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Improving Estimates of Genetic Maps:
A Meta-Analysis-Based Approach

William C. L. Stewart™
Department of Biostatistics, Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan

Inaccurate genetic (or linkage) maps can reduce the power to detect linkage, increase type I error, and distort haplotype and
relationship inference. To improve the accuracy of existing maps, I propose a meta-analysis-based method that combines
independent map estimates into a single estimate of the linkage map. The method uses the variance of each independent
map estimate to combine them efficiently, whether the map estimates use the same set of markers or not. As compared with
a joint analysis of the pooled genotype data, the proposed method is attractive for three reasons: (1) it has comparable
efficiency to the maximum likelihood map estimate when the pooled data are homogeneous; (2) relative to existing map
estimation methods, it can have increased efficiency when the pooled data are heterogeneous; and (3) it avoids the practical
difficulties of pooling human subjects data. On the basis of simulated data modeled after two real data sets, the proposed
method can reduce the sampling variation of linkage maps commonly used in whole-genome linkage scans. Furthermore,
when the independent map estimates are also maximum likelihood estimates, the proposed method performs as well as or
better than when they are estimated by the program CRIMAP. Since variance estimates of maps may not always be
available, I demonstrate the feasibility of three different variance estimators. Overall, the method should prove useful to
investigators who need map positions for markers not contained in publicly available maps, and to those who wish to
minimize the negative effects of inaccurate maps. Genet. Epidemiol. 31:408-416, 2007. © 2007 Wiley-Liss, Inc.
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INTRODUCTION

Linkage maps are an essential component of
many family-based methods of genetic analysis.
Multipoint linkage analysis, genotype error detec-
tion, and relationship inference all use linkage
maps together with the observed genotypes to
infer the unobserved pattern of inheritance at the
markers. Recently, several methods have demon-
strated the growing importance of linkage maps
in population genetics as well. For example,
Tapper et al. [2005] and Maniatis et al. [2002]
used existing linkage maps in conjunction with
measures of linkage disequilibrium to estimate
the time in generations after one or more popula-
tion bottlenecks. However, these methods gener-
ally assume that the linkage map is known; when
in fact, all linkage maps are subject to sampling
error.

© 2007 Wiley-Liss, Inc.

Inaccurate maps can reduce the power or inflate
the type 1 error of multipoint linkage analysis
[Barber et al., 2006; Daw et al., 2000; Fingerlin
et al, 2006, Halpern and Whittemore, 1999].
Consequently, several authors have attempted to
reduce map inaccuracy by estimating linkage
maps from large amounts of pedigree data
[Broman et al., 1998; George, 2005; Kong et al.,
2002, 2004; Matise et al., 2003]. This approach
requires either the costly ascertainment of large
samples or the pooling of existing samples, which
may be complicated by the lack of availability of
the original genotype data or the difficulty in
sharing such data. In addition, maximum like-
lihood (ML) methods for estimating the map tend
to be computationally demanding, especially in
the presence of missing data. The program
CRIMAP [Lander and Green, 1987] avoids most
of these computational bottlenecks by ignoring
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allele frequencies and partially informative
inheritance information. CRIMAP implements a
method that resembles the expectation maximiza-
tion algorithm [Dempster et al., 1977]. However,
CRIMAP does not yield the ML map estimate
when genotype data are missing. By contrast, the
program LM_MAP [Stewart and Thompson, 2006]
uses Markov chain Monte Carlo (MCMC) to
estimate the ML estimate (MLE) of the map,
whether genotype data are missing or not.

A meta-analysis-based composite map is the
linkage map that corresponds to the set of distinct
markers used among a series of independent map
estimates. When the map estimates use the same
markers, Stewart and Thompson [2006] defined
the composite map estimator (CME) as the
weighted average of independent map estimates.
Although the CME does avoid the difficulties
associated with the sharing of human subjects
data, its widespread use is impractical since
different studies will tend to use different sets of
markers. Therefore, I present: (1) the extended
CME (ECME), which combines a set of map
estimates whether they share a common set of
genetic markers or not; and (2) a variance esti-
mator that accurately estimates the variance of
each component of the ECME. The proposed
method is implemented in the computer program
METAMAP, which is freely available at http://
www-personal.umich.edu/~wstew/.

