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Joint Design of Trajectory and RF Pulses
for Parallel Excitation

Chun-Yu Yip,1∗ William A. Grissom,2 Jeffrey A. Fessler,1,2 and Douglas C. Noll2

We propose an alternating optimization framework for the joint
design of excitation k-space trajectory and RF pulses for small-
tip-angle parallel excitation. Using Bloch simulations, we show
that compared with conventional designs with predetermined
trajectories, joint designs can often excite target patterns with
improved accuracy and reduced total integrated pulse power,
particularly at high reduction factors. These benefits come at
a modest increase in computational time. Magn Reson Med
58:598–604, 2007. © 2007 Wiley-Liss, Inc.
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INTRODUCTION

With current excitation k-space (1) based methods of
designing RF pulses for parallel excitation (2–5), one pre-
determines the gradient waveforms (hence, k-space tra-
jectory), and subsequently designs the corresponding RF
waveforms for a desired excitation pattern. In fact, tra-
jectory predetermination may be unnecessarily restrictive,
because the desired excitation pattern is known completely
prior to design, unlike the analogous data acquisition pro-
cess in which the object (and its spectrum) is unknown
a priori. Perhaps, by jointly designing the trajectory and
RF pulses, we might be able to exploit the design freedom
to a fuller extent. The extra freedom could be channeled
towards excitation accuracy improvement and/or pulse
power reduction. Such benefits may be particularly signif-
icant in parallel excitation at high speedup factors, when
the design problem becomes increasingly ill-posed, and “a
proper interplay between the coil sensitivity profiles and
the involved trajectories has to be found.” (6)

There are surprisingly few studies on joint trajectory
and pulse design in the literature. Hardy et al. (7) jointly
optimized the gradient and RF waveforms for 2D single-
coil selective excitation. They expressed both the gradient
and RF waveforms as Fourier series, and applied simu-
lated annealing to seek the Fourier coefficients that globally
minimized the excitation error. For designing single-coil
large-tip-angle pulses, Levin et al. (8) approximated the
spiral trajectory by concentric circles and jointly optimized
their radii together with the RF pulse.

In this note, we explore a new framework of joint trajec-
tory and pulse design for parallel excitation. We propose
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that the joint design can be implemented as an alternat-
ing optimization process of trajectory parameters and RF
pulses. In each iteration, the pulse optimization problem
is solved using conjugate gradient (CG) (5), followed by
a simple update of the trajectory parameters using gradi-
ent descent (GD). The cost function gradient, with respect
to the trajectory parameters, can be computed efficiently
using an analytical formula. This design process is effi-
cient and produces trajectory and RF pulses that minimize
the cost function locally. By Bloch equation simulation,
we demonstrate that joint designs can excite target pat-
terns with significantly improved accuracy and/or reduced
total integrated pulse power, compared to designs with
predetermined trajectories. These benefits come at a mod-
est computational time cost, which is important because
in most cases parallel excitation pulses have to be com-
puted online (during scan session with subject inside
scanner).

THEORY

Alternating Optimization

The joint design framework is an extension of the spatial-
domain pulse design method (5) for parallel excitation.
Consider pulse design for R-coil, small-tip-angle selec-
tive excitation in 2D, without loss of generality. Let
br = (br (t0), . . . , br (tN−1)) be complex RF pulse samples
for the rth coil, r = 1, . . . , R, and kx (φx ) = (kx (t0; φx ),
. . . , kx (tN−1; φx )), ky (φy ) = (ky (t0; φy ), . . . , ky (tN−1; φy )) be
the excitation k-space trajectory parameterized by φx =
(φx0 , . . . , φx(L−1) ), φy = (φy0 , . . . , φy(L−1) ), respectively. Let
A(kx (φx ), ky (φy )) be the pulse design system matrix (5)
as a function of the trajectory samples, and Sr =
diag(sr (x0), . . . , sr (xM−1)) be sensitivity pattern samples
of the rth coil. The trajectory and RF pulses can be
jointly designed via solving the following minimization
problem:

(φ̂x , φ̂y , b̂1, . . . , b̂R) = arg min
φx ,φy ,b1,...,bR

�(φx , φy , b1, . . . , bR) [1]

where the cost function, �, comprises total weighted squa-
red excitation error and total integrated pulse power terms:

�(φx , φy , b1, . . . , bR)

=
∥∥∥∥∥d −

R∑
r=1

SrA(kx (φx ), ky (φy ))br

∥∥∥∥∥
2

W

+ β

R∑
r=1

‖br‖2 [2]

With Eq. [1], one seeks the trajectory parameters and
RF pulses that produce an excitation pattern close to
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the complex desired excitation pattern, d = (d(x0), . . . ,
d(xM−1)), with the secondary objective of reducing the
total integrated power. These two objectives are bal-
anced by regularization parameter β. Note that other
regularization terms can be devised to control peak

power (5) and trajectory smoothness. W is a diagonal matrix
containing error weights for defining region of interest
(ROI) (5).

