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Research Article

Modeling ssDNA electrophoretic migration
with band broadening in an entangled or
cross-linked network

We use a coarse-grained model proposed by Graham and Larson based on the temporary
network model by Schieber et al. [1] to simulate the electrophoretic motion of ssDNA and
corresponding band broadening due to dispersion. With dimensionless numbers reflecting
the experimental physical properties, we are able to simulate ssDNA behavior under weak
to moderate electric field strengths for chains with 8–50 entanglements per chain (,1000–
8500 base pairs), and model smoothly the transition from reptation to oriented reptation.
These results are fitted with an interpolation equation, which allows the user to calculate
dimensionless mobilities easily from input parameters characterizing the gel matrix, DNA
molecules, and field strengths. Dimensionless peak widths are predicted from mobility
fluctuations using the central limit theorem and the assumption that the mobility fluctua-
tions are Gaussian. Using results from previous studies of ssDNA physical properties
(effective charge xq and Kuhn step length bK) and sieving matrix properties (pore size or
tube diameter a), we give scaling factors to convert the dimensionless values to “real”
experimental values, including the mobility, migration distance, and time. We find that the
interpolation equation fits well the experimental data of ssDNA mobilities and peak widths,
supporting the validity of the coarse-grained model. The model does not account for con-
straint release and hernia formation, and assumes that the sieving network is a homoge-
neous microstructure with no temperature gradients and no peak width due to injection.
These assumptions can be relaxed in future work for more accurate prediction.
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1 Introduction

Electrophoretic separation is a widely used technology for
separating polyelectrolytes, principally based on their size,
flexibility, and charge. This method has been used for size
fractionation of biological molecules including oligonucleo-
tides, nucleic acids, peptides, genomic DNA, and proteins.
One common property of these molecules is that they pos-
sess ionizable groups and so are able to migrate either to the
cathode or to the anode when they are charged at suitable pH
values. They are usually macromolecules, so that their
migration behavior is not only affected by thermal motion

but also by their molecular conformations and interactions
with the separation medium. Analysis of electrophoretic be-
havior must seek to account for all of these aspects. For
instance, DNA electrophoresis is well known to be affected
by the electric field, the DNA size, the base sequence, the
sieving matrix, the pH, the running temperature, and other
factors.

Theoretical studies of DNA electrophoresis over the past
few decades [2–4] have greatly improved our understanding
of the process, and thereby led to new methods of separation
such as PFGE. The early “biased reptation” theory, initially
developed for polymers encountering obstacles [5, 6] and
then used for DNA gel electrophoresis by Slater and Noo-
landi [7], envisions snake-like migration of long-chain DNA
molecules through an entangled polymer network. It pre-
dicts power law dependences of DNA migration rate on DNA
size and electric field that are close to what is observed
experimentally. Later, the “biased reptation with fluctua-
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tions” (BRF) model [3] introduced chain end fluctuations,
enabling it to explain most of the qualitative observations of
DNA migration under an electric field and even give quanti-
tative predictions for low fields.

The reptation theory, especially the BRF theory, has been
widely incorporated into various simulation schemes,
including the lattice model by Barkema et al. and Heukelum
et al. [8–10], the bead and spring model (also called Rouse
and Zimm model) by Smith et al. [11], and the more recent
tube models incorporating internal modes. “Tube models”
with internal modes represent the properties of the sieving
media and the dynamic behavior of DNA chain more realis-
tically than simpler reptation models that ignore internal
modes such as thermally driven fluctuations of the chain
contour length or chain extension due to the electric field.
Examples of tube models with internal modes include the
“repton model” by Duke [4] and the “lakes-straits” model by
Zimm [12]. While representing a step towards more realism,
these models have their own limitations; for instance, both
the Brownian diffusion between neighboring “lakes” and the
electric force exerted on the lakes were ignored in the lakes-
straits model. The recently proposed model by Graham and
Larson [13], which applies the temporary network model of
Schieber et al. [1] to electrophoresis, overcomes some of these
limitations, and thus it is the basis for the ssDNA electro-
phoresis simulation discussed in this paper.

To evaluate the quality of a separation, two factors are
typically used as measures of either the resolving power or
the efficiency, namely resolution (Rs) and the number of
theoretical plates (Np), respectively. Np is a measure of peak
width or width at half maximum (hw) in the separation,
which is a dispersion characteristic of a single molecular
component. More recently, both Oda and Landers [14] and
Heller [15] have suggested that the number of theoretical
plates is not the best measure of the size fractionation
capability of an electrophoretic separation, but instead the
resolution is more appropriate, since it includes informa-
tion on both peak width and peak spacing. As defined in
Eq. (1) below, calculation of resolution incorporates the
peak spacing in the term (Dm/mav) and the peak width in
the term Np, where mav is the average mobility, Dm is a
measure of its variability, and N2 2 N1 gives the size dif-
ference of DNA molecules, where N is the number of
bases in the molecule. Experimentally, the resolving power
has been observed to become poor when sequencing
ssDNA of sizes above 1 k, although up to 1200 base pairs
have been sequenced over a long separation distance of
40 cm and a time of 60 min by Chu and co-workers [16],
and a read length of 1300 base pairs has been achieved in
2 h by Zhou et al. [17]. Determining the maximum chain
size that can be resolved in a given distance, and under
which conditions, is one of the major goals of research into
electrophoretic separation.

Rs ¼
1

4 N2 � N1Þ
� �

Dm
mav

����

����Np (1)

In this paper, we focus on ssDNA electrophoretic behavior in
either entangled polymer solutions or cross-linked gels and
give a semiquantitative prediction of resolution for various
conditions. While most of the studies of DNA migration be-
havior have focused on dsDNA, separation of ssDNA gives
more important genomic information, such as single
nucleotide mutations, genomic coding, polymorphism, etc.
Experimental data for the separation of ssDNA are insuffi-
cient, especially for molecules larger than 1000 base pairs. In
1994, Manabe et al. [18] showed that ssDNA oligonucleotides
up to 500 bases in length can be sequenced under a field of
200 V/cm over an effective distance of 50 cm using a 9%
noncross-linked polyacrylamide (PA), a medium with esti-
mated tube diameter less than 2 nm (Table 3), comparable to
the persistence length of ssDNA. In addition, they predicted
the resolution of their CE system by linearly extrapolating the
plot of peak position vs. base number, and found poor reso-
lution (R = 0.11) for DNA sizes longer than 600 base pairs.
Slater and Drouin [19] also pointed out the impossibility of
sequencing ssDNA with lengths of thousands of bases with
PA. However, the resolution predicted in this previous study
was much lower than what was later achieved by an alter-
native sieving media (a mixture of linear polyacrylamide
(LPA) and poly(N,N-dimethylacrylamide) (PDMA)), which
can successfully sequence DNA (one-color) up to 1200 base
pairs (R = ,0.3) over a distance of only 40 cm [16], or can
realize four-color sequencing with read lengths up to
1300 base pairs (R = ,0.3) using an LPA mixture with two
different molecular weights [17]. Although these advance-
ments have taken years to achieve, their attainment shows
the possibility of further improvement in DNA separation.

Computer-based prediction of DNA migration and reso-
lution would provide a rapid way to select semioptimized
conditions on which experiments can be focused. So far,
however, most theoretical work has been limited to the pre-
diction of DNA mobility alone, lacking a systematic study for
the prediction of resolution, although the reptation theory
has given a scaling estimate for the dispersion coefficient. In
this work, we simulate both the average DNA mobility and
fluctuations around this average (e.g., variance), and then use
these to determine resolution by exploiting the central limit
theorem. The goal is to develop a semiquantitative tool to
help in designing optimum sieving media and running con-
ditions for DNA electrophoresis.

