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SUMMARY

Hierarchical model such as Fay—Herriot (FH) model is often used in small area estimation. The method
might perform well overall but is vulnerable to outliers. We propose a robust extension of the FH model by
assuming the area random effects follow a ¢ distribution with an unknown degrees-of-freedom parameter.
The inferences are constructed using a Bayesian framework. Monte Carlo Markov Chain (MCMC) such as
Gibbs sampling and Metropolis—Hastings acceptance and rejection algorithms are used to obtain the joint
posterior distribution of model parameters. The procedure is used to estimate the county-level proportion
of overweight individuals from the 2003 public-use Behavioral Risk Factor Surveillance System (BRFSS)
data. We also discuss two approaches for identifying outliers in the context of this application. Copyright
© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For estimating the income for small places with population less than 1000, Fay and Herriot [1]
generalized the James-Stein estimator to a regression model. In the Fay—Herriot (FH) model, both
the design-based direct estimates of small area means and the area-level random effects are assumed
to be normally distributed. Because of the central limit theorem, the distributional assumption on the
design-based direct estimates, at least for moderately large samples, is easy to justify. Comparatively,
the assumption on the random effects is hard to check and might be vulnerable to outliers. However,
Lahiri and Rao [2] showed that a second-order approximation of mean square error (MSE) of the
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empirical best linear unbiased prediction (EBLUP) of the FH estimates in Prasad and Rao [3] is
robust with respect to non-normality of the random effects under some regularity conditions. For
example, they showed that Prasad-Rao MSE is robust when the distribution of the random effects
is a ¢ with at least 9 degrees-of-freedom.

The FH model has been extended to consider other distributions for random effects. For example,
Datta and Lahiri [4] introduced a model assuming the random effects follow a scale mixture of
normal distributions where the ¢ distribution is a special case. Assuming the parameters of the scale
mixture of normal distribution are known, they theoretically derived hierarchical Bayes small area
estimates. This article extends the Datta and Lahiri approach by treating the degrees-of-freedom
as an unknown parameter. This methodology is applied to obtain county-level estimates of the
proportion of overweight individuals.

Section 2 discusses the proposed model and inference. Section 3 describes the details on model
fitting in a Bayesian framework. Section 4 describes the results from a practical application with
Behavioral Risk Factor Surveillance System (BRFSS) data [5]. Section 5 concludes with a discus-
sion of advantages and limitations of the proposed model and future research plans.

2. EXTENSION TO FAY-HERRIOT MODEL AND INFERENCE

Let y; and d;,i=1,...,n be the design-based direct estimate of the population quantity and
associated variance estimate accounting for the complex design for area i. The sampling distribution
of y; is assumed as

yi ~N(0;, d;) (1

where 0; is the quantity of our interest, the true population mean for area i.
In the FH model, it is further assumed that

0; ~N(x;B, 7%) 2

where P is a vector of regression coefficients associated with area-level covariates x; and ¢ is the
variance of the area-level random effects (or between-area variance). We propose to replace (2)
with

0; ~ t,(x; B, 7°) 3)

where p(0) ~1,(u, *) denotes a ¢ distribution with location parameter y, scale parameter o2,

degrees-of-freedom v with the density

()
()

The ¢ distribution is a member of a family of scale mixtures of normal distributions, where
0; ~N(x;B, u;), u; =0>/ x%, and }(5 is a y? random variable with v degrees-of-freedom. Another
popular member of the normal scale mixture is when u; follows a Bernoulli distribution. In this
case, the distribution of 0; is a mixture of two normal distributions. The ¢ distribution has been
used in other settings. For example, Lange et al. [6] discussed the use of the ¢ distribution for

6 _ 2 _(v+1)/2
p(Ol, 6% v) = Q+3—li)

UO'2
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error terms in linear and non-linear regressions. Pinheiro et al. [7] discussed the application of
multivariate ¢ distributions in linear mixed effects models assuming the same degrees-of-freedom
for the ¢ distributions of the error term and random effects.

