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This paper addresses the problem of determining the number of pure chemical components in a
mixture by applying the maximum likelihood estimator (MLE) of intrinsic dimension. The application
here is to Raman spectroscopy data, although the method is general and can be applied to any type
of data from a chemical mixture. We show that the MLE produces superior results compared to other
methods on both simulated and real chemical mixtures, and is accurate even when minor components
are present. Even if the signal-to-noise (SN) ratio is very low, accurate estimates can still be obtained
by smoothing the data before applying the estimator, this approach is illustrated on two real datasets
with high noise levels. Since the MLE is computed locally at every data point, we also show how the
local estimates can be used for other applications, such as segmenting the specimen into homogeneous

regions. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Self-modeling curve resolution (SMCR), a family of twenty
or more multivariate algorithms extensively used in chemo-
metrics, is designed to extract meaningful pure component
spectra from unresolved multi-component mixture spectra
[1,2]. SMCR does not require a priori knowledge of the
pure component spectra, which is particularly useful in
characterizing unknown chemical species [3,4]. In general,
homogeneity, concentration, and the number of pure
components within the chemical or biological system is
seldom known in advance [5,6].

SMCR algorithms have a variety of applications, though
our main focus will be on Raman spectroscopy. Morris and co-
workers have extensively used factor analysis-based SMCR
algorithms on Raman images to determine the mineral and
matrix components contained within bone tissue [7-10]. In
this context, factor analysis is used interactively to allow the
user to visualize different linear combinations of potentially
useful eigenvectors, which are in turn extracted by principal
component analysis (PCA) [11]. This approach can be used
to distinguish between healthy and diseased bone tissues
[8-10], as well as to highlight chemical differences between
trabecular and cortical bone structures at the micro-structural
level [7]. Factor analysis is also useful for removal of non-
informative eigenvectors associated with background tissue
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fluorescence and bone tissue embedding reagents, such as
poly(methyl methacrylate) (PMMA) [7,8].

Although factor analysis is a useful and popular technique,
it frequently runs into difficulties with over- or under-
determination because it assumes that an appropriate
number of eigenvectors has been selected [12,13]. In practice,
the number of meaningful components (eigenvectors) in
factor analysis is usually determined by the user through
visual inspection, sometimes using prior knowledge on
the chemical composition of the specimen. Alternatives to
factor analysis include Simplisma and band-target entropy
minimization (BTEM) [13]. BTEM allows the user to use
forty or more additional eigenvalues and corresponding
factors by performing exhaustive band targeting at different
wavelengths. It has been shown to outperform Simplisma
in terms of recovering minor components [13]. While the
algorithm uses a large number of eigenvalues, the final
decision on the number of extracted components still has
to be made by the user and is based on visual inspection of
the eigenvectors. It also places considerable demands on the
user in terms of computational time and human interaction
(manual rotation, exhaustive band targeting) [13]. This is
especially undesirable if the user needs to analyze a large
collection of Raman images or spectra.

All variants of SMCR in the literature start from extracting
the eigenvectors by PCA, which is a linear dimension
reduction method. There are good reasons for the use of
linear methods, such as the Beer’s law for mixture spectra
[14]. However, the data are very complex, signal-to-noise
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(SN) ratios in real-time in situ Raman experiments are often
low, and the structure of the noise may, in general, be non-
linear. This situation may be further compounded by local
variations in (SN) ratios as the Raman scattering properties
of the irradiated specimen depend on its surface morphology
and chemical composition; this may make the use of a global
linear method like PCA inappropriate.

In the statistics and computer science literatures, recent
focus has been on non-linear dimension reduction methods,
such as the Locally Linear Embedding [15] and the Isomap
[16]. These methods are designed for data on a ‘manifold’—a
non-linear smooth (low-dimensional) subspace of a bigger
(high-dimensional) space. While these methods can easily
handle non-linear dimension reduction, their major limitation
is that they do not extract the principal components
themselves—instead, they return projections of all the
data points onto the reduced-dimension space. This makes
them inappropriate for use in chemometrics, where the
principal components are needed to obtain meaningful pure
component spectra. However, their popularity has led to
development of methods for estimating intrinsic dimension
of non-linear manifolds from data, see for example [17].
These methods can handle non-linear data and produce
accurate estimates of the manifold dimension, which, in
the chemometrics context, corresponds to the number of pure
components contained in the mixture. Having an accurate
estimate of the number of components reduces the need
for visual inspection and other user interventions, makes
the analysis less subjective, and saves time in component
extraction; it is also of independent interest when little a
priori information is available about the specimen. Moreover,
this estimate can be computed locally (i.e., at every data
point); this local information can then be used for finding
interesting regions in the image or for testing mixture
homogeneity.

