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Asymptotic stabilization of the hanging equilibrium manifold
of the 3D pendulum

Nalin A. Chaturvedi*,y and N. Harris McClamroch
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SUMMARY

The 3D pendulum consists of a rigid body, supported at a fixed pivot, with three rotational degrees of
freedom; it is acted on by gravity and it is fully actuated by control forces. The 3D pendulum has two
disjoint equilibrium manifolds, namely a hanging equilibrium manifold and an inverted equilibrium
manifold. This paper shows that a controller based on angular velocity feedback can be used to
asymptotically stabilize the hanging equilibrium manifold of the 3D pendulum. Lyapunov analysis and
nonlinear geometric methods are used to assess the global closed-loop properties. We explicitly construct
compact sets that lie in the domain of attraction of the hanging equilibrium of the closed-loop. Finally, this
controller is shown to achieve almost global asymptotic stability of the hanging equilibrium manifold. An
invariant manifold of the closed-loop that converges to the inverted equilibrium manifold is identified.
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1. INTRODUCTION

Pendulum models have provided a rich source of examples in nonlinear dynamics and, in recent
decades, in nonlinear control. The most common rigid pendulum model consists of a mass
particle that is attached to one end of a massless, rigid link; the other end of the link is fixed to a
pivot point that provides a rotational joint for the link and mass particle. If the link and mass
particle are constrained to move within a fixed plane, the system is referred to as a planar 1D
pendulum. If the link and mass particle are unconstrained, the system is referred to as a
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spherical 2D pendulum. Control problems for planar and spherical pendulum models have been
studied in [1–6].

Pendulum models are useful for both pedagogical and research reasons. They represent
simplified versions of mechanical systems that arise in robotics and spacecraft. In addition to
their role in teaching the foundations of nonlinear dynamics and control, pendulum models
have motivated research in nonlinear dynamics and nonlinear control.

The 3D pendulum is a non-trivial generalization of the planar pendulum and the spherical
pendulum that has been studied only in recent publications of the authors and their colleagues
in [7–11]. The 3D pendulum is a rigid body, supported at a fixed pivot, with three rotational
degrees of freedom; it is acted on by a uniform gravity force and by control forces as shown in
Figure 1.

The 3D pendulum has two equilibrium manifolds, namely the hanging and the inverted
equilibrium manifolds. This paper studies one interesting stabilization problem for the 3D
pendulum. In particular, we show that angular velocity feedback can be used to asymptotically
stabilize the hanging equilibrium manifold of the 3D pendulum. The hanging equilibrium
manifold and the inverted equilibrium manifold of the 3D pendulum are carefully introduced.
The fact that angular velocity feedback provides local asymptotic stability of the hanging
equilibrium follows from a simple passivity argument.

The paper formalizes this intuitive result. In addition, methods of nonlinear analysis are used
to study the global closed-loop dynamics of the 3D pendulum. We develop explicit results that
describe the domain of attraction of the hanging equilibrium manifold as an open and dense
invariant set, thus resulting in almost global asymptotic stabilization of the hanging equilibrium
manifold. We also identify an invariant manifold that characterizes solutions that converge to
the inverted equilibrium manifold of the closed-loop 3D pendulum. These closed-loop dynamics
are subtle due to the compactness of the configuration space, so that formal developments are
required to describe the geometric features of the closed-loop dynamics.
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Figure 1. Schematic diagram of the 3D pendulum.

N. A. CHATURVEDI AND N. H. McCLAMROCH1436

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1435–1454

DOI: 10.1002/rnc



This paper arose out of our continuing research on a laboratory facility, referred to as the
Triaxial Attitude Control Testbed (TACT). The TACT provides a testbed for physical
experiments on attitude dynamics and attitude control. The TACT has been described in several
conference publications [12, 13]. Issues of nonlinear dynamics for the TACT have been treated
in [13, 14] and stability issues have been treated in [11]. The present paper is partly motivated by
the realization that the TACT is, in fact, a physical implementation of a 3D pendulum.

2. MATHEMATICAL MODELS FOR THE 3D PENDULUM

The 3D pendulum is a rigid body supported by a fixed, frictionless pivot, acted on by constant
uniform gravity as well as control forces. A schematic diagram of a 3D pendulum is shown in
Figure 1. Two co-ordinate frames are introduced. An inertial co-ordinate frame has its origin at
the pivot; the first two co-ordinate axes lie in the horizontal plane while the third co-ordinate
axis is vertical in the direction of gravity. A body-fixed co-ordinate frame with origin at the pivot
point is fixed to the pendulum body. In this body-fixed frame, the moment of inertia of the
pendulum is constant.

Rotation matrices are used to describe the attitude of the 3D pendulum. In this paper, we
follow the convention in which a rotation matrix maps representations of vectors expressed in
the body-fixed frame to representations expressed in the inertial frame. Rotation matrices
provide global representations of the attitude of the pendulum, which is why they are utilized
here. Although attitude representations, such as exponential co-ordinates, quaternions, and
Euler angles, can also be used, each of these representations has a disadvantage of introducing
an ambiguity or singularity. The attitude of the 3D pendulum is a rotation matrix R; viewed as
an element of the special orthogonal group SO(3). The associated angular velocity, expressed in
the body-fixed frame, is denoted by o in R3:

The equations of motion of a 3D pendulum are now presented. The constant inertia matrix, in
the body-fixed frame, is denoted by J: The vector from the pivot to the centre of mass of the 3D
pendulum, resolved in the body-fixed frame, is denoted by r: The symbol g denotes the constant
acceleration due to gravity. These are the data on which the equations of motion are based.

Standard techniques yield the equations of motion for the 3D pendulum. The dynamics are
given by the Euler–Poincaré equation that includes the moment due to gravity and a body-fixed
control moment u 2 R3

J ’o ¼ Jo� oþmgr� RTe3 þ u ð1Þ

where e3 ¼ ½0 0 1�T: The rotational kinematics equations are

’R ¼ Rbo ð2Þ

where R 2 SOð3Þ; o 2 R3 and the operator b� : R3
! soð3Þ denotes the isomorphism from R3 to

the Lie algebra soð3Þ: Represented in co-ordinates, b� : R3
! R3�3 is the usual skew-symmetric

operator. The cross-product notation a� b for vectors a and b in R3 is

a� b ¼ ½a2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1� ¼ bab ð3Þ
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where, the skew-symmetric matrix ba is defined as

ba ¼ 0 �a3 a2

a3 0 �a1

�a2 a1 0

2664
3775 ð4Þ

In (1), since e3 ¼ ½0 0 1�T denotes the unit vector in the direction of gravity in an inertial
frame, RTe3 denotes the unit vector of gravity in the body-fixed frame.