The likelihood of the model (1), (3) is therefore

L=T1 p(yil6i, B, 0% v) = T Tp(i10) (01, a*, vl

1
r(v—i—l)
2

exp (_ (i — 91')2)
i=1 | /2nd; 2d; r (g) NZ

L e.m)2 —(v+1)/2
<1+ 0; —x;P) )

UO'2

The likelihood given above is analytically intractable. As we will show later, the formality of the
t distribution with random scale mixture will be computationally very useful when u; are treated
as missing data, as data augmentation can then be used to draw values from the relevant posterior
distribution.

2.1. Estimation of 0; when 6*, B, and v are known

When ¢2, B, and v are known, the posterior mean of 6; is given by

A EMi[h; f (hi)]
Oi=yi + —————— =w;yi + (1 —wx; 4
it Ty W w0l @
where
v+ 1
F( > —(v+1)/2
2 i +hi —x;P)?
hi ~N(,d;), f(hi) =—> (1 + it 2 P )
F(—)«/nvaz vo
2
u; 1/d;
wi=Ey | AL
dl' u;

and E}‘,f is with respect to the marginal posterior density of u;:
v 2 . 2 . ) 2
p(ul|ylsl37o- 7U)O(p(yl||350- 7va ul)p(ul|vvo- )

1 GM
= V@ run P\ 2 + )

where p(u;|v, ¢%) is the density of Inv — 4*(v, 62) which is

)p(uilv, %)

2 2
puilv, 62) = Mo_vu_—(v/ﬂ-l) exp —vo
’ Fw/2) 2u;
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2.2. Estimation of 0; when ¢*, B, and v are unknown

When o2, B, and v are unknown, it is possible to estimate these parameters via maximum likeli-
hood (ML) or restricted maximum likelihood (REML) approaches. Then an empirical Bayes (EB)
estimator of 0; can be obtained by replacing ¢, f, and v in (4) with the ML or REML estimates.
However, (4) does not have a closed-form solution, and numerical integration has to be applied.
Computing the MSE of @,- is difficult. Furthermore, conditional on the estimates &2, fi, and 0 as
if they are true values may underestimate the MSE of 0;. The improved MSE estimate could be
obtained by using resampling techniques such as the jackknife or bootstrap [8§—10].

3. ESTIMATION OF 6; USING FULLY BAYESIAN APPROACH

We have adopted a fully Bayesian approach to base inferences on the marginal posterior distri-
bution p(0;|data). For the fully Bayesian approach we need prior distribution for hyperparame-
ters o2, B, and v. We assume independent priors for the three hyperparameters, i.e. p(B, o2, v) =
p(B) p(6?) p(v). Following Gelman ez al. [11], we assume an improper uniform prior for ¢ and p.
Following Watanabe [12], a proper prior for v is assumed with p(B, 62, v) « p(v) where
v~ Gamma(a, ), and Gamma(a, y) denotes a Gamma distribution with mean o/y and variance
a/y* for known o and 7.

The marginal posterior distributions of 2, B, v, or 0; cannot be written explicitly. However, the
joint posterior distribution can be simulated using a Markov Chain Monte Carlo (MCMC) such as
Gibbs sampling [13, 14] or the Metropolis—Hastings algorithm [11]. Note that when v is assumed
known, we could extend Raghunathan and Rubin [15] by generating the sequence under a normal
distributional assumption using Gibbs sampling and then using the importance sampling to redraw
values from the generated sequence.

By treating u; as missing data, the implementation of MCMC becomes easier. The conditional
distributions of 02, B, or 0; involve normal, inverse XZ, or Gamma distributions. The conditional
distribution of v is not standard. We adapt a Metropolis—Hastings acceptance-rejection algorithm
proposed by Watanabe [12]. For a general discussion on this algorithm, see Chib and Greenberg [16].
The conditional distributions involved in the MCMC steps are given in the appendix.

4. COUNTY-SPECIFIC PROPORTION OF OVERWEIGHT INDIVIDUALS FROM THE
BEHAVIORAL RISK FACTOR SURVEILLANCE SYSTEM

We illustrate the model inference by estimating the county-level proportions of overweight indi-
viduals using the 2003 public-use BRFSS data [5]. We also discuss two approaches for detecting
outliers and compare the model estimates from the FH and ¢ models.

