.449 -69.696 351.827 62.529 27.471 121.763 139.185 133.670 26.049 153.951 -69.695 351.828 62.157 27.843 121.826 140.185 134.183 26.220 153.780' -69.694 351.830 61.755 28.245 121.871 141.185 134.688 26.556 153.444 -69.694 351.831 61.356 28.644 121. 955 142.185 135.183 26.728 153.272 -69.693 351.832. 60.926 29.074 122.035 143.185 135.669 27.065 152.935 -69.693 351.'833 60.435 29.565 121.986 144.185 136.146 26.928 153.072 -69.693 351.834 59.862 30.138 121.944 Figure 14. (Continued)

145.185 136.613 06.9g| 153.065 -69.692 351.835 59.354 30.646 122.063 146.185 137.070.7 153.223 -69.69l 351.836 58.925 31.075 122.090 147.185 137.519 _ 26.784 153.216 -69.691 M1.8377 58.436 31.564 122.145 148.185 137.958 27.284 152.716 -69.69% 351.839 57.894 32.106 122.232 149.185 138.388 27.621 152.379 -69.690 351.840 57.271 32.729 122.305 150.185 138.809 27.628 152.372 -69.690 351.841 56.606 33,394 122.487 151.185 139.220 27.634 152.366 -69.689 351.842 55.959 34.041 122.658 152.185 139.621 27.474 152.526 -69.689 351.843 55.341 34.659 122.689 153.185 140.013 21.646 152.354 -69.689 351. 844 54.680 35.320 122.696 154.185 140.396 27.486 152.514 -69.688 351.844 53.882 36.118' 122.757 155.185 140.769 26.666 153.334 -69.688 351.845 53.136 36.864 122.822 156.185 141.133 26.343 153.657 -69.687 351.846 52.487 37.513 122.725 157.185 141.487 25.857 154.143 -69.687 351.847 51.786 38.214 122.654 158.185 141.832 25.508 154.492 -69.687 351.848 51.040 38.960 122.811 159.185 142. 168 24.859 155.141 _ -69.686 351.849 50.196 39.804 122.731 160.185 142.494 24.052 155.948 -69.686 351.849 49.264 40.736 122.664 161.185 142.811 23.088 156.912 -69.686 351.850 48.325 41.675 122.801 162.185 143.118 22.291 157.709 -69.685 351.851 47.273 42.727 122.701 163.185 143.416 21.497 158.503 — 69.685 351.852 46.339 43.661 122.504 164.185 143.704 20.392 159.608 -69,685 351.852 45.399 44.601 122.573 165.185 143.982 19.451 160.549 -69.685 351.853 44.425 45.575 122.692 166.185 144.252 18.359 161.641 -69.684 351.854 43.358 46.642 122.702 167.185 144.512 17.274 162.726 -69.684 351.854 42.140 47.860 122.662 168.185 144.761 16.503 163.497 -69.684 351.855 40.884 49.116 122.588 169.185 145.001 15.581 164.419 -69.684 351.855 39.709 50.291 122.622 170.185 145.233 14.510 165.490 -69.683 351.856 38.556 51.444 122.623 171.185 145.454 14.206 165.794 -69.683 351.856.. 37.350 52.650 122.601 172.185 145.666 13.423 166.577 -69.683 351.857 36.193 53.807 122.710 173.185 145.869 12.969 167.031 -69.683 351.857 35.038 54.962 122.737 174.185 146.063 12.819 167.181 -69.683 351.858 33.844 56.156 122.712 175.185 146.248 12.820 167.180 -69.682 351.858 32.732 57.268 122.830 0 176.185 146.424 13.125 166.875 -69.682 351.859 31.624 58.376 122.967 177.185 146.591 13.734 166.266 -69.682 351.859 30.335 59.665 123.166 178.185 146.750 14.344 165.656 -69.682 351.859 28.984 61.016 123.367 179.185 _ 146.899 14.957 165.043 -69.682 351,860 27.569 62.431 123.296 180.185 147.039 15.725 164.275 -69.682 351.860 26.181 63.819 123.333 181.185 147.170 16.650 163.350 -69.681 351.860 24.809 65.191 123.499 182.185 147.293 17.890 162.110 -69.681 351.861 23.202 66.798 123.513 183.185 147.406 18.670 161.330 -69.681 351.861 21.663 68.337 123.588 184.185 147.510 19.768 160.232 -69.681 351.861 20.105 69.895 123.892 185.185 147.605 20.873 159.127 -69.681 351.861 18.300 71.700 123.997 186.185 147.691 21.668 158.332 -69.681 351.862 16.441 73.559 123.987 187.185 147.767 22.307 157.693 -69.681 351.862 14.599 75.401 123.923 188.185 147.835 23.270 156.730 -69.681 351.862 12.734 77.266 123.759 189.185 147.892 24.403 155.597 -69.681 351.862 _ 10.858 79.142 123.697 190.185 147.941 25.055 154.945 -69.681 351.862 8.867 81.133 123.626 191.185 147.980 25.711 154.289 -69.681 351.862 6.808 83. 192 123.666 192.185 148.009 26.040 153.960 -69.681 351.862 4.771 85.229 123.782 193.185 148.029 26.701 153.299, -69.681 351.863 2.805 87.195 123.628 194.185 148.040 27.033 152.967 -6.680 351.863 0.824 89,176 123.429 195.185 148.041 27,532 _I524A68. -6g680 - 351.863 -1.206 ___ 91206 1207 Figure 14. (Concluded.)

SO I AR P0$0tg=-iIM 7ENITH ANGIrF 73 A A7IMUTN 7fj1 PTTOT A SPFrT FOR NASA 144-8 6 TIME ZENITH AZIMUTH ALPHA COS ALPHA ZENITH AZIMUTH ALPHA COS ALPHA VEL ZEN VEL AZ &0n 1 78 -134.7 i R- 81 0. 95072 8-7 114-.1 2 0.99779 f_ 7120.4 41.0 30.9 139.4 20.5 0.93655 5.6 121.6 5.7 0.99505 11.3 120. 42.0 28.7 1.34.9 q 18.0 0.95131 8.6 114.8 7-29 0.998174 11.4 120.1 43.0 29.5 137.0 18.7 0.94727 7.5 118.1 4.1 0.99746 11.5 120.1 -44.0 - -- 9-9 13A? ___19.2 0.94443 6.6 174.4 s5.1.99600_ 11. 7 120.. 45.0 30.5 141.3 20.1 0.93885 5.7 132.1 6.2 0.99420 11.6 119.9 4A. 0?.5- - S 138.8 t _ 7.9'n.95146 0 127.1 31.R 0.9976 411.5 120.1 47.0 28.3 138.8 17.5 0.95350 8.1 127.4 3.8 0.99775 11.8 120.2 48-0 2-9.3 -— 141.3'A 18.8 0.94689 6.8 134.3 5.5 0.99546 11.8 120.1 49.0 29.6 143.2 19.2 0,94457 6.5 142.0 6.4 0.99386 11.9 120.2 950.0 29..1 141.0 18.3 0.94927' 7.1 133.7 5.4 0.99555 12.0 120.0 51.0 29.5 138.7 18.5 0.94855 7.0 123.6 5.1 0.99605 12.1 119.9 52?0-n?9 A 139.9 17.8 0.95201 7.4 130.1 ____ 5.0 Q-99615 12.2 120.4 53.0 28.3 143.0 17.5 0.95373 7.7 141.7 5.8 0.99495 12.3 120.9 54.0 _29.5 144.6 18.9 0.94586 6.5 148.1 7-7.2 0.99213 12.3 120.2 55.0 29.7 142.2. 18.7 0.94720 6.4 137.5 6.6 0.99339 12.4 120.3 56.0 31.0 139. 5 19.4 0.94308 5.5 121.1 _ 7.1 0-99222 126 1271.1 57.0 31.1 137.1 19.2 0.94435 6.1 110.6 6.8 0.99294 12.7 120.8 ----- 8 0 ---— 31.2.? —138.9 - S 19.4 0.94329.56 11.A-1 7-? 0-79218 127.7 10.7 59.0 30.5 140.7 18.9 0.94586 5.7 129.2. 7.2 0.99208 12.8 120.8 60.0 29.2 _ 142.3 17.8 0.952136 -6.8 138.5 6.7 Q.99310 12.9 120.7 61.0 28.6 143.0 17.2 0,95513 7.4 141.7 6.6 0.99330 13.0 120.7 62.0-n -28.6 142.6 17.0 0.95618 7.5 140.7 6.5.99347 13.1 120.8 63.0 28.8 141.4 17.1 0.95604 7.3 135.5 6.5 0.99367 13.2 120.8 6-40- -- 29.8 139.9 17.6 0.9953133 6.6 126-2 6-8 0.99300 13.4 1207. 65.0 31.3 137.6 18.8 0.94674 5.8 111.3 7.8 0.99075 13.4 120.8 H _____66.0 31.6 135.9 _ 18.9 0.94610 6.1 103.0 7.9 0.99048 13.5 120.7 67.0 31.8 134.8 18.9 0.94625 6.4 ^98.3 8.0 0.99016 13.6 120.8 68.0 31.6 134.0 18.5 0.94857 6.9 97.6 7.8 0.99073 13.7 120.7 69.0 31.3 133.7 18.1 0.95062 7.2 98.6 7.6 0.99119 13.8 120.7 70.0 __30.9 133.9 17.6 0.95318 7.4 101.7 7.3 0.99192 13.9 120.6 71.0 29.9 134.1 16.6 0.95853 8.0 107.6 6.5 0.99365 14.0 120.6 72.-0 31.2 135.2 17.8 0.95197 6.7 103.5 8.0 0.99035 14.1 120.7 73.0 28.7 135.1 15.3 0.96467 8.6 115.5 5.7 0.99507 14.2 120.7 74.0 _ 27.6 134.8 14.1 0.97008 9.6 118.8 4.7 0.99659 14.3 120.7 75.0 27.0 134.4 13.4 0.97279 10.2 119.5 4.3 0.99721 14.5 120.6 76.0- — 26. 5-1 5133. Z 12.7 0.97540 10.8 119-.0 3.8.99781_ 14.6 120.6 77.0 26.2 132.7 12.2 0.97736 11.3 118.3 3.5 0.99812 14.7 120.6 78.0 26.2 131.7 _11.9 0.97843 _ 11.5 116.7 3.5 0.99818.14.9 120.7 79.0 26.0 130.4 11.4 0.98018 12.1 115.3 3.2 0.99845 15.0 120.7.80.0 25.7 128.9 10.9 0.98182 12.7 113.6 33.0 0.99865 M15.1 120.7 81.0 25.8 127.2 10.8 0.98242 13.2 111.1- 3.1 0.99849 15.2 120.8 2?.0 26.6 126.4 11.4 0.98027 12.9 107.3 1 4.1 0.99746 _15.4 120. 83.0 26.9 125.0 11.5 0.97981 13.2 104.4 4.6 0.99671 15.5 120.9 84.0 27.6 123.8 11.9 0.97834 13.3 100.9 5.5 0.99543 s15.7 120.9 85.0 28.4 122.9 12.7 0.97547 13.3 96.7 6.5 0.99367 15.7 120.8 86.00 29.1 121.7 13.3 0.97329 {3.5 93.0 7.3 0.99185. 15.8 120.7 87.0 29.6 120.3 13.6 0.97214 1.4.0 90.3 8.0 0.99015 16.0 120.8 PA88.0 30.2 119. 4 14.1 0.96993- 14.3 87.72 R8.9 Q.a9807. 16.1 120.7 89.0 30.8 118.6 14.6 0.96787 14.6 84.6 9.6 0.98597 16.3 120.1 90.00 30.9 117.4 14.6 0.96771 15.2 83.7 10.0 0-98486 16.4 2O.8 91.0 31.3 116.5 14.9 0.96652 15.6 82.1 10.5 0.98310 16.5 120.8 Figure 15. Pitot aspect program output format.