A special case occurs when the centre of mass of the 3D pendulum is located at the pivot. In
this case r ¼ 0; so that (1) is given by Euler–Poincaré equations with no gravity terms. This is
the controlled free rigid body and in the context of the 3D pendulum, this is referred to as the
balanced case. Since there is a large literature on the control of the free rigid body, that is the
balanced case, we subsequently study the more general unbalanced case, where r=0:

The equations of motion (1) and (2) for the 3D pendulum are viewed as a model where its
dynamics evolve on the tangent bundle TSOð3Þ [15]; these are referred to as the equations of
motion of the 3D pendulum. It is possible to obtain a lower-dimensional reduced model for the
pendulum. This reduction is made apparent by noting that the dynamics and kinematics
equations can be written in terms of the reduced attitude vector G ¼ RTe3 2 S2; which is the unit
vector that expresses the direction of gravity in the body-fixed co-ordinate frame.

Specifically, let Pc denote the S1 group action Pc : SOð3Þ ! SOð3Þ as PcðRÞ ¼ Re
bGc; where

G ¼ RTe3: Then, the orbit space SOð3Þ=S1 is the equivalent set of rotations

½R� ¼
4

fR0 2 SOð3Þ : R0 ¼ Re
bG c; G ¼ RTe3; c 2 Rg ð5Þ

For the equivalence relation in (5), it is easy to see that R1 � R2 if and only if RT
1 e3 ¼ RT

2 e3 and
hence, the equivalence relation in (5) can alternatively be expressed as

½R� ¼
4

fRs 2 SOð3Þ : RT
s e3 ¼ RTe3g ð6Þ

Thus, for each R 2 SOð3Þ; ½R� can be identified with G ¼ RTe3 2 S2 and hence SOð3Þ=S1 ffi S2:
Now, since TSOð3Þ ffi SOð3Þ � R3; Pc induces a projection p : TSOð3Þ ! TSOð3Þ=S1 given by
p : ðR;oÞ/ð½R�;oÞ; where ½R� is as given in (6).

Proposition 1
The dynamics of the 3D pendulum given by (1) and (2) induce a flow on the quotient space
TSOð3Þ=S1 through the projection p : TSOð3Þ ! TSOð3Þ=S1; given by the dynamics

J ’o ¼ Jo� oþmgr� Gþ u ð7Þ

and the kinematics for the reduced attitude

’G ¼ G� o ð8Þ

Furthermore, TSOð3Þ=S1 ffi S2 � R3:

Proof
Let p : TSOð3Þ ! TSOð3Þ=S1 be the quotient map defined as p : ðR;oÞ/ð½R�;oÞ where ½R� is
defined as in (6). Since, ½R� 2 SOð3Þ=S1 is identified with G 2 S2; substituting G ¼ RTe3 in (1)
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yields (7). Furthermore,

’G ¼ ’RTe3 ¼ �boRTe3 ¼ G� o

yields (8). Thus, (1) and (2) induce a flow on the quotient space TSOð3Þ=S1 given by (7) and (8)
via the projection p:

To see that TSOð3Þ=S1 ffi S2 � R3; consider the quotient map p : SOð3Þ � R3
! S2 � R3

given by p ðR;oÞ ¼ ðG;oÞ as shown in Figure 2. From (6), it is clear that p is constant on
p�1ðyÞ � TSOð3Þ for each y 2 TSOð3Þ=S1: Therefore, p induces a quotient map p8p

�1 :
TSOð3Þ=S1! S2 � R3: Since ½R� is identified with G 2 S2; p8p

�1 is a bijection. Hence, p8p
�1 is a

homeomorphism. Thus, TSOð3Þ=S1 ffi S2 � R3: &

Equations (7) and (8) are expressed in a non-canonical form; they are referred to as the
reduced attitude dynamics of the 3D pendulum on TSOð3Þ=S1: We subsequently show that the
reduced attitude dynamics are fundamental in stabilization of the hanging equilibrium manifold
of (1) and (2).

3. EQUILIBRIUM STRUCTURE OF THE 3D PENDULUM

We first study the uncontrolled dynamics of the 3D pendulum. We obtain two integrals of
motion for the 3D pendulum. These integrals expose the free dynamics of the 3D pendulum and
can be used to construct control-Lyapunov functions.

There are two conserved quantities for the 3D pendulum. First, the total energy, which is the
sum of the rotational kinetic energy and the gravitational potential energy, is conserved. The
other conserved quantity is the component of angular momentum about the vertical axis
through the pivot.

Proposition 2 ([7, 14])
Let u ¼ 0 in (1). The total energy, E ¼ 1

2
oTJo�mgrTRTe3 ¼

1
2
oTJo�mgrTG; and the

component of the angular momentum vector about the vertical axis through the pivot, h ¼
oTJRTe3 ¼ oTJ G; are each constant along motions of the 3D pendulum given by (1) and (2).

To further understand the dynamics of the 3D pendulum, we study the equilibria of (1) and
(2). Equating the RHS of (1) and (2) to zero for u ¼ 0 yields

Jo� oþmgr� RTe3 ¼ 0 ð9Þ

Rbo ¼ 0 ð10Þ

Figure 2. Quotient map.
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Since R 2 SOð3Þ is non-singular and b� : R3
! soð3Þ is an isomorphism, Rbo ¼ 0 if and only if

o ¼ 0: Substituting o ¼ 0 in (9), we obtain

r� RTe3 ¼ 0 ð11Þ

Since r denotes the centre of mass vector resolved in the body-fixed frame, an equilibrium of
the 3D pendulum corresponds to the case where r is collinear with the gravity direction in the
body-fixed frame given by RTe3: This implies that either the centre of mass vector r points in the
direction of the gravity vector or the centre of mass vector r points in the direction opposite to
the gravity vector.

