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BEARING CAPACITY OF SPREAD FOOIINGS ON COHESIVE SOIL
In engineering practice the ability of a mass of cohesive soil or plas—
tic clay to support loads distributed over an area is a problem of primary
importances The problem of this type most familiar to practicing engineers
is the bearing capacity of spread footings or mats which serve as the sub=
structure for buildings or other structures. There have been presented a

considerable number of theoretical formulas for bearing capacity developed

on the basis of varying assumptions during ’fonnulative stage of soil

mechanics and many of them are in use at th ‘e'sent times With a large
number of formulas to choosex‘:‘ from, it has 'become difficult for engineers and
even soil mechanics specialis%é’»ito compare the assumptions upon which they
‘are based to determine which f;;nula is applicable to any specific case or
in the case of apparent disparity in results, to decide which formula is
valide One of the primary objectiveé’ of. this ;iiscussion, aside from pre-
senting a rational development of péa;tiﬁg 'capacit‘y‘,ZWill be to compare the

various formulas which are available.

Stress Reactions in the Compression Cone

In Figure 1 is shown in sa.mpl:n.f:.ad 'i‘pm;the mammer in which applied
pressure on a spread footing is tréﬁsmitted %o . the supporting soil (See
Figure 33 in Notes on Pressure Distribution) (.112& portion of the apblied
pressure at the bottom of the footing is distributed laterally within the
compression cone which may be designated by the 1 to 1 angle of spread with-
in which a uniform average pressure, Ny, is produced at a depth, h, below
the footing. The amount of load which may be so distributed is limited by
the shearing resistance of the soil acting on vertical planes through the
edge of the bearing area. The rest of the load which may be supported by

the soil mass is transmitted directly down the central coluin as a concen-

tration of pressure. Stress reactions supplied by the soil which enter into
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such pressure distribution are shown in Figure 1 with the magnitude of the
various pressure components indicated. In case the footing is at a depth,
hy, below the surface of the ground, there are certain stress reactions avail-
able above the loading plane which are also shown in Figure l.

The development of a formula for the total supporting capacity will con-
sist of evaluating each of these increments of pressure as a stress component
depending upon the conditions of static equilibrium for each supporting ele-
ment of mass within the compressidh cone. These supporting elements of mass
are designated as Element 1 and Element 2. Element 1 is the compression block
immediately below the bearing area with a lateral dimension equal to the lateral
dimension of the footing. Element 2 is a similar cubical element on any side
of Element 1 which supplies lateral support and plays a part in the lateral

distribution of vertical pressure.
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Fige 1 Stress Reactions in the Compression Cone
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Bearing Capacity Due to Developed Pressure
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When hy, = 0
qy = np + Dy *n3 = LS, (1)

Fige. 2 Stress Reactions in Developed Pressure

The first increment of bearing capacity is designated as developed pres-
sure, qp, and the pressure components or stress reactions in the soil which
make up developed pressure are illustrated in Figure 2. Element 1 acts as a
compression block subjected to three pressure components shown as nj;, np and
n3. Pressure components,n1 and ng, originate as lateral pressure or support
from adjacent Element 2. They produce cubical compression on Element 1 which
is transmitted as a fluid pressure resulting in no shearing stresses within
that element. The vertical pressure component, ns, acting on Element 1 is
the block compressive strength or difference in principal pressures equal to
twice the shearing resistance of the soil. Referring to Element 2 in Figure
2 the limit of lateral pressure which this block can supply without displace=

or
ment is also equal to the maximum difference in principal pressures of twice
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the shearing resistance of the soil. Thus the developed pressure, qp, for a
footing at the surface of the ground, when ho is zero, is equal to four times
the shearing resistance of the soil due to cohesion.

Bearing Capacity Due to Lateral Distribution Below the Loading Plane

The next source of bearing capacity to be considered is lateral distri-
bution below the loading plane, s which provides support for the bearing
area through lateral distribution of the vertical pressure outside the cen=
tral column. This reaction originates in vertical shearing resistance act=
ing on the boundaries of the central column as perimeter shear. In general
form, this reactipn on Element 1 may be expressed as the vertical shearing
resistance multiplied by the perimeter—area ratio of the bearing area and
the depth over which this vertical shearing resistance is mobilized. The

equilibrium conditions on Element 1 under lateral distribution are shown in

Figu.re 3.
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Fige 3 Stress Reactions from Lateral Distribution

P
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P = Perimeter in feet. h=b
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The perimeter—area ratio is inversely proportional to the width or dia=
meter of the bearing area being equal to %‘l for round and square footings and
% for strip footingse Any pressure component or bearing capacity term in
which the perimeter—area ratio is a factor would ordinarily vary as the size
of the bearing area and would be progressively smaller as the size of the
bearing area increases. However, evaluating the ultimate bearing capacity,
as in the present case, the depth to which lateral displacement of the soil
mass takes place is equal to the width of the bearing area. Consequently,
when the depth, h, is taken equal to b and substituted in the formula for
bearing capacity due to lateral distribution, the bearing capacity term is
no longer inversely proportional to the width of the bearing area but is the
same for all sizes of bearing area. |

Justification for assuming that the vertical shearing resistance on the
perimeter plane is mobilized for a depth equal to the footing width is pro=
vided from the equilibrium conditions on Element 2 under lateral distribu—
tion. As shown in Figure 2 and already discussed in connection with develop=
ed pressure, the maximum lateral support available from Element 2 is estab=-
lished by the maximum difference in principal pressures equal to twice the
shearing resistance. However, only a portion of the pressure transmitted to
Element 2 is involved in the downward transmission of pressure within the com=
pression conee

The pressure transmitted downward on Element 2 is designated in Fig. 3 as

n, and cannot exceed the vertical shearing resistance, S_., acting on the peri=

cd
meter planee Thus under the lateral distribution of vertical pressure within
the compression cone, the l5=degree portion of Flement 2 designated as 2b is
in equilibrium under a combination of normal pressure, Ny and shearing re=

sistance acting on the horizontal and vertical planes bounding that wedgee
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The additional lateral pressure component, n3, while available insofar as
lateral displacement is concerned is not transmitted downward as a distri=-
buted pressure within the compression cone. It is, however, maintained as
a concentration of pressure in the central column and transmitted downward
by Element 1 as shown in Figure 1. Under the combination of stresses illus=
trated in Fige 3, the bearing capacity available from lateral distribution
then reduces to four times the shearing resistance for round and square
footings and twice the shearing resistance for strip footingse.

Bearing Capacity Due to Static Head or Flotation

In Fige 1 provision was made for including in the bearing capacity of a
spread footing, reactions which may be mobilized above the loading plane
when the footing is at a depth, h,, below the surface. The first and most
important of such factors is the bearing capacity due to static head or flo-
tation which may be designated as dpe Such overburden pressure may be re-
garded as cubical compression transmitted through Elements 1 and 2 to the
bottom of the footinge When described as flotation, it is implied that the
soil mass is capable of transmitting fluid pressures proportional to the
static head with an active pressure or upward reaction on the bearing area.
Such a pressure component causes no shearing stresses within the soil mass
and being independent of shearing stress plays no part in the lateral dis=
tribution of pressure within the central column but merely adds to the con=
centration of pressure which may be transmitted downward by Element l.

