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SUMMARY

In an individually matched case—control study, effects of potential risk factors are ascertained through
conditional logistic regression (CLR). Extension of CLR to situations with multiple disease or reference
categories has been made through polychotomous CLR and is shown to be more efficient than carrying
out separate CLRs for each subgroup. In this paper, we consider matched case—control studies where
there is one control group, but there are multiple disease states with a natural ordering among themselves.
This scenario can be observed when the cases can be further classified in terms of the seriousness or
progression of the disease, for example, according to different stages of cancer. We explore several popular
models for ordered categorical data in this context. We first adopt a cumulative logit or equivalently, a
proportional-odds model to account for the ordinal nature of the data. The important distinction of this
model from a stratified dichotomous and polychotomous logistic regression model is that the stratum-
specific nuisance parameters cannot be eliminated in this model via the conditional-likelihood approach.
We discuss a Mantel-Haenszel approach for analysing such data. We point out possible difficulties with
standard likelihood-based approaches with the cumulative logit model when applied to case—control data.
We then consider an alternative conditional adjacent-category logit model. We illustrate the methods
by analysing data from a matched case—control study on low birthweight in newborns where infants are
classified according to low and very low birthweight and a child with normal birthweight serves as a control.
A simulation study compares the different ordinal methods with methods ignoring sub-classification of
the ordered disease states. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Case—control studies are important tools in investigating the aetiology of rare diseases like cancer.
The fundamental goal is to explore association between the disease and its potential risk factors. In
modern medicine, with precise characterization of disease states in histological and morphological
terms, it is natural to note that the disease state might have more than one category, i.e. we may
have subdivisions within the ‘cases’. For example, patients diagnosed with cancer may have cancer
of stage-I, stage-II or stage-III at the time of the diagnosis which is an example of ordinal disease
categories. There are several popular models for analysing ordinal response [1] which may be
readily adapted to analyse case—control data with ordered disease categories. However, one must
be careful that the chosen prospective ordinal model leads to consistent estimation of the covariate-
response association parameters of interest, as will be obtained from the appropriate retrospective
likelihood generated by the case—control sampling design.

Matching is often implemented in a case—control design in order to avoid bias due to poten-
tial confounders. A proper statistical analysis should account for the matched design. Unmatched
analysis of matched data, ignoring the effect of matching, generally yields conservative estimates
of the relative risk [2]. Breslow ef al. [3] proposed the well-known conditional logistic regression
(CLR) method for analysing matched case—control data. Usual unconditional maximum-likelihood
(ML) inference for such finely stratified data with large number of nuisance parameters are poten-
tially subject to the Neyman—Scott phenomenon. Conditioning on the complete sufficient statistic
for the matched set specific parameters in each matched set eliminates these nuisance parameters
and the score equation based on the conditional likelihood provides the optimum estimating
function [4].

Liang and Stewart [5] extended the usual CLR methodology to polychotomous disease or
reference categories. They established that separating the disease or reference states into subgroups
and conducting CLR pairwise is less efficient than the polychotomous conditional logistic regression
(PCLR) approach. Liang and Stewart [5], Becher and Jockel [6], Becher [7], apply their methods
to matched case—control studies with two control groups, typically the hospital controls and the
population controls. Thomas et al. [8] and Durbin and Pasternack [9] apply polychotomus logistic
regression model to analyse data with multiple disease groups and one set of controls. Recently,
Sinha et al. [10] considered a Bayesian semiparametric model for analysing matched case—control
data with multiple disease states and missingness in exposure values.

None of the above papers consider the situation when the underlying probability model for
the disease incidence acknowledges a possible natural ordering of the disease states when it is
present. They all incorporate the multinomial logistic regression model as the underlying disease-
risk model. The most commonly used model for ordinal logistic regression is the cumulative logit
or the proportional odds model. One major difference between the multinomial logit model and
the cumulative logit model when applied to matched samples is that in the latter, there are no
sufficient statistics for the stratum specific nuisance parameters, so the usual conditioning technique
to eliminate the nuisance parameters does not apply. In absence of any reduction due to sufficiency,
for matched pair data with ordinal response, McCullagh [11] suggested an ingenious approach
for obtaining consistent estimates. Agresti and Lang [12] propose fitting simultaneous conditional
ML estimates with all possible binary collapsing of the ordinal response to eliminate the nuisance
parameters in order to achieve consistent estimation.

In general, there could be several approaches to analyse highly stratified ordinal data using the
proportional odds model. Liu and Agresti [13] propose a Mantel-Haenszel (MH) type estimate for
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the odds ratio (OR) in a cumulative logit model which can be adapted to 1: M matched case—control
study with ordinal disease states and a single categorical exposure. Another possible alternative
which can handle both categorical and continuous exposure is to posit the problem in a Bayesian
paradigm, and assume suitable priors on all the parameters and conduct posterior inference via
implementing a Markov chain Monte Carlo numerical integration technique. Alternatively, one
can propose a random effects model (REM) for stratification parameters akin to Hedeker and
Gibbons [14]. There are choices beyond the proportional odds model: the adjacent category logit
model for ordered data [1], the PCLR analysis ignoring the natural ordering of disease states, the
CLR analysis by collapsing the disease states into a single category. The purpose of this article is
to explore, illustrate, compare and contrast the usage and performance of these possible choices
for analysing matched case—control data.