Let Re denote an attitude rotation matrix that satisfies (11) and define Ge ¼ RT
e e3: Then, every

attitude in the configuration manifold given by

fR 2 SOð3Þ : R ¼ Re e
bGe

%c; %c 2 Rg ð12Þ

satisfies (11) and defines an equilibrium attitude corresponding to o ¼ 0: We can use
Rodrigues’s formula to write

e
bGe

%c ¼ I3 þ sin %c bGe þ ð1� cos %cÞbG2
e

Thus, if the attitude Re satisfies (11), then a rotation of the 3D pendulum about the gravity
vector by an arbitrary angle is also an equilibrium. Consequently, there are two disjoint
equilibrium manifolds of the 3D pendulum. The manifold corresponding to the case where the
centre of mass is below the pivot for each attitude in the manifold is referred to as the hanging
equilibrium manifold, and the manifold corresponding to the case where the centre of mass is
above the pivot for each attitude in the manifold is referred to as the inverted equilibrium
manifold.

This paper focuses on stabilization of the hanging equilibrium manifold of (1) and (2). To
study the stabilization problem, it is advantageous to consider the equations of the 3D
pendulum in terms of the reduced attitude as in (7) and (8). If Re satisfies (11), then ð0;GeÞ is an
equilibrium of (7) and (8). Thus, corresponding to the hanging equilibrium manifold and the
inverted equilibrium manifold of (1) and (2), there exist two isolated equilibrium solutions of the
reduced attitude equations (7) and (8). These are given by the hanging equilibrium ð0;GhÞ and
the inverted equilibrium ð0;GiÞ; where

Gh ¼
r
jjrjj

and Gi ¼ �
r
jjrjj

Proposition 3
The hanging equilibrium manifold and the inverted equilibrium manifold of the 3D pendulum
given by (1) and (2) are identified with the hanging equilibrium ð0;GhÞ and the inverted
equilibrium ð0;GiÞ of the reduced attitude equations given by (7) and (8).

Proof
Let ð0;ReÞ be an equilibrium of (1) and (2). Note that each of the hanging and the inverted
equilibrium manifolds can be expressed as ð0; ½Re�Þ where ½Re� is as given in (6). Further, from
Proposition 1 we know that for all R 2 ½Re�; pðR; 0Þ ¼ ð½Re�;oÞ ffi ðGe;oÞ; where Ge is Gh for the
hanging equilibrium manifold and Gi for the inverted equilibrium manifold. &
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In the ensuing sections, we show that angular velocity feedback asymptotically stabilizes the
hanging equilibrium manifold. Based on Proposition 3, this is demonstrated by showing that
angular velocity feedback asymptotically stabilizes the hanging equilibrium solution of the
reduced attitude equations (7) and (8).

4. CLOSED-LOOP EQUATIONS FOR THE 3D PENDULUM

In this section, simple angular velocity feedback controllers are developed that asymptotically
stabilize the hanging equilibrium manifold of (1) and (2). This development is based on the
observation that the reduced attitude dynamics given by (7) and (8) are locally input–output
passive if angular velocity is taken as the output. The total energy is the storage function. Since
the total energy, 1

2
oTJo�mgrTG; has a minimum at the hanging equilibrium ð0;GhÞ; a control

law based on angular velocity feedback is suggested.
Let C : R3

! R3 be a smooth function such that

C0ð0ÞT ¼ C0ð0Þ; C0ð0Þ > 0

PðxÞ4xTCðxÞ4aðjjxjjÞ 8x 2 R3
ð13Þ

where P : R3
! R is a positive definite function, and að�Þ is a class-K function. Thus, we

propose controllers of the form

u ¼ �CðoÞ ð14Þ

where Cð�Þ satisfies (13). With the above control law, the closed-loop attitude dynamics on
TSOð3Þ are

J ’o ¼ Jo� oþmgr� RTe3 �CðoÞ

’R ¼Rbo ð15Þ

and the closed-loop reduced attitude dynamics on TSOð3Þ=S1 are

J ’o ¼ Jo� oþmgr� G�CðoÞ

’G ¼G� o
ð16Þ

Equating the RHS of (15) to zero, ðo;RÞ is an equilibrium if o ¼ 0 and Re satisfies (11).
Hence, (15) has two equilibrium manifolds, namely the hanging and the inverted equilibrium
manifolds. Similarly, (16) has exactly two equilibrium solutions, namely, the hanging
equilibrium and the inverted equilibrium.

The existence of multiple equilibria of (16) is expected since there exists a topological
obstruction [16] to the existence of a continuous time-invariant controller that globally stabilizes
any equilibrium of the reduced attitude dynamics of the 3D pendulum.

5. LOCAL ANALYSIS OF THE CLOSED-LOOP 3D PENDULUM

We now study the linearization of the closed-loop system (15) about an arbitrary equilibrium in
one of the two equilibrium manifolds. Consider an equilibrium ð0;ReÞ 2 TSOð3Þ where Re 2

SOð3Þ satisfies (11). To linearize the 3D pendulum model (1) and (2), consider a small

(

(

(
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perturbation of ðDo;RÞ from the equilibrium ð0;ReÞ:We denote the perturbation in the rotation

matrix using exponential co-ordinates DY as R ¼ Ree
cDY; where DY 2 R3 [17] and Do 2 R3:

Expanding Rodrigues’s formula [17],

R ¼ Re½I þdDY� þOðDY2
Þ

Next, from ’R ¼ Ree
cDYdD ’Y and (2) it follows that

’R ¼ RcDo ¼ Ree
cDYcDo ¼ Ree

cDYdD ’Y

Hence, D ’Y ¼ Do: Therefore, Jo� o ¼ OðDo2Þ ¼ OðD ’Y2Þ: Hence, expressing (15) in terms of
DY; we obtain

JD .YþC0ð0ÞD ’Y� k
mg

jjrjj
br2DYþOðDY2;D ’Y2Þ ¼ 0 ð17Þ

where k ¼ 1 if ð0;ReÞ is a hanging equilibrium and k ¼ �1 if ð0;ReÞ is an inverted equilibrium. If
the higher-order terms are ignored, we obtain the linearization of (17) at ð0;ReÞ as

JD .YþC0ð0ÞD ’Y� k
mg

jjrjj
br2DY ¼ 0 ð18Þ

Now note that br2 is a rank 2, symmetric, negative-semidefinite matrix. Thus, it follows from
[18, 19] that one can simultaneously diagonalize J and br2: Thus, there exists a non-singular
matrix M such that J ¼MMT and �ðmg=jjrjjÞbr2 ¼MLMT; where L is a diagonal matrix.
Denote L ¼ diagðmgl1;mgl2; 0Þ; where l1 and l2 are positive. Define x¼

4

MTDY and denote
D ¼M�1C0ð0ÞM�T: Since C0ð0Þ is symmetric and positive definite, DT ¼ D and D is positive
definite.