In this paper, we apply a non-linear dimension estimator,
the maximum likelihood estimator (MLE) of intrinsic
dimension, to the problem of determining the number of pure
components in a mixture from Raman spectroscopy data,
though the method can be applied to any spectral data and
even more generally. We show how the intrinsic dimension
corresponds to the number of pure components and introduce
the MLE, as well as review existing methods in Section 2. In
Section 3, we discuss the selection of a tuning parameter, and
show on simulated mixtures that the MLE produces superior
results compared to other methods, and is accurate even when
minor components are present. In Section 4, we show how to
handlelow (SN) ratios in the data to obtain accurate estimates,
and illustrate by applying the MLE to two real datasets with
high noise levels in Section 5. In Section 6, we show how
computing local estimates at every image pixel can be used
to automatically divide the image into homogeneous regions.
Section 7 concludes with discussion, and experimental details
are given in the Appendix.

2. METHODS OF ESTIMATING THE
NUMBER OF PURE COMPONENTS

Many SMCR methods require an estimate of the number
of the components to be extracted, but few in fact make
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use of formal estimates. Examining a scree plot or plots of
extracted eigenvectors by eye remains the prevalent method
of analysis, and while the human eye can often be more
accurate than an automated method, visual procedures are
subjective, inconsistent across users, and time-consuming. In
this section, we first review the methods that are currently
available (even if not necessarily used) for estimating the
number of components, and then present the new maximum
likelihood method.

2.1. Current methods for estimating the
number of pure components

Principal components analysis (PCA) is a dimension
reduction technique which finds linear combinations of the
original variables that best explain the variability in the data.
Let X4, X», ..., X, be the p-dimensional data vectors, where,
in the context of Raman spectroscopy data, p is the total
number of wavenumber values and n the number of pixels
in the image. PCA consists of computing the eigenvalues and
eigenvectors of the data covariance matrix ¥ = 1/n >, (X; —
X)(X; — X)', where A’ denotes matrix transpose, and X =
1/nY"" ; X;. Alternatively, the principal components can be
computed from the singular value decomposition of the
data matrix X. The eigenvalues of £, Ay > 4, > ... > 1, >0,
represent the amount of variation in the data explained by
the corresponding principal component. A scree plot of these
eigenvalues can be used to estimate the true dimension by
eye. A somewhat more principled approach is to estimate the
dimension of the data by the number of principal components
that explain a pre-specified (large) fraction of the variance in
the data:

§ = argmin A;:Zx,z(l—g)z,\j 1)

Choosing an appropriate fraction 1 — ¢ generally depends
on the amount of noise in the data, which is not known in
advance. This is one difficulty with using PCA for estimating
dimension. Typically the fraction chosen is at least 90%; we
use ¢ = 0.01 in the results shown below.

The Malinowski’s F-test [18] was introduced in the
chemometrics literature to differentiate between significant
and noise eigenvectors in PCA. The sum of the eigenvalues
> %14 can be decomposed into pieces representing
significant and noise eigenvalues, with the number of
significant eigenvalues providing an estimate of the number
of pure components. The test starts from the smallest
eigenvalue 1, and goes through the eigenvalues in increasing
order until it finds the first significant one. Once one
eigenvalue has been determined to be significant, all larger
eigenvalues are also considered significant. The Malinowski’s
F-statistic for testing the significance of the s-th eigenvalue is
given by

— AIS
i Xi/(p—5)

Jj=s+1
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Under the null hypothesis that the s-th eigenvector is noise,
Malinowski argued that F, has an F distribution with 1
and p —s degrees of freedom. The estimated number of
components based on the F-test can be computed as

= min(F, > fi, (1~ ) ®

where fi, (1 —«a) is the (1 —oa) critical value for the
F(1, p — s) distribution. Again, the choice of «, like the choice
of ¢ in Equation (1), is at the user’s discretion; we will use
a = 0.01 throughout the paper. In any case, since the test
is repeated until the first significant eigenvalue is found,
this creates a multiple testing problem (see, e.g., [19]), and
the actual overall significance level will be higher than . A
comparison of similar techniques and an adapted F-test can
be found in [20].

2.2. Maximum likelihood estimation
of dimension
The maximum likelihood estimator (MLE) of intrinsic
dimension [17] was originally proposed for estimating the
intrinsic dimension s of data Xi, X,,..., X, which are
measured as p-dimensional vectors, but in fact lie on a
‘manifold’—that is, in an s-dimensional subspace of the
p-dimensional space, with s typically much smaller than p.
Our goal here is to show how the MLE of intrinsic dimension
can be applied to spectroscopy data and to resolve practical
issues that arise in the process, such as choosing the tuning
parameter and dealing with high levels of noise in the data.

Theidea of the MLEis to fixan arbitrary point x, and assume
the density f(x) of the observations is constant in a small
sphere of radius R around x. Then the points falling into this
sphere form a Poisson process, the likelihood of which can
be written explicitly (see [17] for details). This leads to a local
estimator of dimension around a point x

-1

1 N(R,x) R

Nk & 8T @

Sr(x) =

where N(R, x) is the number of points in the sphere of radius
R around x, and T;(x) is the Euclidean distance from x to its
j-th nearest neighbor in the sample.

Alternatively, instead of fixing the radius R of the sphere,
one may fix the number of points falling into the sphere, which
is often more intuitive and hence easier to pick. The estimate
can then be rewritten as

-1
1 2o
0= | g L los TEX; )

The factor k — 2 appears in the denominator to make the
estimator unbiased. We will use the fixed k version expressed
in Equation (5) throughout this paper.