The rest of the paper is organized as follows. Section 2 considers possible choices with the
stratified proportional odds model. Section 2.1 considers MH estimation in stratified contingency
tables with ordinal response. Section 2.2 considers a natural choice for handling stratum specific
nuisance parameters in a full Bayesian framework (Section 2.2.1). In Section 2.2.2, we discuss
the problems with the use of Bayesian method using the prospective cumulative logit link for
individually matched case—control data, specifically: (i) the failure to acknowledge the retrospective
sampling design via the prospective likelihood and (ii) selection of priors on the nuisance parameters
in finely stratified sparse data situations. In Section 3, we consider the conditional adjacent category
logit model. In Section 4, we describe the CLR and polychotomous CLR models which do not
account for the ordinal nature of the response. The analysis of a real data set by various methods
is considered in Section 5. Section 6 presents the results of a simulation study. Section 7 contains
concluding remarks and final recommendations.

2. THE STRATIFIED PROPORTIONAL ODDS MODEL

Let us first describe the general data structure used throughout the paper. We consider a 1:M
matched case—control study with n matched sets. Let ¥;;, i=1,...,n, j=1,..., M + 1, denote
the disease status (for our example, the birthweight category) of subject j in matched set or stratum
i. Also let Y;; be a c-category ordinal variable with categories scaled from 1, ..., ¢, with reference
category ¢ denoting the control group and the subdivisions within the diseased group denoted by
category 1,...,c — 1. Let X;; denote the observed categorical exposure observed for subject j in
matched set i. For our example on low-birthweight data in newborns, Y;; =3 denotes the control
group (normal birth weight >2500 g), ¥;; =2 denotes disease group 2 (low birthweight between
2000 and 2500 g), and Y;; =1 denotes disease group 1 (very low birthweight <2000 g) whereas
X;j is a binary exposure, denoting smoking status of the mother.

The most popular model for ordinal data was inspired by McCullagh [15] by modelling the
log odds corresponding to the cumulative probabilities. The cumulative logit model for disease
incidence is given by

logit[P(Yij§k|X,'j)]=O€k—|—yi—i—ﬁXU, i=1,....n,j=1,... M+ 1,k=1,...,c—1 (1)

where oy <ap< -+ <ac—1 and P(Y;;<c)=1. The parameters {oy}, called cut points, are usually
nuisance parameters of little interest. The parameters {y;} are stratum-specific nuisance parameters;
the total number of these nuisance parameters, y;, increases with sample size. This model applies
simultaneously to all ¢ — 1 cumulative probabilities, and it assumes an identical effect of the
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predictors for each cumulative probability. This particular type of cumulative logit model, with
exposure effect f§ the same for all k, is often referred to as a proportional odds model [15]. For
example, let X;; =1 for a smoker mother and X;; = 0 for a non-smoker mother. The model assumes
that the odds that Y;; falls below level k for a smoker mother are exp(f) times the odds for a
non-smoker mother, for k =1, 2. We refer to 0 = exp(f}) as the cumulative OR for the conditional
association of weight of newborn and smoking status of mother.

For a case—control study with binary response (¢ =2), the model in (1) is simply a logistic
regression model. When the model holds, but n is large and the data are sparse, the ML estimator
of f tends to overestimate the true log OR and leads to biased and inconsistent estimation. This is
a phenomenon observed in models where the number of parameters (such as {y;} in (1)) grows at
the same rate as the sample size [16]. For instance, for a 1:1 pair matched case—control study, the
ML estimator of § converges to double the true value [17, p. 244]. Similar phenomenon occurs
for the proportional odds model (1) when ¢>2 [13]. As mentioned in the Introduction, for ¢>2,
conditional ML method cannot be applied to the proportional odds model (1). In the following
two subsections we discuss possible estimation strategies with underlying probability model (1).

2.1. Mantel-Haenszel estimation

Classical methods for making inference on the OR for pair-matched data with a dichotomous
exposure are based on conditioning on the marginal totals of the resultant 2 x 2 tables and uses
only the discordant pairs. Tests for hypothesis of no association between the disease and exposure in
matched samples were proposed by McNemar [18]. The seminal paper by Mantel and Haenszel [19]
furnished the MH estimate of the summary relative risk for stratified data and showed a chi-squared
test of conditional independence. Mantel [20] generalized the chi-squared test in a series of r x ¢
tables for ordinal variables. There have been several extensions of MH methods to situations when
one has 1: M matching or variable matching ratios, and for categorical exposure [21]. Based on the
proportional odds model (1), Liu and Agresti [13] proposed a MH-type estimator of an assumed
common cumulative OR (exp(f)), which is an extension of the ordinary MH estimator. Their
estimator has behaviour similar to the MH estimator of a common OR for several 2 x 2 tables.
It is consistent even when the data are sparse, that is, even when the number of matched sets
(strata) increases proportional to the sample size, which is the case in an individually matched
case—control study. The method is described below.