In what follows, I describe the proposed method
and assess its performance through the analysis of
simulated data. I show that (1) either LM_MAP or
the nonparametric bootstrap procedure [Efron
and Tibshirani, 1993] can be used to obtain reliable
estimates of the variance of each independent map
estimate; (2) when genotype data are missing,
CRIMAP gives biased estimates of linkage maps
and has increased variability relative to LM_MAP;
(3) the ECME is almost as efficient as the MLE of
the map obtained from the joint analysis of the
pooled genotype data; (4) the variance of the
ECME is accurately estimated from a parametric
bootstrap procedure [Efron and Tibshirani, 1993];
and (5) the proposed method can be used to
combine map estimates from individual linkage
studies and publicly available maps to improve
the estimates of linkage maps commonly used in
whole-genome linkage scans. Consequently, the
proposed method should protect investigators
from the negative effects of inaccurate maps,
and is especially helpful when the marker set of a
particular study is not a subset of the markers
used in any single publicly available map.

METHODS

I assume an invertible map function 0(x) that
relates the recombination fraction to map distance
x (in Morgans); and, I express linkage maps as
ordered vectors of inter-marker recombination
fractions. The data consists of N independent
linkage map estimates (which may use different
sets of markers) and variance estimates for each
estimated recombination fraction within each
map. Using only the N map estimates and not
the original genotypes, the goal is to estimate the
composite map C=(0y, 6y, ..., 0._1), where 6; is the
recombination fraction between markers i and i+1
of the L distinct markers used among the N map
estimates .

I estimate the composite map by recursion. The
starting value may be arbitrary, such as a map
derived from published linkage and/or physical
maps. Assume that f iterations of the recursion are
complete and let C' denote the current estimate of
the composite map. The next iteration consists of
two steps: imputation and weighted averaging.
In the flrst step, I impute the recomblnatlon
fraction 6 and its associated weight w ) for each
1ndependent map estimate, k € {1,2,...,N} and
for each of the L—1 composite map intervals. In
the second step, I update each component of C
with the weighted average of the N imputed
recombination fractions

3, 0P
(k) '
Dk w;
The ECME is the limit of this recursion. In the
special case that the independent map estimates

use the same L markers, the ECME is attained in
one iteration and is equivalent to the CME.

et—H

IMPUTING RECOMBINATION FRACTIONS

Let r and s (r<i<i+1<s) index the markers in
map k that most closely bracket markers iand i+1
of the composite map. Let 6% denote the
estimated recombination fractlon between mar-
kers r and s of map k, and let [csrs)]2 denote the
corresponding estimated variance. For notational
convenience, I suppress the dependence of r and s
on i and k. Then, using linear interpolation, the
imputed recombination fraction between markers
i and i+1 based on map estimate k is

0 [x(e D)x(6!)

) } ifinterval[r,s] exists

0 = (1)

0 otherwise.
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Here, Ois is the recombination fraction between
markers r and s, according to the current estimate
of the composite map; 0[-] is the map function,
and x(-) is its inverse. For each i and k, the interval
[, s] exists if there are markers in map k that span
composite map interval [i, i+1]. Note that when-
ever the interval [r, s] is also an interval of the
composite map, equation (1) reduces to ng) = 95’;’.