92.0 31 -.8 116.1 15.2 0.96499 15.8 80.2 11.1 0.98113 16.7 120.8 93.0 32.0 115.5 15.4 0.96430 16.1 79.2 11.6 0.97974 16.8 120.8 94.0- 3?.' 115.3 15.7 0. 96287T 16.? 77.7 12.1 0.97797 17.0'120.8 95.0 32.6 115.0 15.6 0.96297 16.3 77.2 12.3 0.97705 17.1 120.8 96.0 0 32.7 114.7 15.6 0.96314' 16.5 76.8 12.6 0.97603 17.-3 1209 97.0 33.1 115.3 15.8 0.96220 16.2 75.3 13.0. 0.97447 17.5 121.1 98.0 33.5 115.8 16.0 0.96105 15.9'73.9 13.4 0.97295 17.6 121.2 99.0 33.6 116.3 16.0 0.96135 15.6 73.6 13.5 0.97257 17.7 121.2 100.0 ~ 3'3.8R. 117.-1 16.1 O.96099 _ 15.-2 7?2'6 13.7 0.97159 17.9 t121.3 101.0 34.0 118.1 16.0 0.96110 14.7 71.9 13.9 0.97088 18.0 121.4 102.0 34.1 119.0 16-0 0.96130 14.2 71.2 14.0 0.97019 18.2 121.4 103.0 34.1 120.2 15.8 0.96213 13.5 71.1 14.1 0.96989 18.3 121.5 104.0 3_4.0 171.0 15.5 0.96360 13.0 71.6 14.1 0.96997 18-5 121.5 105.0 33.8 122.2 15.1,- 0.96561 12.3 72.8 13.9 0.97058 18.7 121.5 106. 0 I33.6 123.-2 14.7 0.96738 11.8R 73-.8 1 13.9 0.97055 18.9 121.6 107.0 33.3 124.4 14.3 0.96909 11.2 75.3 13.9 0.97086 19.1 121.6 108.0 33.0 125.8 13.9 0.97061 10.5 77.4 13.7 0.97152 19.2'121.5 109.0 32.3 126,5 13.1 0.97399 10.2 81.8 13.2 0.97359 19.4 121.5 110.0 31.7 127.5 12.4 0.97665 9.9 85. 9 12.9 0.97487 19.6 121.5 111.0 31.2 128.4 11.8 0.97898 9.6 89.8 12.6 0.97575 19.8 121.5 112.0 30.9 129.5 11.3 0.98047 9.3 93.0 12.7 0.97573 20.0 121.5 113.0 30.2 130.3 10.6 0.98287 9.3 98.0 12.3 0.97711 20.2 121.5 114.0 29.7 131.1 10.1 0.98445 9.2 101.7 12.2 0.97744 20.5 121.5 115.0 29.1 131.Q 9.5 0.98638 9.3 106.2 12.0 0.97832 20.7 121.4 116.0 28.4 132.3 8.7 0.98843.9.7 110.4 11.5 0.97988 20.9 121.4 117.0 28.0 133.0 8.4 0.98936 9.8 113.4 11.5 0.97995 21.1 121.5 1 1,0 27.8 I133.6 8.-2 0.98969_ 9.7 115.-2 11.7 0.97921 21.3 121*4 119.0 27.2 133.6 7.6 0.99126 10.2 117.2 11.4 0.98043 21.5 121.2 120.0 26.6 133.1 6.8 0.992R7 10.8 117.9 11.0 0.98163 21.8 121-.2 121.0 26.1 132.4 6.0 0.99448 11.5 118.2 10.6 0.98287 22.1 121.3 122.0 25.7 131.7 5.4 0.99558 12.0 118.1 10.4 0.98359 22.3 121.3 4~'~ ~ 123.0 25.4 130.6 4.7 0,.-99669 12.5 117.2 10.1 0.98438 22.6 121.4 to, 1' 029.04 22 ~ 1 1 u1 24.0 _25.0 129.4 3.9 0.99771 13.1 116.4 9.9 0.98504 22.9 121.4 125.0 24.9 128.1 3.2 0.99840 13.5 114.8 10.0 0.98496 23.2 121.3 126.0 25.2 127.0 2.9 0.99874 137_ 112. 8 10.2 0.98408 23.5 121.3 127.0 25.7 126.0 2.8 0.99884 13.6 109.7 10.8 0.98215 23.8 121.2 128.0 26.3 125.0 2.7 0.99889 13._6 106.6 11.5 0.98002 24.1 121.2 129.0 26.9 124.0 2.7 0.99888 13.6 103.6 12.2 0.97757 24.4 121.2 130.0 27.2 122.6 2.5 0.99905 13.9 100.9 12.6 0.97577 24.8 121.2 131.0 27.9 121.6 2.7 0.99890 14.1 97.6 13.4 0.97258 25.2 121.3 132.0 28.7 120.0 3.2 0.99844. 14.0 93.9 14.5 0.96818 25.5 121.4 133.0 29.1 119.7 3.3 0.99830 14.5 91.6 15.0 0.96602 25.9 121.2 134.0 29.7 118.9 3.7 0.99797 14.7 88.9 15.8 0.96236 26.2 121.2 135.0 29.9 117.5 3.7 0.99792 15.3 87.7 16.1 0.96076 26.6 121.2 136-.0 30.5_ 116-R 4.-1 0.99745 15.5 85.1 16.9 0.95669 7.0- 121.2 137.0 30.6 115.6 4.2 0.99733 16.1 84.4 17.2 0.95547 27.4 121.1 1 38.0 -'30-. 7 114.5 4.3 0.99723 16.7 84.0 17.4 0.95438 27.8 121.0 139.0 31.1 114.3 4.4 0.99702 16.7 82.4 18.1 0.95048 28.2 121.0 140.0 31.1 113.4'4.6 0.99683 17.2 82.4 18.3 0.94934 28.6 121.1 141.0 31.3 113.0 4.7 0.99663 17.4 8,1.7 18.8 0.94672 29.0 121.1 142.0 -31.4 112.7 4.8 0. 09653 A 17.6 81.2 19.2 0.94415 29.4 121-2 143.0 31.9 113.2 4.6 0.99681 17.3 79.5 20.2 0.93841 29.9 121.2 144.0 32.4 113.8 4.4 0.99712 17-0 77.8 21.2 0.93216 30.4 121.2 145.0 33.0 114.8 4.0 0.99755 16.4 75.7 22.4 0.92450 31.0 121.2 146.0 33.4 115.3 3.8 0.99784 16.1 74.3 23.3 0.91867 31.4 121.3 147.0 33.9 116.2 3.5 0.99818 15.7 72.3 24.3 0.91106 31.9 121.3 148.0 34.6 117.4 3.1 0.99854. 15.1 69.7 25.6 0.90149 37.4 121.4 149.0 35.0 118.3 2.6 0.99893. 14.6 68.0 26.8 0.89294 33.0 121.5 150.0 35.3 119.2 2.2 0.99927.14.1 66.2 27.9 0.8-8365 33.7 121.7 151.0 35.8 120.3 1.7 0.99954 13.6 63.9 29.2 0.87276 34.3 121.8 Figure 15. (Continued.)

152?0 36.1 21.3 1.2 0.99977 13.00 _62.3 30.3 0.86377 35.0 121.9 153.0 36.5 122.4 0.9 0.99987 12.4 60.1 31.5 0.85304 35.6 121.9 1 54.0 -367 7 123.7-7 1.1 0.79991 15R1.7 S1 32.7 0.84127 36.4 124.0 155.0 36.8 125.0 1.8. 0.99950 11.0 57,2 33.8 0.83131 37.2 122.0 1 56.00 3 6. 8 126.?.2.8 0.99983 _ 10.3 _ 956.3 34.7 0.82217 37.8 1221.0 157.0 37.0 127.9 4.0 0.99759 9.3 54.0 35.9 0.80987 38,5 121.9 1 589.0 _ _36.9. 1279.4 54.1 0.99597 8.4 53.6 36.9 079989 39.3 122.0 159.0 37.0 131.4 6.6 0.99337 7.3 50.5 38.3 0.78475 40.1 122.0 1I 0n 3 70 - 1331 9.1 (1-.99006 6.3 49.2 39.5 0.771359 41.0 121.9 161.0 36.6 134.7 9.6 0.98603 5.3 50.9 40.5 0,.76038 42.0 122.0 61 c?.0 ___3. I 136.2 11.3 0.98053 4.3 559.4 41.4 0.74975 43.0 122.0 163.0 35.5 137.4 13.0 0.97436 3.6 64.6 42.1 0.74228 43.9 121.8 1 64.0 _ __34.7 ___1389.4 __4 14.6 0.96755 g3.3 80.3 42.5 0.73744 44.9 121.8 165.0 33.9 139.6 16.4 0.95955 3.1 98,5 43.1 0.73064 45.9 122.0 1. 0:33.3 - 140.7 19.1 0.95054 3.2 1151.1 43.7 0.72243 46.9 122.0 167.0 32.4 141.7 20.1 0.93934 3.8 128.5 44.3 0.71514 48.1 122.0 1Y9.0 _31 3 14?.4. 22?.? 0.92591 4.7 136.8 44.8 0.70978 49.4 121.9 169.0 30.2 142.9 24.2 0.91222 5.8 140.2 45.1 0.70641 50.5 121.9 170.0 _. 29.2 143.1 246.1 0.997U8 6.9 141.9 45.3 0.70349 51.7 121.9 171.0 2P. 3 143.2 28.0 0.88329 7.8 142.4 45.7 0.69862 52.9 121.9 172.0 27.4 1 42.9 29.6 0.86935 6 9958.6 141.6 46.0 0.69453 54.1 122.0 173.0 26.4 142.3 31.4 0.85352 9.7 140.3 46.1 0.69316 55.2 122.1 174.0 25.5 141.2. 333.1. 0.83809 10.6 138.2 46.3 0.69079. 56.4 122. 175.0 24.7. 139,9 34.6 0.82358 11.5 135.9 46.5 0.68868 57.6 122.2 176.0 _?4.5 1 3S.6 _35.6 0.81.299 11.8 133.6 47.1 0.68053 58.7 122.3 177.0 24.5 137.2 36.6 0.80293 12.0 130.8 48.1 0.66820 59.9 122.5 178 0- 24?4 7 135. 1 37.5 (0.79360 _ 12.0 127.8 49.3 0.65169 61.3 12.7 179.0 24.5. 133.5 38.7 0.78009 12.5 124.1 50.2 0.64074 62.7 122.7 1 50. 0 24.66 13 I. 0414_ 39.8 0,76R16 _ 12.9 120.4 51.2 0.62696 64.1 122. 7 181.0 25.1 129.2 40.6 0.75937!3.1 116.0 52.4 0.60980 65.4 122.9 182.0 25.5 127.0 __ 41.6 0.7478599 13.4 111.7 9 53.9 0.58957 67.0 122.9 183.0 26.0 125.0 42.6 0.73596.13.8 107.7 55.3 0.56902 68.6 123.0 1 4.0- _ 27.0 1 3.6 - 43.1 0.72966 13.7 1 02.8 57.4 0.53913 70.1 13.2 185.0 27.7 122.1 44.2 0.71725 13,9 98.7 59.4 0.50976 71.9 123.4 186.0 27.9 1 20. 2 45.9 0.69649 14.6 96.4 60.8 0.48719 73.7 123.4 187.0 28.9 119.5 46.8 0.68453 14.6 92.5 63,2 0.45101 75.6 123.4 19889.0 29.6 113. 3 43.0 0.66921 I15.0 89.1 65.2 0.41878 77.4 L23.2 189.0 30.5 117.7 49.0 0.6561Q 15.1 85.4 67,6 0.3.8135 79.3 123.2 190.0 -31.4 117.2. 50 2.1 0.64084 15.2 82.0 70.0 0.34195 81.3 123.1 191.0 32.2 117.3 51.3 0.62512 15.1 78.7 72.8 0.29641 83.3 123.1 1 92.0 __32.7 _117.0 5 2.9 0.60303 15.3 76.9 75.0 0-25866 85.4 123.2 193.0 33.5 117.2 54.1 0.58650 15.1 73.9 77.6 0.21426 87.4 123.1 194.0 34,2 117, 6 55.3 0.56861 14.i_9._ 71.2 80.2 0-17025_89.3 9 123.0 I 34..-....... 34. 8 1. 18. 1....56.7. 0.54 843_____._. J4 1 4.18. 82.8 0.12485 __ _91.4 123.0 Figure 15. (Concluded)

5.4. PROCESSING OF GAUGE OUTPUT DATA Figure 16 is a drawing of the timing functions and gauge outputs versus flight time for the two ionization gauges of the pitot probe. Gauge 1 provides the data for the early part of the flight and gauge 2 becomes the main gauge in the high altitude portion of the flight. Gauge output data are as shown in Figure 17. The calibration sequence, composed of five segments (see Figure 8), includes (1) thermistor output (2) OV reference (3) 5V reference nominal values (real values are used) (4) 2.5V reference (5) range indicator The data formats are essential to the automatic processing of the data. The above mentioned information, along with the gauge output data, is contained in one channel for each gauge. During the flight, a calibration sequence occurs automatically whenever there is a range change. This feature has been included in order to place the calibrations and housekeeping data where the data are lost because of range switches. When the gauge stops changing range, a calibration sequence occurs every 15 sec (nominal) as commanded by an internal free run timer. The data from both gauges are processed in exactly the same way by means of a main program called PITOT, which has been written for the IBM 360/67. The procedure for processing data from a gauge is as follows. First, the program is supplied with the following input data: (1) trajectory information (stored in disc file), (2) gauge output data from the digital magnetic tape, (3) gauge calibration table, and (4) angle of attack versus flight time. Tables included in the program are (1) speed of sound from the U. S. Standard Atmosphere, 1962, (2) geometry correction factor n(a,S), and (3) transition number K(p). 44

The program reads every data point from the digital tape after which a scan is performed which looks for a calibration sequence. When a calibration sequence is recognized by the program, a second order polynomial is fit through the three points. The data points between two calibration sequences are calibrated in terms of voltage with the aid of the fit polynomial. This procedure is repeated until all the data points are in the form of a calibrated voltage, At this point an impact pressure is associated to each data point by means of a calibration table lookup, This pressure is corrected for gauge temperature (gauge 1 only) which is a function of the gauge thermistor output included in the calibration sequence (Simmons, 1964). The time interval corresponding to 250 meters in altitude is obtained from trajectory information, For this time interval, which varies along the trajectory, a straight line least squares fit of impact pressure versus time is computed. Impact pressure is then determined at the time of interest, which corresponds to an even quarter km point. Mach number is then approximated by using velocity information from the trajectory data and the speed of sound is obtained from the IU. S. Standard Atmosphere, 1962. Values of pi and P2 are calculated by using Equations (4) and (13), respectively. For those times which are included within the table of angle of attack versus time given, the program will obtain an angle of attack by interpolation, The velocity ratio S is calculated from the approximated Mach number. The geometry correction factor q is calculated by double entry interpolation in the geometry correction factor tables. After q and cosa are obtained, they are applied to P2 (see Equation (15)), and atmospheric density is obtained according to the free molecular flow theory. At this point atmospheric density has been computed according to continuum flow theory, Pi, and according to free molecular flow theory, PfmfO Atmospheric density in the transition region is then calculated by using Equation (16)o An iterative procedure is used in this computation. An abbreviated flow chart for PITOT is given in Figure 18. The printed output of the program has the format shown in Figure 19, and includes (1) time from launch (TIME) in sec (2) altitude (ALTITUDE) in km (3) velocity (VELOCITY) in m/sec (4) impact pressure corrected for gauge temperature (PRESSURE) in mmHg (5) atmospheric density according to continuum flow theory (RHO 1) in kg/rnm3

(6) P2 according to Equation (13) (RHO 2) in kg/m3 (7) angle of attack of the probe (ALPHA) in deg (8) geometry and angle of attack correction factor l/'q cosa (CORR) (9) atmospheric density according to free molecular flow theory (RH02*CORR) in kg/m3 (10) transition number (K) (11) atmospheric density 46

K&E 19 1153 4-~ C" T C T T T T T T r T T T T i i - - - R FLIGHT TIIMIE (SEC.) 7 R9 I R5 R4 R3 R2 R 0' \t\\\,, >I I j 4 J[:T I I I [ t COLLECTOR CONTROL 1 ELECTRO1 1 i- - - ANN ARR, MICHIGAN B-E146 Figure 16. Timing functions and gauge output versus time. o 120 40 5 60 so i0 t 1 c)N~R IR I I COLLECTOR CONTRRO FT —' DEPARTMENT OF ELECTRICAL ENGINEERING 2 J PT RAYMON TIMER o Tj4. IR? kRG + T 1- + ANN ARBOR, MICHIGAN B-E0 120 Figure 16. Timing functions and gauge output versus time.