4.1. Data

The data come from two separate sources. One is the public-use data of the BRFSS, a telephone
survey on the health behaviours of US adults, conducted by the Centers for Disease Control
and Prevention (CDC). In this data example, we obtain the direct estimate y;, the proportion of
overweight individuals, and associated design-based variance estimate d;, on the county level in
the United States. Operationally, an adult is said to be ‘overweight’ if his or her body mass index
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(BMI) is over 25 where the BMI is defined as weight in kilograms divided by the square of height
in meters.

In the public-use BRFSS data, only 1051 counties, the state of Alaska, and the District of
Columbia can be identified. The identifiers for the rest of the 2061 counties were suppressed due
to confidentiality concerns. The 1053 ‘counties’ (treating Alaska and the District of Columbia as
akin to counties) comprise 81.1 per cent of the total population in the nation with a total sample
size of 200 810. The y;’s range from 0.308 to 0.819 with a median of 0.604, while standard errors
range from 0.011 to 0.143 with a median of 0.055.

The second data source is the 2000 Census from which we choose four county-level covariates
(x;). These four covariates are per cent of Hispanic population (x1;), per cent of people who have
a bachelor or higher degree among those 25 years or over (xp;), percentage of individuals taking
public transportation to work for workers 16 years and over (x3;), and the percentage of population
that is 0—-18 years old (x4;). We also considered many other variables related to the county’s
urban/rural status, Metropolitan Statistical Area (MSA) status, and various characteristics of the
population such as employment status, medium income, poverty level, and per cent of blue-collar
workers. They did not contribute much when adjusting for the other four covariates included in
the model. The four covariates are included on the log-scale to reduce the impact of skewness, and
they are standardized to reduce the burden in computing (}"7_; x;x/) 1.

4.2. Implementation of MCMC

To obtain the Bayesian estimates under the FH and ¢ models, programs were written in the GAUSS
programming language to run 2000 iterations for each of 10 independent sequences of Gibbs
sampler. After a burn-in period of the first 1000 iterations in each sequence, the convergence of
the Gibbs sampler was assessed using Gelman—Rubin statistic R [17] for every component in
0;, %, p and v. The initial values were selected from a series of uniform distributions to ensure
dispersion. For example, the initial values of 0;, ¢>, p and v are from uniform distributions on
[0, 1], (O, 1], [—20, 20], and (0, 20], respectively. The range of 0; is easy to determine since it
should be between 0 and 1. For the degrees-of-freedom v, it is almost equivalent to a normal model
when v>20. Therefore, a uniform distribution between 0 and 20 for v is good enough to cover all
of the desired possibilities. We also tried other uniform distributions with much wider ranges for
these parameters, and it did not substantially change the data analysis results.

We chose 10 independent sequences following Gelman and Rubin [17]. The rate of convergence
for the normal model is much higher than that of the corresponding ¢ model. For the normal model,
all R’s are smaller than 1.1 after 20 iterations. For the corresponding ¢t model, it takes 360 iterations
for all R’s to be smaller than 1.1.

4.3. Identifying outlying counties under normal model

We first fit the FH model to the data. The posterior mean of 6; ranges from 0.435 to 0.701 with a
mean of 0.608, while the posterior variance of 6; ranges from 0.0001 to 0.0010.

Under the FH (normal) model, the marginal distribution of y; by integrating 0; out is y; ~ N(x;J,
o2+d;). As suggested in Dempster and Ryan [18], we have ¢; (a2, B=0i—x;B)/+/ 02 +d; ~N(, 1)
where 5?(02, B) is a Mahalanobis-like distance, as defined in Lange et al. [6]. When o? and B are
replaced by the maximum likelihood estimate (MLE) &> and ﬁ, asymptotically 5,-(62, fi) ~N(, 1)
too. In a Bayesian setting with a weakly informative or non-informative prior, the posterior mode
is approximately equivalent to the MLE. For the FH model, the posterior mode can further be
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Figure 1. QQ plot of J; (6’2, ﬁ) under FH (normal) model. The straight line is the expected
line when there are no outliers.

approximated by the posterior means 6 and ﬁ, and thus 5,-(82, ﬁ) approximately follows a stan-
dard normal distribution. Therefore, J; (&2, fi) can be used to check the assumptions in the FH
model. Note that 5,-(62, ﬁ) considers not only the distance between the direct estimate y; and the
regression synthetic estimate X; ﬁ but also the reliability of the direct estimate y;, d;. Only those
areas with ‘extreme’ and relatively reliable direct estimates (i.e. large |y; — X,~ﬁ| and small d;) will
be recognized as outliers.