CONSTRUCTING WEIGHTS

Let wgk) denote the weight assigned to imputed
recombination fraction égk) . I define the weight as

8006

o~ ifinterval[r,s] exists
wfk) — [655' T 11y , (2)
0 otherwise.

where n(,ls() is the number of intervals in the

composite map spanned by interval [, s] of map
estimate k. Under the assumption that the in-
formation contained in 6% is distributed evenly
along the interval [r, s], the weight wl(-k) measures
the information about 6; contained in map
estimate k. This follows from the fact that

Nk n(k
(k) — egs)(l - 9;5))
rs A~
[5E]

estimates the smallest number of independent,
fully informative meioses that, if sampled, could
provide the same amount of information about 6%
as does 8 [Stewart and Thompson, 2006]. Hence,
an equivalent expression for wik) in terms of the

average information is

: ®3)

)
B ifinterval [r,s] exists
A )

0 otherwise.

Whenever interval [7, s] is also an interval of the
composi : (k) _ k)

posite map, equation (4) reduces to w;” = 1, .
In addition to the computational convenience of
(2), its general form is supported by the results of
simulated data involving unequal sets of markers
(data not shown).

VARIANCE ESTIMATORS
FOR MAP ESTIMATES

For the estimated recombination fractions of
each independent map estimate, the proposed
method requires estimates of their variances. In
the case of ML map estimation, the required
variance estimates can be obtained from
LM_MAP, which uses MCMC to estimate the
inverse observed information [Louis, 1982]. Alter-
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natively, for a given map estimation method, a
nonparametric bootstrap procedure [Efron and
Tibshirani, 1993] could be applied to the families
of the linkage mapping data set to obtain the
required variance estimates.

An attractive feature of the proposed method is
its ability to estimate accurately the variance of
each component of the ECME. I assume that each
independent map estimate follows a multivariate
normal distribution with mean p; and variance X,
where i is the k™ independent map estimate and
Y is its variance with off diagonal elements set to
zero. Then, I use the parametric bootstrap proce-
dure [Efron and Tibshirani, 1993] to estimate the
variance of each estimated recombination fraction
of the composite map.

SIMULATION DESCRIPTION

I simulated data in three settings. In the complete
data setting, each replicate contains genotype data
simulated at 20 markers with four equi-frequent
alleles spaced at 5cm intervals on 90 copies of a
12-member pedigree (Fig. 1). For study 1 (families
1-30), I used the genotype data at all 20 markers.
For study 2 (families 31-60), I masked the data at
markers 2, 4, 6, ..., 20. For study 3 (families 61-90),
the genotypes at markers 1, 3, 5, ..., 19 were
masked. The pooled data contain the marker data
and families of all three studies. For each study,
I simulated a total of 100 replicates.

In the incomplete data setting, 1 introduced
missing data in two ways: either the genotypes

O

O

O

Fig. 1. In total, 27,000 copies of this pedigree structure were used
in the complete data and incomplete data settings.
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of grandparents were masked or the genotypes of
both parents and grandparents were masked.

In the screening sets setting, I used information
from a real linkage study [Abkevich et al., 2003]
and a real linkage mapping data set [Matise et al.,
2003] to simulate three realistic, independent
linkage mapping designs. For the first two de-
signs, denoted MSS9 and MSS16, 1 simulated
marker data on 110 families at 10 markers in
Marshfield screening set 9 and at 10 (not
necessarily equal) markers in screening set 16
[Broman et al., 1998]. These families contain 1,900
individuals with 38% missing data and range
in size from 4 to 7 generations and from 4-53
individuals per family. For the third design,
denoted RUT, I simulated marker data on a
mixture of Centre d’Etude du Polymorphisme
Humain and deCODE [Kong et al., 2002] families
at 13 markers taken from the Rutgers map [Matise
et al., 2003]. These families contained 1,000 indivi-
duals with almost no missing data.

Each design in the screening sets setting uses a
different map, and the three maps share 5 of the
15 distinct markers (Table I). For each design,
the allele frequencies and missing data patterns
were chosen to reflect those found in the corre-
sponding real data, and a total of 100 replicates
were simulated and analyzed. This yielded 100
sets of map estimates containing three indepen-
dent map estimates per set. For each set, I used the
proposed method to compute the ECME and
hence, the meta-analysis-based map estimate for
each design.

