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Summary

Generalized estimating equations (GEE) are used in the analysis of cluster randomized trials (CRTs)
because: 1) the resulting intervention effect estimate has the desired marginal or population-averaged
interpretation, and 2) most statistical packages contain programs for GEE. However, GEE tends to
underestimate the standard error of the intervention effect estimate in CRTs. In contrast, penalized
quasi-likelihood (PQL) estimates the standard error of the intervention effect in CRTs much better than
GEE but is used less frequently because: 1) it generates an intervention effect estimate with a condi-
tional, or cluster-specific, interpretation, and 2) PQL is not a part of most statistical packages. We
propose taking the variance estimator from PQL and re-expressing it as a sandwich-type estimator that
could be easily incorporated into existing GEE packages, thereby making GEE useful for the analysis
of CRTs. Using numerical examples and data from an actual CRT, we compare the performance of this
variance estimator to others proposed in the literature, and we find that our variance estimator performs
as well as or better than its competitors.

Key words: Clustered data; Correlated data; GEE; Group randomized trial; PQL.

1 Introduction

1.1 Cluster randomized trials

Cluster randomized trials (CRT) are clinical trials in which each member of a particular group is
randomized to the same treatment arm. Although CRTs can be politically motivated or used to reduce
bias [4], the genesis of many CRTs is to address a typical public health question: can group-adminis-
tered interventions lead to improved health to the members of those groups on average? For example,
the Community Intervention Trial for Smoking Cessation (COMMIT) was designed to test a commu-
nity intervention aimed at encouraging smokers to stop smoking (COMMIT Research Group, 1995).
The intervention used a wide array of channels, such as media campaigns and public education, health
care providers, and cessation resources. The rationale was that these programs, when used in tandem,
might effectively reach smokers and induce them to quit.

CRTs offer a huge potential public health impact, but they typically cost many millions of dollars
to conduct, making it more cost-effective to include few clusters, but include as many members of
each cluster as possible. For example, COMMIT randomized 11 pairs with an average cluster size of
over 2800 subjects, and the total cost of the study was $45 million US (COMMIT Research Group,
1991). Furthermore, due to unmeasurable cluster characteristics, outcomes from subjects in the same
cluster tend to be associated with each other more than outcomes from subjects in different clusters.
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Thus, when assessing the effect of the intervention, the induced intra-cluster correlation (ICC), de-
noted q, requires investigators to use correlated data methods. Fortunately, there is a growing amount
of literature available to readers interested in the statistical issues underlying the design and analysis
of CRTs (Gail et al., 1996; Donner and Klar, 2000; Murray, 1998; Feng et al., 2001).

1.2 Marginal models versus mixed models

Generalized estimating equations (GEE) (Liang and Zeger, 1986) are commonly used in the analysis
of CRTs because: 1) the intervention effect parameter describes the intervention’s impact on a ran-
domly selected subject in the population, rather than a randomly selected subject from a given cluster,
and 2) programs for GEE have been developed for most statistical packages. In GEE, the intervention
effect is estimated using generalized weighted least-squares, with the weight matrix for each cluster
reflecting the possible covariance structure of the cluster’s outcomes. However, knowing the correct
variance structure of the data is not necessary for estimating the intervention effect because the inter-
vention effect estimate remains consistent even when the weight matrix is misspecified (Liang and
Zeger, 1986). Furthermore, the model-based variance estimator (i.e. inverse of the information matrix)
can be replaced by an empirical estimator, the so-called “sandwich” estimator, which has been clai-
med to be robust to an incorrectly specified weight matrix (Liang and Zeger, 1986).

A competing approach to GEE is penalized quasi-likelihood (PQL), which is based upon a condi-
tional or mixed model (Breslow and Glayton, 1993). As applied to CRTs, mixed models incorporate not
only the intervention effect, but also a random cluster effect, into the mean of each observation, making
the interpretation of the intervention effect conditional upon the value of the (unobservable) cluster
effect. PQL assumes the cluster effects are independent, each with an identical normal distribution
around zero with unknown variance. By averaging over this normal distribution, the intervention effect
of a marginal model can be viewed as the average conditional intervention effect across all cluster
effects. PQL and other conditional model approaches are used less frequently in the analysis of CRTs
because: 1) the intervention effect parameter does not have the desired marginal interpretation of that in
GEE, and 2) few software packages include conditional model approaches for non-normal outcomes.