To construct such an easy-to-use algorithm with tunable
parameters taken from real experimental conditions, we use
a tube model based on a coarse-grained algorithm, which has
similarities to the tube models developed earlier. In this pic-
ture, a long DNA molecule threads through a highly entan-
gled network, by sliding in the tube between topological
constraints in the medium. New entanglement segments are
generated by the chain “head”, which selects its direction
stochastically, biased towards the field direction. Thus, new
tube segments are created and oriented along the field
direction. And once chosen, a new tube segment constrains
the chain as it creeps through the network. Thus, over short
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time scales, the polymer chain only fluctuates within the
tube, while over a longer time-scale, the polymer moves into
a new constraining tube [6]. In the model of Graham and
Larson, the DNA dynamics are governed by the chain free
energy (Fs in Eq. 2), which is modified from what was used
by Schieber et al. in 2003 [1] to include both chain finite
extensibility (the first four terms on the right of Eq. 2), and the
contribution from the external electric field (the last term on
the right of Eq. 2). The finitely extensible free energy is
obtained by integrating an approximation of the inverse Lan-
gevin function [20]. The entanglement destruction probability
and the mobility matrix are revisions from the Schieber mod-
el, as described in the paper by Graham and Larson [13].

Fs

KBT|ffl{zffl}
Chain free energy

¼ Q2
s

2Nsb
2 �Ns ln 1� Q s

bNs

� �2
" #

þ 3
2

ln
2pNsb

2

3

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Finitely extensible free energy

þ

þ ln Ne|ffl{zffl}
Chemical potential of one segment

� xqE Rs�1
x þ 1

2
Qs cos y

� �
Ns

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Electric field contribution

(2)

A virtue of this new model is its ability to simulate the full
distribution of DNA migration rates across a wide range of
field strengths spanning from reptation to oriented reptation
up to the point at which the mobility reaches unity. We thus
cover the crossover regime between reptation and oriented
reptation, and use the model to predict both electrophoretic
mobility and separation resolution.

2 Results and discussion

2.1 ssDNA physical properties

The migration behavior of ssDNA molecules is determined
by the properties of both the migrating DNA molecules and
the surrounding gel matrix or polymer solution. Although
there have been many investigations of the migration be-
havior of dsDNA, the migration behavior of ssDNA has been
much less studied. In comparison with dsDNA, ssDNA is
more flexible since its persistence length (p) is only around
2.6–4.4 nm at an ionic strength of ,0.01, while that of
dsDNA is around 50 nm at the same ionic conditions [21].
Here, the persistence length is estimated from the relation-
ship 2pL ¼ 6R2

g, where L is the molecular contour length and
Rg is the radius of gyration, which is in turn estimated from
the hydrodynamic radius Rh using a known value of Rh/Rg. A
value of p = 2.6 nm is obtained from the theoretical value of
Rh/Rg = 0.664 for the non-free-draining regime, while
p = 4.4 nm is obtained from Rh/Rg = 0.5, which is based on
the measurements using monodisperse dsDNA by Tinland et
al. [21]. Most of the ssDNA electrophoresis experiments
referred to in this paper were carried out in a 0.56Tris-
borate-EDTA (TBE) buffer solution, whose ionic strength
was calculated to be around 0.026 M by Mohanty and Stell-
wagen [22]. Therefore, in the following section, we will take

the Kuhn step length (bK, twice the persistence length) to be
5 nm, which is approximately the value for ssDNA chains in
a solution of ionic strength I = 0.026 M with Rh/Rg = 0.5, as
calculated using the equation given in reference [21]. We
also assume that the electric force, due to each segment
residing in the pore, acts at the center of the “pore” or tube
segment, except in the case of the end segment, for which
the electric force is positioned at the end entanglement
point, bounding the end segment. Each Kuhn segment of
the polymer is assumed to carry an equal fraction of the
drag [13].

The effective charge per Kuhn step of ssDNA, xq, is
determined from measurements on dsDNA [23], giving ap-
proximately 230 6 10e per Kuhn step for dsDNA in a
0.56TBE solution [23]. The properties of ssDNA and dsDNA
are listed in Table 1, including xq for ssDNA, which we will
estimate in what follows to be xqss = 20.6e for the experi-
mental conditions considered here (I = 0.026 M). This value
will be used in Section 2.3 to determine the relationship be-
tween the reduced field used in the simulation and the real
value used in experiments. The definition of the reduced
field (Section 2.3, Eq. 8) allows us to compare a single set of
simulation results to experimental results for various elec-
trophoresis systems with different electric fields and differ-
ent sieving media if they have equal values of the dimen-
sionless numbers governing the process (see below). Note
that the effective charge per Kuhn step that we use here is
much less than the bare value derived from one electron
charge per base or two per base pair, assuming fully ionized
phosphate groups. However, it is well known that these
charges are neutralized to a degree that depends on the ionic
strength, and that the net charge also affects the effective
persistence length of the DNA molecule [21, 24]. Physical
properties of both ssDNA and dsDNA in Table 1 will be used
in the following sections to convert our simulated results to
corresponding experimental ones.

The radius of gyration, which was used to calculate the
persistence length by Tinland et al. [21], depends on chain
length and polymer flexibility, as shown in Table 2 [35]. For a
semiflexible chain with L ..bK (valid for dsDNA longer
than about 3000 base pairs, and for ssDNA longer than
around 100 bases), we can simplify the equation proposed by
Oberthur [26] to

R2
gðMÞ ¼

LbK

6
� 9

48
b2

K (3)

where bK is the Kuhn step length, and L is the extended chain
length (i.e., contour length). Furthermore, for ssDNA, the
Kuhn step length (bK) is around 5 nm and the length of one
nucleotide (b0) is 4.3 Å. The Kuhn step length for dsDNA is
100 nm and b0 is 3.4 Å. Therefore, we have the following
expressions derived from above Eq. (3), where N is the num-
ber of bases or base pairs.

R2
g

ss

ðnm2Þ ¼ 0:358N � 4:69 (4)
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Table 1. Comparison of physical properties of ssDNA and dsDNA

Physical properties ssDNA dsDNA

Length per base/base pair (b0) 4.3 Å [25] 3.4 Å

Persistence length (p) 2.58–4.41 nm when I = 0.01 M [21] 50 nm when I = 0.01 M [23]

Effective charge per Kuhn step, xq 20.6e (as calculated with Eq. 10)
Charge per base = 20.05e

230e [23]

Radius of gyration squared, Rg
2 (nm2) 0.358 N [26] (See Section 2 and Eq. 3) 5.66 N [26] (See Section 2 and Eq. 4)

Free solution mobility, (cm2V21s21) 1.03–1.04 [27]
(15-mers, random sequence, endtagged

fluorescent dye, high ionic strength, 106TBE,
high field, ,600 V/cm)

1.83 [28] (size-independent mobility)
2.8–5.4, [29], [30], [31]
(Ref. [30]: poly(dT)n in various salt solutions of

ionic strength I = 0.1, 0.01, and 0.001 M; ref. [31]:
ssDNA in 40 mM TAE buffer)

or m0 (I) = (3.16 2 5.32 I 1 2.91 I 2)61024

(I is in units of M [32], in an APS solution with
3 M urea)

3.8 6 0.1(oligomers, free solution mobility is an
extrapolated value at 0%T in the plot of
mobility vs. gel concentration) [33]

1.14 [27]
(15-mers, random sequence,

endtagged fluorescent dye, high
ionic strength, 106TBE, high
field, ,600 V/cm)

3.75 6 0.04 (in TAE buffer)
4.5 6 0.1 (in TBE buffer) [34]

TAE, Tris-acetate-EDTA

R2
g

ds

ðnm2Þ ¼ 5:67N � 1875 (5)

The second term in both equations can be ignored when the
chain is long enough to be considered Gaussian
(R2

g / L / N). This approximation is only valid for ssDNA
larger than 130 base pairs and dsDNA larger than 3300 base
pairs (error � 10%).

2.2 Characterization of sieving matrices

The electrophoretic behavior of a DNA chain depends not
only on its own properties but also on the properties of the
sieving matrix. The most important factor is the gel “pore
size” or the reptation “tube diameter” of the entangled poly-
mer solution, which is considered to be the key characteristic
of the matrix that controls electrophoresis. For a cross-linked
polymer gel, the pore size can be tuned mainly by varying
either the gel concentration (%T), defined as the monomer
mass concentration used to make the gel, or by the percent-
age of cross-linker contained in the monomer (%C). For
instance, to form cross-linked PA, acrylamide (AAm) and
BIS are the two monomer components with BIS being the
cross-linker, and the formed gel concentrations (%T and %C)
are defined by Eqs. (6) and (7). Both factors are important in
determining the microscale gel structure and therefore the
matrix sieving properties for DNA separation.