Equation [1] can be implemented as the following alter-
nating minimization process:

for n = 0 : Nalt − 1

(
φ̂

(n+1)
x , φ̂

(n+1)
y

)
=




(
φ̂

(0)
x , φ̂

(0)
y

)
if n = 0,

arg min
φx ,φy

�
(
φx , φy , b̂(n)

1 , . . . , b̂(n)
R

)
if n �= 0,

[3]

(
b̂(n+1)

1 , . . . , b̂(n+1)
R

)
= arg min

b1,...,bR

�
(
φ̂

(n+1)
x , φ̂

(n+1)
y , b1, . . . , bR

)
[4]

end

In words, by fixing the RF pulses from the nth iteration,
we obtain the (n + 1)th updated trajectory parameters via
Eq. [3]; and subsequently by fixing the (n + 1)th trajectory
parameters, we design the (n + 1)th optimal RF pulses via
Eq. [4]. This alternating minimization process is initial-

ized with
(
φ̂

(0)
x , φ̂

(0)
y

)
and continues until n = Nalt − 1. The

final trajectory and RF pulses,
(
kx

(
φ̂

(Nalt )
x

)
, ky

(
φ̂

(Nalt )
y

))
and

(
b̂(Nalt )

1 , . . . , b̂(Nalt )
R

)
, are to be deployed on a parallel

excitation system.
Both of the RF and trajectory optimization problems are

constrained. The integrated and peak power constraints on
the pulses can be handled via regularization (5). On the

other hand, when computing
(
φ̂

(n+1)
x , φ̂

(n+1)
y

)
via Eq. [3], we

must ensure that the resulting trajectory satisfies the peak
gradient amplitude and slew rate limits. Thus, Eq. [3] is
constrained by

|D1kx (φx )| � Gmax, |D2kx (φx )| � Smax,

|D1ky (φy )| � Gmax, |D2ky (φy )| � Smax, [5]

where D1 and D2 are first and second order time-derivative
operators, and Gmax, Smax are the peak gradient amplitude
and slew rate, respectively. These constraints can be han-
dled with special strategies of trajectory parameterization
that will be discussed in the following section.

The pulse design problem (Eq. [4]) can be solved effi-
ciently using CG (5); whereas the trajectory optimization
(Eq. [3]) is a much more difficult nonlinear minimization
problem, with many local minima in its cost function. It is
possible to find its global minima using simulated anneal-
ing (7) or direct search methods such as Nelder–Mead (9).
However, the computational cost of these algorithms is very
high, rendering them unsuitable for the online joint design
problem in which Eq. [3] has to be solved repetitively.

We instead solve Eq. [3] by applying the GD algorithm,
and running it for a small number of iterations, possibly
just one:

φ̂
(n+1)
x = φ̂

(n)
x − α∇φx

�(φx , φy , b̂(n))
(

φ̂
(n)

x φ̂
(n)

y

),

φ̂
(n+1)
y = φ̂

(n)
y − α∇φy

�(φx , φy , b̂(n))
(

φ̂
(n)

x φ̂
(n)

y

), [6]

where ∇φx
�, ∇φy

� denote gradients of the cost function

with respect to φx , φy , and α is a scaling factor on the
update step. This CG-GD implementation of joint design
leads to a set of locally optimal trajectory parameters and
RF pulses, that potentially excites with higher accuracy and
lower pulse power than a conventional design. Note that
it is important to initialize the joint design with a good
trajectory to avoid convergence to an undesirable local
minima.

Trajectory Parameterization

We can reduce the dimension of the trajectory optimiza-
tion problem via trajectory parameterization, provided that
the number of parameters (L) is smaller than the num-
ber of trajectory samples (N ). Also, using smooth basis
functions may help enforcing the trajectory smoothness
constraints (Eq. [5]). However, the obvious drawback is that
our search is limited to a subspace of the original space of
all implementable trajectories.