TIME CODE (NASA 36 BIT) SUN SENSOR i J I Ji i i i iiii l i Cii U i i 11Uiiu il i...... MAGNETOMETER co GAUGE THERMISTOR RANGE INDICATOR -' _ GAUGE I (RANGE 6) vA- GAUGE I (RANGE 7) 0 V CAL. Figure 17. Analog oscillograph record of flight ta. Figure 17. Analog oscillograph record of flight d.ata.

READ C FLIGHT ID, LAUNCH TIME A I I FILE, CHANNEL CALL GDATA (T,P) ALT = ALT + AH TSTRT, TSTOP (START AND STOP TIMES) P \ VS, VO, VM (MEASURED 5,0,2.5 V CALIBRATE LEVELS) C 4I RVSTRT, RDELV (RANGE INDICATE REFERENCE AND STEP) 403 143 VTCAL (GAGE THERMISTOR OUTPUT AT CALIBRATION) AH (OUTPUT ALTITUDE INTERVAL) S | ITRLA r ALTITDDR = SI(OUU ATU IN SALT| P TMULIPLOFN TINTERPOLATE IN ALTITUDE TRAJECTORY INTERPOLATE IN ALTITUDE | 1332 CALL SETBUF TO RHA2 S I R- READ AND CHECK TAPE FILE LABEL TTOP DETERMINE NUMBER OF CHANNELS AND SAMPLING RATE USURY ----------------------------------—,t ^sGIVEN y^~~~~~~~~~~~~~~~~~~~~IVG RDL J -- READ- VOLTAGE PRESSURE CALIBRATION CURVESINTERPOLATE IN VELOCITY TRAJECTORY SY <f\~F RDE 0 PIO abb|FOR VEL = VELOCITY (T) ||/*DELH Y T1 = T-VEL/(2AH)' O READ TIME CORRECTIONS AND a'S 0 T2 = T+VEL/(2AH) CRH02 = [\ —- /" ZERO SUMS FOR LEAST SQUARES ETA (a,S) COS (a) i -------------------------— I ~~ ~ ~~~~~\A/N STRAIGHT LINE OF TIME,PRESS CALL SDATA TO INITIALIZE CALIBRATION ROUTINE STRAI. ~/ ~ —-- -- --- --— \ 4 ) 4[cALITERATIVELY SOLVEGAA(XEPS FOR K /_ \EL ---------------— |\H >T/. —---— I —- RHO = RHO1 + K(RHO) [CRHO02 -REHO1 <- FIND ALT = FIRST MULTIPLE OF AH > ALTITUDE \ / \ S 0 / I AT START TIME 0^ ~^ _________ AT START TIME _ CALL_ GATA ( _TIMER_,PFRR- S _S -) | | PRINT T, ALTT,VEL,.P,RHO1,RHO2,a, 1/[ETA COS (a) ],CRH02,K RHO | CALL GDATA (TIME,PRESS) CALL GDATA (T,P) TO CALL GDATA (TIME, PRESS) TO ACCIMTLAP SUMS FOR.READ DATA POINT READ DATA POINT LEAST SQUARES FIT \) CALIBRATE IF VS 4 0 CALIBRATE IF VS 7 0 CONVERT TO PRESSURE IF RDELV f 0 CONVERT TO PRESSURE IF RDELV y 0 J Y ~~~~~/TX Y I | \~~~~~~~~~~~~~~EVALUATE P FROM LEAST SQUARES FIT./ ~~~~~~~~~~~~~~~~~~~~T <\ Y AT TIME T < STRT J —-| — ALTT = ALT Fi^________ ^(~~mi~~~~~~~~129 _ —1PRINT CALIBRATION SEQUENCE SUMMARY STOP Figure 18. PITOT abbreviated flow chart.

SPACE PHYSICS RESEARCH LABCRATCRY THE UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN 17:46,11 DECEMBER 18,1969 NASA 14.386 GAGE 1 F LAUNCH TIME: 20: 4:59.815 Z INPUT FILE 1 CHANNEL INDEX 1 TAPE ID: SPRL NASA 14.386 12/12/69 8020 Fl OB Q CALIBRATE LEVELS: 5.003 O.C04 2.503 VTCAL: 3.700 RANGE 1 INDICATE: 0.500 STEP BETWEEN RANGES: 0.500 RANGE: 2 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE C.900 8.300E-03 2.20C 2.06CE-02 3.500 3.420E-02 4.750 4.780E-02 RANGE: 3 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.890 3.550E-C2 2. 1C 9.1CCE-02 3.490 1.460E-01 4.740 1.980E-01 RANGE: 4 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.900 1.510E-01 2.190 3.75CE-Cl 3.500 6.000E-O1 4.750 8.180E-01 RANGE: 5 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.890 6.200E-01 2.190 1.520E 00 3.490 2.420E 00 4.740 3.300E 00 RANGE: 6 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE C.900 2.480E 00 2.200 6.110E 00 3.500 9.850E 00 4.750 1.360E 01 RANGE: 7 VOLTAGE PRESSURE VOLTAGE PRESSURE. VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE C.890 7.200E 00 2.190 1.75CE 01 3.490 2.800E 01 4.740 3.810E 01 RANGE: 8 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.900 2.87GE C1 2.000 6.390E 01 3.100 9.940E 01 4.750 1.530E 02 RANGE: 9 VULTAGE PRESSURE VOLTAGE PRESSURE VOLT PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.890 1.170E C2 1.790 2.41CE 02 2.690 3.710E 2? 3.590 5.100E 02 TIME CCRRECTICNS 0.0 0.0 530'.CG C.C Figure 19. PITOT output format. 50

TIME ALTITUDE VELOCITY PRESSURE RHO RH02 ALPHA CORR RH02*CORR K RHO 36.101 30.000 1547.9 2.946E 0-2 1.758E-02 3.435E-02 36.265 30.250 1545.4 2.827E 02 1.693E-02 3.302E-02 36.431 30.500 1543.1 2.683E 02 1.611E-02 3.139E-02 36.596 30.750 1540.7 2.556E C2 1.539E-02 2.994E-02. 36.762 31.000 1538.4 2.461E 02 1.487E-02 2.887E-02 36.927 31.250 1536.0 2.364E 02 1.433E-02 2.778E-02 37.093 31.500 1533.7 2.267E 02 1.378E-02 2.668E-02 37.258 31.750 1531.4 2.167E 02 1.321E-0? 2.554E-02 37.425 32.000 1529.2 2.C69E 02 1.265E-02 2.442E-02 ~ 37.592 32.250 1526.9 1.974E 02 1.210E-02 2.333E-02 37.759 32.500 152.4.77 -1.895E C02 1.165E-02- 2.244E-02 37.926 32.750 1522.5 1.825E 02 1.125E-02 2.164E-02 38.093 —— 33.000 1520.3 1.773E 02 1.C97E-02 2.106E-02 38.260 33.250 1518.1 1.697E'C2 1.052E-02 2.018E-02 38.429 33.500 1515.9 1.626E C2 1 —--.01E-02 1.937E-02 38.597 33.750 1513.7 1.551E C2 9.671E-03 1.849E-02 38.765 34.000 1511.6 1.463E C2 9.147E-03 1.747E-02 38.934 34.250 1509.4 1.397E 02 8.758E-03 1.670E-02 39.441 35.000 1503.1 1.258E C2 7.952E-03 1.511E-02 39.611 35.250 1501.C 1.220E C2 7.732F-03' 1.467E-02 39.781 35.500 1499.C 1.177E 02 7.476E-03. 1.417E-02 39.950 35.750 1496.9 1.129E C2 7.194E-03 1.361E-02 40.120 36.000 1494.9 1.C91E C2 6.972E-03 1.318E-02 4C.291; 36.250 1492.9 1.0C8E 02 6.457E-03 1.219E-02 40.462 36.500 1491.0 1.002E C2' 6.435E-03 1.213E-02 40.633 36.750 1489.1 9.548E Cl 6.145E-03 1.157E-02 4C.805 37.000 1487.2 9.119E 01 5.884E-03 1.107E-02 kJ1 4C.976 37.250 1485.35 E.792E Cl 5.687E-03 1.068E-02 H 41.147 37.500 1483.4 8.482E Cl 5.500E-03 1.032E-02 41.319 37.750 1481.6 8.198E Cl 5.329E-03 9.988E-03 41.492 38.000 1479.7 7.874E Cl, 5.130E-03 9.605E-03 41.664 38.250 1477.8 7.524E 01 4.915F-03 9.189E-03 41.836 38.500 1476.C 7.227E 01 4.732E-03 8.837E-03 42.009 38.750 1474.1 6.877E 01 4.514E-03 8.421E-03 42.181 39.000 1472.2 6.613E 01 4.351E-03 8.108E-03 42.355 39.250 147C.4 6.357E Cl 4.193E-03 7.804E-03 42.529 39.500 1468.6 6.078E Cl 4.018E-03 7.470E-03 42.70C3 39.750 1466.8 5.840E Cl 3.870E-03 7.186E-03 42.876 40.000 1465.0 5.611E Cl 3.727E-03 6.913E-03 43.050 40.250 1463.2 5.411E 01 3.603E-03 6.675E-03 43.224 4C.500 1461.4 5.187E Cl 3.462E-03 6.406E-03 43.399 40.750 1459.6 5.010E 01 3.352E-03 6.196E-03 43.575 41.000 1457.7 4.738E 01 3.177E-03 5.866E-03 43.750 41.250 1455.9 4.510E 01 3.0328-03 5.591E-03 ____________________________________________________ 43.925 41.500 1454.1 4.3448 Cl 2.927E-03 5.392E-03 44.100 41.750 1452.3 4.206E 01 2.842E-03 5.228E-03 44.276 42.000 1450.5 4.048E 01 2.741E-03 5.038E-03 44.452. 42.250 1448.7 3.898E 01 2.646E-03 4.857E-03 44.629 42.500 1446.9 3.752E Cl 2.553E-03 4.681E-03 44.805 42.750 1445.1 3.626,E 01.2.473E-03 4.529E-03 44.982 43.000 1443.3 3.482E 01 2.380E-03 4.354E-03 Figure 19. (Continued)

TIME ALTITUDE VELOCITY PRESSURE RHi1. RH02 ALPHA CORR RH02*CORR K RHO 45.158 43.250 1441.5 3.357E Cl 2.300E-03 4.203E-03 45.335 43.500 1439.7 3.242E 01 2.227E-03 4.065E-03 45.69~ 44.000 1436.2 3.035E C1 2.095E-03 3.814E-03 45.F867 44.250 1434.4 2.930E C1 2.027E-03 3.686E-03 46.045 44.500 1432.7 2.828E C1 1.961E-03 3.563E-03 46.222 -44.750 1430.S 2.752E C1 1.913E-03 3.472E-03 46.401 45.000 1429.2 2.613E C1 1.820E-03 3.300E-03 46.590 45.25C 1427.5 2.574E Cl 1.797E-03 3.254E-03 46.759 45.5 0 1425.7 2.496E C1 1.747E-03 3,160E-03 46.938 45.750 1424.C 2.408E Cl 1.690E-03" 3.052E-03 47.117 46.000 1422.2 2.319E C1 1.631E-03 2.944E-03 47.2S6 46.250 1420.5 2.'228F C1 1.571F-03 2.831E-03 47.4 /7 7 46.50 1418.7 2.161E 01 1.527E-03 2.749E-03 47.657 46.750 1417.0 2.097F 01 1.486F-03 2.672E-03 41. 837 47.000 1415.2 2.C33E Cl 1.443E-03 2.593E-03 48~.017 47.25(0 1413.4 1.955E 01 1.391E-03 2.496E-03 48.197 47.500 1411.7 1.888E C1 1.347E-03 2.414E-03 48.379 47.750 1409. 1.816E C1 1.299F-03 2.325E-03 48.'60 48.000 1408.1 1.762E C1 1.263E-03 2.259E-03 48.742 48.250 1406.3 1.705E C1 1.225E-03 2.188E-03 48.923 48.500 1404.6 1.634E Cl 1.177E-03 2.100E-03 49.104 48.750 1402.8 1.563E C 1 1.129E-03 2.011E-03 49.286 49.000 1401.C 1.508E Cl 1.092E-03 1.943E-03 49.4t9 49.250 1399.2 1.455E Cl 1.056E-03 1.877E-03 49.652 49.500 1397.5 1.3'8E C,1 1.017E-03 1.805E-03.49.835 49.750 1395.7 ].343F Cl 9.793E-04 1.736E-03 50.018 50.000 1393.S 1.303E C1 9.528E-04 1.687E-03 5C.2C1 5C.250 1392.1 1.270E C1 9.3C8E-04 1.646F-03 \J1 ~ 50.335 3 5 56.5C0 1390.3 1. 233E C1 9.065E-04 1.601E-03 50. 56 5C.750 1388.6 1.196E 01 8.815E-04 1.555E-03.590. 53 3 51.0C0 1386.8 1.154E C1 8.525E-04 1.502E-03 5C.937 51.250 1385.0 1.114E 01 8.248E-04 1.452E-03 51.121 51.5CO 13,3.2 1.079E C1 8.009 -04 1.408E-03 51.l306 51.750 1381.4 1.045E Cl 7.780E-04 1.366E-03 51.491 52.000 1379.7 1.013E 01 7.556E-04 1.325E-03 51.677 52.250 1377.9 9.767E CC 7.306E-04 1.279E-03 51.862 52.5C0 1376.1 9.47CE CC 7.101E-04 1.242E-03 52.048 _52.750 1374.4 9.117E 00 6.854E-04 1.197E-03 52.2 33 53.00 1372.6 8.782E CC 6.619E-04 1.155E-03 52. 20 53.250 137C. 8 8.487E CC 6.412E-04 1.117E-03 52.6C7 53.5CO 1369.1 8.168E 00 6.188E-04 1.077E-03 52.981 54.0CC 1365.5 7.576E GC 5.769E-04 1.001E-03 53.168 54.250 1363.7 7.357E CC 5.616E-04 9,737E-04 53.356 54.500 1361.9 7.101E OC 5.436E-04 9.411E-04 53.544 54.750 1360.1 6.874E CC 5.276E-04 9.122E-04 53.732 55.000 1358.2 6.585E CO 5.068E-04 8.751E-04 53.920 55.250 1356.4 6.312E CC 4.871E-04 8.400E-04 54.1C08 55.500 1354.5 6.088E CC 4.711E-04 8.113E-04 54.29c7 55.750 1352.7 5.899E CO 4.577E-04 7.872E-04 54.487 56.000 135C.0 5.698E CO 4.433E-04 7.614E-04 54.676 56.250 1349.1 5.518E CO 4.304E-04 7.382E-04 Figure 19. (Continued)