Equation (5) allows us to obtain an estimate of the intrinsic
dimension at every data point X;. Then the global estimate
(or an estimate over a particular region) can be computed by
averaging the local estimates over the entire data set (or the
region in question). The global MLE for the whole dataset is

Copyright © 2007 John Wiley & Sons, Ltd.

given by

3k=

S|

> 8% ®)
i=1

We discuss the choice of k and the sensitivity of the estimator
to k in Section 3; usually k is chosen to be a relatively small
number, and the estimator is robust to the choice of k. Note
also that in general neither Equation (5) nor Equation (6) give
an integer estimate of dimension; in practice Equation (6) is
rounded to the nearest integer.

The intrinsic dimension of the space generated by the
spectra is not in itself an estimate of the number of pure
components present in the mixture. Consider the following:
a ‘mixture’ of two points generates a line, which has intrinsic
dimension one, and three points generate a plane, which
has intrinsic dimension two. Since the MLE estimates the
dimension of the manifold generated by the mixture (the line
or the plane), we add one to the MLE of intrinsic dimension in
order to obtain the MLE for the number of pure components
present in the mixture.

An advantage of the MLE is that it automatically generates
an estimate of the number of components at every data
point (pixel). While some variability in local estimates is
expected even in homogeneous mixtures due to noise, a lot
of variability indicates that the mixture under examination
is likely not homogeneous. Using the local MLEs for testing
for mixture homogeneity is currently under investigation; an
application of local MLEs to segmenting the Raman image
into homogeneous regions is presented in Section 6.

3. SIMULATION RESULTS

In this section we investigate the performance of all three
estimators (PCA, F-test, and the MLE) on simulated mixtures
obtained from real spectra. Each pure material was scanned
separately, and their individual spectra are combined into
a mixture as follows. The pure component spectra are
combined into a single s x p matrix A, where s is the number
of pure component spectra and p the number of different
wavenumber values at which the spectra were measured.
To generate n mixture spectra X1, ..., X,, which we combine
into a single n x p matrix X, we first generated a random
n x s matrix of component weights W. The distribution of
the weights in W is described in detail below. The mixture
spectra are generated according to Beer’s law, which states
that pure component spectra are linearly combined to form
mixture spectra [14]. Since the application we focus on here is
Raman spectroscopy, the linear Beer’s law is the most obvious
and appropriate way to produce simulated data, which makes
it an easier problem for PCA. In other situations, where the
pure components are combined in a non-linear way, the PCA
would suffer much more, whereas the MLE would not be
affected. Once the mixture spectra matrix is obtained from
Beer’s law, a n x p matrix of i.i.d. Gaussian noise, ¢, is added
to the generated mixture spectra, yielding the following data
generation model:

X=WA+e 7)
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Figure 1. Test set 1 (dissimilar spectra). The pure component spectra of plastics and bovine bone are rescaled to maximum

intensity 1, horizontal axis shows Raman shift (cm™1).

3.1. Data description

For generating simulated mixtures, we used two separate test
sets of pure component spectra. The first set consists of five
plastics and one bovine bone spectra collected on the visible
Raman system, which are quite dissimilar from each other
and should be easy to discriminate. The pure components
in this set are polyethylene, Delrin, polystyrene, poly(methyl
methacrylate) (PMMA), bovine bone, and Teflon, measured
at p = 512 wavenumber values in the range 700-1600 cm™.
For details on the visible Raman system and experimental
conditions, see Appendix A. The pure spectra rescaled to have
maximum intensity 1 (to compensate for different amount of
material present in each scan) are shown in Figure 1, with
distinct spectral features of each component clearly visible by
naked eye.

The second set of spectra contains five spectra of a fractured
mouse tibia bone and one plastic (PMMA) collected on the
NIR system (see Appendix A for details) and measured at
815 different spectral values. The PMMA is used to embed
the fractured bone, and the five bone spectra are measured at
different distances along the mouse bone, gradually moving
away from the fracture. The five bone spectra vary with
the distance away from the fracture but these differences
in the spectra are minute (see Figure 2). The further away
from the fracture, the less the spectra differ; in fact, the last
two bone spectra, measured at 900 wm and 1100 pm away
from the fracture, are identical. Hence, this set of 6 spectra
contains only 5 distinct pure components.

We examined many combinations of weight matrices and
noise levels in our simulations. For each set of six spectra we

Copyright © 2007 John Wiley & Sons, Ltd.

always select four major components (Delrin, polystyrene,
PMMA, and bone for set 1, and PMMA and the three bone
spectra closest to the fracture for set 2). The remaining two
spectra in each set were used as minor components, to test
whether the methods are able to pick components present in
small amounts. For the setting with just four major compo-
nents, each component’s weight was drawn uniformly from
the interval (0.15, 0.30). When minor components were added
at 10% and 5% levels, major component weights were drawn
uniformly from (0.15, 0.25), and minor weights from (0.05,
0.15) and (0.03, 0.07), respectively. In Section 4, we push the
minor components level down to 1%, in which case we draw
the major weights from (0.20, 0.30), and the minor weights
from (0.00, 0.02). In each case, weights randomly drawn from
a uniform distribution on each interval were rescaled to sum
to one. Gaussian noise was added at a 4% level, which means
that the noise has mean 0 and variance (0.01¢)>.

