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Preface

This report describes the theory, design,
and operation of a six-amplifier electronic
differential analyzer, capable of solving up to
fourth-order ordinary linear differential equa-
tions. The analyzer has complete, self-con
tained power supplies, the only input required
being the 115 volt 60 cycle line power. Accuracy
capabilities are as high as 0.1 percent, depend-
ing on the precision with which computing re-
sistors and capacitors are calibrated.
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1. Introduction

1.1 Utility of Electronic Differential Analyzers

The electronic differential analyzer has become an extremely
valuable tool for the modern engineer. It is widely used in the field of
automatic control as an aid in design, in simulation, in testing, and as a
component of the control system. There are many other fields in which
the electronic differential analyzer has wide applicability. Some of the
more elementary problems which it can solve are discussed in Section 4
at the end of this report. The reader is directed to other referenceasl—7
for more detailed discussion of the many applications.

The electronic differential analyzer is limited to the solution
of ordinary differential equations, both linear and non-linear. The size
of the computer installation required depends on the order and complexity
of the equations being solved. Non-linear differential equations often re-
quire the use of multipliers, which are usually more expensive and elabo-
rate than the basic linear components. However, the authors have found
that for many elementary problems, for demonstration, and for student use
a small, self-contained electronic differential analyzer capable of solving
only elementary differential equations has great utility. This report de-

scribes the theory and operation of such a unit.

1. 2 Introduction to operational Amplifiers

The basic computing element of the electronic differential
analyzer is the operational amplifier. It consists of a high-gain dc
amplifier along with input impedance Zi and feedback impedance Z; as
shown in Figure 1. If the current into the dc amplifier proper is negligible
(this amounts to neglecting the grid current in the first stage of vacuum-
tube amplification) the current il through the input impedance is equal to
the current i2 through the feedback impedance. Thus

i, = i (1)

and from ohms law
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el—e'ge'-e2 (2)
Z, Z
i f
where e, = input voltage and e, = output voltage of the operational ampli-

fier, and where e' is the input voltage to the dc amplifier proper.

ie

Z¢
INPUT LN DC OUTPUT
Ko Z; AMPLIFIE Lz

el
Figure 1. Operational Amplifier
If uis the gain of the dc amplifier, we have
e = - ! 3
9 ue (3)

Eliminating e’ from Equations (2) and (3) and solving for €, we obtain

e "Zg ) . zZ, °1 (4)
1+=(1+
PG+ z)

Z
If the amplifier gain yis very much larger than 1 + 'Zf’ then
i
PR
¥ - 1 + ==




DEPARTMENT OF AERONAUTICAL ENGINEERING
UNIVERSITY OF MICHIGAN

which is the fundamental equation governing the behavior of operational
amplifiers. It states that the output voltage e, is equal to the ratio of
feedback to input impedance times the input voltage € with a sign reversal.
Thus a voltage e, can be multiplied by a constant K using resistors for im-
pedances and by letting the ratio of feedback to input resistance be equal to
K.

Next consider the operational amplifier shown in Figure 2, Here

R¢ I_f_.
OUTPUT
ep e,
I I it
Re i_c.
gc—\N\N\r—‘
1l

Figure 2. Operational Amplifier for Summation

there are several input resistors Ra’ Rb' and RC, each with a respective
input voltage e € and e, Again neglecting input current to the dc
amplifier proper, it follows that

1a+ 1b+ 1C = 1f (8)

i.e., the sum of the input currents equals the feedback current. If we
assume as before that the amplifier gainy is much greater than one plus
the ratio of feedback resistance Rf to respective input resistance, we have
Ry By Ry
e2 = -(R;ea+wbeb+R—ceC) (7)

3
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Thus by employing several input resistors we can sum input voltages.