However, GEE and PQL lead to quantitatively identical intervention effect estimates with Gaussian
and Poisson data. With binary data, the ratio of the marginal model intervention effect to the mixed
model intervention effect is approximately ½1þ 16q

ffiffiffi
3
p

=ð15pÞ��1=2, where q is the variance of the
cluster effects (Zeger et al., 1988). This ratio is very close to 1:0 when q is small (i.e. small variation
between clusters), exactly the setting of most CRTs. Thus, when analyzing CRTs with binary out-
comes, marginal and mixed models give very similar results when estimating the intervention effect.

However, the two approaches differ drastically in their abilities to estimate the variance of the inter-
vention effect estimate. GEE was designed for use in longitudinal studies, which typically have a
large number of clusters (subjects), each of which consists of a small number of observations (re-
peated measures). Thus, the asymptotic properties of correlated data methods, which are driven by the
number of clusters, are meaningful when applied to longitudinal studies, but are often unrealized
when applied to CRTs because of the insufficient number of clusters. As a result, the sandwich esti-
mator of GEE underestimates the variance of an estimated cluster-level fixed effect when there are a
small number of clusters (Sharples and Breslow, 1992; Emrich and Piedmonte, 1992; Park, 1993;
Feng et al., 1996; Braun and Feng, 2001). Such downward bias results from the sandwich variance
estimate converging to the true variance at a rate that depends upon the number of clusters, regardless
of the number of observations in each cluster. As a result, both traditional Wald tests and generalized
marginal score tests (Rotnitzky and Jewell, 1990) have inflated Type I error rates, leading some
authors to suggest that GEE should not be used in the analysis of CRTs (Feng et al., 2001) and
propose a generalized linear mixed model application for CRTs (Yasui et al., 2004). However, we feel
that GEE should be used estimate the intervention effect parameter due to the marginal, rather than
conditional, interpretation of the estimator. It is the variance estimator of GEE that we wish to modify.
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In contrast to GEE, the variance estimator from PQL for a cluster-level fixed effect estimate is
much more accurate. As shown by Bellamy et al., (2005), the variance estimator of PQL converges to
the true variance at a rate that depends upon the total number of observations across all clusters. As a
result, even with few clusters, PQL will generate a much more accurate variance estimate than GEE if
each cluster has many observations, which is specifically the setting of CRTs. Empirical evidence of
this fact can be found in Bellamy et al. (2000) and Ten Have and Localio (1999). Therefore, we seek
to express the PQL variance estimator as a sandwich-type variance estimator that can replace the
traditional robust variance estimator of GEE. In Section 2, we give a more thorough description of
GEE and PQL that leads to the motivation for our variance estimator, and we also describe existing
alternatives to our variance estimator. Section 3 contains a simulation-based comparison the variance
estimators described in Section 2, and Section 4 compares the variance estimators in an actual applica-
tion. Section 5 contains our final comments.

2 New Variance Estimator & Existing Alternatives

2.1 Marginal models & GEE

We have a CRT in which there are M clusters and the i-th cluster, i ¼ 1; 2; . . . ; M consists of ni

individuals. Each cluster is randomized to receive either an intervention or control, and we let Ti be
an arm assignment indicator (0 ¼ control; 1 ¼ intervention).

We let Yij and Xt
ij ¼ ½1;Zij; Ti� be the outcome and (1� pÞ design vector, respectively, for the j-th

individual in the i-th cluster, where Zij is a vector of covariates other than arm assignment. We define
Xt

i to be the ðni � pÞ design matrix for cluster i by stacking the vectors Xt
1j; Xt

2j; . . . ; Xt
nij upon each

other. Under the assumptions of a marginal model, the outcome of each individual in a cluster has
mean mij and variance fvðmijÞ, where f is a known constant usually denoted s2 for normal outcomes
and equal to 1 for binary and count data. We relate mij to Xij via the function hij ¼ hðmijÞ ¼ Xt

ij b; in
which bt ¼ ½b0; b1; . . . ; bp�1� is a vector of parameters. We assume that h is a canonical link function,
i.e. log with Poisson outcomes or logit with binary outcomes.