3.2. Results

The results presented for each spectra set (Tables I and II)
are representative of all simulations we performed. In each
case, the number of pixels is n = 3600 (60 by 60 image), and
the estimated numbers of components are averaged over 100
replications. We compare the MLE at k = 20 (the choice of
tuning parameter is discussed below), PCA at 99% variance
explained, and Malinowski’s F-test at 1% significance level.
If the estimate is given as an integer for example integer 4, it
means there was no variation in the estimate across the 100
replications. If there was variation but the average came out
to be 4, it is given as 4.0.
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Figure2. Testset2 (similar spectra). The pure component spectra of mouse bone and PMMA are rescaled to maximum intensity

1, horizontal axis shows Raman shift (cm~1).

The levels of noise are chosen to show where the MLE starts
picking up noise components. For both test sets, it is clear that
at low noise levels the MLE estimate performs as well as or
better than the other two. Note that PCA fails to obtain the
correct number of components even with no noise if minor
components are present. The F-test can obtain the correct
estimates with no noise, but fails once noise is added. In fact,
as noise levels increase, all methods begin to suffer, but the
MLE is more sensitive to noise than PCA. As expected, it takes
less noise for the estimates to break down when the spectra
are very similar than when they are different. Otherwise, the

same pattern holds for both test sets. The issue of dealing with
high levels of noise is addressed in Section 4.

3.3. Choice of the tuning parameter k for

the MLE

The MLE estimate requires choosing a value of k, the number
of nearest neighbors around each point on which the local
estimator is based. The impact of k on the estimate is
examined via simulation. Figure 3 shows the MLE estimate
plus and minus one standard deviation versus k over 100
replications for three different settings. Keeping in mind that

Table I. Test set 1 (dissimilar spectra): estimated number of pure components

No. of components 4 4 4 4 6 6 6 6 6 6 6 6
Minor level (%) 0 0 0 0 10 10 10 10 5 5 5 5
Noise level (%) 0 0.05 0.1 0.3 0 0.05 0.1 0.3 0 0.05 0.1 0.3
MLE 4.0 42 49 10.9 5.6 5.8 6.4 12.2 55 58 6.6 15
PCA (99%) 4 4.0 5 5 5 52 6 5 5 51 51
F-test (1%) 4 4 4 6 6 1 1 6 6 1 1

Table Il. Test set 2 (similar spectra): estimated number of pure components

No. of components 4 4 4 5 5 5 5 5 5 5 5
Minor level (%) 0 0 0 10 10 10 10 5 5 5 5
Noise level (%) 0 0.005 0.01 0.03 0 0.005 0.01 0.03 0 0.005 0.01 0.03
MLE 3.9 41 4.7 10.2 47 49 55 11.7 45 45 5.7 14
PCA (99%) 3 4 4.0 5 4 5 5 6 4 5 5.1 6
F-test (1%) 4 4 3 2 6 3 3 2 6 3 2 2

Copyright © 2007 John Wiley & Sons, Ltd.
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Figure 3. Sensitivity to k for (a) 4 major components, (b) 4 major and 2 minor components at 10% and (c) 4 major and 2 minor
components at 5% for sample size, n = 1000, and results averaged over 100 replications. Dashed lines show the range where

the estimate is rounded to the correct value.

the estimate is rounded to the nearest integer, we see that
the MLE estimates vary very little across replications (small
standard deviation), and are fairly robust to the choice of k.
The derivation of the MLE involves an approximation that
requires k to be small relative to n, and smaller values of
k reduce the amount of computation; on the other hand,
very small values of k may lead to too much variability in
local estimates. On the balance, we chose k = 20 and kept it
constant for all simulations and real data applications.

3.4. Impact of image size

The behavior of all estimators can in general be affected by
the amount of data available. In general, larger images are
better since they contain more information about the mixture.
To study this effect, we performed simulations with image
sizes of n = 400, 1000, and 3600 (detailed results omitted). The
standard errors of the MLE estimate decrease as the image
size increases, as expected. When the noise level is high, the
MLE estimates for n = 3600 are much higher than the n = 400
estimates. This is expected: the noise is overwhelming the
signal, and as the estimate becomes more accurate for larger
n, it picks up more noise components. This issue is addressed
indetail in Section 4. Finally, we note that for large image sizes,
the computational complexity associated with the SVD makes
the MLE, which only requires finding the nearest neighbors, a
much more attractive choice than both the PCA and the F-test.