There is another way to identify outliers. As in You and Rao [19] and Daniels and Gatsonis [20],
we can simulate the posterior predictive distribution of a hypothetical replication of the direct
estimates. Computationally, drawing from the posterior predictive distribution is nearly effortless
given that we have the draws of 0; from its posterior distribution. For every draw of 0;, we simulate
a hypothetical replicate direct estimate from yl.rep ~N(0;, d;). The resulting draws of yl.rep represent
the posterior predictive distribution of y;.

Define a p-value for each county under the FH model as

N_1 / )i rep(j)
pi—jZ Ly, " >vil

j=1
; )
. 1 if y.reP(J)>yi
17> yi1= ’
0 otherwise
where j=1, ..., J indexes the number of replicates and J is the number of draws of yl.rep . For

county i, a plN close to 0.5 indicates a good fit of the model, a value close to 0 or 1 indicates a
lack of fit of the model. A county with plN<0.05 or plN>0.95 might be viewed as an outlier.

Figure 1 shows the Q Q plot of 9; (&2, ﬁ) under the FH (normal) model with each point represent-
ing a county. The two counties at the lower left corner show a violation of the normal distribution

Copyright © 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2699-2715
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Table I. Outlying counties and their estimates (the numbers in the parentheses are associated standard error
or posterior standard derivations).

County Vi 0; from normal PRGN ) plN 0; from 1, v=3.96 p;
A 0.361 (0.076) 0.618 (0.030) —3.674 0.952 0.549 (0.091) 0.856
B 0.309 (0.059) 0.522 (0.029) —4.044 0.962 0.412 (0.078) 0.774

County A: Logan County, KT; County B: Park County, MT.

Table II. Posterior means and standard derivations (in parentheses) of ¢2 and f from the normal
model and ¢ model with v=23.96.

County level covariates Normal model t model
Hispanic population (%) —0.0065 (0.0022) —0.0070 (0.0025)
Taking public transportation B B

B to work in workers 16 years of age or older (%) 0.0060 (0.0022) 0.0060 (0.0022)
Population 0-18 years old (%) 0.0144 (0.0019) 0.0148 (0.0021)

Bachelor degree or higher education

in those 25 years of age or older (%) —0.0278 (0.0018)  —0.0276 (0.0019)

o2 0.0010 (0.0001) 0.0005 (0.0001)

assumption. Both outlying counties have a 5i(82, fi) smaller than —3.5, and p-values plN’s greater
than 0.95. Table I gives the direct estimate, the posterior mean from the normal model, the poste-
rior mean from a ¢ model, o; (6’2, ﬁ), and plN for each of the two outlying counties, namely Logan
County, Kentucky and Park County, Montana. The two counties have direct estimates 0.3—-0.4 with
a small standard error. However, no county-level covariates can explain the low direct estimates
in these two counties. The four county-level covariates xi;, x2;, x3;, and x4; (see Table II for the
explanations on the covariates) are 1.0, 0.3, 25.7 and 9.6 per cent for Logan County, Kentucky,
2.0, 1.4, 23.5 and 23.1 per cent for Park County, Montana, compared to national estimates 12.5,
4.8, 27.1 and 24.3 per cent. Therefore, the proportion of overweight individuals is predicted to be
higher than the national level in Logan County, Kentucky, and close to the national level in Park
County, Montana.