Via GEE, the regression-based estimate of b, denoted b̂bG; is the solution to
P

i
Dt

i V�1
i Si ¼ 0;

where Si ¼ ðYi�miÞ, Yi is the ni � 1 vector of outcomes for cluster i, and mi is a corresponding
vector of means. Di is an ni � p matrix with column k equal to @ mi =@bk and V�1

i is the inverse of an
ni � ni weight matrix that reflects the variance and assumed correlation structure of Yi. If we assume
that Vi is identical to Si, the actual covariance matrix of Yi, the model-based (naive) variance esti-

mate of b̂bG is bSSm ¼
P

i

bDDt

i
bVV�1

i
bDDi

� ��1

, in which the hats denote estimates of the true values. If we

do not wish to assume that Vi ¼ Si, we use the vector of residuals bSSi ¼ Yi� m̂mi to compute an esti-
mate bSSi of Si, and instead of using bSSm, we use the “sandwich” variance estimate of b̂bG, equal tobSSs ¼ bSSm

bSS0
bSSm, where bSS0 ¼

P
i

bDDt

i
bVV�1

i
bSSi
bVV�1

i
bDDi.

2.2 Mixed models & PQL

In Section 2.1, the marginal mean of each individual’s outcome was modeled without regard to the
correlation between individuals in the same cluster. In a mixed model, we assume each cluster has a
unobserved random cluster effect u, which if observed, would eliminate the within-cluster correlation.
Therefore, the conditional mean mij

* for each subject’s outcome in a cluster is expressed as a linear
combination of covariates and the cluster effect hij

* ¼ hðmij
*Þ ¼ Xt

ij bþ ui. This defines fvðmij
*Þ to be

the conditional variance of outcomes in a cluster. PQL assumes that the random cluster effects are
mutually independent with each having a mean-zero normal distribution with variance q. Since the
variability between clusters is quantified completely by q, the PQL model with this single component
of variation is analogous to the assumption of an exchangeable correlation structure in marginal mod-
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els. PQL is based upon a Laplace approximation to the exact conditional likelihood and iterates be-
tween two sets of weighted least-squares equations. The first set of equations compute an estimate of
b, which we denote b̂bP, for given values of q and the cluster effects u ¼ ½u1; u2; . . . ; uM �, while the
second set of equations compute values for q and u at the current value of b̂bP.

Others have shown that PQL tends to produce biased estimates of both fixed and random effect
parameters with longitudinal binary data (Breslow and Lin, 1995; Lin and Breslow, 1996). However,
Bellamy et al. show that the bias converges to zero at a rate Oð1=NÞ, where N ¼

P
i

ni is the total

number of observations (Bellamy et al., 2005). As each cluster in CRTs tends to be relatively large, N is
much larger in CRTs than it is in longitudinal studies, leading to a substantial reduction in the bias of
PQL. This bias reduction is not realized in GEE because the bias vanishes at rate Oð1=mÞ, where m is
the number of clusters. Most importantly, a close examination of the results of Bellamy et al. (2005),
demonstrates that the PQL variance estimator can be approximated by a sandwich-type form estimator
common to marginal model approaches.

As we stated earlier, the small between-cluster variability in CRTs leads to a negligible difference
between the GEE-based estimate b̂bG and the PQL-based estimate b̂bP, and we recommend using b̂bG
because of its marginal interpretation. However, because Var ðb̂bGÞ (via the robust GEE estimator)
converges at a slower rate than Var ðb̂bPÞ, we propose replacing the robust variance estimator of GEE
with a PQL-based variance estimator, which is easy to incorporate into existing GEE computations
due to its sandwich-type form. We now describe this variance estimator in greater detail.

2.3 Proposed variance estimator

In CRTs in which each cluster size ni � n, Bellamy et al. (2005), show that

b̂bP ¼
Pm
i¼1

Xi Xt
i

� ��1 Pm
i¼1

Xi g �YYi�
~uui

nq

� �
;

in which �YYi ¼
Pn
j¼1

Yij=n, ~uui is the predicted value of the random effect for cluster i, and gð�Þ is a

canonical link function. Using a series of Taylor series expansions, Bellamy et al. (2005) derive an
expression for the variance of b̂bP. By generalizing their findings to reflect unequal cluster sizes, we
find that the variance of b̂bP is approximately equal to V1 þ V2; in which

V1 ¼ S1
�1 S0 S1

�1

V2 ¼ q
Pm
i¼1

Xi Xt
i

� ��1

S1 ¼
Pm
i¼1

Xi Xt
i =ni

� �
S0 ¼ f

Pm
i¼1

Zi Xt
i =ni

� �
where the j-th row of Zt

i is created by multiplying each element of the covariate vector Xt
ij by the

scalar

zij ¼ Eui

1� uiv
0 ðmij

*Þ
vðmij

*Þ

( )
: ð1Þ

With normal outcomes, v0ðmij
*Þ ¼ 0, so that S0 ¼ fS1. As a result, our variance estimator is exact and

equal to f
Pm
i¼1

Xi Xt
i =ni

� ��1

þ q
Pm
i¼1

Xi Xt
i

� ��1

, a value that reduces to the usual least-squares var-

Biometrical Journal 49 (2007) 3 397

# 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



iance estimator with independent data (q ¼ 0). With non-normal outcomes, we see that V1 is a sand-
wich-type estimator in which S0 serves to account for the non-normality. Although much of the be-
tween-cluster variability is accounted for in V2, V1 also reflects the between-cluster variability as S0
is a function of the conditional variance of each observation.