4. DEALING WITH HIGH LEVELS
OF NOISE

Simulations showed the MLE method is sensitive to noise,
which is common in real data. When high levels of
noise are present, smoothing the data before applying the
procedure can enhance the performance of the estimator.
There are two types of smoothing one can consider:
smoothing along each spectrum, and smoothing spatially
across the image. Individual spectra can be smoothed, for
example, with a Blackman-Harris filter, a signal processing
tool available in many software libraries [21]. We found that
smoothing the spectra helps somewhat, but is less efficient
than spatial smoothing. When both methods of smoothing are

Copyright © 2007 John Wiley & Sons, Ltd.

combined, the effect is the same as that of spatial smoothing
alone. Therefore we choose not to smooth the individual
spectra at all, which allows us to better preserve the peaks
and other spectral features.

Spatial smoothing can be achieved via a convolution of the
image X with a filter matrix Q. At each spectral wavenumber
I'and pixel location (x, y), we compute

Xolx.y)= > Y X(Lu,v)F(x—u,y—v) (8)

U=—00 V=—00

where values of matrices outside of the valid index range are
defined to be zero.

The filter matrix, generally speaking, averages the values
around (x,y), and many choices are possible (simple
averaging, weighted averaging over a fixed window,
exponentially decaying weights over the whole image, etc).
We found a simple spatial moving average (MA) filter to
perform very well in this context. The MA filter replaces
the value at each pixel with the average of pixel values in a
w x wwindow around it. The window size is taken to be odd
for convenience, w = 2m + 1, and the convolution formula
reduces to

x+m y+m

Xo(, x, y):% > X(u,v) ©)

Uu=x—m v=y—m

We only compute this for x and y that are at least m pixels
away from the edges of the image and discard the rest.

Finally, we investigated smoothing across neighbors in
terms of spectral similarity rather than spatial location. This
technique is often used for data on a manifold, for smoothing
over manifold neighbors. We have investigated a moving
average smoother over ‘spectral’ neighbors and the iterative
locally linear smoothing technique [22]. The results were
found to be inferior to spatial smoothing. The spatial moving
average is therefore our final choice and the only technique
we present results for, due to space limitations.

J. Chemometrics 2007; 21: 24-34
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Figure 4. MLE estimates on smoothed data as a function of
MA window size at various noise levels for dissimilar spectra
with 4 major + 2 minor components at 10%, n = 3600, k =
20. The horizontal lines show the range where the estimator
is rounded to the correct value.

4.1. Choice of window size for smoothing

The window size w for the MA smoother is another tuning
parameter to be selected. We investigated many window sizes
in extensive simulations; Figure 4 shows a representative
plot of MLE estimates applied to smoothed data for several
noise levels as a function of window size. The setting is
dissimilar spectra with four major components and two
minor components at 10%.

An important conclusion from Figure 4 is that it is
better to over-smooth than to under-smooth. For consistency
throughout the paper, we selected the first window size for
which the MLE estimates at all noise levels obtained a correct
estimate, which is w =9 (a 9 x 9 window), which we will

use in all results below. In general, we recommend this as
a rule-of-thumb starting value, since over-smoothing does
not appear to present a problem. Plots of the MLE as a
function of window size like the ones in Figure 4 can also
be investigated and w selected as the point where the plot
“levels off’.

4.2. Simulation results with high levels

of noise

To examine the impact of smoothing on all three estimators,
we performed simulations with increased noise levels. All
settings were the same as before, except Gaussian noise was
added athigherlevels (0.1%, 1%, or 3%). The results are shown
in Table III (dissimilar spectra, all six are distinct) and Table IV
(similar spectra, five out of six are distinct). A 9 x 9 window
was used for spatial smoothing of the 60 x 60 image.

The results show that, while the MLE estimate is the most
sensitive to high levels of noise, it is also the only one that
is able to obtain correct (on average) estimates on smoothed
data. Both PCA and the F-test are not coming close to the
truth whether the data are smoothed or not, which suggests
that generally their results cannot be trusted for data with
high noise levels. The MLE, on the other hand, performs well
on smoothed data even when the noise level (3%) is higher
than the amount of minor components present (1%).

5. APPLICATIONS TO REAL DATA

The simulation results in the previous section were based
on using real spectra which were artificially combined into
a simulated mixture. In contrast, here we apply the proposed
methodology to Raman images of real specimen (see Section
A for experimental details). Based on results in Sections 3
and 4, we set the MLE tuning parameter to k = 20 and apply
a spatial moving average smoother with a window size of
nine as a preprocessing step. For a fair comparison, we report

Table lll. Dissimilar Spectra smoothing results: n = 3600, k= 20, w = 9, 4 major + 2 minor components, results averaged over
100 replications

Minor level (%) 10 10 10 5 5 5 1 1 1
Noise level (%) 0.1 1 3 0.1 1 3 0.1 1

MLE 6.7 58.7 101.2 7.1 65.7 104.6 8.2 74.5 110.7
Smoothed MLE 6.0 54 5.3 6.1 5.5 5.2 6.4 5.5 5.2
PCA 5 31 38 4 31 37 4 31 36.1
Smoothed PCA 1 5 20 1 4.1 19 1 4.6 17.9
F-test 1 0 0 1 0 0 1 0 0
Smoothed F-test 1 1 1 1 1 1 1 1 1

Table IV. Similar Spectra Smoothing Results: n = 3600, k = 20, w = 9, 4 major + 2 minor components (five distinct), results
averaged over 100 replications