Thus, the linearization of (17) can be expressed as

.xþD ’xþ kLx ¼ 0 ð19Þ

where x ¼ ðx1; x2; x3Þ 2 R3: Equation (19) consists of three coupled second-order linear
differential equations.

Note that in the linearization of the closed-loop, the damping in (19) represented by the
matrix D arises from the angular velocity feedback.

We next study linearization of (16) about an equilibrium ð0;RT
e e3Þ; where ð0;ReÞ is an

equilibrium of (15). Since dim½TSOð3Þ=S1� ¼ 5; the linearization of (16) evolves on R5:

Proposition 4
The linearization of the reduced attitude dynamics of the 3D pendulum, about the equilibrium
ð0;RT

e e3Þ described by equations (16) can be expressed using ðx1; x2; ’x1; ’x2; ’x3Þ 2 R5 according
to (19).

Proof
Consider a perturbation in G and o in terms of DY and Do; where DY 2 R3 are the exponential
co-ordinates as before and Do 2 R3: Then, since G ¼ RTe3; it follows from Rodrigues’s formula
that G ¼ ½I �dDY�Ge þOðDY2

Þ; where Ge ¼ RT
e e3: Denoting DG¼4 bGeDY 2 TGe

S2 yields

G� Ge ¼ DGþOðDY2
Þ ð20Þ
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Note that Ge ¼ r=jjrjj if Re is in the hanging equilibrium manifold and Ge ¼ �r=jjrjj if Re is in
the inverted equilibrium manifold. Hence, (20) yields

r� G ¼ r� ðGe þ DGþOðDY2
ÞÞ ¼ br DGþOðDY2

Þ

Since JDo� Do ¼ OðDo2Þ and D ’Y ¼ Do; (16) can be expressed as

JD ’o ¼ �C0ð0ÞDoþmgbr DGþOðDY2;Do2Þ ð21Þ

D ’G ¼ k
br
jjrjj

Do ð22Þ

where if Re is a hanging equilibrium then k ¼ 1; and if Re is an inverted equilibrium then
k ¼ �1: Next, neglecting the higher-order terms of DY and Do; we obtain the linearization of
(21) and (22) as

JD ’o ¼ �C0ð0ÞDoþmgbrDG ð23Þ

D ’G ¼ k
br
jjrjj

Do ð24Þ

We can express (23) and (24) in terms of ðx; ’xÞ: Specifically, we show that ðDG;DoÞ can be
expressed using ðx1;x2; ’x1; ’x2; ’x3Þ 2 R5:

Since x ¼MTDY and M is non-singular, Do ¼M�T ’x and DG ¼ k ðbr=jjrjjÞM�Tx: We now
give an orthogonal decomposition of the vector DY ¼M�Tx into a component along the vector
r and a component normal to the vector r: This decomposition is

M�Tx ¼ �
br2
jjrjj2

ðM�TxÞ þ
1

jjrjj2
½rTðM�TxÞ�r

where

1

jjrjj2
½rTðM�TxÞ�r 2 spanfrg and �

br2
jjrjj2
ðM�TxÞ 2 spanfrg?

Thus,

DG ¼ k
br
jjrjj

DY ¼ k
br
jjrjj

M�Tx ¼
k

mgjjrjj2
brMLx

does not depend on x3 since L ¼ diagðmgl1;mgl2; 0Þ: Thus, we can express the linearization of
(21)–(22) and hence, the linearization of (16) at ð0;RT

e e3Þ in terms of the state variables ðx1;x2;
’x1; ’x2; ’x3Þ according to (19). &

Remark 1
Since the matrix L has a zero eigenvalue, (19) is not asymptotically stable for k ¼ 1: This is due
to the fact that the hanging equilibrium manifold and the inverted equilibrium manifold are
non-trivial 1D centre submanifolds in TSOð3Þ: However, due to our careful choice of variables,
one can discard x3 from (19) to study the stability property of the equilibrium manifold.

Thus, intuitively, x3 corresponds to a component of the perturbation in the attitude that is
tangential to the equilibrium manifold. The following lemmas are needed.
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Lemma 1
Consider the linear model (19), representing linearization of (15) at a hanging equilibrium ð0;ReÞ

expressed in first-order form as

d

dt

x

’x

" #
¼

0 I

�L �D

" #
x

’x

" #
¼
4

Ah

x

’x

" #
ð25Þ

where x ¼ ðx1; x2; x3Þ: Then, Ah has one zero eigenvalue and all other eigenvalues have negative
real part and at least one of them is negative real.

Proof
In the prior notation, k ¼ 1 in (19) for a hanging equilibrium. Let v ¼ ½vT1 vT2 �

T; v1; v2 2 C
3 be an

eigenvector of Ah corresponding to the eigenvalue l: Then, Ahv ¼ lv yields v2 ¼ lv1 and Dv2 þ
Lv1 ¼ �lv2: Combining these equations yields l2v1 þDlv1 þ Lv1 ¼ 0: Thus, every eigenvalue–
eigenvector pair ðl; ½vT1 vT2 �

TÞ of Ah satisfies v2 ¼ lv1 and l2v1 þ lDv1 þ Lv1 ¼ 0:
Next, taking the inner product of the above equation with respect to the complex conjugate of

v1 yields

al2 þ blþ c ¼ 0 ð26Þ

where a ¼ %vT1 v1; b ¼ %vT1Dv1 and c ¼ %vT1Lv1: Since D is symmetric and positive definite, L is
diagonal and positive semidefinite, and v1=0; it follows that a; b; c 2 R satisfy a > 0; b > 0 and
c50: Furthermore, since L ¼ diagðmgl1;mgl2; 0Þ; c ¼ 0 if and only if v1 ¼ be3; where e3 ¼
½0 0 1�T and b 2 C\f0g:

Now, since (26) has two solutions and v ¼ ½vT1 vT2 �
T ¼ ½vT1 lvT1 �

T; it is clear that the eigenvalue–
eigenvector pair ðl; vÞ of Ah can be written as

li;
v1i

li v1i

" # !
; lni ;

v1i

lni v1i

" # !( )
; i 2 f1; 2; 3g ð27Þ

where li and lni are the two solutions to the quadratic equation (26) corresponding to a ¼ ai ¼

%vT1iv1i; b ¼ bi ¼ %vT1iDv1i and c ¼ ci ¼ %vT1iLv1i; i 2 f1; 2; 3g:
Now choose v11 ¼ be3: Then, a1 ¼ %bb ¼ jjbjj2; b1 ¼ jjbjj2eT3De3 > 0 and c1 ¼ 0: Therefore, the

roots of (26) are given by l1 ¼ 0 and ln1 ¼ �e
T
3De3: Hence, 0 and �eT3De3 are two of the six

eigenvalues of Ah in (25). Thus, Ah has a zero and a negative real eigenvalue.
Now for each of v12 and v13; we obtain a corresponding quadratic equation as given in (26).