TI'E AL TITUDE V ELGCITTY' P _P SSUR._LP F RH01 RHO2 ALPHA CORR RH02*CORR K RHO 5 4. C( 6 5.50 0 1347.2. 22 F CC 4. 165F-04 7. 135E-04 55. 55 7_5C 1345.4 _ 5.154E CC4F 4.041E-04 6.914F-04 55.^ ^. Y -... 3f- 43 ( - - - - 4- 3 3F- 04 — 6.667E-04 —---- -. —-.-. —--- _-_55.43t 57.250 1341.& 47 797 3.782E-04 6.453E-04 ___ ~55~i. 7 5 ~7. 5 1 U""-'T3 1 4"'-''7 F: 0 ~ 3.67 7 04 6.248F-04 57.730 13' 7. F C.31.667F-04 6.070E-04 5.3 10 I?3 6C..55 F- 0C 3.631 -04 6.170F-04 5o.~J3 2J. 58o' 1334.7 2' i 1lE CC 3363E -;J4 5.709E-04 3....^ 3.3 S-Y-I — t" 2-.. _...4-.-i ^..4..{- F Cu 04.5.0.0-..- _ --. - ~., _, _._...... _............_._..,04 56;.55 _5_.75C 23 1.0c 4c2f CC 3. 1?',F-04 5.3450-G4 3 5~.~~7(7:;-~~ —~ 59ii,0, 3.S~-~ —-~-f~T'-~ —~~~-'~~ —~-' 4~"'CT~c~''~-"",, F CC C' I.i W (i4.2 -. 56. 171 59. 2 5J 1'27 3 3. 635F 2CC 2. 8F-204 4.43F-04 -57 It 3 c 59.5 1325 53 -53F C( 2 O' 47.852-;- 04 4 — 7F4 —- 57.3'7 59.75 1523. 6 3.4?F- CC 2.786F-04 4.6'4F-04 ^^ ^^ ^.^..^ _ __^ ^^ ^^ _........_^^ ^ ^...._._._..._^ ^^.....^.^ _^. ^ ^^ ^.^ ^.......~_..-....,............ 5, 7r> 61 0- 30 121 -3.37E 2. 7'q3F-u4 4. 36 4 57 7 1 _ 6C. 2 5 131.C 3.211F C 26 ( 1 -4 4.3cl E - 04 5T.^3o 6C.50T'f~i;-~r —-— ~i~~-~3';I~,'i ~ ~ -~~.~l'l~i~ f~ C.~C ~ - -— ^^.^^ ^^^ 4"'', -"-.-. —~-......... —.... 5. -3 76 C. 7 5 131 F. 21'13 2 4 E C C.47F-'44 4'4F -04 5 8. 37 6 1.' 1.31. 2',, 2 FC C 7744 1F-4.i'5-4 —-.-14. —----— 4 —-—.-..-........ 5'- 2 1.. _._...._ 1 _._._25 I' 2.7___... C__3 2. - 2: 4 3. 36 F -.'. 58 -1I3 61 77 ) L U 2.655E (4 2. 0) 4 -43.6522F 4 ~59.ICC'_ 1Pr*o _ u''' 11(~? 1F- CC 2. 127F- 0( 3.537 -04`'51 ~9.yj;5- ~"'"" """^Z.T^C- -~i,-~ -j — 6-,. -8 -,r& I (-4 7-04 59. 2 6 2 _ 6.5 1 3 2 3. 2 C; 971 C CI 1.1 ^4 3.181 F -04 -59?.u -' 62.75 1.?. 2 R 5- -6 —" —-~ - - -1 —-" 1 2 ------------ -1 4 3 3.'IC'124. 4 2(G06- CC I. r E't -04,04 - 0 4 6 6 3./',,~~.. t 2 I f. E''77.) F - 0 4 "60..>'2"' -7 1 [. CC L17^<rF'34?.~7 7F-4 4 - 6j C.2903 I "63.83. (295. 7 2."6F (,U 1.74I -4, 2.86Cr-04 \,14 60.42'-" " " U'" "" -- 1 4j-C3 -f —-— CC —-- I F4C- C4'.4781 -04 60C.o~ _64.0 109?. _ I "1.9 1. 1F CC 6>3'2- _ F-.4_.681 F __- __ 60. C5 64. 25J 12 1. 5E C' 1 3'F[ 4 5 37 7F-44 5 66 5651" 1288.3 1.'C,5F( C 1. 53 5 F 4'9.5146-C;4 61.'? 6. ^3 ___^!^_5_o~c____LI?^ _ l715 *L/9: - CC 1.475E- 04 2421*6(_-04 61.42?"" 6'.75 12-4.5 1.0580 (C 1.426 —y "4 2.329-2 4_^^. _.. ------ ^ ^- ^ -7.. ECC.I.. -. 4 -. 4 ~61.4P.2 6 65_.C' Io 7 6 1.658E CC 1.4256E 0 2?4-04 6. 2. 1 5 5 5 CC C __. 45F-4 21. 9 1E__04_ 62.08)2 65-.75C 1'78. c 1.501F CO 1. 42306.118-4E-04 —----— ~~-C —-- - -- 62. 2.' 6_6. 00_)u0 1217. 1 1.4516 (C 1263 F04 __?.051-F-C4 62.4^4 6" " /S6.253-' - -y~ - -^^( 1 2F71 1.2 6 04 1.986 — 4F 62. 5 66*.500_ _ 12731. __ 1.35F7 CC 1.139F 04.924-04 62.34-Pb 7 7 I- 1- ];- 271-7y. 01 3E13 CO "- 1. 153F' -0n —4 12.1-86-04 —63.08, S __6 7. 00 C ___ 1269. 4 1.269E C23- 1.4118E3 -0 4 1.804-F 4 63.290 67.250 1267.5 1.224E CC I.C81E-04 1.74?F-04 63. 493 67.500 1265. 6_ 1.177F CO0 1.043E-04 1.678E-04 63.696 -- 7.75C 1263.6 1.134E C C 1-.OC3E-04 1.620E-04 ——.. - - 63.899 68.050 12(-7 1.7 1. 0P9F CC 9..714E-J5 1.558F-04 64. 8102 25 1259.f- 1.C36F CC._ -' 3.264E- 0_5 1. 484.E-04 —- _._~.......~._..-. 6 4. 3' 6 68. 5 C. 1257.8 _ c. Fc187 E- C 1 _ 8.873F-05 1.419E-04 64.5 11 68.7 50 1255. 9.462E-C1 R.517E-05 1.360E-04 64.716 6.C0 0 1254. C 9.089E-Cl1 8.2C8E-05 1.308E-04 6 4'.2 66.2%5in 1252.1.7 7 7 3 E-C I 7.96-5 1.265F-04 —--- Figure 19. (Continued)

TIME ALTITUDE VELOCITY PRESSURE RH01 RH02 ALPHA CORR RH02*CORR K RHO 65.125 69.500 1250.1 8.517E-C1 7.739E-05 1.230E-04 65.331 69.75C 1248.2 8.207E-01 7.479E-05 1.187F-04 65.537 7C.000 1246.3 7.946E-01 7.265E-05 1.151E-04 65.743 7C.250 1244.4 7.686F-Cl 7.049F-05 1.15E-O4 65.95C 7C.5CO 1242.5 7.333F-C1 6.746E-05 1.065E-04 66.36_3 71.0CO 1238.6_ 6.972E-Cl 6.454E-05 1.016F-04 66.571 71.250 1236.7 6'.6C2-Cl 6.131E-05 9.636E-05 66.779 _ 71.500 1234.8E 6.346E-C1l 5.912F-05 9.277F-05 _____ 66.987 71.750 1232.q 6.126F-CI 5.724E-05 8.968E-05 67.195 72.000 1231.0 5.918E-01 5.548E-05 8.678E-05 _______ ___ 67.404 72.250 1229.1 5.659E-Cl 5.32IF-05 8.311E-05 -..67.614 72.5CO 1227.1 5.4C1F-01 5.095F-05 7.944E-05 67.823 72.750 1225.2. 5.317E-C1 5.031E-05 7.833F-05 68.033 73.000 1223.3 5.144E-Cl 4.PP4F-05 7.590E-05 68.243 T3.250 1221.3 4.954E-Cl.7T188T-5- 7.321E-05 68.454 73.5GC 1219.4 4.779F-Cl 4.566F-05 7.073E-05 68.665 73.750 1217.4 4.594E-Cl 4.403E-05 6.811F-05 68.816 74.000 1215.4 4.424E-C1 4.255F-05 6.570E-05 69.(j18 74.250 1213.5 4.078E-C1 3.9348-05 6.065E-05 69. 300 74.5CO 1211.5 3.861E-Cl 3.738E-05 5.753F3-C5 5'69.il2 74.750 1209. 5 3.664E-CI 3.558E-05 5.468E-05 69.725 75.0CC 1207.6 3.41]E-Cl __3.3244E-05 5.098E-05 ______ __ 69.93 75.?50 21205.6 3.159E-Cl 3.8 E-05 4.730E-05 70.151 75.5U0 1203.6 2.978E-Cl 2.921E-05 4.466E-05 3.255 0.951 4.249E-05 0.0 2.92lE-05 70.36 75.750 1201.6 2.842E-Cl 2.797E-05 4.268E-05 3.190 0.951 4.061F-05 0.0 2.797E-05 7C._ )0 76.000 11'9.6 2.728 8-01__ _ - 42.64F- ___4.1048-05 3.126 0.952 3.906E-05 0.0 2.694E05 70.7 -5 76.25) 1107.7 2.6C6E-Cl 592 E-0[-Q5 3.9278-05 3.062 0.952 3.737E-05 0.02.818-05 71.009 76.500 1105.7 2 2.466E-0l1 2. 51F-05 3. 722E-05 2.997 0.952 3.544E-05 0.0 2.451805 71. 24 76.750 1193.7 2.334E-01 2.328-05 3.529E-05 2.933 0.952 3.360E-05 - 0.0 2.3288-05 71.441 77.0CC 1191.7 2.241E-Cl 2. 2438E-05 9 3.395E-05 2.868 0.952 3.233E-05 0.0 2.243E-05 71.657 77 250 1189.7 2.10E-0-05 3.277E-05 2.803 0.952 3.121E-05 0.0 2.1698-05 71.873 77.50r 1187.77 2.08CFl-C 2. C 96t-055 3.162F-05 2.738 0.953 3.012E-05 0.0 2.096E05 72.090 77. 75 11.85.7 2.CCE 2Cl 2-023E-05 3.046F-05 2.678 0.953 2.902E-05 0.0 2.0238-05 72._3 0 7 78. 0 1183.6 1 C8- 9 __ 1. 9488 E-05 2.928E-05 2.623 0.953 2.7918-05 0.0 1.9488-05 _72.5? 78.2 0 1181.6. 01 1.882F-05 2.794E-05 2.569 0.953 2.6638-05 0.0 1.862E-05 72.743 78.5CO 1179.6 1.7428-01_ 1.779F-05 5 2.665E-05 2.514 0.953 2.541E-05 0.0 1.779E-05 73.10 79.000 1175.5 1.6198-01 1.665E-05 2.484F-05 2.405 0.954 2.369E-05 0.001 1.6658-05 73.0' 4 79.250 1173.5 1.63 -01 1. 613E-05 2.404F-05 2.350 0.954 2.292E-05 0.001 1.614E-05 73.60 79.500 1171.4> 1.512- I.567E-05 2.330E-05 2.295 0.954 2.223E-05 0.002 1.5688-05 73. 40 _ 79.750 1 69.4 ___4 1.459 E-Cl 1517F-05 2.252E-05 2.240 0.954 2.148E-05 0.003 1.519E-05 7~4.0607 80.Gh0 0 1167.3 1.377E8-Cl 1.437E-05 2.1298-05 2.197 0.954 2.032E-05 0.005 1.4408-05 74.281 8C.250 1165.3 1.309F-01.1371F-05 2.0288-05 2.186 0.954 1.935E-05 0.006 1.375E-05 74.522 8C.5G O 1163.2 1.291E-C1 1.3.57E-05 2.003E-05 2.175 0.955 1.912E-05 0.006 1.3608-05 74.732 4 80.750 1161.2 1.250F-C1 1.318F-05 1.943F-05 2.164 0.954 1.855E-05 0.007 1.322E-05 74.-46 81.000 1159.1 1.2C8E-01 1.278E-05 1.881E-05 2.153 0.954 1.795E-05 0.009 1.2838-05 75.1s8 81.250 i157.C 1.163F-Cl 1.235E-05 1.814E-05. 2.142 0.954 1.731E-05 0.011 1.240E-05 75.392 81.500 1155.0 1.119E-Cl 1.1938-05 1.749E-05 2.130 0.954 1.669E-05 0.013 1.199E-O5 75.615 81.750 1152.9 1,068E-01 1.142E-05 1.671E-05 2.119 0.954 1.594E-05 0.016 1.149E-05 75.8 39 82.00 0 1150.8 1.01CE-Cl 1.084E-05 1.584E-05 2.108 0.954 1.510F-05 0.018 1.092E-05 76.0t3 82.250 1148.7 9.669F-02 1.042E-05 1.519E-05 2.109 0.954 1.449E-05 0.021 1.050E-05 76.288 82.500 1146.6 9.2C7E-C2 9.953E-06 1.449E-05 2.143 0.953 1.382E-05 0.023 1.004E-05 Figure 19. (Continued.)