4.4. The t model

A t model with unknown degrees-of-freedom v is then applied to the data as one approach to
accommodating outliers. The parameters o =7 = 10"* were chosen in the Gamma prior for v so
that it is only weakly informative. The posterior distribution of v is shown in Figure 2. The posterior
mean of v is 3.96 with a standard deviation 0.16 with a 95 per cent posterior confidence interval
(3.62, 4.24). Although it appears a little right-skewed, the mode of v is very close to the posterior
median 4.00.

Copyright © 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2699-2715
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Figure 2. Histogram of draws of degree-of-freedom v from its posterior distribution after
burn-in period in Gibbs sampling.

4.5. Comparison of estimates from the FH and t models

4.5.1. Small area estimates. We compare the posterior distribution of 6; and one striking difference
is in the skewness. In the FH model the posterior distribution of ; is approximately symmetric,
while in the ¢ model it is skewed except for those with a plN close to 0.5. Figure 3 shows
histograms from selected counties (including the two outlying counties) with pf\l from 0.300 to
0.962. We observe that the distribution of 0; is left skewed when plN<O.5 and right skewed when
p}V>0.5 .

Figure 4(a) shows the posterior mean of 0; from the FH model and the  model. For the majority
of the counties, the differences are small. The shrinkage effect is smaller in the ¢ model, and @i
agrees well when the direct estimate y; is in the middle of the marginal distribution of 0; values
(around 0.6). The differences between the two model estimates are mostly between —0.05 and
0.03 except for the two outlying counties. In addition, we can observe that the differences are a
monotone function of (3,-(&2, fi), as shown in Figure 4(b).

The posterior standard derivations of 0; are between 0.010 and 0.143 with a median 0.054 for
the + model, while those for the normal model are between 0.010 and 0.031 with a median 0.028.
Table II shows that the posterior standard deviations for the two outlying counties are larger under
the # model than under the normal. One explanation of the high variation is because these draws
are mostly from one tail of the ¢ distribution.

4.5.2. Estimates of 6> and p. Table II gives the estimates of ¢ and p. Note that the interpretations
of ¢ are different in the normal and r models. Therefore, it is not meaningful to compare o> under
different models.

The posterior mean and standard deviation of f from the two models do not differ much. From
both models, we can see that percentage of bachelor degrees or higher education in the population
aged 25 years or over (X4) and percentage of population 0—18 years old (x3) explain more variation

Copyright © 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2699-2715
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Figure 3. Posterior distribution of 6; from normal and # models for selected counties (the histogram on the

left is from the normal model, on the right is from the r model): (a) posterior distribution of 0; from the

normal model and ¢ model for a county with plN =0.3; (b) posterior distribution of ¢; from the normal

model and ¢ model for a county with plN =0.5; (c) posterior distribution of ; from the normal model

and ¢ model for a county with plN =0.7; and (d) posterior distribution of ¢; from the normal model and

t model for a county with plN =0.952; and (e) posterior distribution of 0; from the normal model and ¢
model for a county with plN =0.962.
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Figure 3. Continued

in the county-level proportion of overweight individuals than the other two county covariates. The
proportion of overweight individuals is positively correlated with the percentage of population 0—18
years old (x3), and negatively correlated with percentage of bachelor degrees or higher education
in people 25 years old or over (x4), per cent of Hispanic population (x;), and per cent of taking
public transportation to work among workers 16 years old or over (x2).

4.6. Goodness of fit of the FH and t models

In Section 10.2.6, Rao [21] discussed MCMC methods such as Bayes factors, posterior predic-
tive densities, and cross-validation predictive densities for model selection in a Bayesian frame-
work. Interested readers can further refer to Gelfand [22] and Berger and Pericchi [23]
for details.