First, note that since v11 ¼ be3 yields a zero eigenvalue, neither v12 nor v13 is equal to be3: This
follows since if not, then there is a repeated zero eigenvalue which implies that Ah has rank less
than or equal to four. However, it is easy to see that all columns of Ah except the third column,
which is identically zero, are linearly independent. Since both v12 and v13 are not equal to be3; it
follows that ai; bi and ci; i 2 f2; 3g are positive. Then, the corresponding roots of (26) are given
by

li ¼ �
bi

2ai
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i � 4aici

p
2ai

and lni ¼ �
bi

2ai
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i � 4aici

p
2ai

where i 2 f2; 3g: Thus, since 4aici > 0; it follows that if b2i � 4aici50; then li and lni are complex
with negative real part given by �bi=2ai; and if b2i � 4aici50; then li and lni are real negative
since b2i > b2i � 4aici: Thus, the real part of li and lni is negative for i 2 f2; 3g: &
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Lemma 2
Consider the reduced attitude dynamics of the 3D pendulum given by (7) and (8). Let C :
R3
! R3 be a smooth function satisfying (13) and choose the controller (14). Then, the hanging

equilibrium of the closed-loop reduced attitude dynamics (16) is asymptotically stable and the
convergence is locally exponential.

Proof
Consider the linearization of the closed-loop system (16) about the hanging equilibrium, given
by (19) written in terms of the state variable z ¼ ðx1; x2; ’x1; ’x2; ’x3Þ 2 R5:Writing (19) in terms of
z yields ’z ¼ %Ahz; where %Ah is obtained by deleting the third row and third column from Ah given
in (25). Let SpecðMÞ denote the eigenvalues of the matrix M: Since, the third column of Ah is
identically zero, it can be shown that Specð %AhÞ ¼ SpecðAhÞ\f0g: Then, from Lemma 1, it follows
that all eigenvalues of %Ah have negative real parts and at least one eigenvalue is negative real.

Hence, it follows that all eigenvalues of the linearization of the closed-loop system (16) about
the hanging equilibrium have negative real parts. Thus, the hanging equilibrium of the nonlinear
system (16) is asymptotically stable with locally exponentially fast convergence. &

Remark 2
Let ð0;ReÞ be a hanging equilibrium. Suppose D ¼ diagðd1; d2; d3Þ is diagonal and di > 0; i 2
f1; 2; 3g: Then, the eigenvalues of the linearized closed-loop reduced attitude dynamics at
ð0;RT

e e3Þ given by (16) are the roots of the polynomial

ðs2 þ d1sþmgl1Þðs
2 þ d2sþmgl2Þðsþ d3Þ ¼ 0

Next, we study the linearization of the closed-loop about the inverted equilibrium. This yields
the local structure of closed-loop trajectories near the inverted equilibrium.

Lemma 3
Consider the linear model (19), representing linearization of (15) at an inverted equilibrium
ð0;ReÞ expressed in first-order form as

d

dt

x

’x

" #
¼

0 I

L �D

" #
x

’x

" #
¼
4

Ainv

x

’x

" #
ð28Þ

where x ¼ ðx1;x2;x3Þ: Then, Ainv has one zero, three negative and two positive real eigenvalues.

Proof
In the prior notation k ¼ �1 in (19) for an inverted equilibrium. Let v ¼ ½vT1 vT2 �

T; v1; v2 2 C
3 be

an eigenvector corresponding to the eigenvalue l of Ainv: Then, as in Lemma 1, one can show
that all eigenvalues of Ainv satisfy

al2 þ bl� c ¼ 0

where a ¼ %vT1 v1; b ¼ %vT1Dv1 and c ¼ %vT1Lv1: Arguing as in Lemma 1, one can show that l1 ¼ 0
and ln1 ¼ �e

T
3De3 are two of the six eigenvalues of Ainv in (28) and the other four eigenvalues are

of the form

li ¼ �
bi

2ai
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i þ 4aici

p
2ai

and lni ¼ �
bi

2ai
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i þ 4aici

p
2ai
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where ai; bi and ci; i 2 f2; 3g are positive. Thus, since 4aici > 0; it follows that li is positive and lni
is negative for i 2 f2; 3g: Hence, Ainv has one zero eigenvalue, three negative eigenvalues, and
two positive eigenvalues. &

Lemma 4
Consider the reduced attitude dynamics of the 3D pendulum given by (7) and (8). Let C :
R3
! R3 be a smooth function satisfying (13) and choose the controller (14). Then, the inverted

equilibrium of the closed-loop reduced attitude dynamics (16) is unstable. Furthermore, the
set of closed-loop trajectories that converge to the inverted equilibrium is a 3D invariant
manifold Mi:

Proof
Consider the linearization of the closed-loop system (16) about the inverted equilibrium, given
by (19) written in terms of the state variable z ¼ ðx1; x2; ’x1; ’x2; ’x3Þ 2 R5:Writing (19) in terms of
z yields ’z ¼ %Ainvz; where %Ainv is obtained by deleting the third row and third column from Ainv

given in (28). Since, the third column of Ainv is identically zero, it can be shown that
Specð %AinvÞ ¼ SpecðAinvÞ\f0g: Then, from Lemma 3, it follows that %Ainv has three negative
and two positive eigenvalues. Hence, the inverted equilibrium of (16) is unstable.