Minor level (%) 10 10 10 5 5 5 1 1 1
Noise level (%) 0.1 1 3 0.1 1 3 0.1 1 3
MLE 64.7 1329 153.1 59.9 128.5 155.6 82.1 137.6 158.4
Smoothed MLE 6.5 5.4 5.4 6.0 5.4 5.6 5.7 5.5 5.6
PCA 2 33 37 2 34 38 2 34.1 40
Smoothed PCA 1 14 249 1 14 26 1 14.1 26.9
F-test 1 0 1 0 1 0 0
Smoothed F-test 1 1 1 1 1 1 1 1 1
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Table V. Real data results for the three estimators applied to raw and smoothed (denoted by Sm) images

Data MLE MLE(Sm) PCA PCA(Sm) F-test F-test(Sm)
PMMA with 2 curing times 50 4 6 4 1 1
Bone embedded in PMMA 47 5 5 4 9

the results for the other two estimators for both raw and
smoothed data.

5.1. Dataset 1: PMMA with two different
curing times

Our first dataset is a 130 by 30 image of a polymer (PMMA),
with Raman spectra measured at 512 spectral values. The
specimen was obtained by combining two Koldmount
mixtures at different stages of polymerization. Koldmount
is commonly used to embed biological specimens. The solid
component and the liquid are mixed; the reaction proceeds
quickly to produce a translucent material. In this dataset,
‘fresh’ PMMA (three minutes after mixing) was layered onto
partially cured PMMA (eight minutes after mixing). The
image was taken at the interface. The details of the experiment
are given in the Appendix.

The initial mixture contains four chemical components—
PMMA particles, unreacted monomer, and two initiators
(trace amounts). The mixture is not necessarily homogeneous.
The volume fraction of unreacted monomer depends on
the reaction rate and the time (post-mixing) at which any
particular pixel was imaged. As a result, substantial variation
in the proportions of the two major components is expected.
This relatively simple system serves as an excellent test case
for estimating the number of pure components.

The results are shown in Table V. If no smoothing is applied
as a pre-processing step, all estimators give incorrect results.
With smoothing, the MLE and PCA both pick up 4 compo-
nents. The F-test only detects 1 component, with and without
smoothing. The MLE on smoothed data was the same for a
range of values of k and the moving average window size w.

5.2. Dataset 2: Bone

We also examined a 300 by 50 bone image consisting of
Raman spectra measured at 512 spectral values. The bone
was a murine femur, embedded in PMMA resin. A transverse
section was chosen at the edge of the bone to include both
bone and resin in the field of view. However, no significant
concentration of resin was seen in the data; the reduced
collection efficiency at the edges of the CCD left the section
known to contain PMMA relatively dark. Based on previous
experiments on similar specimens, the presence of PMMA
distributed within the bone tissue is still expected. Thus, there
are at least three major components expected in the data—
PMMA, bone mineral, and bone matrix. There may also be
additional bone components, depending on age and damage
[13]. Here, MLE and PCA obtain five and four components
respectively on the smoothed data, with the F-test obtaining
nine.

Even though in real data, unlike in simulations, we do not
know the correct answer exactly, the MLE appears to perform
well on smoothed data. For these datasets, PCA and the MLE
give comparable results; however, results in Tables IIT and IV

Copyright © 2007 John Wiley & Sons, Ltd.

suggest that in general the MLE of smoothed data is likely to
be more reliable when high levels of noise are present.

6. USING LOCAL DIMENSION
ESTIMATES FOR IMAGE SEGMENTATION

The MLE in Equation (5) is computed at every pixel, but
so far we have been using the global average given in
Equation (6) as the estimate for the number of components.
We can also use the pointwise estimates for other tasks, such
as finding regions with different numbers of components
(areas with more components may be more chemically
interesting), or evaluating homogeneity of the mixture. To
illustrate the potential of local estimators, we demonstrate
how they can be used to segment an image into regions
with homogeneous numbers of components. While there are
many segmentation procedures that could be applied (see,
e.g., [23] and [24] for approaches based on Markov random
fields, [25] for a contour-based segmentation, and [26] for an
algorithm combining contour and texture information), the
segmentation procedure we use here is normalized cuts [27],
a general purpose graph clustering and image segmentation
algorithm thathas been shown to give good resultsin a variety
of applications.

6.1. Image segmentation technique:
normalized cuts

Normalized cuts, or Ncuts [27] is an image segmentation
procedure that divides an image into regions by both
maximizing similarity of points within each region and
maximizing dissimilarity between regions. The procedure
treats segmenting the data into regions as a graph partitioning
problem. Pixels form the set of vertices V, and weights w(x, y)
on the edges between points x € V and y € V represent a
measure of similarity between x and y. The partition of V
into two non-overlapping sets A and B is then found by
minimizing a function of the data called the normalized cut.
The normalized cut between two regions A and B is defined
to be

cut(A, B)
assoc(A, V)

cut(A, B)

Ncut(A, B) =
cut( ) assoc(B, V)

(10)

where association and cut are defined as

assoc(A, V)= > w(x,y); cut(A,B)= Y  w(xy) (11)

X€A,yeV x€A,yeB

The idea is to find A and B that have the least similarities
between them (minimize the cut) but penalize for segmenting
out the regions that are not well connected within
themselves—that is the purpose of normalizing by the
association. If the normalization is omitted, the segmentation
will tend to cut off single points.
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Figure 5. Segmentation results with 0.1% and 0.3% Gaussian noise; the pixel color values show local dimension estimates.
Estimated boundaries are shown in white where they do not match the true boundaries in black.