By assuming normality for the random cluster effects, the computation of zij is fairly straightfor-
ward with Gauss-Hermite quadrature (Liu and Pierce, 1994) or with the K-th order Taylor series
around ui ¼ 0

zij � v�1ðmijÞ 1þ v0ðmijÞ
PK
k¼1

2k þ 1
ð2kÞ! Eðu2k

i Þ
� �

:

Note that the Taylor series is evaluated at the marginal mean mij, which is equal to the conditional
mean mij

* when ui ¼ 0. For example, a second-order approximation for zij with binary outcomes would be

zij �
1þ ð1� 2 m̂mijÞð3q̂q=2þ 5 q̂q

2
=8Þ

m̂mijð1� m̂mijÞ
;

with hats indicating estimates for the unknown parameters. We subsequently discuss the computation
of q̂q.

2.4 Estimating variation between clusters

Marginal model approaches often express the between-cluster variability q in terms of an intra-cluster
correlation coefficient q. Therefore, we need to derive an estimate of q from the estimate of q in
order to use our variance estimator. As shown in Commenges and Jacqmin (1994), if we write
Var ðYijÞ ¼ EfVar ðYij j uiÞg þ Var fEðYij j uiÞg, and we interpret correlation as a percentage of total
variation, i.e. Var ðYijÞ, explained by the model, i.e. Var fEðYij j uiÞg, we express the correlation q as

q ¼ Var ðm*Þ
Var ðm*Þ þ E½vðm*Þ�

: ð2Þ

Using first-order approximations around u ¼ 0, we have Var ðm�Þ � qv2ðmÞ and E½vðm*Þ� � fvðmÞ,
so that q � ½qvðmÞ�=½qvðmÞ þ f�: Note that this approximation is exact for normal outcomes, as
q ¼ q=ðqþ fÞ and represents the percentage of total variation explained by the variation between
clusters. We also examined second-order approximations around u ¼ 0 for Var ðm*Þ and E½vðm*Þ� and
found little improvement over the first-order approximations.

Note that for non-normal outcomes, Eq. (2) will not be constant across all subjects. To derive an
overall estimate of q, we average across all subjects, using the marginal model estimate q̂q and defin-
ing

q̂q ¼
P

i

P
j

q̂q

1� q̂q
v�1ðm̂mijÞ=N : ð3Þ

2.5 Existing small sample improvements to GEE

Other approaches to improving the variance estimator of GEE exist. Mancl and DeRouen (2001) state
that using the residuals from GEE leads to an under-estimate of the actual covariance structure of the
data, and they propose a bias-adjusted covariance estimator to use in the sandwich variance estimate;
see also Kauermann and Carroll (2001). As this variance estimator can be liberal in some settings,
Mancl and DeRouen (2001) also suggest comparing the resulting Wald test statistic to the quantile of
an F distribution with 1 and ðM � pÞ degrees of freedom instead of a traditional c2 distribution, where
M is number of clusters and p is the number of regression parameters.
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Fay and Graubard (2001) state that the middle of the sandwich estimator, the sum of the observed
cluster scores, should be inflated to reflect how the observed cluster scores are functions of esti-
mated parameters. They also propose replacing the reference c2 distribution with an F-distribution,
with the denominator degrees of freedom directly estimated from the data. Pan and Wall (2002) also
propose a modification to reflect the extra variability of the cluster scores, although their method is
based upon the method of moments and is more computationally intensive. Morel et al. (2003)
develop a modification to GEE by inflating the sandwich variance estimator by a fraction of the
naive variance estimator that is motivated from bias adjustment in sampling methods. The degree of
inflation reflects the level of within-cluster correlation yet disappears with an increasing number of
clusters. In the next section, we will compare the performance of some of these estimators to our
estimator.