TABLE 1. Marker Map Information

RESULTS

I analyzed simulated data to evaluate the
proposed method in three different settings. In
the complete data setting, CRIMAP calculates the
exact MLEs of the recombination fractions in the
maps of studies 1, 2, and 3. However, LM_MAP
estimates the MLEs using MCMC. The difference
between the two methods yields an estimate of the
MCMC error. On average, less than one-fifth of
one percent (.0012) of the total variation of any
MLE estimated by LM_MAP was attributable to
MCMC error.

In the same setting, accurate estimation of the
variance of each recombination fraction was more
difficult. For example, both the LM_MAP and the
nonparametric bootstrap variance estimators
appear to have difficulty near the ends of the
chromosome. Specifically, for intervals 1 and 8 of
the study 2 map (odd markers) and for intervals
1 and 7 of the study 3 map (even markers), the
distribution of the difference between LM_MAP
and the empirical variance estimates is visibly
shifted away from zero. The same comment
applies to the distribution of the difference
between the nonparametric bootstrap and the
empirical variance estimates (Fig. 2A and B).
Despite these shared difficulties, the LM_MAP
variance estimates are in greater agreement with
the corresponding empirical variance estimates.
A test of the null hypothesis that the mean
difference between the LM_MAP and the empiri-
cal variance estimates is normally distributed,

Number of
Name Position Composite map ~ RUT map MSS9 map MSS16 map  Heterozygosity alleles
D20S103 0.0 J J J — 733 7
D205482 125 J J J J 714 6
D20S602 22.4 J J — J .667 3
D20S851 29.0 V J N, — 837 10
D20S604 37.6 J N Vv — 653 6
D20S1143 41.0 V — — N, .707 5
D205470 44.4 J J N — .867 12
D20S477 53.9 V J N, V 746 7
D20S478 61.3 J J J J 687 7
D205481 70.7 J J J J 746 7
AAT269 77.6 J — — J .750 4
D205480 84.5 J N J J 769 7
D205451 95.8 J J — J .793 6
D20S171 95.9 N, J N, — 471 2
D20S164 106.4 J N — J 504 5

Note: Each row contains information pertaining to 15 markers of chromosome 20. Columns 3-6 denote different maps (described in the
text). \/ or — indicates the presence or absence of the corresponding marker on the corresponding map. Map positions are given in centi-

Morgans based on the Kosambi map function.
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yielded a P-value of 0.136. The same test based on
the nonparametric bootstrap variance estimator
yielded a P-value of 0.040. As a final point to the
results of the complete data setting, the parametric
bootstrap procedure accurately estimates the
marginal variance of the ECME. Specifically, the
estimates based on the parametric bootstrap
procedure are clustered tightly around the corre-
sponding empirical estimate of the marginal
variance of the ECME (Fig. 2C).

From the analysis of data simulated in the
incomplete data setting, the average variance of the
ECME is smaller than the average variance of
the map estimate based on study 1 data, provided
that the independent map estimates are ML
estimates (Fig. 3D and E). For the same map
estimates and for the same caveats, the average

A Assessing the LM_MAP B

Variance Estimator

Assessing the Bootstrap™

Variance Estimator

absolute bias was relatively unchanged (Fig. 3A
and B). For each statistic (average absolute bias
and average variance) and for each estimation
procedure, the average is taken over the intervals
of the corresponding map. Note that while the
ECME and the study 1 map use the same 20
markers, they do not use the same data.