%T ¼ mAAmðgÞ þmBISðgÞ
VsolðmLÞ � 100 (6)

Table 2. Polymer and solvent systems with their corresponding
radii of gyration

Polymer/solvent
system

Dependence of Rg
2 on M (M is the molar

mass of the polymer; Rg is the radius of
gyration)

Rod-like R2
g / M2

Gaussian chain R2
g / M

Expanded coil R2
g / M1þe (e equals 1/5 when M is infinite)

%C ¼ mBISðgÞ
mAAmðgÞ þmBISðgÞ

� 100 (7)

In Eqs. (6) and (7), m denotes the masses of each component
and Vsol is the total solution volume. From light scattering,
neutron scattering, and other measurements, the pore sizes
of several kinds of cross-linked gel have been reported (Table
3). For instance, for cross-linked PA, the measured pore size
by NMR is around 55 6 15 Å at T = 9.12% and C = 5% [36].

Unfortunately, pore or tube diameters measured and/or
calculated with different methods, including stationary (i.e.,
SEM, SAXS) and dynamic methods (i.e., “Ferguson plot” [37,
38]), give results that differ from each other by an order of
magnitude or more. Viovy [39] suggests that this significant
variation may be partly the result of the large distribution in
pore/tube diameters, and the fact that different methods
probe different moments of the distribution. The problem
becomes even more complicated when one considers that
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Table 3. Gel pore size versus gel type, monomer concentration, and cross-linker relative concentration, summarized from previous work as
denoted in the table

Type of monomer
(buffer solution)

Monomer
concentration
(T%)

Cross-linker
concentration
(C%)

Pore or tube size
“a”(average
diameter, nm)

Measurement method

Acrylamide/Bis (with TAE) [38] 10.5% 5% 42 Pore diameter estimated from
Ferguson plot [37] of
relative DNA mobilitiesa)

4.6% 2% 400
Acrylamide/Bis (with TBE) [29], [40] 10.5% 5 or 10% 38

4.6% 1.5% 248
10.5% 3% 140
3.5% 260

Acrylamide/Bis [36] 16.8% 5% 3.0 NMR
9.12 % 5.5
3.01 % 16.8

Acrylamide/Bis [41] 10% 0.3% 2.2 Estimate based on the size of
nanoparticles grown in the
pores

0.2% 3.4
0.1% 4.1

Acrylamide/Bis (LPA covalently
linked with a low percentage
of cross-linker) [42]

2.5, 2.75, or 3% 4–10 mol% of the total
number of moles of
acrylamide monomer

460 Multiangle laser light
scattering and rheometry

Acrylamide (with TBE or
sequencing buffer) [43]

8% 0% (linear polymer
solution)

1.4 SANSb)

4% 2.4

a) The effective median pore radius was estimated as the radius of gyration of the DNA fragment just large enough that its relative mobility
is reduced to half of its free solution value.

b) SANS, small angle neutron scattering.

the mesh sizes seen by the DNA molecules are affected by
the elastic deformation of the entangling network due to the
interaction between the polymer fibers and DNA molecules.
In addition, the sieving medium is not always homogeneous
unless it is composed of artificially constructed periodic
structures. However, the assumption of uniform pore or tube
size is usually necessary in both simulation models and their
applications to the experimental prediction, and we retain
this assumption in this paper.

In our model, the movement of a DNA chain in the siev-
ing matrix is simulated using an algorithm based generally
on the idea of biased reptation [44], with an assumption of
uniform tube/pore size, in which a moving chain encounters
new entanglements at its leading end (head) and old entan-
glements get destroyed at its trailing end (tail), determined
by the chain free energy. Furthermore, in our model, the
electric force acts on all DNA segments instead of only on the
two end segments, and the number of Kuhn steps per
entanglement segment can change dynamically in response
to the stretch of the chain by the field. In the simulation,
these values are made nondimensional by dividing through-
out by the average number of Kuhn steps per tube segment in
equilibrium, which is a parameter of the model. The
dynamics are based on a free energy, defined by Eq. (2), that
includes both electric field and entropic elastic contributions
[13]. The algorithm allows us to simulate DNA migration
behavior over a wide range of field strengths, encompassing

both the well-known reptation regime, as represented by
region III in Fig. 1A (duplicated from ref. [45]) and the line in
Fig. 1B (duplicated from ref. [3]), where m,1/M at low fields;
to the oriented reptation regime, where m,E as shown by
region V in Fig. 1A and the line in Fig. 1C (duplicated from
ref. [3]), which is observed at higher fields. The crossover
region is also covered by our simulation, represented by a
smooth transient region from reptation to oriented reptation
(see the discussion in Section 2.3 and Fig. 3).

2.3 Relationships between computational and

experimental parameters

2.3.1 Dimensional versus dimensionless electric

field (E vs. �)

The relationship between the reduced electric field (e) and the
real, dimensional, electric field (E) is given by the following
definition (Eq. 8) involving the effective charge per Kuhn step
xqss and Kuhn step length bK of ssDNA, where x is an effective
factor to account for the fraction of charge screened by the
counter ions, Ne is the average equilibrium number of Kuhn
steps per entanglement, and kBT is the product of the Boltz-
mann constant and the running temperature T.

e ¼ xqssN
3
2
ebk

kBT
E (8)
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Figure 1. (A) Schematic phase
diagram of the regimes of DNA
separation in gels or polymer
solutions by Slater et al. (dupli-
cated from ref. [45]). I, Free-so-
lution regime; II, Ogston regime;
III, reptation regime; IV, inter-
mediate regime; V, oriented
reptation regime. (B), (C) The
simulated reduced mobility vs.
chain length and reduced elec-
tric field by Duke et al. (dupli-
cated from ref. [3]); where
ea ¼ xqEbK=kBT ; Na = Z(a/bK).
(The above equations are mod-
ified from the original format in
ref. [3] for consistency with our
notation.)

For dsDNA, the effective charge per Kuhn step (xqds) has
been measured to be approximately 230e, as mentioned
earlier, where e > 1.6610219C is the charge of an electron
[23]. Since we know the Kuhn step length bds

K of dsDNA is
around 100 nm [46], or about 300 base pairs (Nd

0), we can
estimate the effective charge of ssDNA per Kuhn step length
bss

K > 5 nm from Eqs. (9) and (10)

Nss
0 ¼

bss
k

Lss
0
¼ 5

0:43
� 12 bases (9)

xqss ¼
Nss

0

Nds
0

xqds

2
� 12

300
� �30� 10e

2
¼ �0:6� 0:2e (10)

where Lss
0 is the ratio of the contour length to the number of

bases for ssDNA, which is about 0.43 nm [25] and Nss
0 is the

number of nucleotides per Kuhn step of ssDNA. The effective
charge per Kuhn step of dsDNA (xqds) is divided by 2 to
account for the difference in charge density of a single strand
versus a duplex. Therefore, assuming that the ionic screening

effect, represented by x, is the same for both ssDNA and
dsDNA, the effective charge per Kuhn step of ssDNA is
around 20.6e with an error of 0.2e. This value is of the same
order of magnitude as reported by Pluen et al. [47], namely
20.4e per Kuhn step using bK = 8.2 nm, and is much less
than the maximum charge, 24.2e per Kuhn step (obtained
from the measured charge of 20.6e per Bjerrum length
(0.7 nm), and the Kuhn step length of 5 nm), above which
ion condensation would occur. Pluen et al. used the follow-
ing equation to estimate the effective charge per base:

xq ¼ kBTmE!0

NDG
; where DG ¼

2Nb0p
3p2t2

, and DG is diffusion coef-

ficient, t2 is the longest polymer relaxation time, N is the
number of DNA bases, and mE ? 0 is the vanishing-field mo-
bility obtained by extrapolating the measured low-field mo-
bilities to E = 0.