TIME ALTITUDE VELOCITY PRESSURE RHO1 RH02 -ALPHA - CORR RHO2*CORR K RHO 76.513 82,750 1144.5 8.867E-02 -9.619E-06 1.398E-05 2.177 0.953 1.333E-05 0.025 9.T11-06 76.739 83.000 1142.4 8.594E-02 9.357E-06 1.358E-05 2.211 0.953 1.294E-05 0.026 9.451E-06 76.965 83.250 1140.3 8.286E-02 9.055E-06 1.312E-05 2.245 0.953 1.250E-05 0.028 9.151E-06 77.191 83.500 1138.2 8.003E-C2 8.777E-06 1.269E-05 2.279 0.952 1.209E-05 0.030 8.876t-06 77.418 83.750 1136.1 7.738E-02 8.518E-06 1.229E-05 2.313 0.952 1.171E-05 0.032 8.620E-06 77.646 84.000 1134.0 - 7.492E-02 8.277E-06 1.193E-05 2.347 0.952 1.135E-05 0.034 8.381E-06 77.874 84.250 1131.9 7.252E-C2 8.041E-06 1.156E-05 2.381 0.952 1.101E-05 0.036 8.147E-06 78.102 -84.500 1129.8 6.972E-02 7.759E-06 1.114E-05 2.431 0.952 1.060E-05 0.038 7.867E-06 78.331 84.750 1127.6 6.674E-C2 7.455E-06 1.068E-05 2.499 0.951 1.016E-05 0.041 7.566E-06 78.560 85.000 1125. 5 6.347E-02 7.116E-06 1.018E-05 2.568 0.951 9.680E-06 0.044 7.229E-06 78.790 85.250 1123.3 -5.955E-C2 6.701E-06 9.569E-06 2.637 0.951 9.098E-06 0.048 6.817E-06 79.020 85.500 1121.2 -5.67E-02 6.288E-06 8.962E-06 2.706 0.951 8.518E-06 0.053 6.406E-06 1.2 50 85.750 1119.1 5.179E-C2 5.872E-06 8.354E-06 2.775 0.950 7.938E-06 0.058 5.992E-06 79.482 86.000 1.116.9 4.852E-C2 5.522E-06 7.841E-06 2.845 0.950 7.450E-06 0.063 5,644E-06 79.714 86.250 1114.8 4.6C1E-C2 5.256E-06 7.449E-06 2.914 0.950 7.075E-06 0.067 5.378E-06 79.946 86.500 1112.6 4.438E-02 5.089E-06 7.199E-06 2.984 0.950 6.836E-06 0.070 5.211E-06 80.178 86.750 1110.4 4.311E-02 4.962E-06 7.008E-06 3.170 0.949 6.651E-06 0.072 5.084E-06 80.645 87.250 1106.1 3.948E-02 4,579E-06 6.442E-06 3.619 0.948 6.110E-06 0.080 4.701E-06 80.879 87.500 1103.9 3.757E-C2 4.375E-06 6.144E-06 3.844 0.948 5.824E-06 0.084 4.497E-06 81.113 87.750 1101.7 3.607E-02 4.216E-06 5.909E-06, 4.068 0.948 5.600E-06 0.088 4.337E-06 81.348 88.000 1099.5 3.480E-C2 4.084E-06 5.713E-06 4.294 0.947 5.412E-06 0.091 4.204E-06 81.584 88.250 1097.3 3.332E-C2 3. 926E-06 5.481E-06 4.521 0.947 5.191E-06 0.094 4.045E-06 81.820 88.500 1095.1 3.181E-C2 3.762E-06 5.243E-06 4.747 0.947 4.964E-06 0.098 3,880E-06 82.056 88.750 1092.q 3.066E-02 3.641E-06 5.063E-06 4.974 0.947 4.793E-06 0.101 3.757E-06 82.293 89.000 1090.7 3.011E-02 3.590E-06 4.984E-06 5.201 0.946 4.716E-06 0.103 3.706E-06 82.531 89.250 1088.5 2.877E-C2 3.444E-06 4.77NE-06 5.430 0.946 4.514E-06 0.107 3.557E-06 LJ1 82.769 89.500 1086.2 2.754E-C2 3.309E-06 4.576E-06 5.659 0.946 4.328E-06 0.111 3-.422E-06 83.008 89.750 1084.C 2.648E-02 3.195E-06 4.410E-06 5.887 0.946 4.170E-06 0.115 3.308E-06 83.246 90.000 1081.8 2.538E-C2 3.074E-06 4.234E-06 6.116 0.-946 4.004E-06 0.119 3.185E-06 83.4SE7 90.250 1079.6 2.450E-02 2.980E-06 4.096E-06 6.347 0.945 3.872E-06 0.123 3.089E-06 83.727.90.500 1077.3 2.346E-C2 2.865E-06 3.930E-06 6.578 0.945 3.715E-06 0.127 2.973E-06 83.967 90.750 1075.1 2.257E-02 2.768E-06 3.789F-06 6.809 0.945 3.582E-06 0.131 2.875E-06 84.208 91.000 1072.9 2.159E-C2 2.658E-06 3.633E-06 7.039 0.945 3.433E-06 0.136 2.764E-06 84.450 91.250 1C70.6 2.060E-02 2.547E-06 3.473E-06 7.272 0.945 3.282E-06 0.142 2.651E-06 84.693 91.500 1068.4 1.978E-02 2.455E-06 3.342E-06 7.505 0.945 3.158E-06 0.147 2.558E-06 84.936 91.750 1066.1 1.8 83E-C2 2.346E-06 3.188E-06 7.738 0.945 3.011E-06 0.154 2.448E-06 85.179 92.000 1063.8 1.8C8E-02 2.262E-06 3.067E-06 7.832 0.944 2.897E-06 0.160 2.363E-06 85.423 92.250 1061.7 1.723,E-C2 2.164E-06 2.929E-06 7.876 0.944 2.767E-06 0.167 2.265E-06 85.668 92.500 1059.5 1.667E-C2 2.102E-06 2.840E-06 7.920 0.944 2.682E-06 0.172 2.202E-06 85.913 92.750 1057.3 1.599E-02 2.025E-06 2.731E-'06 7.964- 0.944 2.578E-06 0.178 2,123E-06 86.157 93.000 1055.1 1.541E-02 1.958E-06 2.636E-06 8.008 0.944 2.488E-06 0.185 2.056E-06 86.404 93.250 1052.9 1.492E-02 1.904E-06 2.558E-06 8.053 0.944 2.414E-06 0.191 2.001E-06 86.651 93.500 1050.6 1.427E-02 1.828E-06 2.452E-06 8.097 0.944 2.314E-06 0.199 1.925E-06 86.898 93.750 1048.4 1.364E-C2 1.755E-06 2.349E-06 8.142' 0.944 2.216E-06 0.208 ].851E-06 87.145 94.000 1046.1 1.294E-02 1.671E-06 2.232E-06 8.186 0.943. 2.105E-06 0.219 1.766E-06 Figure 19. (Continued)

COMMUTATOR VALUES TIME CHL 1 CHL 4 CHL 5 35.275 4.153 2.5C3 4.448 39.365 4.142 2.503 4.077 45.675 4. 113 2.5C3 3.462 52.896 4.092 2.503 3.102 58.846 4.076 2.503 2.493 66.387 4,047 2.503 2.14E.73.127 4.027 2.503 1.528 O0.'587 4.002 2.503 1.157 ERROR RETURN Figure 19. (Continued) a\

SPACE PHYSICS RESEARCH LABCRATCRY THE UNIVERSITY CH MICHIGAN ANN AR8OR, MICHtGAN 17:46.11 DECEMBER 18,196S NASA'14.386 GAGE 1 F LAUNCH TIME: 20: 4:59.815 Z INPUT FILE. 1 CHANNEL INDEX 1 TAPE ID: SPRL,NASA 14.386 12/12/69 8020 Fl 03 0' CALIBRATE LEVELS: 5.003 O.C04 2.503 VTCAL: 3.7CO RANGE 1 INDICATE: 0.500 STEP BETEEN RANGES: 0.500 RANGE: 2 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE. PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE C.900 8.300E-03 2.20C 2.06CE-02 3.500 3.420E-02 4.750 4.780E-02 RANGE: 3 VOLTAGE PRESSURE VCLTACE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.890 3.550E-C2 2.1SC 9.1CCE-02 3.490 1.460E-01 4.740 1.980E-01 RANGE: 4 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.900 1.510E-01 2.190 3.75CE-Cl 3.500 6.000E-01 4.750 8.180E-01 RANGE: 5 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.890 6.200E-01 2.190 1.520E 00 3.490 2.420E 00 4.740 3.300E 00 RANGE: 6 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE C.900 2.480E 00 2.200 6.110E 00 3.500 9.850E 00 4.750 1.360E 01 RANGE: 7 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE C.890 7.200E 00 2.190 1.75CE C1 3.490 2.800E 01 4.740 3.810E 01 RANGE: 8 VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.900 2.87GE Cl 2.000 6.390E 01 3.100 9.940E 01 4.750 1.530E 02 RANGE: 9 VOLTAGE PRESSURE VGLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE VOLTAGE PRESSURE 0.890 1.170E 02 1,7SC 2.410E 02 2. 690 3.710E 02 3.590 5.100E 02 TIME CCRRECTICNS 0.0 0.0 500.000 C.c Figure 19. (Continued ) 57

TKu1E ALTITUDE VELOCITY PRESSiREE RHO I RHO2. ALPHA CORR RH02*CORWK. K _ RHO 81.348 88*000 1099.5 3.462E-02 4.062E-06 5.683-06 4.294 0.947 5.384E-06 0,091 4.183E-06 81.584 88.250 1097.3 3.349EF-C2 3.945E-06 5.509E-06 4.521 0.947 5.217E-06 0.094 4,065E-06 81.820 88.500 1095.1 3.233E-02 3.824E-06 5.329E-06 4.747 0.947 5.046-06 0.096 3.942E-06 82.056 88.750 1092.9 3.122E-C2 3.7C8E-06 5.156E-06 4.974 0.947 4.881E-06 0.100 3,824E-06 82.293 89.000 1090.7 3.020E-02 3.601E-06 4.998E-06 5.201 0.946 4.730E-06 0,102 3.717E-06 82.531 89.250 1088.5 2.883E-C2 3.451E-06 4.781E-06 5.430 0.946 4.523F-06 0.106 3565E-06 82.769 89.500 1086.2 2.759E-C2 3.315E-06 4.584E-06 5.659 0.946 4.336E-06 0.111 3.428-06 83.008 89.750 1084.0 2.654E-C2 3.203-06 4.419E-06 55.887 0.946 4.180E-06 0.115 3.315E-06 83.246 90.000 1081.8 2.561E-02 3.102E-06 4.272E-06 6.116 0.946 4.040E-06 0.118 3.213E-06 83.487 90.250 1079.6 2.464E-02 2.998E-06 4.120E-06 6.347 0.945 3.896E-06 0.122 3107E-06 83.727 90.500 1077.3 2.363E-02 2.885F-06 3.958E-06 6.578 0.945 3.742E-06 0.126 2.993E-06 83.967 90.750 1075.1 2.262E-02 2.773E-06 3.797E-06 6.809 0.945 3.589E-06 0.131 2.880E-06 84.208 91.000 1C72.9 2.172E-C2 2.674F-06 3.654E-06 7.,039 0.945 3.453E-06 0.136 2.779E-06 84.450 91.250 1070.6 2.081E-C2 2.573E-06 3.509E-06 7.272 0.945 3.316E-06 0.140 2.6779-06 84.693 I1.50 0 1068.4 1.996F-02'2.477E-06 3.372E-06 7.505 0.945 3.185E-06 0.146 2.-5809-06 84.936 91.750 1066.1 1.8969-C? 2.362E-06 3.209E-06 7.738 0.945 3.032E-06 0,152 2.464E-06 85.179 92.000 1063.8 1.809E-02 2.263E-06 3.069E-06 7.832 0.944 2.899E-06 0.159 2.3659-06 85.423 92.250 161.7 7 1.732E-C2 2.176E-06 2.945E-06 7.876 0.944 2.782E-06 0.166 2.277-06 85.668 92.500 1059.5 1.629E-02 2.054E-06 2.775E-06 7.920 0.944 2.620E-06 0.176 2.154E-06 85.913 92.750 1057.3 1.533E-G2 1.941E-06 2.617E-06 7.964 0.944 2.471E-06 0.187 2.040E-06 86.157 93.000 1055.1 1.5C59-02 1.912F-06 2.574E-06 8.008 0.944 2.430E-06 0.190 2.010E-06 86.49:4 93.250 1052. 9 1.447E-C2 1.847E-06 2.481E-06 8.053 0.944 2.341E-06 0.197 1.944E-06 86.651 93.500 1050.6 1.389E- 92- 1.78) F -06 2.386E-06 8.097 0.944 2.252E-06 0.205 7 876E-06 86.9'8 93.750 1048.4 1.33CE-C2 1_.711E-06 2.289E-06 8.142 0.944 2.160E-06 0.214 1.807E-06 87.145 94.000 1046.1 1.279E-02 1.652E-06 2.207F-06 8.186 0.943 2.082E-06 0.222 1.747E-06 67.394 O94.250 1043. 1.242E-C2 1.611E-06 P.147E-06 8.231 0.943 2.025E-06 0.227 1705E-06 87.644 94.500 1041.5 1.147F-C2 1.495E-06 1.989E-06 8.276 0.943 1.875E-06 0.250 1590-06 u\j1 87.93 94.750 1639.2 1.090E-22 1.425F-06 1.892E-06 8.321 0.943 1.785E-06 0.264 1.520E-06 co 83f8.1'2 95.)0 1036.9 1.C36E-C2 1.362E-06 1.804E-06 8.366 0.943 1.701E-06 0,279 1.456E-06 8 8.394 95.250 1034.6 9.868E-03 1.30C2E-06 1.722E2-06 8.411 0.943 1.623E-06 0.294 1.396E-06 88.645 95.500 1032.2 9.3149-03 1.234E-06 1.629F-06 8.456 0.943 1.535E-06 0.311 1.328-06 8, 56 0,43 f,535-06 11,260 88.897 95.750 1029.9 9.C74E-C3 1.2C8F-06 1.590F-06 8.502 0.942 1.499E-06 0.318 1,300E-06 89.14 1I9 96,000 1027.6 8.640E-03 1.155F-06 1.518E-06 8.547 0.942 1.430E-06 0.337 1.248E-06 89.403 _ 96.250 1025.32 8.252E-C3 1.108E-06 1.453E-06 8.593 0.942 1.369E-06 0.354 1.200E-Q6 89. -57 96.500 1022.9 7.877 E - C3 1.062E-0 6 1.390E-06 8.638 0.942 1.309E-06 0.371 1.154E-06 89.911 96.750 1020.6 7.553E-C3 1.023E-06 1.336E-06 8.684 0.942 1.258E-06 0.386 1.1149-06 90.166 97.000 1018.3 7.27CE-C3 9.885E-07 1.289E-06 8.760 0.942 1.214E-06 0.401 1.079E-06 90.422 _97.250C 10.15.9 6.9819F-3 9.535E-07 1.240E-06 8.852 0.942 1.168E-06 0.419 1043E-06 90.679 97.500 1013.6 6.693E-03 9.181E-07 1.192E-06 8.944 0.942 1.1239-06 0.436 1.007E-06 9C.935 97.750 1011.2 6.427E-C3 8.P56E-07 1.147E-06 9.037 0.942 1.081E-06 0.455 9,744E-07 91.192 8.000 108.9 6.163-03 8.528F-07 1.103E-06 9.129 0.942 1.039E-06 0.474 9.410E-07 91.451 98.250 1006.6 5.9C8E-C3 8.213E-07 1.059E-06 9.222 0.942 9.982E-07 0.493 9.085E-07 91.710.500 1C 04.2 5.664E-03 7.9C8E-07 1.018E-06 9.316 0.942 9.593E-07 0.515 8.775E-07 91.969 98.750 1001.8 5.441E-C3 7.631E-07 9.803E-07 9.409 0.942 9.238E-07 0.536 8492E-07 92.229 C9.O0 99 9.5 5.218E-C3 7.3519-07 9.424E-07 9.502 0.942 8.881E-07 0.557 8.2039-07 92.491 99.250- 997.0 5.011E-03 7.C92E-07 9.071E-07 9.597 0.943 8.550E-07 0.579 7.9369-07 92.752 99.500 994.6 4.809E-03 6.837E-07 8.727E-07 9.691 0.943 8.227E-07 0.607 7.680E-07 93.014 99.750 992.2 4.617E-C3 6.596E-07 8.400E-07 9.785 0.943 7.919E-07 0.633 7.434E-07 93.277.100.000 989.7 4.425E-03 6.349E-07 8.069E-07 9,.880 0.943 7.608E-07 0.660 7.1819-07 93.541 100.250 987.3 4.233E-C3 6.1C3E-07 7.738E-07 9.975 0.943 7.297E-07 0.691 6.928E-07 93.P06 100.500 984.9 4.039E-03 5.850F-07 7.402E-07 10.070 0.943 6.981E-07 0.732 6.678E-07 Figure 19. (Continued)