Another way of viewing static head is to consider that when a footing
is placed in an excavation an applied pressure equal to the weight of soil
excavated may be imposed on the soil mass without causing any shearing
stresses within the mass. As indicated, the bearing capacity due to static
head, dps 18 equal to the weight of the soil in pounds per cubic foot mul-
tiplied by the depth of overburden, h,e

q, =10, = vwh (3)
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Bearing Capacity Due to Resistance to Upheaval

Before complete lateral displacement under a bearing area can take place,
the surrounding overburden may exert confining pressures in excess of the
static head originating in vertical shearing resistance on boundaries of the
displaced columns of earth. This confining pressure has been designated as
resistance to upheaval. Such shearing reactions were indicated in Fig. 1 but
are presented in more detail in Fig. L. As applied to a strip footing the
upward movement of a column of earth on either side of a bearing area would
be resisted by downward shearing forces on two vertical planes. The total
downward shearing force is then distributed as an equivalent pressure over a
width of element, be The increment of bearing capacity, Qs is then equal to
twice the shearing resistance times the depth, h, divided by the width, b.

In connection with this expression it may be noted that full shearing re-=
sistance is assumed on the perimeter planes through the edge of the footing
which may or may not be true depending upon the manrer in which the backfill
may be placed. If shéari‘ng resistance in the backfill is to be considered
negligible, shearing resistance on this perimeter plane would be neglectede
In other cases the footing may be poured in contact with undisturbed soil and
even though the backfill is not a source of resistance, shearing resistance
m3y be mobilized for the thickness of the footing, te

In round or square footings, resistance to upheaval must be evaluated
as a three~dimensional problem in which such resistance is acting on all
sides of a footing, Expressions for these cases are developed in connection
with Fig. L and it is pointed out that shearing resistance available around
the perimeter plane of the bearing area acts on a much smaller area than the
reaction on the outside boundary of the columns subjected to upheaval. When

the total vertical shearing force mobilized is distributed over the area on
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Strip Footings
25.h,
q.r = b (ha’)

= ‘L" Round Footings

Total Vertical Shear

SchgFi'd + Sch 37Tb

Equivalent Pressure Area

2, .2
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Equivalent Pressure, qp
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! Total Vertical Shear
\ LSgh b + 125chob
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* ' Equivalent Pressure, 9p
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Fige I Resistance to Upheaval

General Equation  qp = Scho 7 (L)
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which it acts as an equivalent pressure, it is found that the shearing surface
on the perimeter of the bearing area supplies only one=quarter of the total
reaction while the shearing resistance mobilized on the outside boundary of the
column subjected to upheaval supplies three—quarters of the total reaction.
For round and square footings, the bearing capacity increment due to resistance
to upheaval is given by Eqe (lb)s When shearing resistance is mobilized for the
full depth on all shear surfaces, resistance to upheaval in three dimensions,
which is a function of the group capacity of columns on all sides of the bear=
ing area, becomes the same as the expression for the two-dimensional case or
strip footing, However, the subdivision of resistance to upheaval into two
tems is desirable to retain because of the varying conditions which may be
encountered in design which may eliminate shearing resistance on some of the
surfaces involved.

Bearing Capacity Due to Perimeter Shear Forces Above the loading Plane

When shearing resistance is mobilized on vertical planes through the
edge of the bearing area as discussed in connection with resistance to up=
heaval, it follows that the opposing shear force or reaction acts on the free
body which includes the footing itself. The upward shear forces act on the
entire perimeter of the bearing area and are available to carry applied pres—=
sure in addition to pressure acting along the bottom of the footinge Follow-
ing equations give the magnitude of these reactions in terms of bearing capa-

city for strip footings, square and round footings.

General Equation ag = S,hy {: (5)

Strip Footings  qg = S;h_ % = 28§h° (5a)

Square Footings qq = Scho ;)h% » hs.gho (5b)

Round Footings  qg = Scho';'rb hsgho (5b)
TTb
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Summation of all Resistance Factors Included in the Ultimate Bearing Capacity

The ultimate bearing capacity of a spread footing on cohesive soil is the
sumation of all the factors of resistance which have been described and in-
cludes developed pressure, lateral distribution below the loading plane, sta-
tic head, resistance to upheaval and perimeter shear forcese. This ultimate
bearing capacity can be most concisely stated in the form of the following
general equations which apply to strip footings, round and square footings
as designated. Equations (6a) and (7a) represent the expressions which are
generally used which include a combination of like terms which may be desir—
able for brevity although such combinations may have the disadvantage of mak—
ing it more difficult to identify the sources of resistance from which these
terms originate as given in Eqs. (6) and (7).

Strip Footings =~ Two-Dimensional
28,h,  25,hg

q=h80+280+wh°+ b * b (6)
LS
Q= 65, + v+ —22 (62)
When h, =0 q = 63, (6b)
Round and Square Footings = Three-Dimensional
2S_h IS, h
q = 1S, + 1S, + why + —p= + —— (7
6Sc>ho
q =85, +wh +—¢ (72)
When b, = 0 q = 8, ()

REVIEW OF OTHER BEARING CAPACITY FORMUIAS

As previously stated there are a number of formulas for evaluating the
ultimate bearing capacity of cohesive soils with which it is desirable to
correlate .the expressions which have been presented above. In their general
form, most of these other formulas have been developed on the assumption
that shearing resistance of soil is a function of the angle of internal fric=

tion, #. However, for a purely cohesive soil which is generally taken to be
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representative of plastic clays, ¥ is equal to zero so these formulas may be
reduced to a simplified form for direct comparison.
(1) (2) (3)
Tschebotarioff, Taylor, and Capper and Cassie have all reviewed
a number of the available formulas. From these and other references listed
at the end of this memorandum, all of the available and fairly well known
formulas for bearing capacity of a cohesive soil have been taken and compared
under the conditions designated. In correlating these formulas, there are
several factors which entered into both the writer's development and the deri-
vation of the other formulas which must be subjected to careful analysis be=

fore a direct comparison can be made.

Other Bearing Capacity Formulas

Assumptions =h =0 6 =15 -Ag g=0

Strip Footings

Bell q = LS, (Reference 3, L)
Krey q = 65, (Reference 3)
Prandtl q = 5.1k S, (References 1, 2, 3, 6)
Fellenius q = 5.52 S, (References 1, 2, 3)
Terzaghi
General Shear q = 5.7 S, (References 1, 2, 3, 6)
Local Shear q = 3.8 S, (References 2, 6)
Tschebotarioff (Reference 1)
b S

General Shear q = 6428 S,
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Tschebotarioff (continued)

4 2
O gb b b2
‘L— T = 5TT3 b+ 25, >

q = 3.1l S, + 25,
2\
S~——
=25,
With passive lateral pressure mobilized
General Shear q = 5,1k S,
Without passive lateral pressure
Local Shear q = 3.dh Se
Michell
- Jo, - Maxe £_ =.%_.= Se (References 3, 8)
g q =TTS,

N

Surface of Maximum Shearing Stress, fg.

Iocal Shear q = 3.1h Se

Round or Square Footings

M

q=1US, (References 5a, 5b)

q = 5.6L S, (Reference 3)
Terzaghi

q = Tk Se (Reference 1, 65 T)
Tschebotarioff

q = T.95 So (Reference 1)



Summary of Other Formulas

Strip Footings

Iocal Shear - q varies (3.1k to 3.8) Se
General Shear = q varies (LeO to 6.28) Se
Round or Square Footings

General Shear = q varies (L to 7.95) S,
Discussion of Other Formulas

There are two major sources of variation in the values of ultimate bear-
ing capacity given by the formulas under discussion. In the first place the
conditions designated as local shear and general shear produce the widest
range of difference in the bearing capacity values. In the second place, the
question of whether or not lateral distribution has been taken into consider—
ation also produces considerable variation particularly between the two=dimen-
sional and three=dimensional solutionse

Terzaghl was apparently the first to give consideration to local shear
and general shear as a means of differentiating between different ranges of
bearing capacity. Terzaghi!s definition of local shear and general shear is
rather difficult to relate definitely to specific factors of resistance but
it is essential to do so for intelligent comparison with the other formulage
Terzaghi(é) describes these two types of failure on the basis of typical load-
settlement diagrams, one of which is characteristic of an incompressible soil
mass while the other is characteristic of a relatively compressible soil.