In Figure 3 the operational amplifier circuit for integration is
shown. Here an input resistance R and a feedback capacitance C are used.
Neglecting the voltage e'as small compared with e; or e 9 (this is equivalent
to the assumption thatpu[>>1 + Z,/Z,), we have for the output voltage e,

_ l¢.
ez = —C 12dt (8)
But if the input current to the dc amplifier proper is negligible, i2 = il,

and is given by

Eliminating i, from Equations (8) and (9) we have

1
ez = ‘m'feldt (10)

i.e., the output voltage e is proportional to the integral with respect to

time of the input voltage e21, the constant of proportionality being 1/RC.
We have seen how operational amplifiers can be used for multi-

plication by a constant, sign inversion, summation, and integration. In

the next section we will combine these operations to solve a linear differ-

ential equation with c onstant coefficients.

.

I2 C

—® 11
LN

L OQUTPUT
ez

L

Ri,J
WWA—
I

Figure 3. Operational Amplifier for Integration
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1.3 Computer Circuit for Solving a Differential Equation

As a simple illustration of the solution of a physical problem,

consider the mass-spring-damper shown in Figure 4.

VIO III IS

Tf(t)

Figure 4. Mass-Spring-Damper System

Let the mass be m, the spring constant k, and viscous damping constant c,
and consider only vertical displacement y of the mass. Summing all the
forces acting on the mass, we have

my + cy + ky = f(t) (11)

where f(t) is the applied force. The problem is to find the differential
analyzer circuit which will give an output voltage proportional to y for a
given input voltage proportional to f(t). To do this it is more convenient
to rewrite Equation (11) as
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my = -cy - ky + f(t) (12)

The differential analyzer circuit is built up by assuming that at some place
in the circuit there is a voltage m§y. This can be converted to the voltage
-y by passing it through an integrator with an RC time constant equal to m,
as shown in Figure 5. This voltage is passed through a unit time-constant
integrator, which then has the output y. Next the voltages representing y,
-y, and f(t) are summed to give a voltage proportional to the right-hand side

|

All Resistor Values
are Megohms

All Capacitor Values
are Microfarads

Ground Connections
Omitted for Clarity

()
Figure 5. Synthesis of the Differential Equation
by Means of Operational Amplifiers

of Equation (12), namely -cy - ky + f(t), as shown in Figure 5. But the
equation states that this voltage must equal mY¥; the connection of the out-
put of amplifier A3 in Figure 5 to the input my of amplifier A1 then causes
the equation to be satisfied.

In order to obtain a solution to our mass-spring-damper problem
it is necessary to specify the initial displacement y(0) and velocity y(0).
These initial conditions on Equation (12) for time t = 0 are imposed by
charging the integrating capacitors to the appropriate voltages, as shown
in Figure 6. When the initial-condition switches are released simultaneous-

ly, the computer proceeds to generate the solution y as a time-varying
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voltage. A somewhat different technique than that shown in Figure 6 is
used to impose initial conditions in the actual analyzer circuit (See Section
3.2).

f(t) —

Figure 6. Analyzer Circuit for Mass-Spring-Damper System

The circuit shown in Figure 7 is equivalent to that in Figure 6
except that it uses only three amplifiers. The reader can confirm the
equivalence of the circuits. Voltage-recordings made with a Sandborn Model
60 1300 Galvanometer are shown in Figure 8 for a step input f(t). The
latter is applied by switching a voltage onto the f(t) terminal. Note that for
zero damping the response is a pure sinusoidal oscillation of frequency

m radians per second.

In Section 4 the conversion from problem units to computer units

is discussed, along with additional illustrative problems.
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)
f(t)

INITIAL CONDITION CIRGUITS OMITTED FOR CLARITY

Figure 7. Three-Amplifier Circuit Equivalent to Figure 6
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Figure 8. Step Response of Mass-Spring-Damper System
for Various Damping Constants
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2. Operational Amplifiers

2.1 DC Amplifier Circuit

In the previous section we saw how operational amplifiers, con-
sisting of high-gain dc amplifiers with feedback and input impedances,
could be used to solve ordinary linear differential equations. The dc-

amplifier circuit used in the 6-amplifier computer discussed in this report
is shown in Figure 9. It consists of three stages of direct-coupled vacuum-
tube amplification and a cathode-follower output stage. The first two
stages of amplification utilize a single twin-triode envelope, an RCA 5691
"red tube" (long-life equivalent of a 6SL7). The third-stage and cathode-
follower output employ a second twin triode, a 6SL7. The overall dc gain
of the amplifier is approximately 10, 000.