One parameterization strategy is to express kx and/or
ky in terms of time-shifted basis functions, and regard the
basis coefficients as parameters:

kx (tj ; φx ) =
L∑

l=1

φxlhx (tj − l�t), and/or

ky (tj ; φy ) =
L∑

l=1

φylhy (tj − l�t). [7]

Here, hx (t), hy (t) are basis functions and �t is a time shift.
In matrix form,

kx (φx ) = Hxφx , and/or

ky (φy ) = Hyφy , [8]

where Hx , Hy are matrices whose columns are the time-
shifted basis samples. By invoking the chain rule, we can
easily relate the cost function gradients with respect to the
parameters to that with respect to the trajectory samples:

∇φx
� = H′

x∇kx �, and/or

∇φy
� = H′

y∇ky �. [9]
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Because of the special form of system matrix A, ∇kx � and
∇ky � can be computed analytically as follows:

∇kx � = 2Re

{
ı

R∑
r=1

diag
(
b′

r

)
A′XS′

rWe

}
, [10]

∇ky � = 2Re

{
ı

R∑
r=1

diag
(
b′

r

)
A′YS′

rWe

}
, [11]

where ı = √−1, excitation error e = d − ∑R
r=1 SrA(kx (φx ),

ky (φy ))br , X = diag(x0, . . ., xM−1) and Y = diag(y0, . . ., yM−1).
Derivation of these gradient expressions is included in the
Appendix.

Example: Joint Design of Echo-Planar Pulses

Echo-planar (EP) RF pulses have been used widely in paral-
lel excitation (3,4). Analogous to EP imaging, those pulses
are designed with EP trajectories in excitation k-space
that “frequency-encode” in one spatial dimension and
“phase-encode” in the other. Accelerated EP trajectories
under-sample the phase-encode dimension (ky ), and the
resulting aliased excitation is resolved by the blurring effect
of the Fourier transforms of the sensitivity patterns in k-
space (because of the convolution process (2)), which leads
to deposition of RF energy in between the phase-encoding
lines.

An interesting question is whether nonuniform phase-
encoding locations would be superior to uniform ones as
used in (3,4), in terms of excitation accuracy and total
integrated pulse power. In fact, it has been shown that
non-uniform encoding in EP parallel imaging improves
image quality (10). If non-uniform phase-encoding were
indeed favorable in excitation, the optimal encoding loca-
tions would depend on the desired excitation pattern and
sensitivity patterns specific to the experiment. The pro-
posed joint design approach can be used to compute locally
optimal phase-encoding locations and RF pulses.

Consider joint design with an EP trajectory, k(tj ) =
(kx (tj ), ky (tj )), j = 0 . . . N − 1, for R-coil parallel excitation.
One way to parameterize the trajectory is to approximate
ky (tj ) as a sum of time-shifted rectangular (rect) functions,
and leave kx (tj ) unparameterized. Let φy = (φy0 , . . . , φy(L−1) )
be phase-encoding locations, TPE be the duration of one
phase-encoding line, and define rect function h(t) = 1 for
t ∈ [0, TPE), and 0 otherwise. We can parameterize ky (tj ) by
φy via

ky (tj ; φy ) ≈
L−1∑
l=0

φylh(tj − lTPE), [12]

or in matrix-vector form, ky (φy ) ≈ Hφy , where H is a matrix
whose columns are samples of the time-shifted rect func-
tions. Provided that the y gradient blips underlying the
phase-encoding are within the peak gradient and slew rate
limits, this parameterization ensures that the constraints
(Eq. [5]) are satisfied, resulting in a virtually constraint-free
joint design. Now, one is ready to jointly design φy and
br , r = 1, . . . , R.

MATERIALS AND METHODS

We implemented the joint design of phase-encoding loca-
tions and EP pulses for a four-coil (R = 4) parallel excitation
scenario, and compared it with a conventional design
(5) using predetermined trajectory. EP trajectories with
uniform phase-encoding were used to initialize the joint
design, and as the predetermined trajectories for the con-
ventional design. By 2D Bloch simulation (FOV = 24 cm
× 24 cm, matrix size = 64 × 64), we investigated the ben-
efits of optimizing phase-encoding locations in the joint
design, in terms of excitation accuracy and total integrated
power. All pulse designs and simulations were performed
with Matlab R2006a (Mathworks, Natick, MA) on a 3.4 GHz
Pentium workstation with 2 GB memory.