If the soil is relatively incompressible all of the resistance factors
involved in general shear failure accompanying lateral displacement are mo=
bilized at a relatively small amount of settlement. On the other hand, in
a compressible soil, the settlement becomes relatively large and may pro=
gress with volume displacement heing absorbed by volume change within the

compression cone without mobilizing the resistance to lateral displacement
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within any acceptable range of settlement, if at alle
Failure by local and general shear as defined by Terzaghi, may be iden=
tified in terms of the resistance factors employed in several of the other

(1)

formulas which have been cited. For example, Tschebotarioff develops an
expression for the ultimate bearing capacity under general shear failure by
considering the rotation of a cylindrical volume about a center taken at the
edge of the footinge This solution results in a value of ultimate bearing
capacity of 6.28 times the shearing resistance which is the highest given
by any of the formulas for a strip footing under the assumed conditions.
Tschebotarioff feels that this value is somewhat too high and suggests that
it be reduced to a value approximating that obtained by Fellenius of 5.52
times the shearing resistance. Such an adjustment is purely a matter of
judgment and must be done empirically so that from the standpoint of the
principles involved, the higher value should be considered.

Tschebotarioff has also presented a solution in which the passive
lateral pressure is included as a separate factor making it possible to
separate it from the rotational resistance on a cylindrical surface im=
mediately below the bearing area. Assuming that the latter resistance is
comparable to local shear failure produces the two values shown in the re-
view of other formulas of 3.1l times the shearing resistance for local
shear failure and 5.1L times the shearing resistance for general shear
failure.

Interesting confirmation of the lower bearing capacity value for

8)

local shear can be obtained from the Michell( solution for stresses under

a uniformly loaded strip. (See Figs. 3 and L in Notes on Pressure Distri=
)(11)

bution. In the Michell solution the maximum shearing stress occurs on

a cylindrical surface with the center of the cylinder at the center of the
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bearing area. Equating this shearing stress which is ,T%. to the shearing re=-
sistance of the soil produces the same value for local shear failure of
3.1l times the shearing resistance given by Tschebotarioffls solution. Thus
for strip footings carrying a uniform load the ultimate bearing capacity
under local shear ranges from 3.1l to 3.8 times the shearing resistance. The
higher value which is given by Terzaghi is based on empirical factors taken
from experiment to provide an approximate value for the bearing capacity.

The range of bearing capacity values for general shear on strip foot=—
ings varies from L to 6.28 times the shearing resistance. In this connec—
tion, it should be pointed oubthat in the development of those formulas pre=
sented by Bell, Krey, Prandtl and Fellenius, there was no specific reference
to the conditions of local or general shear but it must be presumed that they
refer to general shear only. The Bell formula, q = l:Sc s is based on plain
surfaces of failure and amounts simply to evaluating the maximum difference
in principal pressures on two mutually supporting elements of mass. The
Krey formula, q = 68, is cited by Capper and Cassie but no development is
given and this value could not be confirmed from the available references
to the original Krey formula. The values given by Prandtl and Fellenius,
falling in the middle of the range of values cited, are those most frequent-
ly referred to in writing on this subject. The Prandtl formula evaluates
the full resistance to general shear considering that the surfaces of shear
failure are most closely approximated by a logarithmic spiral. Fellenius
assumed rotation of the soil mass under the footing on a circular surface
with a center of rotation determined by trial and not coinciding with the
edge of the footing.

Turning to the three=dimensional problem of round or square footings
there were four formulas found in available references with values of ul=

timate bearing capacity ranging from L to 7.95 times the shearing resistance.
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The Krey formula for this case was cited in the first reference in the War
Department Engineering Manual for Civil Works and in the form presented re=
duces to a bearing capacity value of four times the shearing resistance for a
cohesive soile There was no indication of vhether this referred to the con=
dition of local or general shear but it must be presumed that_ it does refer
to general shear and obviously includes no recognition of lateral distribu=
tion of vertical pressure. The Hencky formula, q = 5.6L S,, was given by
Capper and Cassie without development but must also be presumed to refer to
general shear.

In connection with the Terzaghi value of 7.l times the shearing resis=
tance the author states that for computing the bearing capacity of spread
footings with square or circular bases not even an approximate theory is
available. On the basis of experiments a semi=empirical equation has been
derived which, for a fairly dense or stiff soil produces the value that has
been given. Terzaghl also indicates that if the supporting soil is fairly
loose or soft the values of the empirical factors must be adjusted in a way
that would presumably take into consideration the condition of local shear.
However, no specific bearing capacity values are indicated for local shear
on a square or round footinge

Tschebotarioff presents a solution in which the resistance to rotation
of a cylindrical soil volume includes resistances on the ends of the cylinder
at the edges of the footinge When the length of the cylinder is equal to the
width of the footing, the total resistance evaluated in this way amounts to
7.95 times the shearing resistance including minor empirical factors by which
the theoretical value has been reduced.

Thus the available formmulas for the ultimate bearing capacity of a round
or square footing produce values ranging from L to 7.95 times the shearing re-

sistance. It may be noted that all of these formulas refer to general shear
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and that no specific values were presented for local shear failure. In this
connection Capper and Cassie have noted that, "experiments on square and
circular footings have shown ultimate values 25 to 30 per cent greater than
for strip loading"s Applying such an increase to the range of values shown
for local shear failure on a strip footing would produce values of bearing
capacity, for a round or square footing under local shear approaching 5 times
the shearing resistance of the soil.

CONCLUSIONS AND RECOMMENDATIONS

Summarizing the review of the various bearing capacity formulas that
have been discussed, the resistance factors associated with local and general
she-ar failure may be identified with stress reactions in the compression cone
as illustrated in Fige le The resistance factors available in connection
with local shear failure may be conceived to be those associated with lateral
distribution of vertical pressure within the compression cone prior to con=
centration of pressure in the central column. These factors would include
the vertical shearing resistance on the perimeter planes and that component
of lateral pressure identified as ny necessary to the equilibrium of Elements
1 and 2 as required to produce the uniformm average distribution of pressure
over the full width of the compression cone. Bearing capacity available at
this stage of loading would then be equal to 3 times the shearing resistance
for the strip footing or two=dimensional case and 5 times the shearing resis-
tance for the square or round footings in the three=dimensional case.

In the caée of general shear failure for a strip footing, ultimate bear—
ing capacity ranges from L to 6.28 times the shearing resistance in the other
formulas that have been reviewed as compared to 6 times the shearing resis—
tance in the development presented by the writer. For the three-dimensional

case of the round or square footing bearing capacity values in the other
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formulas range from L to 7.95 times the shearing resistance as compared to 8
times the shearing resistance in the formulas presented by the writer includ-
ing all factors of resistance imvolved in developed pressure and lateral dis=
tribution of vertical pressure.

Consequently it is concluded that Eg. (6b) for strip footings and Eq. (7o)
for round or square footings are substantially confirmed by the range of values
found in other bearing capacity formulas that have been reviewed and particu-
larly so when the factors of resistance which entered into development of the
formulas have been carefully analyzed. It should be emphasized at this point
that the comparison that has been made applies to footings at the surface of
the ground when the static head or overburden surrounding the footing is equal
to zero. Inclusion of static head, resistance to upheaval and perimeter shear
forces mobilized around the edge of the footing as given in either Egs. (6)
and (6a) for the strip footing or Egs. (7) and (7a) for the round or square
footing are all factors that can be logically justified, both by theory and
practical experience.