3 Numerical Examples

3.1 Description

We have a CRT that seeks to examine whether or not health behavior messages (i.e. exercising more,
eating healthier, etc.) are more likely to encourage adoption of those behaviors if the messages are
tailored specifically to a subject’s familial risk of disease. In other words, we want to determine if
knowledge of increased familial risk for a disease impacts a subject’s behavior to prevent that disease.
To answer our question, we plan to enroll a total of M physician practices and randomize each prac-
tice to one of two approaches: 1) convey standard health behavior messages to patients, or 2) convey
health behavior messages to patients that vary by whether the patient has a low, moderate, or high
familial risk of disease. We constrain our randomization so that M=2 practices are randomized to each
arm. Each practice has a variable number of patients, but we expect to enroll an average of 100
patients in each practice. In our simulations, we examined M 2 f20; 30; 40g, with the number of sub-
jects in each practice distributed uniformly over the range ½70; 130�.

We expect the probability of a subject’s adopting the recommended behaviors will vary by the age
and gender of the subject; therefore, we designed our analysis to adjust for these two subject-level
covariates. Age and gender were generated so that the mean age of all participants was 40 and the
average male-female ratio was 50/50. Correlation within a cluster was created by including a random
cluster effect into the linear predictor of each observation. These random effects were generated from
a normal distribution with mean 0 and variance q, the value of which was selected so that each cluster
had intra-class correlation q. When including individual-level covariates, binomial and Poisson out-
comes cannot be simulated to have exact correlation q. Thus, in the following simulations, all param-
eters were selected so that the correlation within cluster was q on average for each cluster. Note that
our data were generated using a mixed model approach, but will be analyzed with a marginal model
approach with a canonical link (logit for binary and log for Poisson) function. We also simulated
binary data from a marginal model per the methods of Oman and Zucker (2001), as well as with
random effects from a gamma distribution with the correct variance and shifted left to have mean 0.
Neither of those two simulation approaches produced results that differed significantly from those
presented in Table 2.

Under each setting, we simulated data from 1000 hypothetical CRTs; in each CRT, we computed
the intervention effect estimate b̂bint using GEE with a working independence correlation structure. We
also computed the sample standard deviation of the 1000 intervention effect estimates to serve as a
reference for all of the following variance estimators. We first computed the “sandwich” or “robust”
variance estimator of GEE. We computed our proposed variance estimator with the true value of the
between-cluster variance as well as with an estimate of the between-cluster variance using Eq. (3) and
the moment-based estimator of q computed by GEE. We present our results when using Gauss-Her-
mite quadrature to compute the scalar zij in Eq. (1) as we found using a second-order Taylor series
approximation for zij gave nearly identical results.
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We also estimated the variance of b̂bint using the methods of Mancl and DeRouen (2001), Fay and
Graubard (2001), and Morel et al. (2003). The variance estimator of Fay and Graubard, which we
denote v̂vFG, was designed for use with a statistic, which we denote bFFFG, whose reference distribution
was an F-distribution with 1 and d* degrees of freedom. Therefore, we had to derive a scaled form of
the Fay and Graubard variance estimator that was comparable to the other methods that relied upon a

reference c2-distribution. Specifically, if
ffiffiffiffiffiffiffiffibFFFG

q
is the q-th quantile of a t-distribution with d* degrees

of freedom, then the scaled Fay and Graubard variance estimator is ½b̂bint =FðqÞ�2, where Fð�Þ is the
standard normal CDF. When examining the size of Fay and Graubard’s F-test, we computed ~dd, the
denominator degrees of freedom, as outlined in their manuscript (Fay and Graubard, 2001).

3.2 Poisson outcomes

We expect subjects receiving standard health messages will practice the negative health behavior an
average of l0 ¼ 3 times per month. We anticipate that l1 < l0, where l1 represents the average times
per month the negative health behavior is practiced by subjects receiving health messages tailored to
their familial disease history. Table 1 compares all the variance estimators under the null hypothesis
l0 ¼ l1 for values of the intra-cluster correlation q 2 f0:00; 0:05; 0:10g which correspond to between-
cluster variances of q 2 f0:000; 0:018; 0:037g, respectively. For each value of q, we computed three
properties of each estimator: 1) the average standard error value across all 1000 simulations, 2) the
mean-squared error (MSE) of each estimator in reference to the empirical standard error, and 3) the
size of the hypothesis test corresponding to each variance estimator, computed as the percentage of
simulations in which the null hypothesis was incorrectly rejected.