The correlation of reduced electric field with real field is
calculated from Eq. (8) and shown in Fig. 2 for two sets of
dimensional values. In the first, we assume that the average
gel pore size (a) is 20 nm, an approximate value for a PA gel
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Figure 2. Dimensionless electric field vs. experimental electric
field strength, calculated from Eq. (8) using physical properties
listed in Table 1. The area between the vertical dashed lines is the
range of electric field strengths usually used in either slab-gel
(crosslinked polymer) or capillary (linear polymer) electrophore-
sis. The corresponding reduced field ranges are 0.007–0.3 for the
first case (solid line with circles), and 0.003–0.1 for the second
case (solid line with squares) discussed above.

of 3%T 5%C (measured by NMR), from Table 3. For ssDNA
with a Kuhn step size of 5 nm (I = 0.026 M), the number of
Kuhn steps per entanglement segment is Ne = 16 (i.e.,
N1=2

e = a/bK = 20/5 = 4). We then compute e < 6.961024?E
(V/cm) from Eq. (8) with N1=2

e = 4, xq = 20.6e, bK = 5 nm,
and T = 507C. In the second set of conditions, we take the gel
pore size to be around 6 nm (,10%T, ,3%C PA, measured
by NMR as shown in Table 3), and the Kuhn step length to be
decreased to 1.5 nm, corresponding to an ionic concentra-
tion of 0.1 M; then the value of Ne also equals 16, but we ob-
tain e < 2.0761024?E(V/cm). From these calculations, we
can see that the same set of dimensionless variables can be
used to describe different DNA rigidities, sieving material
properties, and electric fields using different scaling factors.
The temperature (T = 507C) used in the calculation corre-
sponds to the denaturing condition for ssDNA separation.

2.3.2 Dimensional versus dimensionless time

In our simulations, we scale time using Eq. (11) below, where
te is the Rouse time of an entanglement segment, i.e.,
relaxation time of a chain segment of contour length of
Ne6bK. The definition of te is given in Eq. (12), where � is the
drag coefficient per Kuhn step. We note that our definition of
te omits the prefactor of 1/6p, which is merely a matter of
convention. Accordingly, when Ne is a constant, the larger
the Kuhn step length, the longer the real time that each

dimensionless time step corresponds to. On the other hand,
it is possible to keep the Kuhn step constant in the experi-
ments, which means that the ionic strength is held fixed, and
vary the pore size of the sieving medium, which will change
Ne. Changing either pore size a or Kuhn step length bK

results in a change in te.

et ¼ t
te

(11)

te ¼
zb2

kN2
e

kBT
(12)

Our simulation results, such as the center-of-mass reduced
mobility (mE=mE

0 ), are saved every five dimensionless time
units, which is an interval denoted as ts. Here, mE

0 is not the
free solution mobility but is the mobility of a hypothetical
DNA chain in the same frictional environment as the entan-
gled chains but with no entanglement effects (i.e., in the free
draining limit). Therefore, the value of mE

0 is slightly de-
pendent on the sieving matrix and the buffer conditions,
since these affect the friction properties of the medium. Our
algorithm is insensitive to time step size (Det) within the
range of 0.01–0.001 (see Appendix). Since te is defined as the
relaxation time of one entanglement segment, it can be
approximated using the equation for the thermal disengage-
ment time, Eq. (13) below, used by Viovy [39], by setting
Z = 1, to correspond to one entanglement segment

trep �
Z2a
Dtube

� Z3tb (13)

where the linear diffusion constant along the tube, Dtube,
roughly equals kBT/Za for a chain of length of one tube seg-
ment (a) [6]. And, tb is the relaxation time of a “blob” con-
sisting of a polymer coil with radius equal to the pore size,
i.e., the microscopic blob relaxation time [39], which can be
calculated from Eq. (14):

tb � Za3=kBT (14)

Here, we again omit the prefactor (1/6p) from the definition
of te. In the above equation, Z is the solvent viscosity and can
be taken as the viscosity of water at 507C (under denaturing
conditions), namely 0.50 cP. Taking the pore size or tube di-
ameter to be a = 20 nm, Eq. (14) then yields a disengagement
time of ,1 ms for a blob size of 20 nm, which is the relaxa-
tion time of an entanglement segment. This approximation
to te will be evaluated in our later discussion.

2.3.3 Dimensionless versus dimensional mobility

Electrophoretic mobility is defined as the migration velocity
divided by the electric field. Our simulation program records
the velocity of the molecular mass center every 5=Det time
steps (e.g. each ets ¼ 5) and then averages over the recorded
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points. As described in our earlier paper, the simulated mo-
bility can be written as

em ¼ mE

mE
0

and mE
0 ¼

qx
z

(15)

where mE
0 was defined earlier as the mobility of a DNA chain

that is not constrained by entanglements with the matrix and
� is the drag coefficient per Kuhn step. The simulation starts
with the generation of one chain with randomly formed
entanglement points. The effect of the initial chain config-
uration on the average value of mobility can be ignored since
our results are averaged over a time period hundreds of times
longer than the full chain relaxation time. We confirmed this
by leaving out the initial portion of a run, and found that it
had no effect on the resulting average.

2.3.3.1 Reduced mobility versus reduced field

The final results are shown in Fig. 3 (the symbols) for chains
of various lengths at different dimensionless electric fields.
Our simulation results more smoothly resemble experi-
mental results than do scaling-only theories (see Figs. 3 and
7 below), since our simulations give a smooth crossover
transition from the low-field reptation regime to the biased
reptation regime, and fit well with the theory at a high field
as m ! e. All lines in the plot are from the “interpolation
equation”, which will be discussed below. The error bars are
standard errors calculated based on mobilities of all sam-

Figure 3. Symbols: reduced center-of-mass mobility vs. reduced
field (as defined in part 1), for various chain lengths Z with Ne = 16
and Det ¼ 0:01. Z is the average number of entanglements of one
DNA chain with the network and Ne is the average equilibrium
number of Kuhn steps between entanglements, e.g., within one
tube segment. Curves: asymptotic fittings with the interpolation
equation, as defined in Eq. (18), for reduced mobility simulated
under various reduced electric fields and with different entan-
glement numbers.

pling points, the number of which varies from run-to-run
within the range of 105–106. The model tends to fail when
Z ,8 (not shown in the figure), where the reduced mobility
computed for shorter chains is smaller than the mobility
value for Z = 8. We attribute the failure of chain sizes smaller
than Z = 8 to their weak entanglement with the network,
because for Z ,8 the radius of gyration (Table 4) becomes
comparable to the tube or pore size (20 nm).

Table 4. The radius of gyration of ssDNA molecules as a function
of the number of entanglements in a gel of pore size

20 nm with bK = 5 nm. (N = Z
NebK

b0
; b0 = 0.43 nm)

Entanglement
number (Z)

Number of bases
(Ne = 16, bK = 5 nm)

Radius of gyration
(Rg) (nm)

8 1488 23.07
10 1860 25.79
12 2233 28.26
15 2790 31.59
18 3349 34.61
24 4465 39.96
32 5953 46.14

2.3.3.2 Reduced mobility versus entanglement

number

Theoretically, the mobility at low electric field is proportional
to the reciprocal of DNA chain size N, which is represented
by the number of entanglements per chain (Z) in our model
when Ne is a constant. Hence, we may expect a plot of
reduced mobility versus the entanglement number to follow a
power law scaling em / Z�1 when e ,, 1. As plotted in Fig. 4,
mE

mE
0

/ Z�1:68 is observed for chains with Z .10 at low reduced

field (e = 0.01). Therefore, an asymptotic equation, given in
Eq. (17), was obtained by fitting the reduced mobility values
for Z .10. The slopes of power-law fits for computed results
and for experimental data are listed in Table 5 for compar-
ison. As we can see, all power-law equations deviate from the
theoretical prediction: fits to the simulation results always
give a slope steeper than 21 while fits to the experimental
data always have an index less than 21. The deviation from a
slope of 21 in our simulations is believed to be a result of
nonlinear spring effects when Ne is relatively small, so that
the simulated mobilities do not agree with the scaling law
(m ! N21), which is derived based on the assumption of ideal
Gaussian chains.