We used two approaches to check the model fit. As in Datta et al. [24], we calculated the
divergence measure proposed by Laud and Ibrahim [25]:

A 1 K k) 1 K2
d@.y)=—> 10" —ylI’=—X>> 6 -’
I’lKk I’lKk i
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Figure 4. (a) Posterior mean 0,- from the normal, and ¢ model versus direct estimates. The line is what to
expect if there is no shrinkage effect. The stars are posterior mean from the normal model, the open circles

are from the ¢t model; and (b) differences between the posterior mean (A9,- from the normal and r model
and 9; (&2, B). The two points on the left upper corner correspond to the two outlying counties.

where @Ek) is the kth draw (k = 1, ..., K) of 0; in the MCMC. The divergence measure d (é, y) can
be decomposed into two components, d(é, y) = (l/nK)Z,{( Z:’ [(@:k) — @i)2+ (@)i —yi)z] where @i
is the posterior mean of ;. The first component (l/nK)Z,f Zf (951() — @,')2, denoted as d; (6, y), is
the posterior variance of 0; and the second (1/nK )Zf 3 0 —y)2=1/n)Y" 0; —yi)?, denoted
as dy (9 y), is the distance between the posterlor mean and the direct estimate y;. In general the di-
vergence measure is similar in the FH model (d (9 y) = 0.0034) and the  model (d (0 y) 0.0033).

The ¢t model has a slightly larger d; (9 y) and smaller d (9 y) (di (9 y)=0.00071, d» ((-) y)=0.0027)
than the FH model (dl(é, y) =0.00070, dz(ﬂ, y) =0.0026). This is consistent with Figures 4(a)
and (b) where it is shown that most of the posterior means of 0; do not differ much between the
two models.

Although both models fit the overall data well, the two plN’s greater than 0.95 indicate that the
FH model does not fit some of the counties well. To check the model fit for the ¢+ model, we can
define the p-value for each county under the # model as in (5). Denoting this p-value plt. we find
that plF’s are between 0.166 and 0.879 while plN’s for the normal model are between 0.088 and
0.962.

4.7. Sensitivity analysis

It is important to check the sensitivity of the data analysis with respect to the choice of prior
for the hyperparameters. Changing the values of « and y in the Gamma prior to 107> or 107>
does not substantially change the data analysis results. We can also change o to 1073 and 7 to
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DOI: 10.1002/sim



2710 D. XIE, T. E. RAGHUNATHAN AND J. M. LEPKOWSKI

2x 1074, 107*, or 5 x 107> so that the prior mean for v equal to 5, 10 or 20. These choices of
hyperparameters do not substantially change the analysis results either. The maximum absolute
relative change is 0.5 per cent in posterior mean and 10 per cent in posterior standard deviation
of 0;. The changes in the posterior mean and standard deviation of other hyperparameters are less
than 2 per cent.
Another choice is a proper prior for ¢ and B, such as p(B) ~ N(0, Zo),
2 2 bo
p(c°) ~Inv — Gamma(ag, bg) = Inv — y (Zao, %>
i.e.
ao

p(a®) = rlzo )(02)‘(“0Jr De=bo/c?
ao

The hyperparameter X can be chosen as col, where I, is a p x p identity matrix where p is the
total number of elements in B. In order to have a proper prior for o2, we need ag > 1 in the inverse
y* prior. For the prior to be diffuse, co can be a very large positive number, e.g. co = 10, g can
be a small number, e.g. ag= 1, and by can be a very small positive number, e.g. by = 1074,

Note that for the prior of v, when o= 1, it is the exponential prior proposed in Geweke [26] and
Fernandez and Steel [27]. As noted in Watanabe [12], this prior is restrictive since the mean and
variance are 1/y and 1/y2, respectively.

In Gelman et al. [11], an uniform prior is assumed for 1/v on [0,1], which is equivalent to an
improper prior on v, i.e. p(v) &< 1/v%, v > 1. It is equivalent to the gamma prior when o= —1 and
y»=0. Although it is not a special case of Gamma prior since o and y are positive for a Gamma
distribution, we can follow the same argument in Watanabe [12] to conclude that the conditional
distribution of v is unimodal when n > 4.

In general, we should consider refining the choice of prior if the inference depends strongly
on some particular parameters, for example, o> or v. Under this situation, one can first obtain an
empirical Bayesian estimator of 0; treating B, 6> and v fixed to explore which parameters have the
most impact on estimating ;. See Gelman et al. [11] for a general discussion.

We performed sensitivity analysis by constructing inferences about 0; under various prior distri-
butions. The differences were quite minimal suggesting that the choice of diffuse proper or improper
prior has little effect on the estimates.