TIME ALTITUDE VELOCITY PRESSURE RH01 RH02 ALPHA CORR RHO2*CORR K RHO 94.070 100.750 982.4 3.840E-03 5.589E-07 7.056E-07 10.165 0.943 6.655E-07 0.777 6.418E-07 94.336 101,000 980.0 3.643E-03 5.325E-07 6.709E-07 10.261 0.943 6.329E-07 0.831 6.159E-07 94.603 101.250 977.6 3.435E-03 5.045E-07 6.342E-07 10.357 0.944 5.983E-07 0.891 5.881E-07 94.870 101.500 975.1 3.391E-03 5.004E-07 6.277E-07 10.453 0.944 5.923E-07 0.902 5.834E-07 95.137 101.750 972.7 3.004E-03 4.454E-07 5.575E-07 10.514 0.944 5.261E-07 1.000 5.261E-07 95.406 102.000 970.2 2.811E-C3 4.186E-07 5.229E-07 10.541 0.944 4.934E-07 1.000 4.934E-07 95.676 102.250 967.8 2.633E-03 3.941E-07 4.911E-07 10.568 0.944 4.634E-07 1.000 4.634E-07 95,946 102.500 965.3 2.479E-C3 3.728E-07 4.636E-07 10.595 0.944 4.375E-07 1.000 4.375E-07 96.348 102.750 961,6 2.203E-03 3.337E-07 4.135E-07 10.635 0.944 3.903E-07 1.000 3.903E-07 96.489 103.000 960.3 2.139E'-03 3.248E-07 4.020E-07 10.649 0.944 3.794E-07 1.000 3.794E-07 96.762 103.250 957.8 2.002E-03 3.054E-07 3.772E-07 10.676 0.944 3.560E-07 1.000 3.560E-07 97.034 103.500 955.3 1.856E-03 2.846E-07 3.507E-07 10.703 0.944 3.310E-07 1.000 3.310E-07 97.308 103.750 952.7 1.711E-03 2.637E-07 - 3.242E-07 10.731 0.944 3.060E-07 1.000 3.060E-07 97.584 104.OCC 950.2 1.587E-C3 2.458E-07 3.016E-07 10.758 0.944 2.846E-07 1.000 2.846E-07 97.860 104.250 947.7 1.480E-03 2.303E-07 2.819E-07 10.786 0.944 2.660E-07 1.000 2.660E-07 98.135 104.500 945.1 1.393E-C3 2.179E-07 2.661E-07 10.814 0.944 2.511E-07 1.000 2.511E-07 98.413 104.75C 942.6 1.320E-03 2.074E-07 2.527E-07 10.841 0.944 2.385E-07 1.000 2.385E-07 98.691 105.000 940.0 1.257E-03 1.985E-07 2.414E-07 10.869 0.944 2.278E-07 1.000 2.278E-07 98.976 105.250 937.5 1.215E-C3 1.929E-07 2.339E-07 10.897 0.944 2.208E-07 1.000 2.208E-07 99.249 1C5.500 934.9 1.159E-C3 1.850E-07 2.238E-07 10.925 0.944 2.114E-07 1.000 2.114E-07 99.530 105.750 932.3 1.158E-C3 1.858E-07 2.242E-07 10.953 0.944 2.118E-07 1.000 2.118E-07 99.811 106.000 929.7 1.079E-C3 1.739E-07 2.094E-07 10.981 0.945 1.978E-07 1.000 1.978E-07 100C.C93 106.250 927.1 1.042E-03 1.688E-07 2.028E-07 10.983 0.945 1.916E-07 1.000 1.916E-07 100.376 106.500 924.5 1.010E-C3 1.645E-07 1.972E-07 10.932 0.944 1.862E-07 1.000 1.862E-07 100.560 106.750 921.9 9.762E-04 1.599E-07 1.911E-07 10.881 0.944 1.805E-07 1.000 1.805E-07 100CC.945 107.000 919.3 9.488E-04 1.562E-07 1.863E-07 10.830 0.944 1.759E-07 1.000 1.759E-07 101.229 107.250 916.7 9.190E-04 1.521E-07 1.810E-07 10.779 0.944 1.709E-07 1.000 1.709E-07 LJ1 101.517 107.500 914.C 8.757E-C4 1.457E-07 1.729E-07 10.727 0.944 1.633E-07 1.000 1.633E-07. 101.804 107.750 911.4 8.487E-04 1.420E-07 1.681E-07 10.675 0.944 1.587E-07 1.000 1.587E-07 102.092 108.000 908.7 8.208CE-C04 1.379E-07 1.629E-07 10.623 0.944 1.537E-07 1.000 1.537E-07 102.381 108.250 906.1 7.892E-04 1.334E-07 1.572E-07 10.571 0.944 1.484E-07 1.000 1.484E-07 102.672 1C8.500 903.4 7.592E-0C4 1.290E-07 1.517E-07 10.519 0.944 1.432E-07 1.000 1.43E-07 102.963 108.750 900.8 7.340E-04 1.255F-07 1.471E-07 10.467 0.944 1.388E-07 1.000 1.388E-07 103.254 1C9.000O 8OF 98.2 7.565E-04 1.300E-07 1.520E-07 10.414 0.944 1.434E-07 1.000 1.434E-07 103.548 109.250 895.5 6.863E-04 1.186E-07 1.383E-07 10.361 0.943 1.305E-07 1.000 1.305E-07 103.842 109.500 892.9 6.6C6E-04 1.147E-07 1.336E-07 10.308 0.943 1.260E-07 1.000 1.260E-07 104.136 109.750 89C.2 6.348E-04 1.109E-07 1.287E-07 10.256 0.943 1.214E-07 1.000 1.214E-07 104.432 110.000 887.5 6.107E-C4 1.072E-07 1.242E-07 10.202 0.943 1.171E-07 1.000 1.171E-07 104.729 110.250 884.9 5.869E-04 1.037E-07 1.197E-07 10.149 0.943 1.129E-07 1.000 1.129E-07 105.026 110.500 882.2 5.626E-04 9.990E-08 1.151E-07 10.093 0.943 1.085E-07 1.000 1,085E-07 105.325 110.750 879.5 5.294E-04 9.455E-08 1.086E-07 10.009 0.943 1.024E-07 1.000 1.024E-07 105.626 111.000 876.8 5.039E-04 9.043E-08 1.037E-07 9.925 J.943 9.777E-08 1.000 9.777E-08 105.926 111.250 874.2 4.717E-04 8.514E-08 9.739E-08 9.841 0.942 9.178E-08 1.000 9.178E-08 106.227 111.500 871.5 4.374E-04 7.935E-08 9.060E-08 9.756 0.942 8.537E-08 1.000 8.537E-08 106.531 111.750 868.7 4.061E-04 7.411E-08 8.437E-08 9.671 0.942 7.948E-08 1.000 7.9488-08 106.835. 112.000 866.C 3.732E-C4 6.846E-08 7.779E-08 9.586 0.942 7.327E-08 1.000 7.327E-08 107.139 112.250 863.2 3.435E-04 6.339E-08 7.183E-08 9.501 0.942 6.764E-08 1.000 6.764E-08 107.446 112.500 860.4 3.161E-04 5.865E-08 6.632E-08 9.415 0.942 6.245E-08 1.000 6.245E-08 107.753 112.750 857.6 2.919E-04 5.449E-08 6.144E-08 9.329 0.941 5.784E-08 1.000 5.784E-08 108.061 113.000 854.8 2.700E-04 5.065E-08 5.700E-08 9.243 0.941 5.365E-08 1.000 5.365E-08 108.370 113.250 852.0 2.511E-04 4.741E-08 5.320E-08 9.156 0.941 5.006E-08 1.000 5.006E-08 Figure 19. (Continued.)

T 14E ALTITUDE VELOCITY PRESSURE RHO1 RHO2 ALPHA CORR RH02*CORR K RHO 108.681 113.500 849.3 2.344E-04 4.448E-08 4.982E-08 9,069 0,941 4.687E-08 1.000 4.687E-08 108.992 113.750 846.6 2.201E-04 4.203E-08 4.694E-08 8.982 0.941 4.415E-08 1.000 4.415E-08 109.304 114.000 843.8 2.081E-C4 3.993E-08 4.450E-08 8.895 0.940 4.186E-08 1.000 4.186E-08 109.619 114.250 841.0 1.958E-C4 3.781E-08 4.203E-08 8.807 0.940 3.952E-08 1.000 3.952E-08 109.934 114.500 838.2 1.864E-04 3.619E-08 4.014E-08 8.719 0.940 3.773E-08 1.000 3.773E-08 110.249 114.750 835.4 1.769E-04 3.457E-08 3.823E-08 8.635 0.940 3.594E-08 1.000 3.594E-08 110.567 115.000 832.6 1.688E-04 3.316E-08 3.660E-08 8.552 0.940 3.440E-08 1.000 3.440E-08 110.886 115.250 829.7 1.612E-04 3.186E-08 3.506E-08 8.470 0.940 3.295E-08 1.000 3.295E-08 111.204 115.500 826.9 1.547E-C4 3.075E-08 3.378E-08 8.387 0.940 3.174E-08 1.000 3.174E-08 111.526 115.750 82.4.0 1.484E-C4 2.968E-08 3.250E-08 8.303 0.940 3.054E-08 1.000 3.054E-08 111.849 116.000 821.2 1.429E-04 2.875E-08 3.141E-08 8.219 0.940 2.953E-08 1.000 2.9538-08 112.171 116.250 818.3 1.376E-C4 2.787E-08 3.036E-08 8.136 0.940 2.853E-08 1.000 2.853E-08 112.497 116.500 815.4 1.330E-04 2.709E-08 2.945E-08 8.051 0.940 2.769E-08 1.000 2.7698-08 113.040 116.750 810.5 1.269E-C4 2.612E-08 2.825E-08 7.910 0.940 2.656E-08 1.000 2.656E-08 113.149 117.000 809.5 1.256E-04 2.590F-08 2.801E-08 7.881 0.940 2.634E-08 1.000 2.634E-08 113.479 117.250 806.6 1.213E-04 2.517E-08 2.713E-08 7.795 0.940 2.551E-08 1.000 2.5518-08 113.809 117.500 803.7 1.176E-C4 2.454E-08 2.640E-08 7.710 0.940 2.483E-08 1.000 2.483E-08 114.140 117.750 800.8 1.137E-04 2.390E-08 2.564E-08 7.624 0.940 2.411E-08 1.000 2.411E-08 114.473 118.000 797.8 1.103E-C4 2.3308-08 2.496E-08 7.537 0.941 2.347E-08 1.000 2.347E-08 114.808 118.250 734.9 1.071E-C4 2.277E-08 2.431E-08 7.450 0.941 2.287E-08 1.000 2.287E-08 115.142 118.500 791.9 1.040E-04 2.225E-08 2.370E-08 7.376 0.941 2.229E-08 1.000 2.229E-08 115.480 118.750 788.95 1.010E-04 2.176E-08 2.310E-08 7.320 0.941 2.173E-08 1.000 2.1738-08 115.819 119.000 785.9 9.817E-05 2.1288-08 2.255E-08 7.264 0.941 2.121E-08 1.000 2.121E-03 116.157 119.250 782.5 9.538E-C5 2.083E-08 2.199E-08 7.207 0.941 2.069E-08 1.000 2.069E-08 116.500 119.500 779.9 9.292E-C5 2.041E-08 2.151E-08 7.150 0.941 2.024E-08 1,000 2.024E-08 o'\ 116.842 119.750 776.8 9.049E-05 2.002E-08 2.103E-08 7.093 0.941 1.979E-08 1.000 1.979E-08 0 117.185 120.000 773.8 8.813E-C5 1.962E-08 2.0568-08 7.036 0.941 1.935E-08 1.000 1.935E-08 117.532 120.250 77C.7 P.559E-C5 1.919E-08?.005E-08 6.978 0.941 _1.887E-08 1.000 1.887E-08 117.880 120.500 767.7 8.340E-05 1.8818-08 1.961E-08 6.920 0.942 1.846E-08 1.000 1.846E-08 118.228 120.750 764.6 8.120E-C5 1.845E-08 1.917E-08 6.911 0.942 1.805E-08 1.000 1.8058-08 118.579 121.000 761.5 7.91SE-0S 1.808F-08 1.8768-08 6.929 0.942 1.768E-08 1.000 1.7688-08 118.931 121.250 758.3 7.707E-C5 1.774E-08 1.835E-08 6.947 0.942 1.729E-08 1.000 1.729E-08 119.284 12L.500 155.2 7.457E-C5 1.734F-08 1.7928-08 6.964 0.943 1.690E-08 1.000 1.6908-08 119.641 121.750 752.1 7.335E-C5 1.709E-08 1.761E-08 6.982 0.943 1.661E-08 1.000 1.661E-08 119.r,97 122.000 748.9 7.129E-C5 1.670E-08 1.718E-08 7.000 0.944 1.622E-08 1.000 1.6228-08 120.356 122.250 745.8 66.954E-C5 5 1.641E-08 1.683E-08 7.085 0.944 1.589E-08 1.000 1.5898-08 120.717 122.500 742.6 6.777E-C5 1.607E-08 1.647E-08 7.172 0.945 1.556E-08 1.000 1.5568-08 121.079 122.750 735.5 6.622E-C5 1.5838-08 1.616E-08 7.259 0.945 1.528E-08 1.000 1.5288-08 121.444 123.000 736.3 6.454E-C5 1.551E-08 1.582E-08 7.346 0.946 1.496E-08 1.000 1.496E-08 121.810 123.250 733.1 6.299E-O5 1.525E-08 1.551E-08 7.434 0.946 1.467E-08 1.000 1.4678-08 122.177 123.500 72C.8 6.141E-C5 1.455E-08 1.519E-08 7.522 0.947. 1.438E-08 1.000 1.438E-08 122.54F 123.750 726.6o 5.995E-C5 1.470E-08 1.489E-08 7.611 0.947 1.411E-08 1.000 1.411E-08 122.919 124.000 723.4 5.849E-05 1.442E-08 1.459E-08 7.701 0.948 1.383E-08 1.000 1.383E-08 123.292 124.250 7720.2 5.710E-CS 1.419E-08 1.431E-08 7.790 0.948 1.357E-08 1.000 1.357E-08 123.668 124.500 717.C 5.575E-C5 1.393E-08 1.404E-08 7.880 0.949 1.332E-08 1.000 l,332E-08 124.045 124.750 713.7 5.430E-05 1.367E-08 1.373E-08 7.971 0.949 1.304E-08 1.000 1.3048-08 124.425 125.000 710.4 5.317E-05 1.3468-08 1.7351E-08 8.062 0.950 1.284E-08 1.000 1.284E-08 Figure 19. (Continued.)