In order to implement the normalized cuts, we need
an appropriate measure of similarity between pixels. For
regular image segmentation, Shi and Malik [27] used a
similarity measure based on spatial distance between pixels
and differences in their brightness values. For our application,
we propose a similarity measure which reflects both the
spatial distance between pixels and the differences in the
estimated number of components at each pixel. For a pair
of data points x located at (i, j,) and y located at (i, j,), with
3, and 3, the number of components estimated at each point,
we define the weight on the edge between x and y to be

) 12)

The scaling factors o7 and o, can be used to vary how much
importance is given to spatial proximity vs. the similarity in
the number of components. They can also be used to resolve

_ (3')( - 3')')2 _ (lx - iy)z + (]x - j,\’)z
01 02

w(x, y) = exp <

scaling issues if the two measures combined are not on the
same scale. In this case, the two components in (12) are on
the same scale already, and we set 01 = 0, = 1 in the results
shown below.

The normalized cut problem itself is NP-hard, but a
relaxation can be solved efficiently through a generalized
eigenvalue problem. Here we briefly summarize the
algorithm and refer the reader to [27] for details. Let d(i) =
>_; w(, j) and let D be a diagonal matrix with diagonal d. Let
W = [w(i, j)]1<i j<» be the symmetric matrix of edge weights.
Finally, let v be an n x 1 indicator vector with v(i) = 1 if the
i-th data point is in A and —1 if it is in B. Now let

b= dx)/) dx (13)
xeA xeB
c=04v)—b(1—-v) (14)

In effect, c is a continuous approximation to v. Shi and Malik
show that the solution to the normalized cuts problem can be
found by solving the eigenvalue system

(D — W)c =ADc (15)

The second smallest eigenvector of the system gives the first
split, with the partition based on the signs of the entries in the
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eigenvector. The procedure can then be repeated to split the
two regions A and B further.

6.2. Segmentation results

For our simulations, we divided a 60 x 60 image into three
20 x 60 horizontal strips with 3, 6, and 3 components,
respectively. The three major components were bone, PMMA,
and Delrin, with polystyrene added as a major component
and Teflon and polyethylene as minor components at 10%
in the middle region. Then we generated two images, with
two levels of noise (0.1% and 0.3%). The local MLEs were
computed at each pixel with k = 20. To keep the example
straightforward, we set the levels of noise low enough so
that smoothing was unnecessary. Similar results (not shown)
were obtained with MA smoothing as a preprocessing step.
The local estimates were used in Equation (12) to create
the weights and normalized cuts were applied to segment
out three regions. The resulting segmentations are shown in
Figure 5. The procedure correctly finds the three regions we
built into the data generation. For low noise, the average MLE
in each region was 3.0, 5.4, and 3.0, respectively. For higher
noise, the region averages were 4.4, 5.9, and 4.5. We can see
that the MLE performs better at low noise levels in terms of
obtaining the correct number of components (recall that no
smoothing was applied to the data), but the segmentation is
still correct at the higher noise level.

Since normalized cuts require the user to specify the
number of regions to be segmented, we experimented with
asking for more than three regions. In this case the procedure
segments out additional very small areas, but the main three
regions are still clearly visible. Hence this segmentation proce-
dure can be used even iflittle is known a priori about the num-
ber of different regions in the image. Also note that we did not
incorporate spectral similarity into the measure (12), and it is
of course possible to have spectroscopically different regions
with the same total number of pure components. This exam-
ple was intended to illustrate the potential of local estimates;
an in-depth investigation of their applications to segmenta-
tion and homogeneity testing is a subject of current research.

7. CONCLUSIONS

Determining the number of pure component spectra present
in a mixture is an important step in SMCR, and having a
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reliable estimate of how many components to extract leads
to more objective and accurate data analysis, as well as
reduces the amount of human visual inspection and other
manipulations. We have shown the maximum likelihood
estimator of intrinsic dimension, designed for general data
on non-linear manifolds, can be successfully applied to
this problem, and tested its performance on both real and
simulated mixtures of Raman spectra. The method is robust
to the choice of tuning parameter and outperforms PCA and
the Malinowski’s F-test, particularly when minor components
are present and/or the SN ratios are low. When the noise level
is very high, additional preprocessing via spatial smoothing
has been shown to produce good results.

The MLE of dimension is a general method and is likely
to find applications in other areas of chemometrics. One
advantage of the MLE is that it automatically generates an
estimate of the number of components at every data point
(in case of images, at every pixel). Here we illustrated the
potential of these local estimates by using them to segment the
specimen into homogeneous regions in terms of the number
of components present. Local estimates can also be used to test
for mixture homogeneity, which is an important pharmaceu-
tical application; this application is a subject of future work.