The uniform EP trajectories, used for joint design ini-
tialization and conventional design, under-sampled in the
ky dimension. They supported 1-cm excitation resolution
in both x and y . We varied their phase-encode spacing,
which was inversely proportional to y -direction excitation
FOV (XFOV) ranging from 4 to 12 cm. It corresponded to a
range of speedup factors, as defined in (5), from 6 down to
2. We compared the design methods at each speedup fac-
tor, anticipating that the joint design would be particularly
beneficial in some particular range. All EP trajectories were
produced by x, y gradient blips that complied with the peak
gradient and slew rate constraints, which were 4 G/cm and
15,000 G/cm/s, respectively. Sampling period was 4 µs.

We compared the design methods for two desired excita-
tion patterns. The first one was a 10 cm × 5 cm “horizontal
block” of uniform 15-degree tip angle and zero phase,
defined in a 24 cm × 24 cm FOV with matrix size of 64
× 64. The second pattern was a “vertical block” obtained
by rotating the horizontal block by 90 degrees. Four out of
eight of the complex receive sensitivity patterns (Fig. 1) of a

FIG. 1. Smoothed sensitivity patterns (magnitude, in a.u.) used in
pulse designs and Bloch simulations.
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head coil array (Intermagnetics, Latham, NY) were acquired
as described in Ref. (5), and treated as transmit sensitiv-
ity patterns in both pulse designs and Bloch simulations.
Relative weight of excitation error to pulse power in the
cost function was matched for the conventional and joint
designs (β = 4000). The ROI was derived via threshold-
ing the body-coil phantom image (acquired for sensitivity
map estimation). Off resonance effects were ignored in the
pulse designs. In each alternation of the joint design, we
ran 5 CG iterations for pulse design (Eq. [4]) and 1 GD tra-
jectory parameter update (Eq. [3]), until convergence was
reached (when current cost function value in CG was 99.9%
of the previous one). We used the same convergence crite-
rion for halting the conventional design. Each joint-design
CG process was initialized by the pulse designed in the
previous alternation (except in the first alternation, CG

was initialized with a zero pulse). The scaling factor on
the GD step was set small enough to ensure convergence
(α = 5.2 × 10−4).

RESULTS

Figure 2 compares the joint and conventional design meth-
ods, at different speedup factors, in terms of (a) normalized
root-mean-square error (NRMSE) of the Bloch-simulated
excitation pattern; (b) total integrated pulse power of all
channels; (c) cost function (Eq. [2]) value when the meth-
ods reach convergence; and (d) computational time for the
methods to reach convergence.

For the horizontal block desired excitation pattern (black
solid lines), the joint design outperformed the conven-
tional design in a range of high speedup factors—the

FIG. 2. Based on Bloch simulations, performance of the joint and conventional design methods are compared at different speedup factors.
With cost in computational time, joint designs are often advantageous over the conventional designs, in terms of excitation accuracy and total
integrated pulse power. This cost-benefit tradeoff is dependent on the choice of desired excitation pattern (in parentheses). [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]
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FIG. 3. Bloch-simulated excitation patterns (magnitude) by conventional and joint designs at high speedup factors. Adjustments of the phase
encoding locations in the joint design lead to improved resolution of the aliased excitation.

jointly designed pulses achieved higher excitation accu-
racy and their total integrated power was lower (Fig. 2a,b).
Figure 3 shows Bloch-simulated excitation patterns (mag-
nitude) of the designs, at XFOV = 5–8 cm. The performance
advantages diminished at low speedup factors. The supe-
riority of the joint design at high speedup factors could
be attributed to the lower cost function values that it
attained (Fig. 2c), at the cost of increased computational
time (Fig. 2d).

Figure 4a shows the uniform EP trajectory (at XFOV =
6 cm) used in the conventional method (and for initializing
the joint design), and the non-uniform one that the joint

design converged to. The joint design evidently adjusted
the phase-encoding locations so that the central region of
the desired excitation pattern spectrum (Fig. 4, underlying)
became better sampled, leading to the observed excitation
accuracy improvement and pulse power reduction.

We repeated the Bloch simulations for the vertical block
desired excitation pattern (Fig. 2, red dashed lines), with
identical design and simulation parameters. It was inter-
esting that the previously observed margin in excitation
accuracy at high speedup factors vanished, while a mar-
gin in total integrated power still existed, although it was
smaller compared to the horizontal block case (Fig. 2a,b).