The first stage of amplification is designed so that the grid bias
will be about -2 volts; this bias value will give the minimum grid current.
A 5 K potentiometer in the self biasing circuit allows the bias to be varied
so that output balance of the amplifier can be adjusted. The first two
stages of amplification, including all capacitors and resistors except the
5 K potentiometer, are contained in a Vector Turret Can, No. C 12- OKas
shown in Figures 11 and 12. The circuit layout for the can is shown in
Figure 10.

A plot of maximum amplifier output voltage (positive or negative)
versus external load resistance is shown in Figure 13. Note that for a load
resistance of about 250 K the amplifier saturates at the same voltage level
for positive or negative outputs. This load (250 K) should be employed
when the amplifier is to be used to simulate a symmetrical saturation
function on a ''bang-bang' sign-sensitive type of output (see Section 4. 5).

10



DEPARTMENT OF AERONAUTICAL ENGINEERING
UNIVERSITY OF MICHIGAN

t’300 vDC

= 3
Q >
g 3
100ppfd 100putd
2MEG.
+110
o—1 j— 0
)
== 569I
INPUT OUTPUT
2 . §
1 g S
IF ¥3 «
2 &L R 2

L
([ -350 VDG £—|95 DC

Figure 9. DC Amplifier Circuit

TUBE SOCKET

G(') P K G2 P, Ko FIL FIL
| 2 3 04 05 TG TT ie
H E‘] E’] 100 MM E’—"—"———"‘——E
I00MM 1
N 4 ) "
i I 2MEG.
y v 1
800K _ =
x S= =
xs 88§ y gL
gé ol &% ¥ '"2 ST
0 b4 9 =5 = b
P S < NT | st
< 0 ]
T\ —T\ 7T\ J\ H\ T\

® o © o ® © © © ©
IN | +300 ouT -350 FIL FIL. G'ND.
| p |
I— — —/\\‘//‘6 /A\/— ——————————————————————— —l

-1

Figure 10, Circuit Layout for Amplifier Can
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Figure 11. External View of Amplifier Can

Figure 12. Internal View of Amplifier Can
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2.2 Stability Consideration

Since the operational amplifier is essentially a feedback device, it
is important to design the attenuation-frequency characteristic of the dc
amplifier so that it will be stable when the feedback and input impedances
are added. From Equation (4) the output voltage e, is given by

f H (p)

Zy
U(p) +(1 +-Z—i)

(13)

where the dc amplifier gain y (p) actually includes time-derivative terms,
as indicated by the fact that it is a function of the differential operator p.
If the operational amplifier is to be stable, the denominator of Equation
13 must not vanish for any values of p with positive real part. This is
apparent when we realize that the roots of the denominator are the character
istic roots of the equation of motion of the operational amplifier.

When resistors Rf and Ri are used for feedback and input imped-
ances respectively, the roots of the denominator of Equation 13 are the
values of p for which u(p) = -(1-+ Rf/Ri)‘ If none of these p values is
to have positive real parts, the phase shift of the amplifier gain #(jw) for
sinusoidal inputs (p = jw) must not be as negative as 180 degrees at the
frequency where the magnitude of p(jw) = 1+ Rf/ R;. This in turn im-
plies that a db gain versus log frequency plot of #(jw) for sinusoidal inputs
must not have a slope as negative as -12 db per frequency octave in the
region where U(jw) =1+ Rf/Ri' For a conservative design, a slope of
-6 db/octave is preferred. (This corresponds to about -90 degrees phase
shift). If the operational amplifier is to be stable for all possible ratios
Rf/ Ri’ then the db gain versus log frequency characteristic of the dc ampli-
fier proper should have a slope of -6 db/octave down to below unity (zero
db) gain. The capacitors shown in Figure 9 have been chosen so that this is
true. The frequency response of the dc amplifier is shown in Figure 14,

When the dc amplifier is used as an integrator (feedback capacitor
C, input resistor R), the ratio Zf/ Zi = jT)%TC_' for sinusoidal inputs.