For a matched case—control study with ¢ ordered disease categories and a binary exposure, we
can cross-classify each matched stratum into a 2 x c¢ table, where the row variable is the exposure
and the column variable is the disease. In total, there are n matched strata. Therefore, there are n
such 2 x ¢ tables. We use notations Z,; to denote the cell counts for the row r, column k, and
stratum i, where r=1,2, k=1,...,c,and i =1, ..., n. Let n,; be the total number of subjects
in row r and stratum i. Let us also denote the cumulative counts in row r and stratum i by
ZY =2Zr1i + -+ Zi. Also, let the total number of subjects in the ith stratum be denoted by
Ni =), > Zrki- Then Liu-Agresti’s MH-type estimator equals

-1
2 i1 2kt Zii(n2i — Z3,)/ Ni
Y-t Zi;i (n1i = ZY4;) 23/ Ni
For model (1), the same cumulative OR occurs for all collapsings of the ordinal disease categories

into the binary category (<k, >k), k=1, ..., c— 1. Suppose we naively treat ¢ — 1 different 2 x 2
collapsed tables of each stratum as independent. Estimator (2) is simply the ordinary MH estimator

0= 2
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of the common OR for n(c — 1) separate 2 x 2 tables. However, the variance estimator of 0 needs
to take the dependency of the collapsing tables for each stratum into account. Liu and Agresti [13]
proposed the variance estimator as

Var[log(0)] = — Xl:izl Si(0)
0 (Z?zl Z;Cc;l (n1; — Z’lkkl.)ZE‘ki/Nip

where & (0) = Y571 b (0) + 25521 i (0) with

nyiny [0 — Zi0,) 25,
N2

1

7% ._Z*/' Z*,.
n ki (21 owi) 0—(O— DN k<k/=1,...,c—1
ny; nij

zZx
1+(0—1)ﬂ}

na;

brii (0) =

ni;

The proof of consistency in a large strata, sparse data set-up was given by Liu and Agresti [13].
This MH-type estimator also applies to a proportional odds model for a more general setting with
ox + 7; in (1) replaced by matched set specific cut-off points ;.

For a 1:1 matched case—control study, the MH-type estimator (2) simplifies dramatically. Con-
sider only the matched pairs with ‘discordant’ exposures, that is, where the case and control
subject fall into two different exposure categories. We can express the Liu—Agresti MH estimator
in terms of counts in a ¢ X c table that represents the joint disease classification for such pairs with
discordant exposure information. The data sets for the 1:1 and 1:3 matched studies are available at
http://www.sph.umich.edu/bhramar/public_html/research. For instance, in the 1:1 matched low-
birthweight data, matched pair number 11 has different exposure categories for case and control
subjects and the joint disease categories are 1 (very low birthweight for the smoker mother), and
3 (normal birthweight for the non-smoker mother). Therefore, we count this as an observation in
row 1 and column 3 in the 3 x 3 table (¢ =3 for this example). In total, there are 7 such pairs. So
the ultimate cell count in cell(1, 3) of the 3 x 3 table is 7. There are only 30 matched pairs out of
the 56 matched pairs which have discordant exposure information (different smoking habits). The
summary 3 x 3 table with row variable as disease status of a child with a smoker mother, column
variable as disease status of a child with a non-smoker mother, and the cell counts as how many
matched pairs fall in each joint disease classification cell is displayed below. Note that no counts
are available for many of the cells because of the intrinsic structure of the matched case—control
study design.

Birthweight category
of a child with
non-smoker mother

1 2 3
Birthweight 1 — — 7
category of a child 2 — — 15
with smoker mother 3 3 5 —
Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3240-3257
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In general, let my be the sample count for row k and column k" in the ¢ x ¢ table. The
Liu—Agresti MH estimate of 0 can be expressed as

D kew (K = kymyy
D oisw (k=K )myg

Agresti and Lang [12] also proposed this estimator for a proportional odds model with matched
pairs. They derive this estimator by simultaneously fitting CLR estimates to all possible binary
collapsing of the response categories and also establish its consistency properties.

When the subjects in a matched stratum all have non-smoker mother or all have smoker mother,
that is, there is a zero count either for n; or ny;, the information from that stratum does not
contribute to the MH-type estimator (2). This is not surprising, as for the usual case—control
study with binary response, when one uses the ordinary MH estimator to describe the conditional
association between disease and exposure, only the discordant pairs are used. Therefore, there is
no significant loss of information regarding f3, by ignoring those strata. For pair-matched case—
control data one can simply use the simplified version of the MH estimator (3). For the 1:1
matched data set with 56 strata, as represented in the table above, we have m3 =7, my3 =15,
m31 =3, m3p =35, and zeros otherwise. The estimated OR as computed by the Agresti-Lang
recipe (3) is 0= A5-1+7-2)/(5-1+ 3-2)=2.64 which is identical with the Liu—Agresti
estimate (2).

0= 3)

2.2. Likelihood-based approach

To obtain the likelihood function we construct the usual product of multinomials. Without loss of
generality, we assume that the first subject in each stratum is a case and the rest are controls (i.e.
Yijj=c,for j=2,..., M+ 1). The likelihood for the proportional odds model (1) has the form

n M+1 c
LB,o,7) =11 II [H (P(Yij<k|Xij) — P(Y;j<k — 1|X,~,~>>”Yff—ﬂ
i=1 j=1 Lk=1

1 +exp(ox +7v; + fXi1) 1 +exp(og—1 +7; + BXi1)

{"_1 ( exp(a +7; + BXi1) exp(ouk—1 +7; + pXi1) )I[Y“zk]
k=1

M+1 (1 exp(oe—1 +7; + pXij) ):| 4)

X —
jl;lz 1 +exp(oe—1 +7; + BXij)

To handle the large number of nuisance parameters in (4), the two popular approaches are (i) use a
Bayesian approach with a prior structure on y; and (ii) to use random effects terms to describe the
strata effects. As we discuss in Section 2.2.2, these likelihood-based methods could potentially lead
to biased estimation of the association parameter, due to lack of conformation with the retrospective
nature of the case—control sampling design and also due to the sparsity of the data. We also noted
in our research that the issues with the REM are similar to the full Bayesian method with a flat
prior on f3, thus we present results with only the Bayesian analysis. One can find details of the
REM method and codes at http://www.sph.umich.edu/bhramar/public_html/research.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3240-3257
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2.2.1. A full Bayesian analysis. In a Bayesian paradigm, starting with the likelihood (4) of the
data, one could assume suitable proper priors on § and the parameters y; and oy, and proceed to
estimate f by the mean of the posterior distribution of § given the data and all other parameters.