A possible reason for the deviation of experimental
slopes from the theoretical value (21) is that the low field
limiting case may not be fully realized in the experiments
since for large DNA molecules very low fields are required to
achieve this limit (see Eq. 16; [8]), which is not realistic due to
the extremely slow migration rate. Analytically, we can see
how a slope less steeper than 21 will be obtained from Eq.
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Table 5. Power-law fits to log–log plots of mobility vs. ssDNA size for simulations and experiments

Simulation results Experimental resultsa)

Simulation results at
e = 0.01 (Ne = 16)

Simulation results at
low field (Ne = 100) [13]

HEC 0.3% HEC 0.5% HEC 0.7%

Slope 21.68 21.32 20.332 20.443 20.672

a) The slopes of experimental results were obtained from data of Todorov and Morris [48], for ssDNA electro-
phoresis in HEC solutions of various concentrations with 0.56TBE and 4 M urea.

Figure 4. Reduced mobility vs. number of entanglements per
chain at a low dimensionless electric field. A power law slope of –
1 corresponds to DNA migrating via the reptation mode (e.g.,

m / 1
N

), independent of the field strength at a low field (Eq. 16).

For clarity, only the averaged center-of-mass mobilities without
error bars are plotted.

(16) when N is large, and e is not comparably small (e.g.
e .1/N). There is also a relatively large discrepancy between
the power-law index that fits our simulation results and the
index that fits to the experimental data for 0.7% hydro-
xyethylcellulose (HEC), although the estimated tube diame-
ter of 0.7% HEC (19 nm) [48] is very close to the pore size
(20 nm) assumed in our simulations. This may be due to the
pore size distribution in the real gel, and thus nonconstant
Ne, which is not considered in the simulation.

m
m0
¼ ½ð3NÞ�2 þ ð2e=5Þ2�1=2 (16)

An analytical asymptotic formula for the mobility (Eq. 17) is
derived by a fit to our simulation data, and will prove to be
useful in later discussion (see below). This equation is
obtained using an approach similar to that used by Graham
and Larson [13]. That is, simulation results at e = 0.01 are

fitted with an empirical functional form expected from
reptation theory in the asymptotic limit of low field. The cal-
culated reduced mobility from this asymptotic equation fits
the simulation results well when Z .10 for Ne = 16 (Fig. 5).
The deviation at small molecular sizes (Z ,10) may indicate
a transition away from reptation, which is not encompassed
in our model.

emE
low ¼ expð�0:18ZÞ þ 1

Z
½1� expð�0:0016Z2:7Þ� (17)

(Asymptotic equation)

In order to further interpolate our simulation results
from the low-field plateau regime (em / e0) to the high-field
regime (em / ea, and a = 1 with BRF theory), we use Eq. (18)
(which we call the interpolation equation), which describes
the reduced mobility as a function of both the reduced field
and the entanglement number across the whole set of simu-
lation results for Ne = 16 and yields curves fitting the simu-
lation results well in Fig. 3. This equation also provides us a
convenient way to compare our simulations with experi-
ments, as we will discuss in Section 2.4.

Figure 5. Symbols: simulated reduced mobilities at low field
(e = 0.01); curve: the fit by Eq. (17).
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mE

mE
0

¼ me
2
þ
emE

low

2
þ 0:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þm2e2 � 2memE

low þ emE 2
low

q

m ¼ 0:8; a ¼ 0:3
Z1:5

� � (18)

(Interpolation equation)

Equations (17) and (18) are chosen primarily for mathe-
matical convenience to interpolate between the asymptotic
limits of the model. However, there is also a physical basis for
the asymptotic behavior of both equations. Equation (18) is a
hyperbola, which scales as e0 at low e and as e1 at high e. The
physical basis for these asymptotic regimes is reptation
without orientation or reptation with orientation, respec-
tively. Equation (17) captures the low-field limit of the BRF
model, in which the low field mobility scales as 1/Z. Again,
this asymptote has a physical explanation and arises the
electric force acting on the equilibrium chain configuration
balanced by the chain drag. However, the scaling of mobility
with Z for shorter chains is not currently understood in
terms of simple physical arguments.

2.3.3.3 Reduced mobility versus Ne

In the previous work [13], computations were done with
Ne = 100 to simulate dsDNA mobility in an agarose gel, near
the limit of Ne ? ?. In this paper, we take Ne = 16, to
account for differences in both the properties of DNA chains
(single strand vs. double strand) and those of the network
(agarose vs. highly entangled polymer solution or gel). It is
worthwhile comparing the results for Ne = 16 and Ne = 100
to predict how the mobility depends on the number of Kuhn
steps per tube segment when varying either the Kuhn step
length or the tube diameter. In this way, we will be able to
apply our model over a wider range of experimental condi-
tions, such as different buffer ionic strengths (varying bK) or
gel concentrations (varying a).

As shown in Fig. 6A, the dependence of reduced mobility
on electric field for Ne = 16 is similar to that with Ne = 100,
except for a systematic reduction in mE=mE

0 for Ne = 100 rela-
tive to Ne = 16. Furthermore, we have the reduced mobilities
computed for a series of Ne for chains with fixed entangle-
ment number (Z = 15). The relationship between em and Ne is
clearer when we plot the reduced mobility versus different Ne

with a fixed Z and e, as shown in Fig. 6B. A sharp decrease in
the reduced mobility occurs with an increase in the number
of Kuhn steps per tube segment from Ne = 2–10, and a pla-
teau is reached when

ffiffiffiffiffiffi
Ne

p
.20. The trend can be fitted with

mE

mE
0

¼ m1 þm2 expð�m3I0:5Þ þ N�m4=2
e , where m1 = 0.09,

m2 = 0.14, m3 = 0.32, and m4 = 3.7.

As defined, Ne is a function of both ssDNA Kuhn step
length (bK) and the pore size (a). Therefore, a change in
either of these parameters will result in a different value of
Ne. Experimentally, such a change could be caused by
changes in gel type and concentration, or buffer type and/or

Figure 6. Dependence of simulated reduced mobility on Ne. (A)
Field dependence of dimensionless mobility computed for
Z = 10, 15, 24 (25) using Ne

ffiffiffiffiffiffi
Ne

p
¼ 4 (closed symbols) orffiffiffiffi

N
p

e ¼ 10 (open symbols). (B) Reduced mobility as a function of
the square root of the number of Kuhn steps per entanglement
(
ffiffiffiffi
N
p

e) with fixed entanglement number (Z = 15) at a reduced field
of e = 0.1.

concentration. Tinland et al. [21] have systematically studied
the relationship between ssDNA persistence length (p) and
ionic strength (I) of TBE buffer solution. A power-law de-
crease in bK with I (Fig. 2 of ref. [21] ), bK ! I20.5, has been
sketched for the experimental observations. Because Ne is
proportional to bK

22, we estimate Ne ! I and then have
mE

mE
0

¼ m1 þm2 expð�m3I0:5Þ þ I�1:85 derived from the above

fitted equation. Such a functional form with the assumption

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com



Electrophoresis 2007, 28, 2783–2800 General 2793

of uniform constant pore size could be compared to meas-
urements of ssDNA that is long enough to be well entangled
with the network, in an artificial periodic structure [49], with
buffer solutions of different ionic strengths.

Note in Fig. 6B, that the mobility ratio mE/m0
E increases

rapidly at fixed Z and e as Ne decreases. When Ne shrinks to
unity or smaller, our model fails, since the model assumes
that the DNA Kuhn step length is much smaller than the
pore size, i.e., Ne ..1. Thus, the steep increase in mE/m0

E as
Ne approaches unity may not be quantitatively accurate.
Theoretically, Ne determines the degree of chain stretch
when the nonlinear spring force (finite extensibility) begins
to influence the mobility. For high Ne, the chain can accu-
mulate a large amount of stretch without the nonlinear
spring effect being seen. Thus, the nonlinear spring effects
are not seen for large Ne and so the mobility becomes inde-
pendent of Ne, which results in the plateau at higher Ne

(Ne .20).