At the frequency w where' (jw) \ = 1+ Z,/Z, the term Zf/Zi is negli-~

LEN

14
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gible compared with 1, and the stability consideration is virtually the same
as for zero feedback resistance in the previous case. Thus the amplifier
attenuation characteristic éhown in Figure 14 insures that the operational
amplifier will be stable for integration as well as for summation and
multiplication by a constant.
2.3 Drift Analysis

Next let us consider the problem of zero drift in the dc opera-

tional amplifiers. A dc amplifier must be balanced so that with zero input
voltage the output voltage is zero. This balance can, in a properly designed
dc amplifier, usually be achieved by slight changes in the operating condi-
tions of the first stage of vacuum-tube amplification. In the circuit shown in
Figure 9 the balance is adjusted by changing avariable resistor in the cathode
circuit of the first triode stage. Once the amplifier has been balanced, sub-
sequent changes in heater vbltage, B voltages, ambient temperature, etc.,
may cause the amplifier to drift off of balance so that zero voltage input no

longer gives zero voltage output.
In Figure 1 assume the operational amplifier has an input

resistor Ri and a feedback resistor Rf. If we consider the effect of ampli-
fier unbalance, the output voltage e2 is given by

(14)

= - U(e!
e2 ue'+ eB),

where - u is the amplifier gain, e' is the dc amplifier input voltage,
and ep is the voltage unbalance of the dc amplifier referred to its input.

Equating input and feedback currents we have

- e! el -
el e e e2

R~ "R, (1)
i f

where e is the input voltage to the operational amplifier. Eliminating e'

in Equation (15) by means of Equation (14) we have

(16)

R R R
]:- f __f)e

1 f
e |1+ 11+ 5 Le, -1+
2[ AR R; 1 Ry

B

16
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For u>> Rf/Ri

R Rf
e = -p ¢ - (1 +§;)eB (17)

and the unbalance at the output (i. e., the output voltage when e = 0) is
given by
Re
e2(0) = -(1 +R‘i‘)eB’ “ >>R/R, (18)
where we recall that ep is the voltage unbalance referred to the input.
Thus the larger the ratio Rf/Ri (i.e., the larger the gain of the operational
amplifier), the larger the voltage drift or unbalance at the output.

The voltage unbalance eR referred to input may be quite small
compared with the voltage change which caused eg- For example, if en
resulted from a 1 volt shift in plate voltage of the first stage of triode
amplification, and if the gain of the first stage were 30, then ep would be
1/30 volt. i.e., a 1/30 volt change in input voltage e' would produce an
equivalent unbalance

In the 6-amplifier computer described in this report the amplifier
balance is tested by connecting a 100:1 feedback-input resistance ratio
onto the amplifier with zero input voltage. A typical drift over one hour
would be 0. 5 volt, which means about 5 millivolts referred to input,
according to Equation 18. If the amplifier had been connected with a 1:1
feedback-input resistance ratio (unity gain), the output-voltage drift over
the same period would have been 2 x 5 or 10 millivolts, again from Equa-
tion 18.

2.4 Amplifier Maintenance

The amplifier described in Section 2.1 has been found to be fairly
reliable. Most of the circuitry which is apt to give any trouble is located
in the Vector can shown in Figures 11 and 12. The rest of the amplifier

circuit has only three resistors and a 6SL7 associated with it.

17
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The failure of an amplifier usually falls in one of the following two
categories: (1) the amplifier output cannot be balanced, or (2) the amplifier
output is excessively noisy. In catagory (2) the trouble is almost certain to
be in the first or second amplifier stage (i.e., in the Vector can circuitry).
In either case the first step is to replace the can with a unit which is known
to be working. This will immediately determine whether it is the can or
the final 6SL7 circuitry which is at fault. It proves to be the latter, a test
of the 6SL7 tube and resistance checks on the three resistors in the circuit
will locate the trouble.