When the independent map estimates are
estimated by CRIMAP and both parental and
grandparental data are missing, the average
variance of the ECME is not smaller than the
average variance of the study 1 map (Fig. 3D and
E). Relative to ML map estimation, the average
absolute bias and the average variance of the
CRIMAP estimator are markedly increased when
the marker data of both parents and grandparents
are missing (Fig. 3A and D).
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Fig. 2. For each recombination fraction (RF) estimate in each map, the difference between a selected variance estimator and the
corresponding empirical estimate of the variance is shown. (A) LM_MAP uses a variance estimator that is based on the inverse
observed information. (B and C) The nonparametric and parametric bootstrap estimators are denoted by bootstrap™? and bootstrap®,
respectively. Gray dots are obtained from 100 replicates and black dots represent the mean. The thick black line demarcates zero and
thin black horizontal lines represent marker maps. The maps of studies 1, 2, and 3 are labelled M1, M2, and M3, respectively. Interior
and exterior intervals of each map are denoted by small and large ticks, respectively.
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Fig. 3. For each map estimator in (A), (B), and (O), the interval-specific estimates of the absolute bias in recombination fraction (RF) are
averaged over the intervals in the corresponding map. Similarly, (D), (E), and (F) give the corresponding estimates of the average
variance. (A and D) Compare LM_MAP and CRIMAP estimation programs using the genotype data of study 1. (B and E) Compare the
meta-analysis of independent map estimates generated by LM_MAP to the meta-analysis of independent map estimates generated by
CRIMAP. (C and F) Compare the ECME to the MLE obtained from the joint analysis of the pooled data. ECME, extended composite map

estimates; MLE, maximum likelihood estimate.

In addition to achieving smaller average var-
iance than the study 1 map estimate based on
genotype data, the ECME has efficiency compar-
able to that of the MLE based on the joint analysis
of the pooled data (Fig. 3E and F). Moreover,
the ECME agrees well with the simulation truth
(Fig. 4).

From the analysis of simulated data in the
screening sets setting, the average variance of each
meta-analysis-based map estimate is smaller than
the average variance of each independent map
estimate. By contrast, the average absolute bias is
about the same for both estimation procedures.

This is shown in Table II, which gives the average
percent reduction in variance and the change in
the average absolute bias for all three designs.
For each statistic and for each design, the average
is taken over the intervals of the corresponding
map.

DISCUSSION

Meta-analysis can be a useful approach to map
estimation when the independent map estimates
of multiple studies are available but the original
data are not easily pooled. In particular, if the

Genet. Epidemiol. DOI 10.1002/ gepi
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Fig. 4. For each interval of the composite map and for each pattern of missing data: no missing data (A), missing grandparental data (B),
and missing both parental and grandparental data (C), the difference between the estimated recombination fraction and the simulation
truth based on 100 Monte Carlo realizations of the ECME is shown (gray dots). Black dots denote the mean difference. The labels GP
and P denote grandparental and parental, respectively. The solid black line demarcates zero and dotdash black lines demarcate the 95%
confidence limits for a sample of 800 fully informative meioses.

TABLE II. Variance Reduction in Marshfield Maps

Linkage mapping  Percent reduction in ~ Change in average

data set variance absolute bias
MSS9 57 —0.0007
MSS16 42 +0.0000
RUT 57 —0.0001

Note: For each linkage map (described in the text) estimates are
obtained in two ways: (1) maximum likelihood is applied to the
genotype data of the corresponding linkage mapping design, and
(2) meta-analysis is applied to the three independent map
estimates obtained in (1). The percent reduction in variance and
the change in average absolute bias are shown.

independent map estimates are ML map estimates
then, for the settings considered, the ECME has (1)
reduced variability relative to the variability of
any map estimate used in the meta-analysis; and
(2) efficiency comparable to that of the MLE based
on the joint analysis of the pooled genotype data.

Genet. Epidemiol. DOI 10.1002/ gepi

To investigate the sensitivity of these results to
heterogeneity, I estimated ML map estimates from
highly differentiated sets of marker data and
computed the ECME. The composition of each
data set differed markedly in terms of family size,
stucture, data availability, marker heterozygosity,
and map density. In each case, the ECME
continued to exhibit reduced variation relative to
the individual map estimates used in the meta-
analysis (data not shown).