5. DISCUSSION

In this article, we extended the FH model by using a ¢ distribution to model the small area mean
where there are outliers. Compared to the FH model, there are three properties of the  model with
unknown degrees-of-freedom that are arguably advantageous:

1. There is less shrinkage in the ¢ model. When a2 and B are known, the posterior mean
~FH
of 0; from the FH model is given by 0; :wlFHy,' + (1 - wlFH)x,-B where wlFHz
~FH
1/d;/(1/d; + 1/6%) =6?/(c* + d;). The estimate 0; is called the ‘shrinkage’ estimator
because it shrinks the direct estimator y; toward the synthetic estimator x;p. The degree of
shrinkage can also be measured by wlFH in the sense that a high wlF H corresponds to a lower
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degree of shrinkage. Note that the weight wiFH in the FH model does not depend on the
direct estimator y; or the regression-synthetic estimator x;p. Therefore, as long as two direct

~FH
estimators have equal d;’s, the degree of shrinkage in 0; will be the same. However, for a

. . . . ~FH S .
direct estimator with larger |y; —x; |, we will expect a larger |y; — 0. |, which is the distance

1

between the direct estimator and the shrinkage estimator g)fH In many cases, this property
is not ideal. In the r model the shrinkage to the extreme direct estimators is limited. From
(4), we can see that @i from the ¢t model can also be expressed as a weighted average of y;
and x; B. Further analysis can show that w;, the weight associated with the direct estimator
y; in the ¢ model, is a non-decreasing function of |y; — x;p| given 62 and d;. This suggests
that when two direct estimators have the same sampling variance, the estimator @)i from the ¢
model gives more weight to the direct estimator with larger |y; —x; | while a large |y; — x;p|
occurs when x; B does not predict y; well.

When ¢ and B are unknown, @i is not a convex combination of y; and x; any more since
w; is a function of y; and x;P for any finite v. However, the data example shows that the
weight on the direct estimate y; is on average higher in a r model than that in the normal
model.

2. The degree of shrinkage is decided by data, as we assumed the degrees-of-freedom v unknown.
We observe that w; is a non-increasing function of v. This indicates the weight on a given
direct estimate y; with in a r model is higher than that in a normal model when given ¢ and
B. The subjectivity of fixing the degrees-of-freedom in advance is avoided.

3. The posterior standard deviations of small area estimates incorporate the uncertainty of the
degrees-of-freedom naturally in the fully Bayesian framework.

There are also some limitations of the  model approach and some areas that seem to require
further study.

1. Our model assumes independent sampling errors among areas. Due to the complex nature
of the sampling designs, the sampling errors are sometimes correlated, as when the small
areas cut across clusters in the sampling design. Under this situation, one might consider
a multivariate model for y;, i.e. y~N(0,D) where y= (y1,...,y,), 0=(01,...,6,), D
is the sampling variance matrix of y. This is the case discussed in Datta and Lahiri [4].
Under a Bayesian framework the extension is theoretically straightforward. With the model
for O unchanged, the conditional distributions of all parameters are unchanged except for 0.
However, the computation might be intensive.

2. We assume a normal model for the direct estimate y; although y; is the mean of binary
variables indicating whether a sampled person is overweight. The normal assumption might
not hold when the sample size is small. When ignoring the complex sampling design, one
can assume a binary model for n;y;, i.e. n;y; ~Binomial(n;, 0;), where n; is the sam-
ple size from area i. We can further assume logit(0;) ~ f, (x;P, 62). Rao [21] discussed
the normal case where logit(0;) ~ N(x;p, 62) in Section 10.11.2. The conditional distri-
bution of 0; is not standard and algorithms such as Metropolis—Hastings can be used to
obtain the joint posterior distributions. When the survey sampling design is complex, fur-
ther investigation is needed to investigate how to take it into consideration. A possibil-
ity is to use the effective sample size in each area to replace the actual sample size
in n;y; NBin(l’l,‘, 91)
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APPENDIX