COMMUTATOR VALU-ES. T I fE CHL 1. CHL 4 CHL 5 48.786 3.522'2.503 3.402 -68.147. 3.459 2.503 3.346, 78.777 3.462 2.503 2,947 — 87.458' 3.459 2.503 2.412 96.318 3.454 2.503 1.993 1 — 03.349 3.455 2.503 1-.45-E: 113.020 3.456 2.503 1.063 ERROR RETURN, Figure 19. (Continued) HJ

SPACE PHYSICS RESEARCH LABORATORY THE UNIVERSITY OF PICHIGAN ANN ARBOR, MICHIGAN 17:47.15 DECEMBER -18,1969 14.386 HOUSEKEEPING LAUNCH TIME: 20: 4:5S.815 Z INPUT FILE 1 CHANNEL INCEX 3 TAPE ID: SPRL NASA 14.386 12/12/69 8020 F1 OB Q CALIBRATE LEVELS: 5.003 C.C04 NO TEMPERATURE CCRRECTICN WILL EE MACE COMMUTATOR VALUES TIME CHL 1 CHL 4 CHL - 5 47.355 C. 005 4.974 4.505 61.136 O.OC7 4.969 3.845 74.957 0,008 4.973 3.224 68.77,8 0.027 4.976 2.873 102.609 0.006 4.970 2.753 116.460 0.001 4.968 2.726 130.341 0.007 4.972 2.77S 144.242 0.005 4.967 2.863 158.152 0.005 4.968 2.972 172.113 O.C10 4.967 3.06E 186.104, -0.002 4,975 3.18C 200.115 -0.0,02 4.964 3.272 214.166 0.010 4.970 3.379 228.246 0.013 4.966 3,467 242.357 -0.005 4.970 3.552 256.498 0.004 4,978 3.646 270.649 0.009 4.974 3.715 284.839 0.018 4.975 3,784 299.050 0.010 4.967 3.832 313.291 C.008 4.970 3.908 327 592 0.009 4.972 3.S63 341.932 -0.001 4.971:3.994 ERROR RETURN. Figure 19. (Concluded.)

5.5. OBTAINING FINAL DATA An atmospheric density profile for the whole flight can be obtained from the density data given by the PITOT program. At high altitudes the profile consists of atmospheric density calculated by using free molecular flow theory. As we trace down the altitude profile, we enter the transition region, and we use the corresponding values of atmospheric density. At the end of the transition region and down to the bottom of the density profile, the value of atmospheric density used is that calculated from continuum flow theory. From the resulting atmospheric density profile, values of density and altitude are recorded at 0.5 km intervals. A value for atmospheric temperature at the highest altitude is estimated with the aid of an atmospheric model or the U. S. Standard Atmosphere, 1962. The estimated temperature is used as the starting temperature for the density integration. Atmospheric temperature and pressure profiles are calculated by means of a computer program written for the IBM 360/67 of the MTS, called FLOP. Inputs to FLOP (Final Listed Output and Plot) are (1) altitude and density in km and kg/m3, respectively, and from high to low altitudes, and (2) starting temperature or reference temperature in ~K. After integrating the atmospheric density profile (Equation (28)), atmospheric temperature and pressure are calculated by means of Equations (30) and (31), respectively. Finally, the ratios of atmospheric density and pressure to the corresponding values given by the U. S. Standard Atmosphere, 1962 are calculated, and the difference between the calculated atmospheric temperature and the temperature given by the U. S. Standard Atmosphere, 1962 is determined. An abbreviated flow chart of the program is given in Figure 20. The output from the program is shown in Figure 21. 65

READ HEADING INFORMATION (FIRST FORTY COLUMNS OF FIRST SEVEN LINES) REFERENCE TEMPERATURE (T1) ORDERED ALTITUDE-DENSITY PAIRS (HIGHEST ALTITUDE FIRST), NUMBER OF PAIRS (NUM) CENTER SEVEN HEADINGS ON TTY PAGE OF 80 COLUMNS p1 = p1kT1 PI- 1 n>NUM n. = n+i ^ ^ ^ -- i_________ _________ PRINT RESULTS (LOWEST ALTITUDE FIRST) F —-------------— I_______________________ ALTITUDE, DENSITY, TEMPERATURE, ~n n (h h (h -P(hi- PRESSURE, DENSITY RATIO, PRESSURE 2 i- i- RATIO, TEMPERATURE DIFFERENCE 01 Api goro p(h (r0 + h+1) (r + P(h.) 0 C ih+) 0 ^) ^P(h j 0 kT - P kT A _i PLOT ALTITUDE VS. PRESSURE RATIO fl m 1 k1 rF, \Apl] 1PLOT ALTITUDE VS. DENSITY RATIO T IP kT +m A n kP__L' _1 kJ 1 __ PLOT ALTITUDE VS. TEMPERATURE DENSITY RATIO (n) = Pn/P STD PLOT ALTITUDE VS, TEMPERATURE DIFFERENCE PRESSURE RATIO (n) = p /P STD n n DELTA T (n) = Tn-T STD ---— 20 —FLP-abbeviate —lowchartSTOP Figure 20. FLOP abbreviated flow chart.

SPACE PHYSICS RESEARCH LABORATORY THE UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN 12:00.55 DECEMBER 17,1969 NASA 14.386 19 NOVEMBER 1968 15:04:59.815 EST 20:04:59.815 GMT WALLOPS ISLAND, VIRGINIA LAT. 37 DEG 50 MIN N LONG. 75 DEG 29 MIN W PRESSURE RATIO = P/P STD. DENSITY RATIO = RHO/RHO STD. DELTA T = T-T STD. ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE DELTA T KM KG/CU-M K TORR RATIO RATIO 30.0 1.76E-02 222.1 8.42E 00 0.96 0.94 -4.4 30.5 1.62 E-02 223.6 7.80E 00 0.95 0.94 -3 4 31.0 1.49E-02 225.5 7.24E 00 0.94 0.94 -2.0 31.5 1.38E-02 225.9 6.72E 00 0.95 0.94 -2 1 32.0 1.26E-02 229.7 6.23E 00 0.93 0.93 1.2 52.5 1.16E-02 231.9 5.79E 00 0.93 0.94 2.3 33.0 1.10E-02 227.2 5.38E 00 0.95 0.93 -3.8 33.5 1.00E-02 232.2 5.OOE 00 0.93 0.93 -0.1 34.0 9.20E-03 234.8 4.65E 00 0.93 0.93 1.1 34.5 8.47E-03 23574 4.33E 00 0.93 0.94 2.3 35.0 7.95E-03 235.5 4.03E 00 0.94 0.94 -1.0 35.5 7.48 E-03 2329 3.75E 00 0.95 0.94 -5.0 36.0 6.96E-03 232.8 3.49E 00 0.96 0.93 -6.5 36.5 6.45E-03 233.6 3.25E 00 0.96 0.95 -7.0 37.0 5.90E-03 237.8 3.02E 00 0.95 0.93 -4.2 37.5 5.50E-03 23576 2.81E 00 0.95 0.93 -5.9 38.0 5.12E-03 237.7 2.62E 00 0.95 0.93 -7.1 38.5 4.72E-03 240.3 2.44E 00 0.95 0.93 -5.9 39.0 4.35E-03 243.1 2.28E 00 0.94 0.92 -4.5 39.5 4.01E-03 246.2 2.13E 00 0.93 0.92 -2.8 40.0 3.73E-03 247.2 1.99E 00 0.93 0.92 -3.2 40.5 3.46E-03 248.9 1.86E 00 0.93 0.92 -2.8 41.0 3.19E-03 252.4 1.73E 00 0.92 0.92 -0.7 41.5 2.93E-03 257.3 1.62E 00 0.91 0.92 2.8 42.0 2.74E-03 257.7 1.52E 00 0.92 0.92 1.8 42.5 2.54E-03 260.4 1.42E 00 0.91 0.93 3.2 43.0 2.37E-03 261.7 1.34E 00 0.91 0.92 3.1 43.5 2.21E-03 263.2 1.25E 00 0.91 0.92 3.2 44.0 2.10E-03 259.7 1.17E 00 0.93 0.92 -1.7 44.5 1.97E-03 259.4 1.10E 00 0.94 0.93 -3.4 45.0 1.86E-03 257.4 1.03E 00 0.94 0.92 -6.8 45.5 1.75E-03 256. 3 9.66E-01 0.95 0.92 -9.3 46.0 1.63E-03 257.7 9.05E-01 0.95 0.92 -9.2 FimLre 21. FLOP output format. 65

NASA 14.386 2 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE DELTA T KM KG/CU-M K TORR RATIO RATIO 46.5 1.53E-03 257.2 8.48E-01 0.96 0.92 -11.1 47.0 1.44E-03 255.9 7.94E-01 0.96 0.91 -13.8 47.5 1.35E-03 255.6 7.43E-01 0.96 0.91 -15.0 48.0 1.26E-03 256.4 6.96E-01 0.95 0.91 -14.2 48.5 1.17E-03 258.7 6.52E-01 0.94 0.90 -11.9 49.0 1.09E-03 260.2 6. 1 E-01 0.94 0.90 -10.4 49.5 1.01E-03 263.4 5.73E-01 0.93 0.90 -7.2 50.0 9.51E-04 262.4 5.37E-01 0.92 0.90 -8.2 50.5 9.03E-04 259.1 5.04E-01 0.94 0.90 -11.5 51.0 8.51E-04 257.6 4.72E-01 0.94 0.89 -13.0 51.5 8.00E-04 256.7 4.42E-01 0.94 0.89 -13.9 52.0 7.52E-04 255.7 4.14E-01 0.94 0.89 -14.9 52.5 7.10E-04 253.6 3.88E-01 0.94 0.88 -17.0 53.0 6.64E-04 253.8 3.63E-01 0.94 0.88 -15.7 53.5 6.15E-04 256.6 3.40E-01 0.92 0.88 -11.9 54.0 5.76E-04 256.6 3.18E-01 0.91 0.87 -11.0 54.5 5.44E-04 254.4 2.98E-01 0.91 0.87 -12.2 55.0 5.09E-04 254.5 2.79E-01 0.91 0.87 -11.1 55.5 4.73E-04 256.5 2.61E-01 0.90 0.87 -8.1 56.0 4.43E-04 256.5 2.45E-01 0.89 0.87 -7.1 56.5 4.17E-04 255.2 2.29E-01 0.89 0.87 -7.4 57.0 3.90E-04 255.5 2.15E-01 0.88 0.86 -6.2 57.5 3.68E-04 253.5 2.01E-01 0.89 0.86 -7.2 58.0 3.45E-04 253.1 1.88E-01 0.88 0.86 -6.6 58.5 3.25E-04 251.4 1.76E-01 0.88 0.86 -7.3 59.0 3.04E-04 251.4 1.65E-01 0.88 0.86 -6.3 59.5 2.87E-04 249.1 1.54E-01 0.88 0.86 -7.7 60.0 2.70E-04 247.5 1.44E-01 0.88 0.86 -8.3 60.5 2.53E-04 246.8 1.35E-01 0.88 0.85 -8.0 61.0 2.40E-04 243.0 1.26E-01 0.89 0.85 -10.8 61.5 2.27E-04 239.7 1.17E-01 0.89 0.85 -13.1 62.0 2.13E-04 238.1 1.09E-01 0.89 0.85 -12.9 62.5 1.99E-04 237.6 1.02E-01 0.88 0.84 -11.5 63.0 1.86E-04 236.8 9.49E-02 0.87 0.84 -10.3 63.5 1.74E-04 255.9 8.84E-02 0.87 0.83 -9.5 64.0 1.63E-04 234.5 8.23E-02 0.87 0.83 -8.7 64.5 1.53E-04 232.5 7.66E-02 0.86 0.853 -8.7 65.0 1.43E-04 231.5 7.13E-02 0.86 0.83 -7.8 65.5 1.35E-04 228.0 6.63E-02 0.86 0.83 -9.3 66.0 1.27E-04 225.1 6.16E-02 0.86 0.83 -10.3 66.5 1.19E-04 222.9 5.71E-02 0.86 0.82 -10.5 67.0 1.11E-04 221.7 5.30E-02 0.85 0.82 -9.7 67.5 1.05E-04 217.2 4.91E-02 0.86 0.82 -12.3 68.0 9.70E-05 217.7 4.55E-02 0.85 0.82 -9.8 68.5 8.87E-05 220.5 4.21E-02 0.83 0.81 -5.1 69.0 8.23E-05 220.3 3.91 E-02 0.82 0.81 -3.3 69.5 7.70E-05 218.2 3.62E-02 0.82 0.81 -3.5 70.0 7.24E-05 214.9 3.35E-02 0.83 0.81 -4.8 70.5 6.74E-05 213.5 3.10E-02 0.82 0.81 -4.2 71.0 6.32E-05 210.4 2.86E-02 0.83 0.81 -5.4 71.5 5.92E-05 207.4 2.64E-02 0.83 0.80 -6.4 Figure 21. (Continued) 66