Furthermore, there exists a 3D stable invariant manifold Mi of the closed-loop (16) such that
all solutions that start in Mi converge to the inverted equilibrium [20]. The tangent space to this
manifold at the inverted equilibrium is the stable eigenspace corresponding to the negative
eigenvalues. Also, since there are no eigenvalues on the imaginary axis, the closed-loop (16) has
no centre manifold and every closed-loop trajectory that converges to the inverted equilibrium
lies in the stable manifold Mi: &

Remark 3
Let ð0;ReÞ be an inverted equilibrium. Suppose D ¼ diagðd1; d2; d3Þ is diagonal and di > 0; i 2
f1; 2; 3g: Then, the eigenvalues of the linearized closed-loop reduced attitude dynamics at ð0;ReÞ

are the roots of the polynomial

ðs2 þ d1s�mgl1Þðs
2 þ d2s�mgl2Þðsþ d3Þ ¼ 0

In summary, we have shown that the hanging equilibrium of the closed-loop (16) is locally
exponentially stable and the inverted equilibrium of (16) is unstable. Furthermore, the set of all
closed-loop trajectories that converge to the inverted equilibrium constitutes a 3D, invariant
manifold Mi in TSOð3Þ=S1:

6. GLOBAL ANALYSIS OF THE CLOSED-LOOP 3D PENDULUM

In this section, we construct Lyapunov functions and use the local results proven in the last
section to obtain global properties of closed-loop trajectories of the 3D pendulum.

Lemma 5
Consider the reduced attitude dynamics of the 3D pendulum given by (7) and (8). Let C :
R3
! R3 be a smooth function satisfying (13) and choose the controller (14). Then, for
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every E 2 ð0; 2mgjjrjjÞ; all solutions of the closed-loop given by (16), such that ðoð0Þ;Gð0ÞÞ 2HE;
where

HE ¼ fðo;GÞ 2 R3
� S2 : 1

2
oTJoþ 1

2
mgjjrjj jjG� Ghjj

242mgjjrjj � Eg ð29Þ

satisfy ðoðtÞ;GðtÞÞ 2HE; t50; and limt!1oðtÞ ¼ 0 and limt!1GðtÞ ¼ Gh:

Proof
Consider the closed-loop system given by (16). We propose the following candidate Lyapunov
function:

Vðo;GÞ ¼ 1
2
½oTJoþmgjjrjj jjG� Ghjj

2� ð30Þ

Note that the above Lyapunov function is positive definite on TSOð3Þ=S1 ffi R3
� S2 and

Vð0;GhÞ ¼ 0: Furthermore, the derivative along a solution of the closed-loop (16) is

’Vðo;GÞ ¼oTðJ ’oÞ þmgjjrjjðG� GhÞ
T ’G

¼oTðJo� oþmgr� G�CðoÞÞ þmgjjrjjðG� GhÞ
T
ðG� oÞ

¼ � oTCðoÞ þmgoTðr� GÞ �mgrTðG� oÞ ¼ �oTCðoÞ4�PðoÞ

where the last inequality follows from (13). Thus, Vð�Þ is positive definite and ’Vð�Þ is negative
semidefinite on R3

� S2:
Next, consider the sublevel set HE ¼ fðo;GÞ 2 R3

� S2 : Vðo;GÞ42mgjjrjj � eg: Note that
the compact set HE contains the hanging equilibrium ð0;GhÞ but does not contain the inverted
equilibrium ð0;GiÞ: Since, ’Vðo;GÞ40; all solutions such that ðoð0Þ;Gð0ÞÞ 2HE satisfy ðoðtÞ;
GðtÞÞ 2HE for all t50: Thus, HE is a compact, positively invariant set for (16).

Furthermore, from the invariant set theorem, we obtain that solutions satisfying ðoð0Þ;Gð0ÞÞ 2
HE converge to the largest invariant set in fðo;GÞ 2HE : o ¼ 0g; that is r� G ¼ 0: Therefore,
either GðtÞ ! r=jjrjj ¼ Gh or GðtÞ ! �r=jjrjj ¼ Gi as t!1: Since ð0;GiÞ =2HE; it follows that
GðtÞ ! Gh as t!1: &

From Lemma 2, we know that ð0;GhÞ is asymptotically stable. Thus, ð0;GhÞ is an
asymptotically stable equilibrium of the closed-loop reduced attitude dynamics given by (16),
with a domain of attraction that contains HE:

Lemma 6
Consider the reduced attitude dynamics of the 3D pendulum given by (7) and (8). Let C :
R3
! R3 be a smooth function satisfying (13) and choose the controller (14). Define the

level set

A ¼ fðo;GÞ 2 R3
� S2 : 1

2
oTJoþ 1

2
mgjjrjj jjG� Ghjj

2 ¼ 2mgjjrjjg ð31Þ

Then, all solutions of the closed-loop given by (16), such that oð0Þ=0 and ðoð0Þ;Gð0ÞÞ 2A
satisfy limt!1oðtÞ ¼ 0 and limt!1GðtÞ ¼ Gh:
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Proof
Consider the closed-loop given by (16) and the Lyapunov function given in (30). As already
shown in Lemma 5, ’Vðo;GÞ ¼ �oTCðoÞ: Thus,

.V ¼ � ’oTCðoÞ � oT ’CðoÞ

¼ � ’oT CðoÞ þ
@C
@o

� �T
o

 !
ð32Þ

since Cð�Þ is smooth. Furthermore, for all ðo;GÞ 2H0, o is bounded and

’o ¼ J�1ðJo� oþmgr� G�CðoÞÞ

is also bounded. Define

N ¼
1

2
sup

ðo;GÞ2H0

’oT CðoÞ þ
@C
@o

� �T
o

 !�����
�����

�����
�����

( )
51

Next, since ðoð0Þ;Gð0ÞÞ 2A; Vðoð0Þ;Gð0ÞÞ ¼ 2mgjjrjj and jj .VðoðtÞ;GðtÞÞjj42N; t50. Expanding
VðoðtÞ;GðtÞÞ in a Taylor series expansion, we obtain

VðoðtÞ;GðtÞÞ ¼ 2mgjjrjj � oð0ÞTCðoð0ÞÞtþ RðtÞ

4 2mgjjrjj �Pðoð0ÞÞtþNt2

since the remainder necessarily satisfies jjRðtÞjj4Nt2: Since, oð0Þ=0 and P is a positive definite
function, it follows that Pðoð0ÞÞ > 0: Denote g ¼ Pðoð0ÞÞ and define