The model requires {ox} to be increasing in k, as P(Y;;<k) is an increasing function of k.
To ensure this we reparameterize the model in the following way: we set Ay = log(ox — ox—1),
k=2,...,c—1with A =o; =0. Thus, o = Zf;l exp(4;), and A are allowed to vary freely. One
may choose suitable priors on 4. Alternatively, in a Bayesian paradigm one could put a positive
prior on the successive difference of the cut-off values oy — ox—j. Specifically, we assumed the
following parametric prior structure:

o — og—1 ~ Gammal(a, b)

iid 9 .
yiNN(u},,a}, , i=1,...,n

B ~N(ug, o)

We will call this model to be PBV standing for a fully parametric Bayes model with varying
stratum effects.

Posterior inference is carried out by computing the posterior mean and highest posterior density
credible interval. We use Gibbs sampler technique [22] to generate random numbers from the
full conditional distribution of each parameter given all other parameters and data. We skip fairly
standard algorithmic details for the sake of brevity.

Remark 1

We could also consider a simpler model with a much reduced number of parameters, simply by
assuming a constant stratum effect model, y; =y ~ N(,, O'%). ‘We could then impose a normal prior
on y,. But with a constant stratum effect model, which is essentially carrying out an unmatched
analysis for matched data, it is easy to obtain the maximum likelihood estimate (MLE) by running
any standard software. We will see in our data analysis that assuming a constant stratum effect
model will lead to conservative estimate of the association parameter.

Remark 2

For the PBV model, one could question the i.i.d. parametric assumption on the prior distribution
of y;,. The parametric assumption could be relaxed by modelling the distribution of y; non-
parametrically as done in Sinha et al. [10] which allows to data adaptively determine the degree
of stratification using a Dirichlet Process prior on the distribution of y;. Since we want to focus
on simple, ready to use methods in this paper we refrain from adopting computationally complex
non-parametric models for the stratum effects.

Also, we would like to emphasize that one must be careful in choosing the prior distribution on
the nuisance parameters in this sparse data scenario to avoid the risk of inconsistent estimation.
For binary matched pair data with ¢ =2, apparently innocuous choices for the Bayesian prior
on the nuisance parameters can lead to extremely poor, exponentially inconsistent estimates of
disease—exposure association [23]. Characterization results for a sensible class of priors have been
provided by Rice [24] for ¢ =2 with binary exposure. Our research indicates, for ¢>2, the Bayes
estimates do reflect a certain degree of bias, and are sensitive to the choice of priors, and thus
more careful thoughts may be necessary in characterizing the class of priors that produce consistent
estimates of f3.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3240-3257
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2.2.2. Prospective proportional odds model and retrospective sampling scheme. The PBV method
described above does not recognize the retrospective nature of the study design and use the fully
prospective likelihood in (4) which will be obtained in a cohort study. The appropriate retro-
spective likelihood reflecting the sampling scheme for case—control studies with further disease
sub-classification can be viewed as follows. We refer to the sampling scheme followed in the
actual low-birthweight data set. At the first stage of sampling, the disease category (D) is recorded
(case/control) and we then record the exposure values X|D = d. After recording this information,
using some external source of information (in this case the actual birthweight) we ascertain the
sub-group to which the diseased subjects (cases) belong, namely very low (¥ = 1) and low (Y =2).
Let k; denote the case status in matched set i, in our example it could be 1 or 2. Following the
above sampling scheme, the appropriate likelihood thus would be

n n M+1
Lr=[] PYiIDj1=1,X;)P(Xi11Dj1=1) x [ [] P(Xi;|Di;=0)
i=1 i=1 j=2

= X P(X;jlYij=c)
El P(Dj1=1) ‘1,-132 vy

1

" P(Yi,Di=1,X;1) 2 Mt

noP(Yin =k, X;) oML
=[] P(Xi|Yi; =c)
il;ll P(Dj1=1) il;ll j=2 vy
n P(lek) n M+1
= [l PXalYin=k) —————x [I [ P(XilYij=c) &)
i=1 Y PUi=r) i=1j=

Prentice and Pyke [25] established that if the prospective model is logistic (c =2), then the
MLE of the OR parameter f from the prospective likelihood is the same as the MLE ob-
tained from the retrospective likelihood with correct asymptotic variance. For ¢ =2, it has been
noted by other authors [26] that ignoring this prospective-retrospective equivalence and using
other links like the probit or log—log link produces biased estimate of the parameter of inter-
est . Unfortunately, the estimate of [ obtained from the prospective likelihood induced by the
cumulative logit link and the retrospective likelihood is not the same. Scott and Wild [27] pro-
pose a method to fit prospective models with any link function under outcome-dependent sam-
pling schemes which requires knowledge of supplementary information on the population totals
for cases and controls in each stratum which is not the situation we consider in the current
paper.