NASA 14.386 3 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE DELTA T KM KG/CU-M K TORR RATIO RATIO 72.0 5.54E-05 204.4 2.44E-02 0.83 0.80 -7.5 72.5 5.20E-05 200.5 2.25E-02 0.84 0.80 -9.4 73.0 4.87E-05 196.8 2.06E-02 0.84 0.80 -11.2 73.5 4.56E-05 192.9 1.90E-02 0.85 0.79 -13.1 74.0 4.20E-05 192.1 1.74E-02 0.84 0.79 -12.0 74.5 3.73E-05 198.6 1.60E-02 0.80 0.79 -3.5 75.0 3.30E-05 206.7 1.47E-02 0.76 0.79 6.5 75.5 2.92E-05 215.9 1.36E-02 0.72 0.79 17.7 76.0 2.69E-05 217.0 1.26E-02 0.72 0.80 20.8 76.5 2.45E-05 220.7 1.16E-02 0.71 0.80 26.4 77.0 2.25E-05 222.9 1.08E-02 0.70 0.81 30.6 77.5 2.10E-05 221.6 1.00E-02 0.71 0.82 31.2 78.0 1.94E-05 222.5 9.30E-03 0.71 0.85 34.1 78.5 1.78E-05 225.2 8.63E-03 0.70 0.85 38.7 79.0 1.67E-05 222.8 8.01 E-0 0.71 0.86 38.3 79.5 1.57E-05 219.8 7.43E-03 0.72 0.87 37.2 80.0 1.47E-05 217.5 6.89E-03 0.74 0.89 36.9 80.5 1.37E-05 216.1 6.38E-03 0.75 0.90 35.5 81.0 1.28E-05 214.1 5.90E-03 0.77 0.91 33.5 81.5 1.19E-05 213.0 5.46E-03 0.79 0.93 32.4 82.0 1.09E-05 215.2 5.05E-03 0.79 0.94 34.6 82.5 1.01E-05 214.9 4.68E-03 0.80 0.95 34.3 83.0 9.44E-06 212.8 4.33E-03 0.82 0.97 32.2 83.5 8.85E-06 209.8 4.00E-03 0.84 0.98 29.2 84.0 8.40E-06 203.9 3.69E-03 0.88 0.99 23.3 84.5 7.90E-06 199.7 3.40E-03 0.91 1.00 19.1 85.0 7.20E-06 201.7 3.13E-03 0.90 1.01 21. 1 85.5 6.42E-06 208.5 2.88E-03 0.88 1.02 27.9 86.0 5.64E-06 219.6 2.67E-03 0.85 1.04 39.0 86.5 5.21E-06 220.5 2.47E-03 0.86 1.05 39.9 87.0 4.83E-06 220.5 2.29E-03 0.88 1.07 39.9 87.5 4.52E-06 218.5 2.13E-03 0.90 1.09 37.9 88.0 4.18E-06 219.0 1.97E-03 0.91 1.11 38.4 88.5 3.91E-06 216.9 1.83E-03 0.94 1.13 36.3 89.0 3.67E-06 214.0 1.69E-03 0.96 1.14 33.4 89.5 3.43E-06 211.7 1.56E-03 0.99 1.16 31.1 90.0 3.18E-06 211.1 1.45E-03 1.00 1.18 30.5 905 2.97E-06 208.9 1.354E-03 1.03 1.19 26.8 91.0 2.77E-06 206.8 1.25E-03 1.07 1.21 23.2 91.5 2.57E-06 205.6 1.14E-03 1.09 1.22 20.5 92.0 2.36E-06 206.6 1.05E-03 1.10 1.22 20.0 92.5 2.19 E-06 205.4 9.69E-04 1.13 1.23 17.3 93.0 2.07E-06 200.3 8.93E-04 1.18 1.24 10.7 93.5 1.95E-06 197.6 8.22E-04 1.21 1.24 6.5 94.0 1.77E-06 198.2 7.56E-04 1.21 1.25 5.6 94.5 1.59E-06 203.1 6.96E-04 1.20 1.25 9.1 95.0 1.46E-06 203.9 6.41E-04 1.21 1.26 8.4 95.5 1,34E-06 204.8 5.91E-04 1.22 1.26 7.8 96.0 1.24E-06 204.1 5.45E-04 1.23 1.26 5.7 96.5 1. 5E-06 202.9 5.03E-04 1.25 1.27 3.0 97.0 1.08E-06 198.9 4.63E-04 1.28 1.27 -2.5 Figure 21. (Continued) 67

NASA 14.386 4 ALTITUDE DENSITY TEMP. PRESSURE DENSITY PRESSURE DELTA T KM KG/CU-M K TORR RATIO RATIO 97.5 1.01E-06 195.6 4.25E-04 1.31 1.26 -7.2 98.0 9.40E-07 193.0 3.91 E-04 1.4 1.26 -11.3 98.5 8.78E-07 189.5 3.58E-04 1.36 1.25 -16.2 99.0 8.20E-07 185.7 3.28E-04 1.39 1.24 -21.5 99.5 7.68E-07 181.2 3.OOE-04 1.42 1.23 -27.4 100.0 7.15E-07 177.5 2.73E-04 1.44 1.21 -32.5 100.5 6.67E-07 173.1 2.49E-04 1.46 1.19 -39.3 101.0 6.15E-07 170.5 2.26E-04 1.48 1.17 -44.4 101.5 5.60E-07 169.9 2.05E-04 1.47 1.14 -47.3 102.0 5. OE-07 172.8 1.86E-04 1.43 1.12 -46.8 102.5 4.40E-07 178.7 1.69E-04 1.37 1.10 -43.3 103.0 3.84E-07 187.0 1.55E-04 1.31 1.08 -37.4 103.5 3.31E-07 199.2 1.42E-04 1.22 1.07 -27.6 104.0 2.86E-07 212.7 1.31E-04 1.15 1.07 -16.5 104.5 2.52E-07 223.8 1.21E-04 1.10 1.06 -7.7 105.0 2.31E-07 226.9. 13E-04 1.09 1.05 -7.0 105.5 2. 1E-07 228.8 1.05E-04 1.09 1.05 -7.4 106.0 1.99E-07 227.8 9.77E-05 1.11 1.04 -10.8 106.5 1.87E-07 225.4 9.08E-05 1.12 1.04 -15.5 107.0 1.75E-07 223.8 8.44E-05 1.14 1.03 -19.4 107.5 1.65E-07 220.3 7.83E-05 1.15 1.02 -25.2 108.0 1.54E-07 219.0 7.26E-05 1.17 1.02 -28.8 108.5 1.44E-07 217.1 6.73E-05 1.17 1.01 -33.0 109.0 1.34E-07 216.2 6.24E-05 1.18 1.00 -36.2 109.5 1.25E-07 214.7 5.78E-05 1.18 0.98 -40.0 110.0 1.17E-07 212.3 5.35E-05 1.19 0.97 -44.7 110.5 1.08E-07 212.8 4.95E-05 1.19 0.95 -48.9 111.0 9.74E-08 218.6 4.59E-05 1.17 0.94 -47.8 111.5 8.52E-08 252.2 4.26E-05 1.10 0.93 -38.9 112.0 7.30E-08 253.2 3.98E-05 1.02 0.92 -22.6 112.5 6.25E-08 277.9 3.74E-05 0.94 0.92 -2.6 13.0 5.40E-08 303.9 3.53E-05 0.88 0.92 18.7 113.5 4.71E-08 330.7 3.36E-05 0.82 0.92 40.9 114.0 4.19E-08 354.3 3.20E-05 0.79 0.93 59.8 114.5 3.73E-08 380.5 3.06E-05 0.75 0.94 81.3 115.0 3.42E-08 397.8 2.93E-05 0.74 0.95 94.0 115.5 3.17E-08 412.1 2.81E-05 0.73 0.96 103.7 116.0 2.94E-08 427.2 2.71E-05 0.73 0.97 114.2 116.5 2.78E-08 434.9 2.60E-05 0.75 0.98 117.3 117.0 2.61E-08 446.2 2.51E-05 0.74 1.00 124.0 117.5 2.47E-08 454.5 2.42E-05 0.74 1.01 127.7 1180 2.33 E-08 464.9 2.33E-05 0.75 1.02 133.6 118.5 2.22E-08 471.1 2.25E-05 0.76 1.03 135.3 119.0 2.11E-08 478.8 2.18E-05 0.77 1.05 138.4 119.5 2.01E-08 485.7 2.10E-05 0.77 1.06 140.7 120.0 1.95E-08 489.1 2.03E-05 0.79 1.08 139.6 120.5 1.85E-08 493.4 1.97E-05 0.81 1.09 134.6 121.0 1.76E-08 501.8 1.90E-05 0.83 1.10 133.6 121.5 1.70E-08 502.8 1.84E-05 0.86 1.11 125.3 122.0 1.62E-08 510.7 1.78E-05 0.88 1.12 123.9 122.5 1.56E-08 513.6 1,73E-05 0.90 1.13 117.5 123.0 1.50E-08 517.4 1.67E-05 0.93 1.14 112.0 123.5 1.45E-08 518.5 1.62E-05 0.95 1.14 103.9 124.0 1.39E-08 524.2 1.57E-05 0.97 1.15 100.3 124.5 1.33E-08 531.0 1.52E-05 0.98 1.16 97.8 125.0 1.28E-08 535.0 1.47E-05 1.00 1.17 92.6 Figure 21. (Continued) 68

GEOMETRIC ALTITUDE (KM) 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 110.00 120.00 O tt P ~-* rn, *0 ) C.F -1 \ ~s i m~ 21. (Cnine', o i s ~ I)il o Figure 21. (Continued)

GEOMETRIC RLTITUDE (KM) 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 110.00 120.00 0 0 ^ D. 0I..-', S~ 0oGo o-$~~~~~~~~~~~~~~~~~ ~ S S -S 3-1 * a ~~~o ~~ ~~~~igr 51 5Cniie. 5500 Figure 21. (Continued)

GEOMETRIC RLTITUDE (KM) 30.00 l0.00 50.00 60.00 70.00 80.00 90.00 100.00 110.00 120.00 Z33 ~~~~~~~~~~O-4 m Lo 0 I-A 10 )Figure 21. (Continued f) S fo~~ ~~ll =~Fg~. 21 ( in ) o o

GEOMETRIC RLTITUDE (KM) 30.00 10. 00 50.00 60.00 70.00 80.00 90.00 100.00 110.00 120.00 -i * U) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~-. ri n ~1 =O e: -0 rrD 11 3I oS 08 L. ~ Co o 06 ~ S I * - * S Figure 21. (Concluded)

6. REFERENCES Ainsworth, Jo E., D. F. Fox, and H. E. LaGow, "Upper Atmosphere Structure Measurement Made with the Pitot-Static Tube," Journal of Geophysical Research, 66, No. 10, pp. 3191-3212, 1.961. Breckenridge, Sally, "Evaluation of the Main Geomagnetic Field by Means of Spherical Harmonic Analysis," University of Michigan Internal Note and Program, October 28, 1965. Cain, Joseph Co, W. E. Daniels, Shirley Jo Hendricks, and Duane C. Jensern, "An Evaluation cf the Main Geomagnetic Field, 1940-1962, Journal of Geophysical Research, 70, Noo 15, P 364-7-3674, August 1, 1965o Caldwell, Jack, The Space Physics Research Laboratory Data Conditioning System, University of Michigan Engineering Report No, 1, 05776-1-E, January 1966. Handy, P, O., Design of a Radioactive Ionization Gauge for Uper Atmosphere Measurements, University of Michigan Instrumentation Report 05776-1-I, February 1970 Horvath, J. Jo, R. W. Simmons, and L. H, Brace, Theory and Implementation of the Pitot-Static Tchnque for Upper Atmospheric Measurements, University of Michigan Scientific Report NS-1, 03554, 04673-1-S, March 1.962 Pearl, J. C. and U. Vogel, Application of the Green's Function to Analysis of Internal Flows of Rarefied Gases, University of Michigan Scientific Report, 02770, to be published in 1970. Range Commanders Council, Telemetry Standards (Revised March 1966), White Sands Missile Range, New Mexico, Document 106-66 (AD 635857), April 19660 Simmons, R. W., An Introductiont to the Theory and Data Reduction Method for the Pitot-Static Technique of Upper Atmosphere Measurement, University of Michigan Scientific Report No, RS-1, 05776-1-S, March 1964. U. So Standard Atmosphere, 1962, U. S. Government Printing Office, Washingtcr:, Do C., December 1962o Wainwright, Jo Bo and K, W. Rogers, Impact Pressure Probe Response Characteristics irn High Speed Flows, with Transition Knudsen Numbers, NASA Contractor Report CR-611i9, NASA-George Co Marshall Space Flight Center, Huntsville, Alabama, February 18, 1966, 75'