While these factors have not been completely presented in any one for—
mula known to the writer, some of them are generally recognized and all of
them have been referred to upon occasion by other investigators. Static
head or flotation has been universally accepted as a factor in the bearing
capacity of any footing at some depth beneath the surface of the grounde
Terzaghi and Peck(7) discuss resistance to upheaval in the bearing capacity
of cylindrical piers but consider this resistance only at the cylindrical
surface of the pier itself while neglecting the downmward shearing force on
vertical boundaries of the columns subjected to upheaval. Capper and
Cassie(B) have noted that Skempton(9) suggests that the additional support
afforded by cohesion between the soil and the sides of the footing should

be allowed for by the addition of a term equal to the area of the side of
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(10) has previously used all of

the footing times the cohesion. The writer
these resistances in evaluating ultimate bearing capacity and obtained con=-
firmation by field observation that they were actually mobilized in the sink=
ing of large caissonse

In connection with the perimeter shear forces as shown in Egs. (6) and
(7) it should be noted that under ordinary practical conditions, the vertical
shearing resistance may be mobilized only for the depth of the footing itself.
In this comnection, it has been generally recognized as good engineering prac=
tice to excavate for footings in cohesive soils to the actual size of the foot—
ing and pour the concrete in direct contact with undisturbed soil. This in-
sures that the perimeter shear forces willybe mobilized for the thickness of
the footing and may in the case of smaller footings produce a substantial face=
tor in the bearing capacity.

Eqs. (6) and (7) in their final fomm are recommended as a basis for eval-
uating the ultimate bearing capacity of spread footings including all factors
of resistance that may be mobilized in a general shear failure producing com=
plete lateral displacement of the supporting soil mass. With each factor of
resistance definitely identified it should not be difficult to use such an
equation intelligently under the variable conditions encountered in the field
in which some of these factors may not be mobilized.

Segregation of those factors which are identified with local shear leads
directly to the problem of allowable bearing capacity and a number of other
considerations which enter into the design of spread footings and control the
factor of safety which may be provided. This is a matter that will be con=
sidered in a discussion of factors of safety and design procedures but other—
wise local shear must generally not be confused with the ultimate bearing

capacity of a footinge
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THE USE OF BEARING CAPACITY EQUATIONS
IN THE DESIGN OF SPREAD FOOQTINGS

In the design of spread footings the use of the equations for ultimate
bearing capacity presented in the preceding discussion involves a number of
general considerations of great fundamental importance. The primary consider=
ation is the selection of a factor of safety to be used in design. Under
current design procedures there are four general methods by which the factor
of safety may be controlled and which may be cutlined as follows:

1. An applied pressure which will produce a selected allowable
settlement which is held constant for all sizes of loaded area.

2o A factor of safety applied to the shearing resistance value to
be used in computation of the bearing capacity, it being presumed
that the shearing resistance is to be measured by some precise
testing procedure.

3, A mmerical ratio or selected proportion of the ultimate bearing
capacitye.

e An applied pressure made up of those factors of resistance which
are first mobilized by the supporting soil mass as, for example,
in local shear failure as compared to general shear failuree
Before the relation between these various methods of determmining the
factor of safety can be intelligently discussed, it is necessary to review
several fundamental relationships involving bearing capacity, settlement and
size of loaded area. There has been considerable confusion among practicing
engineers in attempting to interpret certain statements of such fundamental
relationships in soil mechanics which might appear to be quite conflicting.
For example, Taylor, after reviewiﬁg the various equations for ultimate bear—
ing capacity of cohesive soil, states that these equations, "are the first
presentation herein of another fundamental relationship which may be express=
ed as follows: In a highly cohesive soil the ultimate bearing capacity is a
constant and is independent of the breadth of the footing"e On the other

hand, Tschebotarioff, in discussing certain fallacies which have arisen in

soil mechanics practice states as follows: 'We now know that under the
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same unit pressure on the same ground a foundation of larger area will tend
to settle more than a foundation of smaller area."

Both of these statements are correct under the conditions to which they
referred, although they may seem to be contradictory to a practicing engineer
who does not fully comprehend the relationship between ultimate bearing capa=
city and settlement. Any contradiction disappears when it is considered that
a wniform pressure proportional to the ultimate bearing capacity applied to
all sizes of footings would produce a settlement which increacses as the size
of the footing increases. Conversely if it is desired to produce a substantial-
ly uwniform settlement in all sizes of loaded area, it would be necessary to re=
duce the applied pressure as the size of the bearing area increasese.

The classical statement of this relationship between load, settlement and
size of bearing area, which has been widely acceptedy, is known as "diameter
rule®. This relationship is based on the assumption of a perfectly elastic
supportirg medium and makes no provision for resistances brought into play
by plastic readjustments in the supporting mass which supplies an essential
or even major part of the bearing capacity of cohesive soilse

The application of the diameter rule to plastic solids such as a cohe=
sive clay, produced one of the major fallacies in soil mechanics practice
to which the writer directed attention in 1928 in commection with the in-
terpretation of field loading testso(lz) The consequences of applying the
diameter rule to loaded areas varying in size are illustrated in Fig, 5 and
Fige 6.

In Fige 5 is shown the relationship between settlement and applied pres—
sure on two circular loaded areas with diameters of 12 and 30 inches, which
are representative of sizes used in field loading tests., For the same ap=-
plied pressure per unit area the settlement is directly proportional to the

respective diameters according to the diameter rule. It may be noted that
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if this relationship was extended to practical sizes of spread footings or
concrete mats the settlement predicted would become unreasonable. For
example, a square footing 10 feet in width would produce a settlement of

5 inches and a concrete mat 100 feet in width would produce a settlement of

50 inches, W=28 450 /bs.
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In Fige 6 is illustrated the result of applying the diameter rule to
loaded areas varying in size and assuming that the settlement is to be held
constant. According to the diameter rule, the applied pressure per unit
area at constant settlement would vary imrersely as the diameter or width of
the footing, or in proportion the perimeter—area ratio. Under the condition
of equal settlement the applied pressure supported by the larger area, hav—
ing a diameter of 30 inches, is greatly reduced from that supported by the
area with a diameter of 12 inches, From a practical standpoint it is of
much greater importance that under the diameter rule, when the perimeter—
area ratio approaches zero for areas representative of spread footings or
large concrete mats, the applied pressure which could be supported at an
equal settlement also approaches zero or in other words becomes negligible.
This fallacy or misconception which controverts practical experience
is the one which was corrected by the writer's introduction of the following
linear equation for bearing capacity illustrated in Fig. 6.
a=my+n (8
q = bearing capacity in pounds per square foot

m = perimeter shear in pounds per lineal foot
of perimeter i

n = developed pressure in pounds per square foot

L ]

= perimeter-area ratio in feet per square foot
In this linear equation the bearing capacity, q, is a function of the
perimeter-area ratio multiplied by the perimeter shear but also including a
factor in the bearing capacity which is independent of the size of the bear—
ing area and has generally been designated as developed pressure.
The linear equation, q = m{- + n, may be correlated directly with the
development of the equations for ultimate bearing capacity summarized in

Fige 1 of this memorandum. Those pressure components or resistance factors
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designated as developed pressure and static head which are represented by the
term, n, in the linear equation, are independent of the size of bearing area
and are available at equal settlement in the large as well as the small bear=
ing areas. Those resistance factors designated as resistance to upheaval,
perimeter shear forces and the lateral distribution effect are included in
the perimeter shear, m, of the linear equation and are modified by the peri-
meter—area ratio. Thus the resistance factors included in the latter group
vary with the size of the bearing area and for all practical purposes become
negligible for larger spread footings and concrete mats. However, they are
not negligible in the sizes of loaded areas inwvolved in field loading tests
and must be taken into consideration to accurately extrapolate load testsre-
sults into practical sizes of spread footingse

In correlating the linear equation for bearing capacity with the for=
mulas for ultimate bearing capacity of spread footings which have been de=
veloped as part of this memorandum there is one additional relationship
which requires further explanation. In connection with the bearing capacity
originating in lateral distribution of vertical pressure it was assumed in
Eq. (6) and Eqe (7) that the shearing resistance was mobilized for the full
depth, hy equal to the width of the bearing area. As previously pointed out,
this assumption eliminated variation in bearing capacity with the size of the
area insofar as lateral distribution is concerned. It is now necessary to
bring this variation back into the discussion.