2.3.4 Dimensionless versus dimensional migration

distance and variance

In real electrophoresis, the migration distance must be
made large enough to resolve DNA bands of different sizes.
A primary goal of our simulations is to provide estimates of
the required separation distance needed for resolution. To
achieve this, we first need to assign a dimensional value
corresponding to the scaled time. We also need to convert
the scaled time et into the dimensionless migration distance
(el) using Eq. (19) involving the average dimensionless mo-
bility of the DNA chain and the reduced field. The real
migration distance (l) can be retrieved from this dimen-
sionless value using Eq. (20) once we know the values of Ne

and bK [13].

el ¼ eu �et ¼ mE

mE
0

e �et (19)

el ¼ l
ffiffiffiffiffiffi
Ne
p

bK
(20)

The intensity distribution in a DNA band, characterized by
the peak width, is a key factor in determining the resolu-
tion. To calculate the width of electrophoretic bands, and
therefore the resolution of one band from another, we need
to know the SD (s) or variance (s2) of mobility, so that the
peak shape can be calculated by assuming that the peaks are
Gaussian. The SD of short-time mobilities (ss) is computed
from the distribution of mobility values (Eq. 21), each of
them an average over a fixed short time period (ets). One can
use the SD of the short-time mobility (ss) to predict the
long-time SD (st) as long as ets is longer than the auto-
correlation time for mobility fluctuations, which will be
discussed in Appendix. By applying the central limit theo-
rem, we can calculate the SD for mobilities averaged over
any time period via Eq. (22).

s2
s ¼

PN

i¼1
mE

i
2

N � 1
�

PN

i¼1
mE

i

� �2

NðN � 1Þ (21)

st ¼ ss

ffiffiffiffi
t
ts

r
(22)

2.4 Comparison with experiments

To compare our simulation results to experiments, we use
two methods to convert our simulated reduced mobilities to
dimensional “real” values. In the first method, we take the
value of mE

0 to be a constant by neglecting any possible
changes caused by differences in the sieving matrix. Instead
of using the definition (Eq. 15) to calculate mE

0 , we use the
mobility of short DNA oligomers in a PA gel (4%T, 3%C) as an
approximation, yielding mE

0 ,261024 cm2V21s21 [33]. Then,
we calculate the real migration mobility mE using mE ¼ emmE

0

from the simulated reduced mobility em. For instance, the
simulated reduced mobility em is ,0.18 for Z = 12 at e = 0.1, as
shown in Fig. 4. The real mobility for a chain with 12 entan-
glements at a reduced field e = 0.1 is then calculated to be
mE < 0.186261024 cm2V21s21 = 3.661025 cm2V21s21. We
also have te = 1 ms as estimated in Section 2.3.2 for one DNA
segment within a pore/blob size of 20 nm. Therefore, a
dimensionless timeet ¼ 6� 106 corresponds to a real time of
6 s. The dimensionless migration distance is then calculated
to be 1.086105 from Eq. (19) with the known em, e and et.
Thus, the corresponding real distance is determined to be
2.16 mm via Eq. (20) Ne = 16 and bK = 5, as used in the com-
putations. Note here that the consistency of the estimation of
real migration distance and real time can be checked by set-
ting the value of either real distance or real time equal to that
of the experiment, and then comparing the predicted value of
the other to the experimental value.

In addition, we have calculated the corresponding DNA
size to be approximately 2.2 k base pairs for a chain with 12
entanglements (Table 4), for Ne = 16 and bK = 5 nm. The
mobility of ssDNA-sized 2038 base pairs is about
8.0261025 cm2V21s21, as measured by Todorov and Morris
[48], in a 0.7% HEC polymer solution (estimated tube diam-
eter 19 nm). Therefore, for an ssDNA chain of 2.2 k base
pairs to migrate a distance of 2.16 mm under an electric field
of 150 V/cm (corresponding to e = 0.1), the experimental

running time is calculated to be about 18 s (t ¼ l
mE

), which is

roughly comparable to the value (6 s) derived from the scaled
time by assuming that the relaxation time of one entangle-
ment segment equals 1 ms. The difference is presumably due
to the approximations we have made for the properties of
ssDNA and the sieving matrices, especially the blob relaxa-
tion time, which is estimated using the viscosity of water in
calculation with Eq. (14). The comparison indicates that the
actual relaxation time of one entanglement segment might
be longer than 1 ms for a pore/blob size of 20 nm. An alter-
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native estimation for the relaxation time comes from the
longest relaxation time (t2) measured for an ssDNA mole-
cule of 2961 base pairs, namely 0.06 s in a PA gel of 4%Tand
3%C, by Pluen et al. [47]. Since the longest relaxation time is
proportional to N3 (t2 ! E0N3.0T1.2), where N is the size of
DNA chain, the relaxation time (te) for one DNA of length
sufficient to fill one tube segment, i.e., 180 base pairs (corre-
sponding to bK = 5 nm and a = 20 nm) works out to be about
te = 13 ms. Therefore, a more realistic estimation might be
that the relaxation time te is in the range of 1,10 ms. In
Section 2.5, we will use the value te = 5 ms to calculate the
peak width, which gives a very good agreement with experi-
mental results.

The second way to compare our simulation results to
experiments is by using the interpolation equation derived
above (Eq. 18) to obtain reduced mobilities of various DNA
sizes using different sets of parameters, corresponding to
various experimental conditions (i.e., various values of E, a,
and I). Some of the properties, including the Kuhn step
length and the pore size, assumed in the above calculations,
need to be modified, as listed in Table 6, in order to match the
values used in the experiments. The reduced values are con-
verted to real values by setting mE

0 to the mobility of the
smallest ssDNA chain in the experiment, assuming there are
no entanglement effects on the smallest chain. The calcu-
lated results (curves) are then compared to the experimental
data of Todorov and Morris (symbols in Fig. 7). For ssDNA
with fewer than 1000 base pairs, the predictions of our
interpolation equation match the experimental data well,
while there is a relatively large deviation for larger DNA
chains (N .1000 base pairs), indicating the need for further
refinements of the theory. One possible cause of the devia-
tion in mobility values for longer ssDNA chains is the miss-
ing constraint-release effect in our simulation model, which
has a greater effect on longer chains than on shorter ones.
Therefore, the interpolation equation, which is based on the
simulation results, gives better prediction for the mobility of
shorter chains than for longer chains.

On the other hand, we have noticed that although the
simulated reduced mobilities of chains with fewer than ten
entanglements deviate somewhat from our asymptotic and
interpolation equations, we are able to use these equations to
match many (but not all) experimental results for relatively
small ssDNA chains, as shown in Fig. 7. A possible reason
for deviations is the imprecise value of estimated/measured
pore size or tube diameter from the experiments. As shown
in Table 3, the pore size of a PA gel with 10.5%T, 5%C, esti-
mated from a Ferguson plot, is 38 nm while the same kind of
gel at modestly lower crosslinker concentration (10%T, 3%C)
has a pore size estimated as 4 nm by measuring the size of
nanoparticles grown in the pores. Rousseau et al. [33] pro-
posed a very effective way for estimating pore size by plotting
3 mM/m0 versus M, where M is the DNA molecular weight in
units of bases. Using the reptation theory, Rousseau et al.
determined that the intercept on the y-axis corresponds to
the size of the DNA, Ma, which just fits into one pore (a).

Table 6. Amended parameter values for ssDNA used to convert
dimensionless into dimensional values

bK(nm) (nm) Ne (cm2V21s21) e

Original
(simulation)

5 20 16.00 N/A 0.01, 0.03, 0.05,
0.1, 0.3, 0.5, 1

Amended
(Fig. 7)

4 19 22.56 2.7361024 0.018–1

Figure 7. Prediction of mobility vs. electric field (lines) by the
interpolation equation (Eq. 18) compared to the experimental
results (symbols) replotted from Fig. 5B of ref. [48]. The size of
ssDNA denoted in the legend is in units of bases. Reduced mo-
bilities are first calculated from the interpolation equation with
modified values: a = 19 nm, bK = 4 nm, xq = 0.6e and then con-
verted into mobility in the same units as the experimental data by
using the scaling factor mE

0 ¼ 2:73� 10�4 cm2V�1s�1, which is
obtained by dividing the experimental mobility (mE) of ssDNA
(201 b) by the reduced mobility (em) for the same size chain.