The intuitive reason for this lack of agreement is fairly clear. For ¢ =2, among all the generalized
linear models for binary data, the logistic link function is the only one which absorbs the difference
in sampling rates for each disease category in the intercept term as an offset and the covariate
effects remain unaltered [28]. For multiple disease categories, the same phenomenon is replicated
and the effect of the sampling rates for each disease category can be absorbed in the intercept
parameter if and only if one uses a link with a multiplicative intercept structure, otherwise the
sampling rates will affect estimation of the OR parameters as well. The degree of this design bias
with the cumulative logit link will depend on the sampling ratio of different case subgroups to
controls. We thank a referee for drawing our attention to this issue.

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3240-3257
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Remark 3

One may naturally think about direct retrospective modelling using (5), as partly done by Sinha
et al. [10]. One can start with a model for the control distribution of the exposure p(X|Y =c).
As done by Sinha et al. [10], the retrospective likelihood Lz in (5) can be explicitly written
in terms of the disease risk model as given in (1) and a model for control distribution of the
exposure. As with any retrospective model, it may be quite hard to pose a ‘robust’ parameteric
model for the multivariate exposure distribution and to adequately capture latent stratification
effects. A prospective model is much easier to formulate and implement. However, under this
sampling scheme, one must keep in mind that the likelihood-based methods using prospective
cumulative logit model, may not be giving the true answer but only provide a precursor to the real
association.

3. CONDITIONAL ADJACENT CATEGORY LOGIT MODEL

The adjacent category model [1] offers another possibility to model ordered response. The model
is given by

P(Yij=k)

log ——————
& P(Y;j=k+1)

=y +ou+pXij, i=1....n, j=1,...,M+1, k=1,...,c—1
(6)

It is possible to make the adjacent category log odds parameter f to depend on k by introducing
additional parameters, but we consider the constant effect model for simplicity. For case—control
data, a varying f§ may be more meaningful as the log odds of control to a case category is often
different than the log-odds of two successive-case subclasses. The model in (6) can be alternatively
expressed in the multinomial logit structure as

P(Yij=k) ok
log — =2 —(c — k) + X o + (¢ — K)BXi;
gP(Yij:C) ! r; PX,

=y + 0 Xij, k=1,...,c—1

Where 7%, = (c — k)y; + Zf;]f o, and fif = (c — k). Let us, as before, assume without loss of
generality that the first subject in each matched set is a case and the rest are controls. Let k; again
denote the disease status of the case subject in matched set i, k; € (1, ..., c—1). To eliminate the
nuisance parameters y;"k, one could appeal to the conditional-likelihood principle and condition on
the event Zﬁwz Jql Y;j =k; in matched set i. The conditional likelihood can be derived through the
following steps.

Note that the above model states that the conditional probabilities of the disease variable given
the exposure and the stratum are given by

exp{yy, + Pi Xij}

P(Yi; =k|X;;) =
N LR T exply, + BEXj)

fork=1,...,c—1 )
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and
1

P(Yjj =c|Xij) = -
L+ Y021 exply), + BrXij)

®)

The conditional likelihood is simply

n M+1
Lecapy =[] P <Yi1 =ki,Yij=c,j=2,....,M +1X;j, > Yij=ki)
i=1 =1

n
1=

[P(Yn:ki, Yij=c,j=2....M+ 1|Xij)}

i PP (Y =ki, Yij=c. j #D)

P(Yir =k X[} P(Yyj =clXij)
P (Y = kil X[ P(Yij = clXi))

Il
[feut

After plugging in the probability expressions (7) and (8) in the above likelihood, the y;.“ki cancel
in the numerator and the denominator and the conditional likelihood simplifies to

nexp(Blc — k) Xin)
o 9
CADI il;ll Zﬁiﬁl exp(f(c — ki) Xij) "’

One can easily note that because of the multinomial logit structure in the transformed covariates,
the prospective—retrospective equivalence for estimating 5 holds with this model. Also, note that for
1: M matched data, this model can be implemented easily by simply multiplying all the covariates in
stratum i by (¢ —k;) and then using CLR in any standard software with the transformed covariates.
We will call this method CADIJ for future references.

Remark 4

As mentioned before, one could let § vary with the adjacent categories. In that case, one has to
substitute (c —k;) 5 by Zi;]f’ f, in the conditional likelihood in (9). Fitting that model is also easy
by running separate CLR for the matched sets with case status k; with transformed covariates.
However, though this model has more flexibility, as a referee pointed out, this varying slope model
does not have as much power advantage as the model with constant f3.

4. POLYCHOTOMOUS CONDITIONAL LOGISTIC REGRESSION

We also conducted two traditional analyses without using ordinality in disease states, using a PCLR
(by treating the disease categories as nominal) and usual CLR (collapsing the two subgroups within
the cases as a single one). Following our previous notation, we consider ¢ nominal levels of the dis-
ease variable, with ¥;; = k denoting disease state k, k =1, ..., c—1 and Y;; = c denoting the control
group. The disease probabilities for the c —1 case categories are modelled through c—1 logits as in a
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multinomial logistic regression model,

PLY;j =k|Xij]

————— =y + 0 Xij fork=1,...,c—1 (10)
Pl =clX;] T
For our example, ¢ =3, and exp(f};) signifies the odds of having very-low-birthweight baby for
a mother who smokes relative to one who does not smoke and similarly exp(f,) is the odds
of having a low-birthweight child for a mother who smokes relative to one who does not. The
stratum-specific nuisance parameter for disease category k in matched set i is denoted by y;;. As
shown in Section 3, the conditional likelihood can be expressed as

” exp(By, Xi1)
Le=T] = : (11
i=12 -1 eXP(ﬂk,- Xir)
One can now maximize the above likelihood in terms of f;, k=1,...,c — 1. Note that this

is equivalent to using separate CLR for each disease-sub group. We will denote this method by
PCLR. We will also implement the usual binary CLR, collapsing the two case-subgroups into a
single one, which is a special case of PCLR with ¢ =2.