For all values of q, our estimator produces consistent standard error estimates regardless of the
number of clusters and whether q is known or estimated. The interesting result is that the Wald test,
although of correct size using the true value of q, shows a slightly inflated Type I error rate with q
estimated. This result suggests that we have two options: (1) select another approach for estimating q,
of which there are many (Ridout et al., 1999), or (2) select a longer-tailed reference distribution for
the Wald statistic. We hesitate to explore option (1) since our variance estimator is already accurate
with our selected method of estimating q. With regard to suggestion (2), we note that all the ap-
proaches demonstrate how poorly the c2 distribution approximates the distribution of the Wald statistic
in small samples. As proposed in Mancl and DeRouen (2001), we could replace the reference c2

distribution of the Wald test with an F-distribution with 1 and M � p degrees of freedom to create a
Type I error rate closer to a nominal rate of 0:05.

The estimator of Mancl and DeRouen produces slightly overestimated standard errors, yet leads to a
Wald test with nominal size when M > 20. In fact when M ¼ 20, the Mancl and DeRouen estimator
leads to the largest standard error estimate, yet creates a hypothesis test of smallest size. It appears
that the increased value and MSE of the standard error from the Mancl and DeRouen estimator com-
pensates for the poor approximation of the c2 distribution when M ¼ 20. The estimator of Morel
tends to create consistent standard error estimates in all settings, although the corresponding Wald test
is liberal for non-zero values of q and for values of M < 40. The variance estimator of Fay and
Graubard tends to produce underestimated standard errors and an overly liberal F-test and performs
similarly to the robust variance estimator of GEE.

3.3 Binary outcomes

We expect a proportion p0 ¼ 0:30 of subjects receiving standard health messages will perform a speci-
fic negative health behavior. We anticipate that p1 < p0, where p1 is the proportion of subjects receiv-
ing health messages tailored to their familial disease history who will perform a specific negative
health behavior. Table 2 compares all the variance estimators under the null hypothesis p0 ¼ p1 for
values of the intra-cluster correlation q 2 f0:00; 0:05; 0:10g which correspond to between-cluster var-
iances of q 2 f0:00; 0:27; 0:61g, respectively.
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Table 2 contains information analogous to that in Table 1. However, if q is known, our variance
estimator leads to overestimated standard errors with binary data and a Wald test with overly conser-
vative rejection rates. Nonetheless, this bias is alleviated when we substitute q with its estimate and
our variance estimator performs as well as the Mancl and DeRouen and Morel estimators. The Fay
and Graubard estimator continues to produce underestimated standard errors and liberal hypothesis
tests like the GEE robust variance estimator.

4 Actual Application

We apply the aforementioned variance estimators to data collected from the Working Well Trial
(WWT), which is one of the largest randomized worksite health promotion studies ever conducted,
with over 20 000 workers participating (Abrams et al., 1994). Two cross-sectional samples were taken
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Table 1 Comparison of several standard error estimators, corresponding mean-squared errors (MSE)
ðx10�4Þ, and size of resulting hypothesis test, for an estimate of an intervention’s effect upon the
number of negative health behaviors (Poisson outcomes). M ¼ number of clusters; q ¼ between-clus-
ter variation; asterisk indicates value is < 0:001. E ¼ empirical; Bq ¼ Braun with true value of q;
Bq̂q ¼ Braun with estimate of q; GEE ¼ GEE robust; MD ¼Mancl/DeRouen; M ¼Morel; FG ¼ Fay/
Graubard.

Estimator q ¼ 0:00 q ¼ 0:018 q ¼ 0:037

Value MSE Size Value MSE Size Value MSE Size

M ¼ 20
E 0.026 n/a n/a 0.065 n/a n/a 0.091 n/a n/a
Bq 0.026 * 0.044 0.065 * 0.054 0.091 * 0.057
Bq̂q 0.027 * 0.040 0.063 0.026 0.088 0.091 0.132 0.075
GEE 0.024 * 0.094 0.062 0.024 0.092 0.086 0.093 0.089
MD 0.027 0.001 0.054 0.070 0.039 0.063 0.097 0.155 0.061
M 0.028 0.001 0.040 0.066 0.026 0.085 0.092 0.101 0.081
FG 0.023 0.001 0.086 0.058 0.035 0.086 0.081 0.134 0.090

M ¼ 30
E 0.021 n/a n/a 0.054 n/a n/a 0.075 n/a n/a
Bq 0.021 * 0.051 0.053 * 0.053 0.074 0.001 0.053
Bq̂q 0.022 * 0.045 0.052 0.008 0.066 0.076 0.041 0.061
GEE 0.020 * 0.078 0.051 0.007 0.071 0.072 0.029 0.074
MD 0.022 * 0.052 0.056 0.009 0.050 0.078 0.037 0.052
M 0.022 * 0.048 0.054 0.007 0.066 0.075 0.028 0.072
FG 0.019 * 0.085 0.049 0.011 0.075 0.068 0.042 0.073