This scaling method for the pore size can be conveniently

used to estimate Ne with Ne ¼
a2

b2
K

¼ Ma

N0
, where N0 is the

number of bases per Kuhn step. With this equation, we can
use the measured ssDNA mobility curve to extract a value for
Ne by plotting 3 mM/m0 versus M, and avoid any possible error
induced by the imprecise pore or tube size measured with
different methods [39].

2.5 Peak width and resolution

2.5.1 Peak width

After obtaining the theoretical dimensionless SD of the mo-
bility as described in Section 2.3, we can use Eq. (23) to cal-
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culate the dimensionless theoretical peak width (ehw), which
can be converted into a corresponding experimental value
using the same scaling factor as in Eq. (20) (see Eq. 24). In
experiments, the peak width is determined by the dispersion
(diffusion under external electric field) along with several
other factors. As shown in Eq. (25), the total variance in mo-
bility contains contributions from dispersion (s2

dis), which is
the variance in mobility caused by both simple Brownian
diffusion as well as fluctuations in the polymer response to
the electric field, from the temperature gradient in the
migration direction (s2

DT), from DNA adsorption (s2
ads) to the

network and inner wall surface, from the initial injected
bandwidth (s2

inj), and from the width of the detection region
(s2

det). Our simulations account only for s2
dis, which is the

minimum band broadening obtained under ideal electro-
phoresis conditions (no temperature gradient, no hetero-
geneity in microstructure, no adsorption, zero injection
width, etc.). Hence, our predictions are only semiquantitative
and need to be combined with estimates for other effects to
give more quantitative predictions in the future.

ehw ¼ 2sl

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

ste (23)

hw ¼ ehw
ffiffiffiffiffiffi
Ne

p
bK (24)

s2
tot ¼ s2

dis þ s2
DT þ s2

ads þ s2
inj þ s2

det (25)

Figure 8 shows the dimensionless peak width calculated for
DNA chains with Z = 8–50 entanglements per chain. Using
the value Ne = 16 and a Kuhn step length of 5 nm that are
appropriate for most of the running conditions in ssDNA
electrophoresis, the real DNA sizes for these chains are in
the range from ,1500 base pairs (Z = 8) to ,9000 base pairs
(Z = 50), which have not been as well investigated experi-
mentally as have chains smaller than 1000 base pairs.
Nevertheless, we find experimentally that there is a decrease
in peak width for increased DNA length, as is predicted by
the simulation when the entanglement number exceeds a
threshold (Z*), that appears to depend on the electric field.
For low electric fields (e ,0.1), the calculated peak width does
not change significantly with the electric field intensity until
Z .24 (i.e., the data in Fig. 8 collapse together for e ,0.1 until
Z reaches around 24), which is similar to the observed slight
decrease in the dispersion coefficient with increased ssDNA
size in a cross-linked PA gel (6, 9, or 12%T), as reported by Lo
and Ugaz [50] (Fig. 4 in their paper). The predicted change of
peak width with entanglement number follows a power law
with a slope of 21 in the linear region (Fig. 8). In our simu-
lations, the peak width is only due to dispersion, so that
hw ¼

ffiffiffiffiffiffiffiffi
DEt

p
/ N�1 where DE is the dispersion coefficient,

and therefore DE ! Z22. This scaling is the same as the pre-
diction by Slater et al. [45], for the diffusion coefficient when
N ,e022/3 based on the BRF model, where N in their work is

the same as Z in ours, and e0 ¼ Za2m0E
kBT

in their work. The

Figure 8. Dimensionless peak width (spatial) for DNA chains
migrating under various reduced fields (e) for a constant dimen-
sionless migration time: et ¼ 6� 108. The line in the plot has a
slope of 21, which is consistent with the prediction from repta-
tion theory.

critical entanglement number, defined as the value of Z
above which the relationship of DE ! Z22 becomes invalid is
then calculated from the condition N ,e022/3 to be ,29 when
e = 0.05 or ,18 when e = 0.1, under the conditions
we simulated, i.e. a = 20 nm, m0 = 261024 cm2V21s21,
e = 6.961024E (V/cm) and T = 507C. The estimated critical
values of entanglement number are consistent with the
trend of dimensionless peak width change with Z, as shown
in Fig. 8. At higher fields, Fig. 8 shows that the band broad-
ening is predicted by our model to be greater than can be
accounted for by simple molecular diffusion, which can be
represented by the dimensionless bandwidth under vanish-
ing field (e.g. e � 0.05), and hence field-induced fluctuations
in DNA mobility must also contribute to the bandwidth.

2.5.2 Gaussian peaks

To determine electrophoretic resolution, we reconstruct
multipeak plots (each peak standing for one DNA band) by
assuming all peaks are Gaussian. As an example, a set of
DNA bands at a constant migration time is plotted in Figs. 9A
and B for two values of reduced field. This plot is analogous
to an image taken for a slab-gel electrophoresis experiment.
The center of each peak in Fig. 9 is determined by the aver-
aged reduced mobility and the preassigned dimensionless
time, and the peak width is calculated in the same way as in
Fig. 8.

In CE experiments, the peak width and peak spacing are
obtained at the “finish line”, and given in terms of time at a
constant migration distance. To compare our simulated peak
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Figure 9. (A) Reconstructed
Gaussian peaks for reduced field
e = 0.1 (corresponding to
,150 V/cm in a typical real
experiment) where each peak
stands for the band position and
distribution (in terms of dis-
tance) at the time et ¼ 6� 106

(,6 s in a typical real experi-
ment with te = 1 ms). The peak
for Z = 12 has been enlarged in
an inset plot to show the Gaus-
sian shape. (B) Reconstructed
Gaussian peaks for reduced field
e = 0.01 and et ¼ 6� 108. Param-
eters used in both (A) and (B) are
Ne

1/2 = 4 and Det ¼ 0:01. The
x-axis is the dimensionless
value of migration distance (el),
which can be readily converted
into real distance using
lðmmÞ ¼ 2� 10�5el, roughly cor-
responding to 2.8 cm for the first
band in (B). The value of the
y-axis is obtained using a Gaus-
sian distribution with integrated
probability normalized to unity.

width and resolution to such experimental results, we need
to change our calculation from constant time to constant
distance. In our previous discussion, we stated that the SD,
which we used to predict the width of the peaks, is calculated
from simulated mobilities averaged over small fixed time
intervals. To rebuild the distribution over time rather than
distance, we assume that the peak width is small enough
compared to the migration distance that we can take the
relative spatial distribution at the moment when the center
of the peak passes the detection point as the relative temporal
distribution. That is, the temporal distribution, when nor-
malized by the mean time, is simply taken as the spatial dis-
tribution normalized by the mean distance, where this mean
distance is the position of the finish line. In this way, we ob-
tain the plot of Gaussian peaks in terms of time as shown in
Fig. 10 for a reduced field e = 0.1.

The rebuilt peaks are narrow, consistent with our
assumption. For instance, the peak width is about 106 for
Z = 12 after migrating 9.756108, both in units of dimen-
sionless time. The dimensionless time can then be converted
to real time using te = 5 ms, giving a real width of 5 s. The
real-time width of 5 s corresponds to a band with spatial
width of ,3.7 mm, for a hypothetic DNA chain of size
2233 base pairs (Table 4) after migrating ,80 min under a
field of 150 V/cm. This bandwidth is identical to the value of
bandwidth calculated from the longitudinal dispersion coef-
ficient (361027 cm2/s) for a ssDNA chain of size 2961 base
pairs in experiments of Pluen et al. [47] under an electric field
of 105 V/cm in a 4%T, 3%C PA gel. This similarity in pre-
dicted versus measured bandwidths verifies our new estimate
for te as well as the prediction for the peak width based on
the simulations.
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Figure 10. Reconstructed Gaus-
sian peaks with a constant
migration distance el ¼ 1:8� 107

(equivalent to 36 cm when
Ne = 16 and bK = 5 nm) at
reduced field e = 0.1 (corre-
sponding to ,150 V/cm in a
typical experiment). The peak
width and spacing are in terms
of time while the signal intensity
is calculated based on a normal-
ized Gaussian distribution.