Remark 5

The log OR estimates from these nominal models are not directly comparable with those obtained
from the proportional odds model or the constant slope adjacent category logit model as all of
them have different interpretations. The leverage of most ordinal models in terms of power over
a nominal model is because ordinal models typically use a single parameter for exposure effect,
whereas the nominal methods use category-specific parameters and lose efficiency. The gain in
power with ordinal models is more when we have a moderate number of categories ¢ when compared
to nominal models or just binary collapsing [29]. Liu and Agresti [30] present a discussion in
terms of gain in power for using nominal versus ordinal models as well as binary versus ordinal
model. We will also observe this phenomenon in our subsequent data analysis and simulation
results.

5. ANALYSIS OF REAL DATA: THE LOW-BIRTHWEIGHT STUDY

In this section, we consider a matched case—control data set coming from a low-birthweight study
conducted by the Baystate Medical Center in Springfield, Massachusetts. The data set is discussed
in Hosmer and Lemeshow [31, Section 1.6.2] and is used as an illustrative example of analysing
a matched case—control study in Chapter 7 of their book. Low birthweight, defined as birthweight
less than 2500 g, is a cause of concern for a newborn as infant mortality and birth defect rates are
very high for low-birthweight babies. The data were matched according to the age of the mother.
A woman’s behaviour during pregnancy (smoking habits, diet, prenatal care) can greatly alter the
chances of carrying the baby to full term. The goal of the study was to determine whether these
variables were ‘risk factors’ in the clinical population served by Baystate Medical Center. Using
the actual birth weight observations, we divided the cases, namely, the low-birthweight babies into
two categories, very low (weighing less than 2000 g) and low (weighing between 2000 and 2500 g)
and tried to assess the impact of smoking habits of mother on the chance of falling in the two
low-birthweight categories. We consider two data sets based on this low-birthweight study with
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Table 1. Analysis of low-birthweight study, one is 1:1 matched data, and the other is 1:3 matched data.

B
1:1 Matched 1:3 Matched
Proportional MH Estimate 0.97 0.93
odds SE 0.44 0.46
model-based CI (0.11, 1.83) (0.02, 1.83)
method PBV Estimate 1.18 0.81
PSD 0.44 0.40
HPD (0.21, 1.85) (—0.02, 1.61)
Unmatched Estimate 0.82 0.89
analysis SE 0.37 0.43
(single y) CI (0.10, 1.54) (0.05, 1.75)
Unconditional Estimate 1.99 1.27
MLE SE 0.57 0.52
CI (0.88,3.11) (0.26,2.27)
Adjacent CADJ Estimate 0.66 0.57
category SE 0.30 0.29
logit- CI (0.07, 1.25) (0.01, 1.13)
based Unmatched Estimate 0.52 0.49
method analysis SE 0.26 0.29
(single 7)) CI (—0.002, 1.03) (—0.08, 1.07)
Unconditional Estimate 1.37 0.77
MLE SE 0.44 0.36
CI (0.52,2.23) (0.07, 1.48)
Nominal PCLR Estimate of f§; 0.85 0.63
and SE 0.69 0.71
binary CI (—0.51, 2.20) (—0.76,2.02)
methods Estimate of f3, 1.10 1.16
SE 0.52 0.57
CI (0.09,2.11) (0.05,2.27)
CLR Estimate 1.01 0.96
SE 0.41 0.44
CI (0.20, 1.82) (0.10, 1.82)

Note: SE stands for standard error, and for the Bayesian method PBV, PSD stands for standard deviation of
the posterior distribution of the parameter of interest. HPD and CI denote the 95 per cent highest posterior
density credible interval and confidence interval, respectively.

two different matching ratios: a 1:1 matched data set with 56 matched sets and a 1:3 matched data
set with 29 matched sets. Analysis of the 1:1 and 1:3 data sets are presented in Table I.

5.1. Methods with proportional odds model

We first consider the MH method with the stratified proportional odds model in (1) as the
underlying prospective model. For the 1:1 matched case—control study log(@)) =0.97, implying
that the estimated odds of having a baby weighing below any fixed level for a smoker mother
are exp(0.97) =2.64 times higher than the odds for a non-smoker mother. In the 1:3 matched
case—control study log(@) =0.93 (OR =2.53).

Copyright © 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3240-3257
DOI: 10.1002/sim



3252 B. MUKHERIEE, I. LIU AND S. SINHA

1:1 dataset

(o]
o
o

N
o
o

Frequency
n
o
o

0.0 0.5 1.0 15 2.0 2.5
beta
1:3 dataset
500
>
[&]
$ 300
>
o
e
[T
0
[ I I I I I I 1
-1.0 -0.5 0.0 0.5 1.0 15 2.0 25
beta

Figure 1. Posterior distribution for § under PBV method for low-birthweight study.