%E ¼ min 2mgjjrjj;
3g2

16N

� �
It can be easily shown that for all t 2 ½T1;T2�;

t2 �
g
N

tþ
%E
N
40

where

T1 ¼
g
2N

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4%EN
g2

s !
> 0

and T2 ¼ T1 þ g=ð2NÞ: Choose an E 2 ð0; %EÞ: Then, for all t 2 ½T1;T2�; VðoðtÞ;GðtÞÞ42mgjjrjj �
%E52mgjjrjj � E and hence, ðoðtÞ;GðtÞÞ 2HE; where HE is a positively invariant set given in
Lemma 5. Thus, from Lemma 5, we obtain the result that oðtÞ ! 0 and GðtÞ ! Gh; as
t!1: &

Theorem 1
Consider the reduced attitude dynamics of the 3D pendulum given by (7) and (8). Let C :
R3
! R3 be a smooth function satisfying (13) and choose the controller (14). Then, all solutions

of the closed-loop given by (16), such that ðoð0Þ;Gð0ÞÞ 2N\fð0;GiÞg; where

N ¼ fðo;GÞ 2 R3
� S2 : 1

2
oTJoþ 1

2
mgjjrjj jjG� Ghjj

242mgjjrjjg ð33Þ

satisfy ðoðtÞ;GðtÞÞ 2N; t50; and limt!1oðtÞ ¼ 0 and limt!1GðtÞ ¼ Gh:
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Proof
From Lemmas 5 and 6, we obtain the result that for every E 2 ð0; 2mgjjrjjÞ and ðoð0Þ;Gð0ÞÞ 2
HE [A \ fð0;GiÞg, where HE andA are as defined in Lemmas 5 and 6, oðtÞ ! 0 and GðtÞ ! Gh

as t!1: Since, N can be written as

N ¼
[

E2ð0;2mgjjrjjÞ

ðHE [AÞ

the result follows. &

It is important to note that N\fð0;GiÞg is a positively invariant set of the closed-loop (16), and
hence it is contained in the maximal domain of attraction of the hanging equilibrium.
Any trajectory of (16), that intersects A\fð0;GiÞg transversely, must at some time lie outside
N \fð0;GiÞg; but it eventually enters N\fð0;GiÞg: Hence, the maximal domain of attraction
of the hanging equilibrium is a proper superset of the invariant set N \fð0;GiÞg:

Theorem 2
Consider the reduced attitude dynamics of the 3D pendulum model given by (7) and (8). Let
C : R3

! R3 be a smooth function satisfying (13) and choose the controller (14). Let Mi denote
the 3D invariant manifold as in Lemma 4. Then all solutions of the closed-loop given by (16),
such that ðoð0Þ;Gð0ÞÞ 2 ðTSOð3Þ=S1Þ\Mi; satisfy limt!1oðtÞ ¼ 0 and limt!1GðtÞ ¼ Gh:
Furthermore, all solutions of the closed-loop given by (16), such that ðoð0Þ;Gð0ÞÞ 2Mi; satisfy
limt!1oðtÞ ¼ 0 and limt!1GðtÞ ¼ Gi:

Proof
Consider the closed-loop system given by (16) and the Lyapunov function given in (30). Since S2

is compact and the Lyapunov function Vðo;GÞ is quadratic in o; each sublevel set of Vðo;GÞ is
compact. Furthermore, since ’Vðo;GÞ ¼ �oTCðoÞ40; by the invariant set theorem, all
solutions converge to the largest invariant set in fðo;GÞ 2 R3

� S2 : ’Vðo;GÞ ¼ 0g:
Substituting o � 0 in (16), it is easily shown that the largest such invariant set is given by
fð0;GhÞg [ fð0;GiÞg: However, from Lemma 4, we know that all trajectories that converge to the
inverted equilibrium are contained in the 3D manifold Mi: Therefore, all solutions of the closed-
loop given by (16), such that ðoð0Þ;Gð0ÞÞ 2 ðTSOð3Þ=S1Þ\Mi; converge to the hanging
equilibrium and satisfy limt!1oðtÞ ¼ 0 and limt!1GðtÞ ¼ Gh: &

We briefly compare the conclusions in Theorems 1 and 2: Theorem 1 provides an explicit
description of a domain of attraction of the hanging equilibrium in TSOð3Þ=S1; however, that
domain of attraction is not maximal. In contrast, Theorem 2 shows that the maximal domain of
attraction consists of all points in TSOð3Þ=S1 that are not in the stable manifold Mi of the
inverted equilibrium. The geometry of the stable manifold Mi of the inverted equilibrium may
be complicated; it depends on the model parameters and the specific controller.

Remark 4
Since Mi is a 3D submanifold, its complement in TSOð3Þ=S1 is open and dense. Thus, from
Theorem 2 it follows that the domain of attraction of the hanging equilibrium for the closed-
loop (16) is almost global.
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Remark 5
According to Theorem 1, N\fð0;GiÞg is a subset of the domain of attraction; it is clear that Mi

and N\fð0;GiÞg are disjoint. Indeed, Mi \N ¼ fð0;GiÞg:

The results presented in Theorems 1 and 2 apply to the solutions of the closed-loop reduced
attitude dynamics of the 3D pendulum given by (16). Thus, the compact sets and the almost
global results hold with respect to TSOð3Þ=S1: We now study the implication for the 3D
pendulum dynamics given by (15). Specifically, we show that the controller (14) almost globally
asymptotically stabilizes the hanging equilibrium manifold. The following Lemma is needed.

Lemma 7
Let p : TSOð3Þ ! TSOð3Þ=S1 denote the projection, where TSOð3Þ=S1 is endowed with
the quotient topology. Let U 	 TSOð3Þ=S1 be a set whose complement is open and dense in
TSOð3Þ=S1: Then, p�1ðUÞ 	 TSOð3Þ is a set whose complement is open and dense in TSOð3Þ:

Proof
We show that p�1ðUÞ is closed and nowhere dense, and hence, its complement is open and dense
in TSOð3Þ: Since, p is continuous and U is closed, p�1ðUÞ is closed. Suppose that p�1ðUÞ is not
nowhere dense. Then, there exists a non-trivial open set O in TSOð3Þ such that O 	 p�1ðUÞ ¼
p�1ðUÞ: Then, since p is a quotient map, it follows that pðOÞ 	 U is an open set. Further, since p
is a surjection, O is non-trivial and hence U is not nowhere dense; this contradicts the
assumption that the complement of U is open and dense. &

We now present the main result for stabilization of the hanging equilibrium manifold of the
3D pendulum given by (1) and (2). This result shows that controller (14) achieves almost global
stabilization of the hanging equilibrium manifold.