In this connection there is shown in Fige. 7 the considerations which
are involved when perimeter shear, m, is considered as a constant for all
sizes of bearing area as in the linear equation. In reinforced concrete
footings, the footing itself is generally more rigid than the supporting
soil mass. Consequently the footing tends to bridge the elastic depression
formed by the applied load and to develop higher intensities of pressure at
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Fige 7 Stress Reactions on Rigid Footings at Constant Settlement

the edges of the bearing area resulting from the perimeter shear being develop=
ed in the early stages of settlements Under such a sequence in the develop=
ment of stress reactions from the supporting soil, the perimeter shear forces
inwlved in lateral distribution are mobilized for some constant distance be=
low the loading plane rather than for the full depth of the element which was
taken equal to the width of the bearing area. It is the constant settlement
which controls the depth to which the shear is mobilized and the constant edge
reaction must be distributed over an increasing width of bearing area in order
to express its contribution to the bearing capacity in terms of an equivalent
pressure. Thus it is that the bearing capacity due to lateral distribution
becomes a function}of the perimeter—area ratio and at constant settlement
varies with the size of bearing area. It should be emphasized, however, that
this variation is much less extreme than in the case of the diameter rule
which involves a decrease in bearing capacity for allyfactors of resistance

and becomes absurd when extended to practical sizes of footingse



DESIGN BASED ON CONSTANT SETTLEMENT

On the basis of the preceding discussion of the relationship between
settlement, applied pressure and the size of bearing area, it is possible
to establish consistent design procedures, following any one of the methods
of selecting a factor of safety which were outlineds From a theoretical
standpoint the most desirable method of designing substructures consisting
of spread footings, would be to provide for constant settlement for all
sizes of footings involved in a structure. Theoretically there are two
methods of providing for constant settlement.

Consolidation Theory

One approach to the problem of evaluating settlement under a loaded
area presumes that settlement is due primarily to comsolidation of the sup—=
porting soile The consolidation theory which has been vigorously promoted
and gained wide acceptance conceives that settlement due to consolidation is
caused by squeezing water out of the voids of a saturated soil under the ap=
plied pressure. The consolidation theory which postulates that the movement
of moisture is caused by pore water pressure or excess hydrostatic pressure
as distinguished from pressure components originating in shearing resistance
due to cohesion, cannot be applied to compressible soils in which the voids
are not filled with water.

The experimental procedure followed in applying the consolidation theory
is to obtain relatively large undisturbed samples which are brought into the
laboratory and subjected to a consolidation test. In this test the sample
is placed between porous stones and completely confined in a test cylinder
in which it is subjected to applied pressure in sufficient magnitude to
squeeze the water out of the sample. These laboratory tests are then trans-
lated into consolidation settlement under practical conditions by a coeffi-

cient of consolidation involving a change in the void ratio of the soil mass
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and modified by the permeability of the soil in order to obtain predicted set=
tlements under field conditions.

For a number of years the Soil Mechanics Laboratory at the University of
Michigan conducted such consolidation tests but they have been abandoned as
part of their routine soil testing procedure due primarily to the fact that
settlement predictions based on these tests have frequently proved to be quite
unreliable. This experience has also been confimed by numerous examples in
the engineering literature in which the settlement predictions based upon
consolidation tests have failed by wide margins as a prediction of the actual
settlement that has been experienced.

The inaccuracy in settlement predictions has occurred in two ways. In
the first place, when the applied pressures are substantially less than the
ultimate bearing capacity of the soil with respect to displacement, settle=
ment experienced in the field has been very much less than that which was pre-
dicted from the laboratory consolidation tests. In the second place, when
the applied pressure exceeds the ultimate bearing capacity of the soil, pro=
gressive settlement under plastic flow generally continues without any notice-
able decrease due to the presumed consolidation of the soil. The latter ex—
perience is of the greatest practical importance because it illustrates the
danger of overemphasis on consolidation as a source of settlement. This has
led practicing engineers in many notable cases to ignore the danger of ex~
ceeding the ultimate bearing capacity of the soil which has resulted in total
mass displacement.

There may be several reasons for the unsatisfactory experience in pre=
dicting settlement by the comsolidation theory. To begin with, the theory
is not applicable to unsaturated soils with unfilled void space characteriz=
ing most of the compressible soils encountered in practice. In connection

with saturated clays in which the settlement observed has been substantially
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less than that predicted from consolidation tests, Terzaghi and Peck account
for these discrepancies as a secondary time effect due to the lag in the re~
action of clay to a change in stress as noted in the following quotationss:

"These delays in the reaction of clay to a change in stress, like

the secondary time effect and the influence on cy, (coefficient of

consolidation) of the magnitude of the load increment, cannot be

explained by means of the simple mechanical concept on which the
theory of consolidation is basede Their characteristics and con=
ditions for occurrence can be investigated only by observation."

1Tt is obvious that the results of a settlement computation are

not even approximately correct unless the assumed hydraulic boun=

dary conditions are in accordance with the drainage conditions in

the fielde Every continuous sand or silt seam located within a

bed of clay acts like a drainage layer and accelerates the consoli~

dation of the clay, whereas lenses of sand and silt have no effect.

If the test boring records indicate that a bed of clay contains

partings of sand and silt, the engineer is commonly unable to find

out whether or not these partings are continuous. In such instances
the theory of consolidation can be used only for determining an upper
and lower limiting value for the rate of settlement. The real rate
remains unknown until it is observed."

These statements touch upon the writer's primary misgivings as to the
practical applicability of the consolidation theory. In his opinion the
conditions under which an isolated sample in the laboratory is tested de=
part so far from the conditions under which the s0il mass is loaded in the
field that there is little reason to expect that such test would provide a
reasonable basis for predicting settlement. Aside from the obvious diffi-
culty of reproducing the actual drainage conditions in the laboratory, the
sample is completely confined in the test cylinder so that there is no op=
portunity to observe the weakness of the soil with respect to displacement
which becomes a controlling factor under actual field conditionse.

This is the source of the major weakness in the practical application
of the consolidation test which has been referred to above as the second
and more important source of inaccuracy in settlement predictions. In sum=
marizing the writer!s position on the consolidation theory it is concluded

that this approach does not provide an acceptable basis of designing footings
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for constant settlement and it is not recommended.

Field loading Tests

The second approach to the problem of designing spread footings for con-
stant settlement is the use of field loading tests. When it becomes neces=
sary to proportion footings to produce constant settlement within more pre=-
cise limits than ordinarily required, it is the writer's opinion that such
field loading tests provide the only practicable method of procedure. Inas-
much as bearing capacity is a function of the size of the bearing area as il-
lustrated by Eqe (8), it is obvious that such tests must be conducted on
several sizes of bearing area in order to determine the size effect. To pro=
duce acceptable results control of testing conditions in the field, including
the rate of loading and measurement of load and settlement must be carried
out with more than ordinary precision. The observation must then be carefully
analyzed and properly interpreted in order to extrapolate the results of the
field loading tests into the size range of spread footings. The interpreta-
tion of field loading tests is a subject that has been presented elsewhere

(13) (Al

and cannot be exhaustively treated in this memorandum A general
equation for settlement of a loaded area and the derivation of Eq. (8) in
these terms is given in Appendix A for convenient reference.