For the PBV method, note that the results reflect certain numerical differences when compared
to the MH counterparts. In terms of prior selection for the Bayesian PBV method, for the presented
results we set o) =0, and use a Gamma(3.2, 0.3) prior on a». We choose a diffused N(0, 4) prior
on f§ and iid N(—2, 4) prior on y;. We noted in other simulations that the PBV method is quite
sensitive to choice of priors on y; and oy, especially for the 1:1 matched data with 56 stratum-
specific parameters. Figure 1 presents a plot of approximate posterior distributions of  which
appears to be fairly symmetric.

If one ignored the effect of matching and used a constant stratum-specific intercept model
with y; =7, it is easy to obtain the MLE’s of the parameters. Table I reconfirms the prior
observation [2] that unmatched analysis of matched data produces conservative estimates of the
relative risk parameters.

One may also be curious to know how the unconditional MLE of f performs in this case, though
it is known to be inconsistent. The unconditional MLE of f is 1.992 (OR =7.331) for the 1:1
matched study, whereas it is 1.265 (OR =3.54) for the 1:3 data set. This again illustrates that the
unconditional MLE of f is biased upwards. For ¢ =2, for 1: M matched data set it is known that
the inflation factor is approximately (M + 1)/ M. We are essentially noting the same phenomenon
here with the ordinal model. The bias in the unconditional ML estimates decreases as M increases.

5.2. Adjacent category logit model
With a constant § model across all pairs (which has a different interpretation than the f in (1)),
the estimate of adjacent category logit f for the 1:1 data set using the CADJ method is 0.663
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(SE=0.3). For the 1:3 data set, the CADJ method gives an estimate of  as 0.573 (SE =0.285),
making the effect of smoking marginally significant. The unconditional MLE and the estimate
obtained by unmatched analysis ignoring matched-set-specific parameters show similar patterns as
in the cumulative logit model.

5.3. Nominal models

The PCLR estimates indicate that smoking of mother is a more significant risk factor for having a
low-birthweight child (disease group 2), but not so for having a very-low-birthweight child (disease
group 1). The CLR estimates indicate that effect of smoking is more pronounced in 1:1 data set
and marginally significant in 1:3 data set.

Since we do not know the truth in a real data set, we undertake a simulation study to examine
the performance of the five methods: MH, PBV, CADJ, PCLR and CLR.

6. SIMULATION STUDY

We conduct two different sets of simulations. One with 1:1 matched setting and the other with 1:3
matched setting, each with 56 matched sets. We consider two disease subcategories, ¥ =1 and 2
and, one control group Y =3. The disease incidence model is assumed to follow (1) with ¢ =3.
For all simulation studies we set op = 1.2 and a grid of values for f=—1, —0.5,0, 1.0, 2.0 (21 =0
for identifiability of the models). For both 1:1 and 1:3 situations, we generate varying stratum

effects y, 1’@N(—3, 4). Simulation results for the PBV method are presented for the same set of
priors mentioned in the data analysis section.

In all simulation settings, we first generate the exposure variable X in each matched set from a
Bernoulli distribution with success probability 0.41 (which was the overall prevalence of smoking
mothers in the actual 1:1 matched case—control data). We then generate the disease status variable
given the exposure values for the matched pairs, reflecting the matched sampling strategy under
likelihood (4).

We simulate 5000 data sets under each scenario, and calculate parameter estimates and mean
squared errors for MH, PBV, and CLR methods. Note that, since we are generating data from the
proportional odds model in (1), it is not quite appropriate or meaningful to calculate measures like
bias and MSE for CADJ or PCLR method as we do not know the true value of the parameters.

Table II contains the results. To obtain an ad hoc estimate of the proportion of true rejections
of Hy : =0, among these 5000 runs, we calculate the following proportions. For PBV method,
we construct equal tailed 95 per cent credible interval of § using 2.5 per cent and 97.5 per cent
sample quantiles of the corresponding posterior distribution and count the proportion of times the
value zero lies outside this interval. For all other methods we first calculate the z-score by dividing
the estimate with standard error and then calculate the proportion of times the absolute value of
the z-score exceeds the value of 1.96.

The results indicate that PBV in general produces biased results, the bias does appear to depend
on the value of f, but always persists, even in simulations with larger sample sizes (results
not included here). We also found the degree of bias and precision of the Bayes estimate of f§
varies in terms of the prior on o and y;. The estimated powers for PBV are also high, but at
the cost of an elevated size. A part of it could be due to violation of retrospective—prospective
equivalence with the prospective likelihood in (4) as discussed in Section 2.2.2. This bias is possibly
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Table II. Results of the simulation study for 1:1 and 1:3 matched case—control data with varying values
of f, showing mean-squared error, bias (in parentheses) and power for each method.