If the failure is in the Vector can, a check of the 5691 tube is
obviously the first step. If the tube operates satisfactorily in another
amplifier, then the trouble is in the amplifier components. The cover
should be removed from the can so that voitages can be checked while the
amplifier is operating with no feedback. The normal operating voltages are
shown in Figure 9., It should be possible to bracket these voltages by
changing the 5 K balance potentiometer. A high-impedance vacuum-tube
voltmeter should be used to measure the dc voltages, and when grid voltages
are read, they should be measured with respect to the cathode (this mini-
mizes the voltmeter loading effect on the high-impedance grid networks).
Using this technique it is usually easy to locate the faulty resistor when
the amplifier output will not balance.

When the amplifier output balances but is noisy, the guilty compo-
nent is more difficult to find. However, it is almost certain to be in the
first stage of amplification. The trouble can usually be located by measur-
ing the cathode and plate voltages of the first triode section and the grid
voltage of the second, noting where the fluctuations are first introduced.

A battery in series with the plate voltage can be used to buck down that
voltage so that it can be read on the sensitive scale of the voltmeter. This
is often necessary to observe the fluctuations at the plate.

It should be emphasized that in all the above tests the amplifier
should be "wide open', i.e., without any feedback and with the input

grounded.

18
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3. Auxiliary Circuits

3.1 General Panel Description

A front view of the 6-amplifier electronic differential analyzer is
shown in Figure 15. The underside of the front panel is shown in Figure 16,
and additional views of the entire unit, including the power supply, are
shown in Figures 17 and 18. The front panel has banana sockets for plug-
ging in feedback and input resistors for the six amplfifiers; as can be seen
in Figure 15, there are provisions for a single feedback resistor and five
input resistors on each amplifier , The amplifiers are numbered 1 to 6
going from left to right. Numbers 2, 3, 5, and 6 can be used as integrators
by plugging integrating capacitors into the appropriate sockets at the top of
the panel. A switch in the upper left-hand corner applies initial conditions
to the integrators when in the "reset' position, and releases the initial
conditions when in the "operate' position. The magnitude of each initial
condition is controlled by a ten-turn helipot, while the sign (plus or minus)
is controlled by a toggle switch. The voltmeter in the center of the panel
can be connected to the output of any of the 6 amplifiers. Full meter scale
can be selected as 5, 25, or 100 volts. Finally, a step-function voltage out-
let is provided in the-upper right-hand corner of the 6 amplifier panel shown |
in Figure 15.

Schematic wiring diagrams for the front panel are shown in
Figures 19 and 20. More detailed descriptions of some of the circuits are

contained in the following sections.

3. 2 Initial-Condition Circuits

In Section 1. 3 it was pointed out that the feedback capacitor across
an integrating amplifier must be charged to a voltage representing the equi-
valent initial condition in the differential equation being solved. If the
scheme indicated in Figure 6 were used to apply initial conditions, a sepa-
rate floating power supply would be necessary for each initial-condition
circuit. In order to avoid this, thé_ technique shown in Figure 19 is used.
When the initial-condition relay is in the reset position (relay energized),
the external input circuits on the panel front are disconnected and 500 K

input and feedback resistors are connected onto the amplifier. In this

19
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Front of the Six-Amplifier Computer

Figure 15,

20
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Figure 16. Underside of Front Panel

21
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G

Figure 17. Top View of Chassis
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Figure 18. Bottom View of Chassis
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condition the amplifier has a gain of unity with a time constant of 0.5
seconds, since the 1 microfarad integrating condenser is charged through

a 0.5 megohm resistor. The negative of the desired initial-condition
voltage is applied to the 500 K input resistor. Note that a common ground
return is used for all the initial-condition input voltages. When the reset
switch is opened, the initial condition relays release; this disconnects the
initial-condition 500 K resistors and reconnects the external input resistors
on the front panel.