There have been a number of examples given of the successful application
of field loading tests in which the accuracy of predicted settlements has
been danonstrated(n)(lh). Suffice it to say for the present discussion
that Eq. (8) which is predicated upon equal settlement is recommended as the
basis of design for constant settlement. Analysis of a series of loading
tests determines the limiting values of the soil resistance coefficients
given in Appendix A and the limiting value of the stress reactions, peri-
meter shear, m, and developed pressure, n, Selection of an allowable set~

tlement may be based either on a permissible deformation in the supported
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structure or a reasonable margin below the limiting value of supporting
capacity.

Limitations of field loading tests are well recognized but should not
be taken as a basis for their rejection when conditions require d esign for
constant settlement with more than ordinary precision. When such tests are
properly conducted as is necessary for reliable results, they are both time-
consuming and expensive., When nonuniform soil conditions are encountered
involving significant changes in soil characteristics within the site and
particularly with reference to stratification within a depth equal to the
lateral dimension of the loaded areas, field loading tests may be deceiving.
Under such nonuniform soil conditions a complete series of loading tests
must be conducted for each significant variation in soil conditions and the
results must be interpolated in temms of the distribution of load through
the various strata from the various sizes of footings involved in the de=
sign phase of the problem. For these reasons a comprehensive series of
field loading tests may frequently become prohibitive and consequently
much effort has been devoted to developing other methods of evaluating
bearing capacity in engineering design,

DESIGN BASED ON SHEARING RESISTANCE TESTS

The computation of the bearing capacity of spread footings on cohe-
sive soil from shearing resistance values determined by some precise test
procedure and involving an adequate factor of safety 1s the second method
of design which has been developed. This method requires the use of the
equationa for ultimate bearing capacity which have been presented as the
primary objective of this memorandum. In this respect, Eq. (6) and Ege
(7) have been recommended for computing the ultimate bearing capacity of
spread footings. Equation (8) has been presented as the basis of modify=-

ing the ultimate bearing capacity and to serve as a guide in reducing or



discarding certain terms in Eqs. (6) and (D

Laboratory Shear Tests

The first problem to which attention must be directed is the determina=
tion of shearing resistance values to which a factor of safety may be ap—=
plied. There are two types of shearing registance tests in general use,
both of which are conducted on undisturbed samples obtained from borings at
the site of the proposed construction. The University of Michigan Soil
Mechanics Laboratory has developed a transverse or ring shear test which
represents the routine procedure used by that and some other laboratories.

A number of other soil mechanics laboratories use the unconfined compression
test as the basis for determining the shearing resistance of a cohesive soil.
For some years the Soil Mechanics Laboratory at the University of Michigan
has been running both of these tests in parallel in order to establish cor—
relation between the resultse

The ring shear test is a measure of what may be called the static yield
value or shear stress greater than which the soil will suffer progressive de=
formation. In these tests observations are made of the rate of shearing de-
fomation for each load increment applied. From this may be determined by
extrapolation the actual load at which progressive deformation occurse The
final results as shown are thus independent of the d;ynamic' resistance and
represent that applied stress which may be sustained in static equilibriume

The shearing resistance as determined by unconfined compression tests
conducted in accordance with generally accepted procedures has not been cor=
rected for dynamic effects so the test may be termed a rapid shear teste The
load is applied at a continuous rate until failure is produced and in a much
shorter period of time (five-mimute loading period)e. Over several thousands
of parallel tests it has been found that shear values obtained from this un-

confined compression test are very close to four times those obtained from
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the ring shear test in the case of rlastic clays of the truly cohesive type
or in the case of saturated clays.

In correlating the results of the ring shear test and unconfined com=
pression test, it has been the practice to express the results of the umcon=
fined or rapid shear test in terms of an equivalent static shearing resis=
tance which is one=quarter of the actual measured value. The shearing resis—
tance in unconfined compression is taken as one=half of the unconfined com=
pressive strength. The reduction by the ratio of one=quarter gives an equiva-
lent shearing resistance which compares very closely with the static shear—
ing resistance or yield value from the ring shear test in the plastic or
truly cohesive types of clay. In more highly consolidated clays and those
containing a substantial amount of granular material, equivalent shearing
resistance values from unconfined compression are generally higher than the
comparable values in the ring shear test. It has become the practice to use
the higher values as representative of the mechanical strength of the more
highly consolidated soil. In this connection it is considered that the gran=
ular structure dictates the plane of failure which is steeper than 5 degrees
and that the true shearing resistance due to cohesion acts on this steeper
angle of failure and accounts for the higher equivalent shearing resistancee
The relation between the shearing resistanée due to cohesion and the equiva=-
lent shearing resistance from unconfined compression is expressed by the fol-

lowing equations:
S

- c

Suc sin 2 ©
In highly consolidated soils where internmal stability of the granular struc-
ture plays a major role, the ratio between the transverse shearing resis=

tance, S, and the shearing resistance from unconfined compression, 8., is

c?

used as a basis of evaluating the angle of pressure transmission, 8. How-

ever, this practice is somewhat tentative at the present time and should only
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be used when there are a sufficient number of comparative test results to es-
tablish a reliable statistical average between these two shearing resistance
valuese

Before closing the discussion of comparative shear values, one other
exception to the general rule should be mentioned. In flocculated clays of
abnormally high moisture content there has been a general trend for the equi=
valent shearing resistance from wnconfined compression to run consistently
lower than the static yield value from the ring shear teste Such clays hav=
ing a flocculated structure are identified as having a high degree of sensi=
tivity characterized by a loss of shearing resistance when disturbed. The
remolded shearing strength is substantially less than the shearing resistance
in the undisturbed state and there is evidence that the recovery of the ori-
ginal shearing strength due either to molecular reorientation of adsorbed
moisture or consolidation can be questioned. In dealing with such materials
in design it is suggested that the lower value of equivalent shearing resis—
tance from unconfined compression should be used in design computationse.

Overload Ratio and Factors of Safety

In present soil mechanics practice the shear value upon which the de=
sign is based is necessarily predicated upon the type of laboratory test
that has been used. A number of laboratories use the unconfined compression
test and assume the shearing resistance as being one~half the unconfined com—
pression test without reduction for the dynamic effect of the rapid rate of
loadinge This test value is defined és the ultimate shearing resistance and
a factor of safety is applied to this figure.

It has been the writer's practice to use the static yield value from
the ring shear test or the equivalent shearing resistance from unconfined
compression as outlined above, as a basis for computing the supporting

capacity of &-@ohesive soil mass. In this connection it is considered that
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any permanent structure should be in static equilibrium and not subjected
to progressive settlement in any amount. In comparison with building con=
struction practice within the writer's experience such a criterion has re-
sulted in a substantial reduction in the nominal allowable bearing values
which have been in use. It does not, however, provide a factor of safety
comparable to that used in other fields of structural design employing
steel and concrete and other building materials. However, there is pro-
vided a considerable range of load in which the progressive settlement
which does take place may be permissible within the life of the structure
involved and the probability of a sudden mass movement or slide 1s elimi=-
nated.

Under certain practical conditions where slow progressive movement
is permissible, the writer has employed an overload ratio as a design fac-
tor by which the static shearing resistance or yield value may be increas=
ed. The overload ratio is defined as the ratio obtained by dividing the
shearing stress imposed upon the supporting soil mass by the static shear=
ing resistance or yield value of the soil.