M ¼ 40
E 0.018 n/a n/a 0.046 n/a n/a 0.064 n/a n/a
Bq 0.019 * 0.046 0.046 * 0.048 0.064 * 0.051
Bq̂q 0.019 * 0.044 0.046 0.003 0.054 0.066 0.019 0.048
GEE 0.018 * 0.068 0.045 0.003 0.057 0.063 0.011 0.061
MD 0.019 * 0.055 0.048 0.004 0.044 0.067 0.016 0.044
M 0.019 * 0.055 0.047 0.003 0.055 0.065 0.012 0.061
FG 0.017 * 0.069 0.043 0.003 0.065 0.060 0.014 0.065
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for each worksite: a set of baseline measurements (Heimendinger et al., 1995), and a corresponding
set of measurements taken three years after baseline (Sorensen et al., 1996).

As quitting smoking is believed to decrease the risk of developing lung and other cancers, one aim
of the WWT was to determine if employees of worksites that encouraged smoking cessation actually
modified their daily routine and quit smoking. The WWT enrolled employees from a total of 114
worksites within 4 geographic centers: the University of Florida (UF), the Dana-Farber Cancer Insti-
tute (DFCI), the MD Anderson Cancer Center (MDACC), and Brown University (BU). As the UF
center did not collect information on employees’ smoking, our analysis focuses upon the three centers
that did collect smoking information, leading to a total of 87 worksites and nearly 4000 employees
who were current smokers at baseline included in our analysis.

The outcome of interest was whether or not a smoker had quit smoking by the time of the post-
intervention survey, the probability of which was modeled using logistic regression as a function of
treatment arm assignment, as well as the age, gender, and race of each employee. We computed the
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Table 2 Comparison of several variance estimators, corresponding mean-squared errors (MSE)
ðx10�4Þ, and size of resulting hypothesis test, for an estimate of an intervention’s effect upon the
probability of performing a negative health behavior (Binomial outcomes). M ¼ number of clusters;
q ¼ between-cluster variation. E ¼ empirical; Bq ¼ Braun with true value of q; Bq̂q ¼ Braun with esti-
mate of q; GEE ¼ GEE robust; MD ¼Mancl/DeRouen; M ¼Morel; FG ¼ Fay/Graubard. Data simu-
lated with mixed model.

Estimator q ¼ 0:00 q ¼ 0:270 q ¼ 0:610

Value MSE Size Value MSE Size Value MSE Size

M ¼ 20
E 0.100 n/a n/a 0.244 n/a n/a 0.336 n/a n/a
Bq 0.100 0.002 0.052 0.259 1.142 0.038 0.374 14.071 0.028
Bq̂q 0.103 0.033 0.047 0.240 4.346 0.073 0.340 17.626 0.068
GEE 0.092 0.122 0.086 0.230 4.014 0.081 0.316 13.479 0.079
MD 0.104 0.150 0.051 0.260 6.498 0.058 0.356 20.222 0.052
M 0.105 0.116 0.042 0.247 4.125 0.077 0.338 12.698 0.072
FG 0.087 0.197 0.090 0.217 6.089 0.080 0.297 21.829 0.080

M ¼ 30
E 0.076 n/a n/a 0.202 n/a n/a 0.274 n/a n/a
Bq 0.081 0.013 0.046 0.211 0.297 0.044 0.304 6.285 0.028
Bq̂q 0.084 0.035 0.038 0.200 1.263 0.073 0.283 5.769 0.053
GEE 0.076 0.024 0.061 0.192 1.240 0.079 0.263 3.667 0.070
MD 0.083 0.053 0.052 0.208 1.411 0.059 0.285 4.911 0.049
M 0.083 0.047 0.046 0.201 1.095 0.078 0.274 3.501 0.067
FG 0.072 0.030 0.067 0.181 2.040 0.081 0.249 6.144 0.076

M ¼ 40
E 0.067 n/a n/a 0.173 n/a n/a 0.235 n/a n/a
Bq 0.070 0.003 0.035 0.182 0.244 0.036 0.263 3.965 0.025
Bq̂q 0.072 0.013 0.034 0.175 0.532 0.053 0.247 2.941 0.048
GEE 0.067 0.011 0.058 0.168 0.438 0.063 0.230 1.372 0.062
MD 0.071 0.019 0.049 0.178 0.583 0.047 0.244 2.037 0.050
M 0.071 0.016 0.047 0.174 0.444 0.059 0.238 1.466 0.062
FG 0.064 0.014 0.067 0.160 0.660 0.063 0.220 2.017 0.062
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intervention effect estimate and each of the standard error estimates across all three centers, as well as
separately for each of the three centers. The results are displayed in Table 3.