Since double-pole relays are used, initial conditions for two
integrators are applied with a single relay. When one of the amplifiers
available for integration (2, 3, 5, or 6) is used as a summing amplifier,
the initial-condition relay must be made inoperative. This is automatically
achieved when the integrating condenser is unplugged, since the relay
voltage is applied through the metal case of the condenser (see Figure 19).
Actually, both condensers (2 and 3 or 5 and 6) must be plugged in before the
relays operate. Thus the amplifiers available for integration must be used
in pairs (2 and 3 together, 5 and 6 together) as either summers or integra-

tors.

3.3 Amplifier Patch Panel

In Figure 15 the patch-connection arrangement for each opera-

tional amplifier can be seen. A detailed drawing of the banana-jack loca-
tions is shown in Figure 21. As explained earlier, there are jacks for one
feedback resistor and five input resistors. The jacks are separated by 3/4
inch in order to fit the standard, General Radio type plugs, on which the
resistors themselves can be mounted. A color-coding scheme is ysed to
identify the various connections, red for amplifier output, yellow for input
to the dc amplifier proper, and blue for the connections to the input resis-
tors. Below the triangular representation of the amplifier is a single- pole
| double-throw switch, which, in the down position disconnects the resistors
on the panel and connects a 100:1 feedback-input resistor ratio with the in-

put grounded (see Figure 19). This is used to adjust the amplifier balance.
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3.4 Voltmeter Circuit

As is evident in Figure 20, the voltmeter used to monitor the ampli-
fier outputs is a 500-0-500 microammeter with the appropriate series re-
sistors. Actually, a 50-0-50 microammeter would'be better, since the
necessary series resistors would not load the amplifier outputs as seriously.
An alternative circuit could employ a cathode follower to drive the meter,

In any event, with the meter circuit shown in Figure 20 it is important not
to leave the meter on the more sensitive scales if amplifier-saturation

effects are to be avoided (it is also hard on the meter).

3.5 Power Supplies

Circuit diagrams for the B+ and B- power supplies are shown in
Figure 22. The supplies are conventional electronically regulated circuits.
The +300 volt regulated supply drives a VR-90 regulator tube which pro-
vides the +90 volt reference supply. Similarly, the -350 volt regulated
supply drives a VR-90 regulator tube which provides the -90 volt reference
supply, and VR-105 and VR-90 tubes in series which provide the -195 volt
supply. The +300, +90, -90, -185, and -350 voltages, along with power
ground and 6. 3 volt ac filament voltage are distributed to the amplifiers and
front-panel circuitry through an 8-conductor cable on the back of the main
chassis. This feature allows an external, better-regulated power supply to

be connected to the 6-amplifier unit if desired.

3.6 Computing Components

a) Resistors

For input and feedback elements either precision wire-wound or
precision deposited-carbon resistors have been used by the authors. For
extremely accurate computing the wire-wound resistors are essential,
while for most demonstration and instruction-type problems one per cent
accurate deposited-carbon resistors are adequate. A photograph of this
type of resistor mounted on a General Radio Type 274-MB plug is shown in
Figure 23.
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Figure 22, Power-Supply Circuit
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Figure 23. Plug-In Resistor Assembly

Figure 24. Plug-In Capacitor Assembly
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b) Capacitors
For feedback impedances on integrating amplifiers it is im-

portant to use very high leakage capacitors having low dielectric absorption.
Polystyrene capacitors formerly manufactured by Western Electric (Nos D
161270 or D 168233) and once widely available as war surplus items have
proved very adequate. However, a number of commercially available
polystyrene or polyethelyne condensers, though rather expensive, have also
been satisfactory. A Western Electric one microfarad capacitor, complete
with plug-in mounting, is shown in Figure 24,

In Figure 25 the circuit for solving the mass-spring-damper

problem discussed in Section 1. 3 is set up on the 6-amplifier panel.

Figure 25. Computer Arrangement for Solving Mass-Spring-Damper Problem
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4. Example Problems

4.1 Falling Body
As a first example of a physical problem which can be solved with

the 6-amplifier analyzer, consider a body of mass m. Lety equal the
height of the body above the earth and assume that the body is acted on by
a constant force mg due to gravity, a force cy due to viscous drag and an

inertial force my. The equation of motion becomes

my +cy +mg=20

or

C
J=-g8-57Y (19)

The computer circuit for solving Equation (19) is shown in Figure 26.