In contrast to ML map estimation, when the
independent map estimates are obtained via
CRIMAP and there is missing data, the individual
map estimates used in the meta-analysis and the
ECME may both be affected sharply. In general,
when genotype data are missing and CRIMAP is
used, the magnitude and direction of bias for each
independent map estimate will not be known.
Therefore, a prudent course of action seeks
to minimize the degree to which underlying
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assumptions of the model are violated. For
example, the presence of linkage disequilibrium,
undetected genotyping errors, and inaccurate
allele frequencies are all potential sources of bias
for linkage analysis [Abecasis and Wigginton,
2005; Ott, 1999; Clerget-Darpoux et al., 1986];
and in principle, for linkage maps too.

Two immediate extentions of the proposed
method include: (1) sex-specific map estimation
and (2) map estimation from heterogeneous data.
The first is important since sex-specific maps are
more variable than sex-averaged maps estimated
from the same data. The second is important since
heterogeneous data can violate underlying as-
sumptions of the models used by existing map
estimation methods. As an example of this type
of application, consider a heterogeneous data set
composed of families sampled from two popula-
tions that differ markedly in terms of their allele
frequencies and the number of alleles at each
marker. Existing methods could be used to
analyze the families of each population separately,
as each group of families is homogeneous. Then,
the proposed method could be used to combine
efficiently the resulting map estimates.

The proposed method requires accurate map
estimates and estimates of their variances, both of
which LM_MAP provides. In principle, LM_MAP
can analyze arbitrary amounts of pedigree data;
however, CPU time becomes increasingly impor-
tant as the size and complexity of a data set
increases. Alternatively, CRIMAP could be used
in conjunction with the nonparametric bootstrap
procedure to estimate the map and its variance,
but caution is advised when there are substantial
amounts of missing data. In either case, the
variance estimates for recombination fractions in
intervals near the ends of the chromosome may
not be reliable. Fortunately, the distribution of the
ECME was insensitive to differences between
weights constructed from either variance estima-
tor (data not shown). Moreover, since direct
estimates of the variance may not always be
available, weights could be constructed from
existing estimates of marker informativeness. In
particular, the proposed method could be used to
combine the information of individual multipoint
linkage studies with the information of the
Rutgers linkage mapping data set [Matise et al.,
2003].

For many studies in which map estimates are
potentially available, it may be difficult to gain
authorized access to the original genotype data.
Even if these data are accessible, a joint analysis

may be computationally infeasible due to their
size and complexity, or inappropriate due to the
presence of heterogeneity. In such situations, a
meta-analysis of map estimates may be the only
way to combine efficiently the information con-
tained in the original genotype data. In particular,
a vast collection of map estimates is potentially
available from the analysis of multipoint marker
data contained in large linkage and linkage
mapping studies. The proposed method could be
used to combine these map estimates into a single,
comprehensive linkage map of unprecedented
precision.
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~wstew/

LM_MAP, http://www.stat.washington.edu/
thompson/Genepi/pangaea.shtml

CRIMAP, http://linkage.rockefeller.edu/soft/
crimap/
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APPENDIX

COMPUTATIONAL PARAMETERS
FOR SIMULATIONS AND ANALYSES

For all LM_MAP analyses, 8 steps of the Monte
Carlo Expectation Maximization algorithm [Guo
and Thompson, 1994] were used to find the ML
estimate of the map. The initial parameter value
for the algorithm was sampled from a distribution
centered around the simulation truth. The initial
inheritance pattern was sampled from the condi-
tional distribution of inheritance patterns given
marker data. MCMC estimates of the ML map
estimate take 6-15 minutes, whereas MCMC
estimates of the variance of the ML map estimate
take 3-8 min using a 2.8-3.2 GHz processor. For
each replicate of studies 1, 2, and 3, 100 nonpara-
metric bootstrap samples were used to compute
the variance of each component of the correspond-
ing ML map estimate. For each pooled data
replicate in the incomplete data setting (described
in Simulation Description), 1,000 parametric boot-
strap samples were used to compute the variance
of each component of the ECME. The recursive
algorithm used to compute the ECME terminates
when the absolute change in successive estimates
is less than 10e-07.