APPENDIX A: EXPERIMENTAL
MATERIALS AND METHODS

A.1. Raman instrumentation

Raman spectra were collected using two different systems:
a Raman microprobe optimized for collection in the near-
infrared (NIR) [13] and a purpose-built, visible Raman
microscope [28]. Briefly, the NIR system consists of an
epi-illumination microscope frame (Olympus, BH-2) and
a 400mW 785nm laser (Invictus, Kaiser Optical Systems,
Inc.). The laser light is line-focused through a Powell lens
(Stocker Yale) and into a 20x/0.75 NA Fluar objective (Carl
Zeiss, Inc). For the visible Raman system, a research grade
microscope (Nikon E600) and a 2W 532nm laser (Spectra
Physics, Millenia II) were used. The circular beam profile
of the Millenia II laser is reshaped into a line using a
Powell lens and focused through a 4x/0.20 NA infinity-
corrected objective (Nikon). For visible Raman hyperspectral
imaging, a single axis scanning mirror (64240H, Cambridge
Technology, Inc., Cambridge, MA) was used [28]. A LabVIEW
(National Instruments, Austin, TX) program controlled the
mirror’s position by adjusting the voltage sent to the mirror
control board through a 12-bit digital-analog converter. The
mirror could be positioned to approximately +0.2 um with
a setting of 1-3 ms. Raman scatters from both systems were
collected using an f/1.8 axial transmissive spectrograph
(Kaiser, HoloSpec). NIR and visible Raman scatter were
detected using a back-thinned, deep depletion 1024 x 128
pixel CCD camera (Andor Technology) or an 512 x 512 pixel
electron-multiplying CCD camera (iXon Andor Technology),
respectively. The spectral axis was calibrated (pixel to
wavenumbers) using emission lines from a neon or argon
discharge lamp. Curvature corrections and data analysis were
performed in Matlab 6.1 (The Mathworks Inc., Natick, MA)
using built-in and locally-written scripts.

Copyright © 2007 John Wiley & Sons, Ltd.
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A.2. Chemical components

(dissimilar spectra)

Raman spectra of bovine bone, polyethylene, polystyrene,
Teflon, Delrin, and PMMA were acquired using the visible
Raman system. All spectra were collected using an acquisition
time of 10 seconds and within the 700-1600cm™! spectral
range. Bovine bone specimens were obtained from a local
abattoir and sectioned into 5 x 10 x 2mm blocks under
constant irrigation using a diamond wheel saw. The sections
were rinsed with calcium-buffered saline solution to remove
any blood residues, and stored at —30°C until required.

A.3. Fractured mouse bone (similar spectra)
Raman spectra of the fractured bone specimen embedded
in PMMA were collected using the NIR Raman microprobe.
A series of spectra were taken in parallel with the fracture
from the edge at 100 wm intervals. Spectra were collected
using a seven minutes integration time to ensure good SN
ratios. To prepare the fractured mouse bone specimens,
a heavy rounded blade was dropped onto the tibia of a
10 months old wild-type mouse. Fractured mouse tibias
were harvested according to a protocol approved by the
University of Michigan Institutional Committee on Use and
Care of Animals. The specimens were embedded in PMMA,
sectioned, and polished to reveal the fractured ends of the
bone.

A.4. PMMA curing
Koldmount (Vernon & Bishoff, Albany, NY) is a two-
part acrylic resin commonly used to embed biological
specimens for microscopy and archival preservation. The
solid component (poly(methyl methacrylate) plus benzoyl
peroxide as an initiator) and the liquid (methyl methacrylate
monomer plus N,N-dimethyl-p-toluidine as an initiator)
are mixed; the reaction proceeds quickly to produce a
translucent (highly scattering) material. Koldmount powder
(2.3g) and Koldmount liquid (1.5mL) were mixed together
using vendor-supplied protocols. The mixture was stirred
briefly at ambient temperature and immediately poured into
a polystyrene cuvette. A second batch of Koldmount was
prepared after five minutes, mixed and poured into the same
cuvette, on top of the partially cured material. The fresh
mixture was allowed to cure for three minutes (the minimum
at which it no longer flows as a liquid). The cuvette was then
turned on its side and placed on the microscope stage for
Raman imaging. The reaction continued during the imaging.
Transects (30 in all) for the Raman image were collected on
the 532 nm system with 500 mW excitation power and four
seconds acquisition time. The spectra—initially 512 spectral
values by 390 spatial pixels, 30 exposures altogether—were
binned spatially to improve the SN ratio. This gave a data set
consisting of 3900 spectra (130 x 30), each with 512 values in
the spectral dimension (800-1500 cm™1).

A.5. Bone image

Visible hyperspectral imaging of mouse bone specimens
embedded in PMMA were performed using the scanning
mirror described previously [28], measured over the range
800-1500 cm ™! (512 spectral values). Spectra were acquired
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with an integration time of 4 seconds per line; the excitation
power was 300 mW. The image comprised of 30 lines with a
reduced pixel size of 300 x 50.
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