FIG. 4. EP trajectories with uniform phase-encoding used in the conventional method, and EP trajectories with encoding locations adjusted
by the joint design method (XFOV = 6 cm). The adjustments, which are dependent on the specific desired excitation pattern, lead to
improvement in excitation accuracy and reduction in total integrated pulse power. The improvement is particularly prominent at high reduction
factors. (underlying: desired excitation pattern spectrum)
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The cost function values that the methods attained were
now close for all XFOVs, although the joint design still
required significantly longer computational time to reach
convergence (Fig. 2c,d). One can see, at XFOV = 6 cm
for example, that the conventionally and jointly designed
trajectories were almost identical (Fig. 4b). It suggested
that the uniform phase encoding locations were in fact
close to being locally optimal for this desired excitation
pattern.

DISCUSSION

We have proposed a framework for the joint design of trajec-
tory and RF pulses in parallel excitation. We illustrated that
compared to conventional designs with predetermined tra-
jectories, joint designs can often excite target patterns with
significantly improved accuracy and/or reduced total inte-
grated power. The improvements are particularly promi-
nent at high reduction factors. The benefits come at modest
expense of computational time, which could be afford-
able in practice. The cost-benefit tradeoff depends on the
specific desired excitation pattern, and in fact, sensitivity
patterns as well (results not shown).

Stability of the current joint design implementation (i.e.,
whether it converges to a local minimum or diverges) is
sensitive to the threshold of cost function ratio in CG for
declaring convergence (we used 99.9% in our simulations),
and to a larger extent, the scaling factor on the GD step
(α). To ensure convergence in EP pulse design, we experi-
mented with the technique of optimization transfer (11) for
updating the phase-encoding locations—we determined
the step via constructing a quadratic surrogate function
that lied above the original cost function, and minimizing
it instead of the original cost. This approach guarantees
a monotonic decrease in the cost function, effectively pre-
venting divergence. However, applying optimization trans-
fer to the pulse design problem requires a large amount of
computation, which increases the total joint design com-
putational time. Thus, it may not be favorable for online
design purposes.

Besides EP trajectories, the joint design framework can
be applied to various non-Cartesian trajectories. One can,
for example, expand a spiral trajectory in basis functions
such as splines, and jointly optimize the spline coeffi-
cient and RF pulses. However, the coefficients have to
be updated without violating the peak gradient and slew
rate constraints (Eq. [5]), rendering the trajectory update a
constrained optimization problem. The joint design frame-
work can also be applied to 3D excitation problems such
as the design of 3D tailored RF pulses (12), although
computational time might be too long to be practical.

APPENDIX

Deriving The Cost Function Gradients

The cost function (Eq. [2]) gradients, with respect to
kx and ky , provide the trajectory update direction in
the GD step of the joint design. Because of the spe-
cial form of system matrix A (5), the gradients can be
derived algebraically. Let us define length-M error vector

e = d − ∑R
r=1 SrA(kx (φx ), ky (φy ))br , and length-N

temporal vector

px = ∇kx �

= ∇kx ‖e‖2
W. [13]

The jth element of px is

pxj = 2Re{e′Wqxj}, [14]

where qxj = d
dkxj

e is the derivative of e with respect to kx (tj ).
The ith element of qxj is given by

qxj,i = − d
dkxj


 R∑

r=1

sr (xi) ·
N−1∑
j=0

exp(ıkxjxi + ıkyjyi)bj




= −
R∑

r=1

sr (xi) · ıxi · exp(ıkxjxi + ıkyjyi)bj . [15]

Thus,

qxj = −
R∑

r=1

ıSrXajbjr , [16]

where X = diag(x0, . . . , xM−1). Substituting Eq. [16] into
Eq. [14] yields

pxj = 2Re

{
−ıe′W

R∑
r=1

SrXajbjr

}

= 2Re

{
ı

R∑
r=1

b′
jra

′
jXS′

rWe

}
. [17]

If we columnize pxj , j = 0, . . . , N − 1, we obtain Eq. [10]:

∇kx � = 2Re

{
ı

R∑
r=1

diag
(
b′

r

)
A′XS′

rWe

}
, [18]

and defining Y = diag(y0, . . . , yM−1) yields Eq. [11]:

∇ky � = 2Re

{
ı

R∑
r=1

diag
(
b′

r

)
A′YS′

rWe

}
. [19]
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