In recent years since the relationship between these two types of
shearing resistance tests has been quite clearly established, it is pos=
sible to compare design criterion based either on an overload ratio or a
safety factor applied to the ultimate shearing resistance and arrive at
approximately the same basis of designe Tschebotarioff(l) has presented

a comparison between these two methods of design which is reproduced below.
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TABLE I

The Average Relationship Between Housel's Overload Ratio and Factors of
Safety, Fgy Based on the Ultimate Shearing Resistance of Clays

Values Suggested by
Values Suggested by Housel Terzaghi and Peck
Overload Ratio | Factor of Safety
Fs
Permanent Structures 1.00 11400
1.33 3.00 Normal
Temporary Structures’ 2,00 2400 Minimum
2050 1l.66
Failure Condition 11400 1.00 Failure

#Refers to excavation and temporary loading conditions that will presumably
not extend over a period of several months at the moste

Tschebotarioff concludes that an overload ratio of unity is somewhat
too conservative even for permanent structures but it is the writer's recom=
mendation that the static shearing resistance or yield value equivalent to
an overload ratio of wnity be accepted as the controlling value for the de=
sign of permanent structures. It is considered that any exception to this
general rule takes on the character of a calculated risk and must be done
with a full realization of the consequences of progressive settlement or,
in the case of overload ratios higher than normal, the increasing possibil=—
ity of rapid progressive settlement or sudden mass movement.

As noted by Tschebotarioff the writer has suggested that for temporary
loading conditions such as excavations during the period of construction
overload ratios as high as 2.0 or 2.5 may be employed without serious danger
of slidess In addition there are other conditions frequently encountered in
practice where considerable progressive settlement may be permitted and

where overload ratios as high as 240 or 2.5 may also be accepted as calculated
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risks. Particular reference is made to mass storage of materials such as
ore, coal and building materials in which complete flexibility is involved
with no rigid or semirigid substructure to be seriously damaged.

Then the allowable shearing resistance value based either on an over=
load ratio or factor of safety as the case may be, has been selected, this
value may be used in Eqe (6) or Eqe (7) including all terms of resistance
which are applicable to the specific field conditions involved in the proj—
ect under consideration.

The only qualification which must be made in this recommendation has
to do with the fact that these equations for ultimate bearing capacity, even
though they may be reduced to allowable values by the use of a conservative
shear value, still involve a settlement that varies with the size of the
loaded area. As pointed out in the discussion of the relationship betvreen
the linear equation for bearing capacity and the equations for ultimate
bearing capacity, this statement applies only to those factors of resistance
which ai'e a function of the perimeter—area ratios When control of settle=
ment is not required as is frequently the case in mass storage over large
areas, no further reduction in the allowable bearing capacity will be re=

quiredes

ADDITIONAL SAFETY FACTCRS IN DESIGN

On the other hand, in the design of footings ﬁrhich support rigid
structures that would be damaged by differential settlement, it may be
necessary to make further reductions in the allowable bearing capacity in
order to control the settlement within acceptable limits, Such reductions
may be made by either Methods 3 or l which were outlined on Page 20 of this
memorandum. Method 3 involves an arbitrary reduction in the overall bear-—
ing capacity as computed by the formulas and does not take into considera=

tion the relative magnitude of the various sources of resistance which have
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been evaluated or the sequence in which these resistance factors may be de=
velopede Furthermore, the additional safety factor is entirely a matter of
engineering judgment and the degree of conservatism which it is desired to
introduce into the design.

Keeping in mind that the primary objective of an additional factor of
safety beyond that provided by a conservative shear value is to limit the
settlement or control the differential settlement, it would appear that
Method L provides the more logical procedure. By this method certain fac-
tors in the bearing capacity equations can be eliminated depending upon the
sequence in which they are developed by the supporting soil masse.

This method may be compared to accepting local shear failure as the
final criterion in design, with the qualification that bearing capacity due
to static head or flotation should alwaeys be included. Justification for
accepting the bearing capacity due to static head as the first in the order
of availability comes from the fact that until the applied pressure replaces
the weight of the soil removed in placing the footing, there are no stresses
imposed on the supporting soil masse

Next in the order of availability without excessive settlement are
those components of pressure associated with developed pressure and lateral
distribution under local shear failure (See Page 17). These factors of resis—
tance amount to three times the shearing resistance for a strip footing and
five times the shearing resistance for a round or square footinge. At this
stage of mobilization of supporting capacity which corresponds most closely
to local shear failure the following bearing capacity equations would be
useds

Strip Footings q = 38, + why
Round or Square Footings q = 55, + wh,



-38 =

Tt may be pointed out that in these equations the ultimate bearing
capacity has been reduced by ;alimina.t:’mg all resistance to upheaval, that
portion of the passive lateral pressure designated as n3 not associated
with lateral distribution of vertical pressure and the vertical pressure
component, Doy originating in the maximum difference in principal pressures
on the compression block, Element 1, which directly supports the bearing
~area (See Fige 1)o

Tt is the writer's opinion from consideration of all factors involv—
ed in bearing capacity that the pressure component, N,y or the maximun dif-
ference in principal pressureson the supporting block immediately under the
bearing area could be included in the bearing capacity without defeating
the objective of eliminating excessive settlement in compressible soil masses.
When this is done the equations for allowable bearing capacity would be as
follows:

Strip Footings q =55, + wh, (10)
Round Footings q = 7S, + wh, (12)

Equation (10) and Ege (11) represent the writer's recommendation for
an additional reduction in allowable bearing capacity, based on equations
for ultimate bearing capacity which have been presented in this memorandum
for the purpose of reducing the total settlement. This is with the under=
standing that the shearing resistance value to be used in these equations
is the static yield value or equivalent shearing resistance from unconfined
compression. Under these conditions it is felt that applied pressures of
the presé¢ribed magnitude would not produce excessive settlement in relative-
1y compressible soil masses. It must be recognized, however, that the use
of such an equation does not completely eliminate the possibility fof dif-
ferential settlement of footings which vary considerably in size. There

are still in Egqs. (10) and (11) certain bearing capacity factors arising
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from lateral distribution which imply differential settlement.

In this connection it may be desirable to supplement these equations
in order to provide a technique for controlling differential settlement with=
in a range of footing sizes that may be encountered in any supported struc=
tures Such a technique may be devised from the linear equation for bearing
capacity and while it involves a somewhat different approach its validity is
supported by the successful application of load test results in designing
footings for constant settlement. As has been previously pointed out the
developed pressure, n, in Eq. (8) includes those factors independent of the
size of the bearing area designated as developed pressure and static heade
On the other hand, perimeter shear, m, becomes a constant in Eq. (8) only
because the settlement is constant and vertical shearing resistance is mo=
bilized for a constant depth in all sizes of footings. Following this line
of reasoning it is suggested that any structure in which it is desired to
vary the allowable bearing capacity for different sizes of footings, that
the perimeter shear, m, be computed as the product of the shearing resis=
tance due to cohesion, S;, for a depth equal to the width of the smallest
footing and then be taken as a constant for all other sizes of footingse
This procedure is illustrated by the following equationss

q =mn %E +n (8)
Let D7 = width of smallest footing

D2 = width of a larger footing

n = developed pressure and static head
from Egss (10) and (11).
n = 35, + wh,

m = SCDl
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Strip Footings

2
Gy = ScDy x5 + 35, + who

1
q; = 55, + why (10)
_ 2 .
9, = S0 x 32"' 38, + wh,
Dy
q, = 28, '5; + BSc + wh (10a)

Square or Round Footings

- N
4y = 5.0y '51 + 35, +wh,
q‘l = 7Sc + Who (11)

% =ScD1x§2 *+ 35, + vwh,
q =hs?-1-+ss + wh, (11a)
2 ¢ Dy c Y

In conclusion it should be pointed out that in all of the preceding
development in this memorandum it has been assumed that the supporting soil
mass is substantially uniform for a depth at least equal to the width of
the bearing areas under consideration. In practice, it is generally true
that there are substantial variations in shearing resistance with the depth
which present a new set of conditions and problems. Segregation of the
various factors of resistance in the bearing capacity equations will make
it easier to take into consideration variations in shearing resistance with
depth, particularly in connection with shearing resistance above and below
the loading planee.