Furthermore, the resolving power (e.g., resolution) for
two different DNA molecular lengths of interest can be cal-
culated using Eq. (26), which involves both the center-to-
center distances (l1, l2) and the peak widths at half height
(hw1 and hw2) of the two theoretical bands.

Rs ¼
l2 � l1

hw1 � hw2
(26)

With our simulated results shown in Fig. 9A, the resolutions
between two neighboring peaks with various entanglement
numbers, are Rs = 12.8 (Z = 8, 12), 23.4 (Z = 12, 18), 8.4
(Z = 18, 24), and 6.9 (Z = 24, 32) with e = 0.1 and
et ¼ 6� 106. And Z = 12 with e = 0.1 and et ¼ 6� 106 corre-
sponds to a DNA of size 2232 b when a = 20 nm, bK = 5 nm
for chains running under an ideal condition (no injection
bandwidth, no temperature gradient and so on) with a field
of ,150 V/cm running for ,30 s. Resolution per entangle-
ment here is calculated to be 3.2, 3.9, 1.4, 0.86 for pairs of
neighboring peaks from (Z = 8, 12) to (Z = 24, 32). The res-
olution per entanglement slightly increases from the first
pair with entanglement numbers Z = 8 and 12 to the second
pair with Z = 12 and 18, but quickly decreases with increas-
ing entanglement number when Z .12. This trend is con-
sistent with the experimental results if we consider that
Z = 8 falls into the transient regime from Ogston-like to
reptation migration and all larger chains are in the reptation
regime. Due to the lack of a systematic experimental studies
of electrophoresis of ssDNA with sizes larger than 1000 base
pairs, we cannot give any direct comparison of theory to the
experiment in this paper, but our predictions might be tested
in the future by running a series of long-chain ssDNA mole-
cules under conditions corresponding to those used for our
simulations.

3 Concluding remarks

We have successfully simulated ssDNA electrophoretic be-
havior for a series of electric field strengths using our tem-
porary network model based on coarse-grained Brownian
dynamics, which shows a smooth transition from the repta-
tion regime to the oriented reptation regime. The simulated
results can be fitted with an interpolation equation having
the same form as for dsDNA electrophoresis [13], but with
different parameters. To use our simulations to predict mo-
bilities, the chain size needs to fall within the reptation or
oriented reptation regimes. In addition, the model is only
applicable to DNA molecules whose length is much greater
than the pore size so that the chain has multiple entangle-
ments with the network.

For small values of entanglement number (Z ,30), our
simulation results show a steeper slope than theoretically
predicted (21) or seen in experiments (varying from 20.3
to 20.7 for different gel/polymer concentrations). When
Z .10, the simulated mobility versus molecular size at low
fields can be fitted by an asymptote equation composed of
two terms: one is an exponential decay and the other a
power law (Z21). As the formula (Eq. 17) predicts, the quick
dissipation of the exponential decay functions in Eq. (17)
may eventually lead to a function of em / Z�1 for an infinite
Z. Future simulations with Z .30 may be done to check if
this interpolation function is still valid for longer ssDNA
chains.

The simulation results are in reasonably good agree-
ment with experimental data when we use somewhat mod-
ified scaling factors to convert the dimensionless to dimen-
sional parameters. Our work suggests that estimates of pore
size or tube diameter and equilibrium time (te) need to be
carefully re-evaluated as functions of the sieving media.
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Estimates of these quantities present the greatest source of
uncertainty in comparing predicted and measured electro-
phoretic mobilities. We have also derived the peak widths
from the SD of mobility by using the central limit theorem,
and find a good agreement with the experimental peak
widths, after converting dimensionless to dimensional
values.

Since Ne represents the number of Kuhn steps per pore,
the larger Ne is, the fewer entanglements one chain (of fixed
length) has with the network at fixed Kuhn step length.
Thus, a larger value of Ne should lead to a larger mobility
for a fixed chain length (constant N but smaller Z); this
means that the same size ssDNA molecule migrates faster
in a gel of lower concentration with bigger pores. On the
other hand, both the entanglement number Z and the chain
length L can be held fixed while varying Ne by changing the
pore size a and Kuhn step length bK (by changing ionic
strength) in such a way that a / b2

K. Also in real gels, the
distribution in pore sizes or tube diameters would pre-
sumably result in a changing Ne and Z for each chain as it
moves through the gel. In the future, a spatially varying
average tube diameter could be introduced to account for
this heterogeneity of the network.

A limitation of our model is the assumption that the
persistence length of the DNA molecule is smaller than the
pore size, which fails for densely cross-linked gels. In addi-
tion, the model is only applicable to DNA molecules whose
length is much greater than the pore size so that the DNA
molecule has multiple entanglements with the gel. This
assumption fails for short ssDNA molecules which interact
with the gel by Ogston-like sieving. We also neglect con-
straint-release due to motion of the molecules in the sieving
medium.
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5 Appendix

Decorrelation and SD

The velocity autocorrelation coefficient can be used to deter-
mine how widely in time we must space our sampling of
mobility values to ensure that these mobilities are statisti-
cally independent. The mobility values were simulated by
recording the mass center positions of the chain every 500
time steps (i.e.ets ¼ 5) and then dividing the position change
projected in the field direction by the sampling time interval
durationets. The mobility time–auto correlation function R(h)
(Eq. A1) is a function of the number of time intervals of
duration ets. Thus, h = 1 corresponds to a time period of ets,
h = 2 corresponds to 2ets, etc. If we define mi to be the mobility
averaged over the ith time interval of durationets, and mi 1 h is
the mobility value averaged over the (i 1 h)th time interval,
then the autocorrelation coefficient R is defined as in Eq.
(A1).

RðhÞ ¼ Ch

Co
(A1)

where

Ch ¼
1

N � h

XN�h

t¼1

ðmt � �mÞðmtþh � �mÞ;

C0 ¼
PN

t¼1 ðmt � �mÞ2

N

In Fig. 11, the mobility autocorrelation function decays to
less than 5% correlation at h � 1 (except when e = 1). Thus, if
the values of the mobility are each averaged over a time
interval ofets (i.e., h = 1), and separated in time by this same
interval, then these values can be considered to be nearly in-
dependent of each other and can be used to determine the
variance of the mobility. From the mobility variance, we can
construct a plot of DNA molecular migration and band
broadening versus separation distance by using the mean and
SD of mobility. The assumption for this construction is that
DNA molecules follow a Gaussian distribution of mobility as
they disperse during their migration, which should be valid
for a gel of uniform properties, according to the central limit
theorem.

While the time autocorrelation indicates that there
should be no significant correlation between our mobility
values, we can test this further by seeing if the SD s of the

Figure 11. Plots of autocorrelation coefficient vs. number of lag
times, each of durationets ¼ 5 for various reduced field strengths e
for a DNA chain with six entanglements. The simulation timestep
was Det ¼ 0:01.

mobilities is inversely proportional to the square root of the
interval over which each mobility value is averaged. This
can be tested by averaging together each block of N
sequential values of the mobilities and then computing the
SD of the resulting (N-fold fewer) “consolidated” mobilities.
The result s / 1=

ffiffiffiffi
N
p

will be obtained if there is no corre-
lation in the series of mobility values. The power law fit in
Fig. 12 shows that the SD is proportional to the number of
mobility values consolidated into a single value raised to a
power of 20.47 6 0.013. The closeness of this value to 20.5
indicates the validity of using our mobility data to calculate
the SD of mobility and peak width. As expected, the stand-
ard error is insensitive to the consolidation number, since
the standard error equals the SD divided by the square root
of the number of data points minus one, and the number of
data points decreases inversely with the consolidation
number. Hence, for the standard error, the decrease in SD is
cancelled by the decrease in the number of consolidated
points.
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Figure 12. SD and standard error for simulated DNA chain with
Z = 24 at reduced field e = 0.1. The “consolidation number” is the
number of time intervals (each of lengthets ¼ 5) that each mobility
value is averaged over.
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