Pooling the data from all three centers gives us an overall intervention effect estimate of 0.152,
indicating a higher quit rate in intervention worksites than in control worksites (14% versus 12%,
respectively). However, we find that the differential in quit rates was greatest in the DFCI center and
that the quit rates in the MDACC center were actually reversed, with intervention worksites having
lower quit rates than control worksites.

With regard to the standard error estimates, we see that when pooling the data from all three cen-
ters, the variance estimators of Fay and Graubard and GEE robust both tended to produce standard
errors lower than the others, confirmed earlier in the simulation results. In addition, our variance
estimator produced a larger standard error estimate than those of Mancl and DeRouen and Morel, a
trend not observed in our simulations.

When stratifying our analysis across the three centers, we found that the variance estimators of Fay
and Graubard and GEE continued to produce underestimated standard errors. For the analysis of the
DFCI (MDACC) worksite, we found that our variance estimator tended to produce a standard error
less (greater) than that of Mancl and DeRouen or Morel, while with the BU worksite, all three meth-
ods gave similar standard errors. As a result, it remains inconclusive as to which of our approach and
those of Mancl and DeRouen and Morel will tend to work uniformly best in practice.

5 Concluding Remarks

Our methodology has combined the mean parameter estimation abilities of GEE with the variance
estimation abilities of PQL. We still propose estimating the intervention effect in CRTs with marginal
model approaches, yet propose a PQL-based variance estimator that has better small sample properties
than the robust variance estimator of GEE, performs as well as those proposed by Mancl and De-
Rouen and Morel et al., and better than that proposed by Fay and Graubard. In our simulations, our
variance estimator tended to produce standard error estimates that were as close or closer to the
empirical standard error than that of Mancl and DeRouen. However, with a small number of clusters,
the corresponding Wald test had a nominal size with the estimator of Mancl and DeRouen more often
than with our estimator, suggesting the need for a different reference null distribution. One possible
area of research is to compare the performance of our estimator to that of Mancl and DeRouen after
generating the null distribution of the Wald statistic using permutation methods similar to that de-
scribed by Braun and Feng (2001). Another approach would be the use of a modified c2 statistic
similar to that examined by Jung et al., (2001), although such an approach would first require a gen-
eralization for individual-level covariates.
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Table 3 Comparison of several standard error estimates for the estimated intervention
effect on the prevalence of smoking in worksites participating in the WWT.

All Centers DFCI MDACC BU

Number of Worksites 87 24 40 23
Number of Employees 3,778 1,312 1,319 1,147
Intervention Effect Estimate 0.152 0.424 �0.131 0.107
Standard Error Estimates:

Braun 0.130 0.221 0.194 0.234
Mancl/DeRouen 0.120 0.233 0.159 0.234
Morel 0.119 0.232 0.163 0.233
Fay/Graubard 0.110 0.191 0.136 0.171
GEE Robust 0.115 0.209 0.147 0.204
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With binary data, our variance estimator had an upward bias with q known, although this bias was
alleviated by replacing q with its estimate. Although Breslow and Lin (1995) have shown that extend-
ing PQL to a second-order Laplace approximation leads to estimators with reduced bias, additional
research is needed to determine if including this bias adjustment will be useful for our approach, as
the variation between clusters in our examples was outside the range examined in Breslow and Lin
(1995).

Heagerty (1999) provides an alternate two-model approach to combining marginal and conditional
mean model approaches with longitudinal binary data. As applied to our setting, the first model speci-
fies the marginal mean as a function of intervention and other covariates as is traditionally done. The
second model specifies the conditional mean as a function of a random cluster effect and unobserved
latent effects that address the dependence within-cluster. This approach is contrasted to a strictly con-
ditional model which models the conditional mean on observed covariates rather than unobserved
latent effects. As a result, the two-model approach includes a intervention effect estimate that has a
marginal interpretation. Nonetheless, this methodology was developed for longitudinal studies, and
further research is needed to determine if the resulting variance estimator converges quickly enough to
make it a viable approach for analyzing CRTs.
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