Value of 8 MH PBV CLR  CADJ PCLR(B;) PCLR(f,)
-1 1:1 data MSE(Bias) 0.25(—0.08) 0.44(—0.25) 0.44(—0.07)
Power 0.64 0.63 0.66 0.66 0.34 0.39
1:3 data MSE(Bias) 0.17(=0.07) 0.40(—0.12) 0.36(—0.01)
Power 0.81 0.68 0.69 0.73 0.41 0.46
-0.5 1:1 data MSE(Bias) 0.20(—0.06) 0.36(0.05) 0.32(0.00)
Power 0.23 0.20 0.23 0.28 0.12 0.14
1:3 data MSE(Bias) 0.13(—0.04) 0.33(=0.05) 0.33(=0.01)
Power 0.30 0.25 0.29 0.34 0.15 0.19
0 1:1 data MSE(Bias) 0.17(0.00) 0.36(0.24) 0.32(0.00)
Power/size 0.05 0.15 0.05 0.05 0.03 0.03
1:3 data MSE(Bias) 0.12(=0.01) 0.34(0.15)  0.27(0.00)
Power/size 0.05 0.09 0.05 0.05 0.04 0.04
1 1:1 data MSE(Bias) 0.26(0.10) 0.47(0.52) 0.37(0.01)
Power 0.67 0.91 0.67 0.65 0.32 0.36
1:3 data MSE(Bias) 0.13(0.06) 0.41(0.25) 0.33(0.02)
Power 0.88 0.93 0.82 0.87 0.64 0.55
2 1:1 data MSE(Bias) 0.47(0.19) 0.29(0.38) 0.50(0.05)
Power 0.99 1.00 1.00 0.98 091 0.89
1:3 data MSE(Bias) 0.26(0.18) 0.22(0.30) 0.42(0.04)
Power 1.00 1.00 1.00 1.00 0.95 0.94

Note: Results are based on 5000 runs each with 56 matched sets.

also because of the presence of so many nuisance parameters, introducing numerical instability
in the Bayes estimates. The nuisance parameters are theoretically identifiable, but barely any
information is available on them through the data. The MH method performs reasonably in terms
of MSE and power and has the right size. Among the two methods based on the proportional odds
model, MH appears to be a less subjective choice though is limited to only binary/categorical
exposure.

For the CADJ method, we do not know the true value of the adjacent category log OR so
we refrain from providing parameter MSE and bias. However, the method appears to have the
right size and reasonable power. Similar differences with interpretation of the parameters hold
for the PCLR method, but we can still note from the power estimates that it is less powerful in
detecting association under the given simulation model than the other methods. The CLR esti-
mates lose the information and interpretation of multiple disease categories. If the cumulative logit
model is true and we use CLR with collapsing the disease states, we might lose some power,
but the parameter estimate of 5 should be similar to the MH method. The loss of information
from collapsing to a binary response has been discussed by Whitehead [32]. From the simulation
results, it seems that compared to the MH estimate, there is not much loss of power by ignor-
ing the ordering for the 1:1 case, however, there does appear to be some loss of power in the
1:3 case.
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7. COMMENTS

In this article we address the problem of analysing matched case—control data with ordered disease
states. With advances in modern medicine and clinical research, diseases are being progressively
categorized into finer subclasses, often having an intrinsic natural order. To utilize the ordinal
nature of disease states, we consider using the proportional-odds model and the adjacent category
logit model for stratified ordinal response. In contrast to the classical principle of using conditional
likelihood to eliminate matched set-specific nuisance parameters, there is no reduction due to suffi-
ciency in the proportional-odds model; consequently one has to deal with the nuisance parameters.
We investigate two methods to tackle this issue: a Mantel-Haenszel approach (MH) and a full
Bayesian approach (PBV). Our simulation study indicates that for a matched case—control study,
the Bayesian method allowing for varying stratum-specific parameters in general produces biased
estimates and is prior sensitive. As discussed in Section 2.2.2, the prospective likelihood based
on the proportional-odds model does not acknowledge the retrospective sampling scheme. This
phenomenon contributes to the bias in PBV; however, we believe that the choice of the prior distri-
bution and sparsity of the data also contribute to this bias and sensitivity. The MH method stands
superior to other methods under the proportional odds structure as it does not make direct use
of the likelihood in (4). Like the ordinary MH estimator for several 2 x 2 tables, the Liu—Agresti
MH estimator (2) is also produced from an unbiased estimating function, which could explain this
difference in behaviour. The connection between the Liu—Agresti and Agresti—-Lang estimator is
an interesting observation in itself.

The conditional adjacent category logit model has certain attractive features as it (i) allows
for prospective—retrospective equivalence due to the multiplicative intercept and odds structure in
the transformed covariates, (ii) allows elimination of nuisance parameters via classical conditional
likelihood, (iii) has more power in detecting disease—exposure association by accounting for the
ordering of the disease states, (iv) can be implemented by transforming the covariates and running
CLR in any software and (v) can accommodate any number of covariates, continuous or categorical
because of its regression structure. However, one may want to relax the constant slope assumption
for case—control studies and consequently lose some of its power advantages.

There are many interesting open questions related to this problem, for example, to theoretically
investigate efficiency of the estimate formed by simultaneously fitting CLR, with binary collapsing
of the ordinal response as proposed in Agresti and Lang [12] in the general regression setting of a
1:M matched data set with multiple exposures. In a preliminary study, we noted that this method of
amalgamating CLR estimates from several binary collapsing of the disease states and then correcting
the variance estimate works fairly well for a general regression model under 1:M matching, further
research is under progress on this issue. To impose a non-parametric mixture model for the
stratum effects and characterize sensible prior distributions, if at all possible, is of interest as well.
Retrospective modelling as discussed in Section 2.2.2 deserves a full-length investigation. Our goal
has been more modest. We simply explore issues with readily implementable and understandable
methods which are of greater appeal to practitioners. R, SAS and Fortran codes for implementing
the different methods are available at http://www.sph.umich.edu/bhramar/public_html/research.
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