When significant changes in soil strata and shearing resistance values
take place within a depth below the loading plane, equal to the width of the
loaded area, there are two cases to be considered in extension of the bear—
ing capacity equations to cover such variations in shearing resistance. In

the first place, it has become common practice to use an average shearing re-

sistance for the depth of footing computed as a weighted average taking into
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consideration the depth to which each respective shear value extends. In the
second place, where the variation in shearing resistance involves a particu-
larly weak stratum within the depth under consideration, the displacement in
this soft layer must be investigated as a special problem.

In such cases the applied pressure at the footing level is distributed
through the overlying layers by punching shear to detemine the maximum pres=—
sure to which the soft layer is subjectede Displacement in the soft layer
is then investigated in relation to the maximun difference in principal pres=—
sure on elements of mass taken equal to the thickness of the layere The con=
fining pressures exerted by overlying layers is based upon resistance to up~
heaval paralleling the relationship evaluated in similar terms in the equa=
tions for ultimate bearing capacity. Whether or not lateral distribution
should be considered in the soft layer is debatable and the present practice
is to include it only if the layer is within a depth equal to the width of
the footinga

In practice there are frequently other special conditions which may be
beyond those which have been discussed and to which the general principles
illustrated in this memorandum can be extended. However, it is not consider=
ed practicable to attempt to anticipate all of these special conditions in

the present memorandume
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APPENDIX A
General Equation for Settlement of a Loaded Area
A general equation which expresses the relation between settlement, size
of bearing area, and load has been derived by integrating soil deformation

vrithin the compression cone. In Fige. 8 the relations included in this general

b equation are illustrated. The problem
w
involves a finite bearing area which
# Surface
(? , has been taken as a square of width be
Pa)
@ | : f y The increase in the lateral dimension
L N |
k\’o : : A of the loaded area is given by r the
e e e )
iy subpuing Mugni ay tangent of the angle of spread. In a
e T
{ ; | depth h according to the linear approx-
] .
T imation of pressure distribution the
— =~ total load W will be carried over an
b +2rh area with a lateral dimension of
_____ (b + 2rh). Combined triangular and
[ bOrrh ]
| , rectangular distribution is select-
5 |
| | ed as the most satisfactory represen—
I |
| | tation of pressure distribution in
L |
that it properly portrays lateral dis=-
tribution of the vertical load as a
Fige 8 boundary phenomenon and provides a con-
Pressure Distribution and venient basis for segregating the two

Settlement Under a loaded Area
different types of stress reaction in-

volveds Accepting this pressure distribution the total load may then be repre-
sented as an equivalent uniform pressure over an area with a total lateral

. . 2
dimension of (b + rh), the area being (b + rh).

At any depth y below the surface an element of thickness (dy) will be
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subjected to an equivalent uniform pressure Py The modulus of incompressi-
bility I is defined as the load per unit area divided by the settlement or

deformation per unit depth.

I = Py =W/(b + ry)°
d4 /dy dA/dy

A= Total Settlement in feet.
a4 - T
= 1
Aflzb*wyz [rb+ry:|

m (98.)

Reducing to terms of bearing capacity p and perimeter—area ratio

h

o

A=_. Db W = pA
I(A +P & =
( -*E P=1Ilp
A = b2
Let
h= I.h'=
e A
K
1P
A = 5 (9)
1+K, =
A

. 2
Equation (9a) is a general solution first obtained by C. C. Will:.ams.(l )

This form is subject to some limitation inasmuch as it contains quantities

r, hy and I which are not subject to direct measurement under practical con-
ditions. It is necessary further to express the general relation for set-
tlement in terms of quantities that may be measured by test. This may be
done by introducing two soil resistance coefficients Kl and K2 and establish-
ing their relation to the straight=line equation (8). Equation (9) is a
general expression which shows the relation between settlement, perimeter—
area ratio, and bearing capacity. In order to show the relation between the

straight=line equation (8) and equation (9) it is merely necessary to consider
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the settlement A as constant and express bearing capacity in terms of peri=-

meter-area ratio,

+n (8)

-g— K2 = % (So0il Resistance Coefficients)e

Kl =
From equation (9) it is seen that the only quantities involved in addi-
tion to the variables of load, settlement, and perimeter—area ratio are the
two coefficients Kl and K2. From the direct relation to equation (8) it is
apparent that K; and K, may be evaluated in terms ofAs my and n which have
been measured by bearing capacity testses In the analysis m and n are deter=
mined for any given settlement and for the same conditions it follows that Ky
and K2 are constantse The values of m and n, the stress reactions, will vary
for different types of soil and for different ranges of load. The coefficients
Ky and Kp will also vary with m and n and thus they become the coefficients
which express the essential properties of the particular soil and on the basis
of which the varying behavior of the material for different ranges of load may
be definitely evaluated, Kl, which is the ratio of settlement divided by de=

veloped pressure, is defined as the coefficient of settlement. It analogous to

the well=known coefficient of compressibility except that it expresses the
total settlement as volume change in the body of soil included within the com=-
pression cone, rather than being expressed in deformation per unit volume.

K, is the ratio of perimeter shear divided by developed pressure and is de-

fined as the stress reaction coefficient. It expresses the relative impor-

tance of the two stress reactions involved in bearing capacity.



1

NN

9015 0

The bearing=capacity limit of the soil may be determined as the mini-
nun value of K1 or the maximum value of K, depending upon the sequence in
which the two types of resistance are developed. For a relatively compresT
sible soil the developed pressure is small for the lower range of loads and
the major portion of the applied load is carried by perimeter shear. As the
settlement increases and the bearing plate penetrates the surface, developed
pressure increases gnd the values of Kl decrease, The decreasing values of
K1 show that the resisting pressure is increasing faster than the settlement
and indicate a margin of resistance which is available to bring the loaded
area to equilibrium if no more load were to be added. The minimum value of
Kl defines the maximum developed pressure in the case of soils which are
relatively compressible. Subsequent increasing vaiues of Kl in which the
settlement increases more rapidly than the developed pressure show that in-
crements of settlement are accumulating without proportional increase in re-
sistance and signify the stage of progressive settlement, Meanwhile the
values of K2 are decreasing and show no evidence of critical changes in be=
havioure. The supporting capacity due to perimeter shear was available in
the initial stage of loading and after having been fully utilized exerts no
further influence on the transition to the stage of progressive settlemente.

In the case of a relatively incompressible soil in which resistance to
volume change is high the developed pressure is available as the initial re-
sistance and the perimeter shear is developed as the settlement increases,
As a result of reversing the sequence with which the stress reactions are
developed, the coefficient of settlement X; increases throughout the entire
range of the test and shows no critical value. The stress reaction coeffi=-
cient Ko, however, increases during the initial stages and reaches a maxi-
mun value which represents the maximum amount of load which may be distri=-
buted to the body of soil by shear on the boundary surfaces. The maximum

value of K2 then becomes the criterion for the bearing=capacity=limite.