Under the ¢ model, the conditional distributions of the model parameters are

n 1
(1) B|)’i,xi70i,gzyui,i=1, nNN( <Z ) )

where

) 02|y,~,x,~,9i,|3,u,~,i=1,...,n~Gamma<nv+1 i )
i Xib
3) 0;yi.xi, B, 0% ui, i=1,....,n~N d; ul ' ! i
& w @
if y; is not missing
01y, xi, B, 0% ui, i=1,...,n~NXP, u;)

if y; is missing

1
4 uilyi,xi, 0;, B, o, i=1,...,n~Inv — }(2 (v +1, m[(@,- - Xili)2 + vaz])
(5) Conditional distribution of v:

n
lyi, X, B0 ui, i=1,...,n o< p) [ puilv, 6%
i=1

where
o0
p(v) = F)Zoc) v lexp(—ypv) and  uilv, 0® ~Inv — > (v, 6%)
i.e.
) 2N (v/2)"/? o2/, (v/2+1) _Wz
puilv, 6%) = ——— F(v/z) ) exp %
Therefore,

In f(olyi,Xi, B, 0%, ui, i=1,...,n)=const. + %m (%) —al (g) v+ @ —Dlnv

L Uu; a2
In—=+— )+
=38 (e )

where

1
~2
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Watanabe [12] proved that this conditional distribution is unimodal if 20 +n > 2, which is
satisfied as long as the number of areas n > 2.

Suppose there is a candidate-generating distribution 4 (v) such that it is possible to sample
directly from /2 (v) by some known method. Watanabe [12] proposed to use a normal distribution
as h(v) with mean v* — A/B and variance —1/B where

n v* v* o—1
Sl t1—y (=)=
Lomam s ()f

_n L1 () st
2l 27\ 2 v
=v

Y(v)=0In T'(v)/dv, and ¥/ (v) = 0 (v)/dv. Note that (v) and /' (v) are called psi (digamma)
and trigamma function, respectively.

LetIn f*(v) = (nv/2)In(v/2) —nl'(v/2) — v+ (¢— 1) In v, and In ~*(v) = (nv*/2) In(v*/2) —
nT(v*/2) — nv* + (¢ — 1) Inv* + A(v — v*) + (B/2)(v — v*)?. Denote the jth sampled value of
v by v; and consider the (j + 1)th sampling. The Metropolis—Hastings algorithm is as follows.

A dln f(v)
dv

. & In f(v)
dv?

a. Sample a candidate v, from the candidate-generating distribution #(v)and a value r; from
the uniform distribution on (0, 1).
b. If r; < f*(vy)/h*(vy), return vy ; else, go to a.
c. If f*(vj)<h*(vj), thenlet g =1;
If f*(vj)>h*(v;) and f*(vy)<h*(vy), then let g =h*(v;)/ f*(v));
If f*(vj) = h*(vj) and f*(vy) = h*(vy), then let g=min{[ f* (v )™ (W)]1/[f* ()" ()], 1};
d. Sample a value r from the uniform distribution on (0, 1).
e. If r <gq, return v; ;1 =vy. Else, return v; 1 =v;.

To speed up the algorithm, the value of v* is selected to solve

Jln f(v) n v* v* o—1
dv . 2{“2Jr lp(z)} Nt

A

v=v

The equation might be solved by standard methods. For example, starting from v, the Newton—
Raphson algorithm involves setting the next vy =vj — (A/ B)|u*:u3" so on and so forth.

Under the FH model with a normal assumption on 0;, the conditional distributions of the model
parameters are

A~ n -1
(6) Blyi. x;, 0;, %, i=1’---,ﬂ’“N<ﬁ,<inX;) 62)
i=1

where
R n n -1
= (50) ()
i=1 i=1

@) 0'2|y,~,x,',9,~,|}, i=1,...,n~Inv—Xz(n—1, " 52>
n
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where
» 1 2
s7=-> (0; —xip)
ni—
i XiB
2 . d[ 0‘2 ]
(®) Oilyi, xi,B,0°, i=1,...,n~N i

10.

11

13.

14.

17.

18.

if ¥; is not missing
2 . 2
Oilyi,xi, p,o°, i=1,...,n~N(XB, o°)

if ¥; is missing.
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