Theorem 3
Consider the dynamics of the 3D pendulum model given by (1) and (2). Let C : R3

! R3 be a
smooth function satisfying (13) and choose the controller (14). Then, the hanging equilibrium
manifold is asymptotically stable with local exponential convergence. Furthermore, there exists
an invariant set Mi � TSOð3Þ such that TSOð3Þ\Mi is open and dense, and all solutions of the
closed-loop given by (1), (2) and (14), such that ðoð0Þ;Rð0ÞÞ 2 TSOð3Þ\Mi; converge to the
hanging equilibrium manifold. All solutions of the closed-loop, such that ðoð0Þ;Rð0ÞÞ 2 Mi;
converge to the inverted equilibrium manifold.

Proof
Asymptotic stability of the hanging equilibrium manifold and local exponential convergence of
closed-loop trajectories follows immediately from Lemma 2 and Proposition 3. We next show
almost global convergence of the closed-loop trajectories.

Consider the projection p : TSOð3Þ ! TSOð3Þ=S1 which yields the reduced attitude dynamics
as given in Proposition 1. Let Mi be the invariant submanifold as in Theorem 2 and denote
Mi¼

4 p�1ðMiÞ � TSOð3Þ: It follows from Lemma 7 that the complement of Mi in TSOð3Þ is open
and dense. Since Mi is invariant for the closed-loop (16), it is easy to see that Mi ¼ p�1ðMiÞ is
invariant for the closed-loop (15). Furthermore, from Propositions 1 and 3 and Theorem 2, it
follows that for the closed-loop (1), (2) and (14) given by (15), all trajectories contained in
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TSOð3Þ\Mi converge to the hanging equilibrium manifold and all trajectories in the set Mi

converge to the inverted equilibrium manifold. &

Remark 6
Since TSOð3Þ\Mi is open and dense, it follows from Theorem 3 that the domain of attraction of
the hanging equilibrium manifold for the closed-loop (1), (2) and (14) is almost global.

Remark 7
Theorem 1 guarantees that N\fð0;GiÞg is a subset of the domain of attraction of the hanging
equilibrium. It is clear that Mi and p�1ðNÞ\I are disjoints, where I is the inverted equilibrium
manifold. Indeed, Mi \ p�1ðNÞ ¼ I:

7. SIMULATION RESULTS

In this section, we present results to show that controller (14) can stabilize the hanging
equilibrium manifold with any arbitrary level of saturation.

Assume

J ¼

30 20 7

20 40 0

7 0 50

2664
3775 kg m2

m ¼ 100 kg; r ¼ ½0 0 0:2�T m and g ¼ 10 m s2: For the given values, Gh ¼ ½0 0 1�T and Gi ¼

½0 0 � 1�T: Suppose that the actuators for the 3D pendulum satisfy the control constraint
jjujj24k for some positive k:We next choose the functionC in (14) such that the controller does
not violate the given constraint.

Let P 2 R3�3 denote a positive definite symmetric matrix. Define the controller

u ¼ �CðoÞ ¼4 �k
Po

1þ jjPojj2
ð34Þ

It can be easily shown that C defined as above satisfies (13) and that controller (34) satisfies
jjujj24k: Choose the positive definite matrix P ¼ diagð5; 10; 15Þ and k ¼ 10: Thus, jjujj2410
N m: Choose initial conditions for the simulation as

Rð0Þ ¼

0 �0:9999 �0:0141

�1 0 0

0 0:0141 �0:9999

2664
3775 and oð0Þ ¼ 0 deg=s

To plot the attitude error from the hanging equilibrium manifold, we plot the angle between
the vector G and Gh: This is given by YðtÞ ¼ cos�1ðeT3RðtÞe3Þ: It can be shown that YðtÞ 2 ½0;p�;
where Y ¼ 0 and p correspond to the hanging and the inverted position of the 3D pendulum,
respectively. Thus, computing Yð0Þ for the chosen Rð0Þ yields Yð0Þ ¼ 179:28: The initial
condition of the 3D pendulum lies close to the inverted equilibrium manifold.
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Figure 3. Angular velocity of the 3D pendulum.
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Figure 4. Error in attitude of the 3D pendulum.
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Figures 3–5 are simulation plots for the closed-loop 3D pendulum. Note from Figures 3 and 4
that both angular velocity and the error in attitude converge to zero. Furthermore, from Figure
5 it is clear that jjujj2410 Nm:

8. CONCLUSIONS

This paper has presented a complete analysis of the closed-loop dynamics of the 3D pendulum
controlled by angular velocity feedback. The fact that the hanging equilibrium manifold is
asymptotically stabilized is made formal, and the global closed-loop dynamics are studied. The
hanging equilibrium manifold is not globally asymptotically stable and it cannot be globally
stable due to a topological obstruction. The key contribution of this paper is the analysis of the
global dynamics of the closed-loop system of the 3D pendulum and the dissipative controller on
the compact configuration space SOð3Þ: In particular, it is shown that angular velocity feedback
guarantees almost global asymptotic stabilization in the sense that the domain of attraction of
the hanging equilibrium manifold is open and dense. Ideas developed in this paper have been
used in [21] to study the global dynamics of the 3D pendulum for stabilization of the inverted
equilibrium manifold.

This paper has focused on asymptotic stabilization of the hanging equilibrium manifold. In
several other papers [8–10, 21] we studied the asymptotic stabilization of the inverted
equilibrium manifold and in [21] we studied the asymptotic stabilization of a specific
equilibrium in the inverted equilibrium manifold. These stabilization problems for the inverted
3D pendulum are fundamentally different from the problem considered in this paper although
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Figure 5. Magnitude of the control torque applied to 3D pendulum.
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some of the methods for analysing closed-loop dynamics are similar. In this paper, only angular
velocity feedback is required to asymptotically stabilize the hanging equilibrium manifold. In
order to stabilize the inverted equilibrium manifold, or an inverted equilibrium, it is necessary to
feed back both the attitude of the 3D pendulum as well as the angular velocity of the 3D
pendulum.
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