Assume that initially the body starts at height Yo and velocity yo

Figure 26. Falling-Body Circuit

One technique for converting from problem units to computer units
simply requires the selection of a given number of volts (or recorder divi-

sions, if more convenient) to represent a unit displacement, e.g.,0.1 volt=
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1 foot (or perhaps, 0.1 recorder division = 1 foot). The problem is worked
on a one to one time scale, i.e., one second of computer time equals one
second of real time. Samplée solutions showing vertical displacement y and
velocity y for y_ = 100 feet, y = 50 feet/sec, and ¢c/m= 0 and 2.5 sec™!

respectively are shown in Figures 27 and 28.

T
i
i

)
T

Figure 27. Solution for Falling Body, No Damping

4,2 Second-Order System; Use of Dimensionless Units

We have already discussed the analyzer circuit for solving the
mass-spring-damper problem shown in Figure 4. The Equation of motion

(11) can be rewritten as

1 26 1
g +Ely 4y = (1) (20)
w—rz1 wn k

where

wn'-"[%:ands = S (21)
2fmk
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Figure 28. Solution for Body Falling Through a Viscous Medium

Here W n is known as the undamped natural frequency of the system, ¢ is
the dimensionless damping ratio, and 1/k is the static sensitivity. If we

select a new dimensionless time variable T given by
T=w,t, (22)

Equation (20) becomes

2

(_i__X.z + 26%%. +y =,-11;f('r) (23)

dT

in terms of the new variable 7. The differential analyzer circuit for

solving Equation (23) is shown in Figure 29,
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Figure 29, Circuit for Second-Order System
Note that the time constant for each of the integrators is RC seconds, so

that if Equation (23) is to be solved by the computer, RC seconds of time on

the computer equalone unit of the dimensionless time variable 7.
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By varying the RC time constant of the integrators we can evidently select
at will the relationship between computer time units and problem time units.
Usually an integrator time constant RC of the order of one second is
selected.

Note also in Figure 26 that 1/k f(t) and not f(t) is fed into the cir-
cuit as the forcing function. This is convenient, since 1/k f(t) has units of
displacement the same as y.

When no damping is present ( § = 0) the analyzer makes an ex-
cellent low-frequency oscillator. 8 The frequency of oscillation (radians per
second) is equal to the reciprocal of the RC time constant of the integrators.
By using the circuit of Figure 7 for the damped system (3 amplifiers re-
quired) and the circuit of Figure 8 with § = 0 and f = 0 for a sine wave
generator (3 amplifiers required), the response of a second-order system

to sinusoidal inputs can be studied with the 6~amplifier differential analyzer.

4.3 Second-Order System with Derivative Inputs

Often the equation of motion of a physical system may involve time
rates of change of both input and response functions. This is particularly
true in problems encountered in automatic control. An example of this is
the following equation:

ay +ay +ay* b,% + b, % box (24)

1

where x is the input and y is the response function (dependent variable).
The easiest way to visualize the differential analyzer circuit needed to

solve this equation is to integrate the equation twice, getting

asy + alfydt + aoj.j'ydt = b,y + bljydt + b ffydt (25)

The analyzer circuit is shown in Figure 30.
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Figure 30. Analyzer Circuit for Solving the Equation
a2y+ aly +a0y= bzk + b, x + box

1

4.4 Two-Degree of Freedom System

The differential analyzer is not limited to the solution of problems
where only one dependent variable is present. In Figure 31 the vertical
displacements Y1 and Y9 of masses m, and m, respectively are considered.
By summing forces on each of the masses the following two equations are
obtained.

m ¥, + (k; + kg)y; - kgyy = 0 (26)
m,¥, + (ky + Kg)y, - kgy; = 0 (27)

' The computer circuit which solves these equations is also shown in Figure
31. The circuit is synthesized in exactly the same way as for the one-
degree-of-freedom system discussed in Section 1. 3, except that here two

equations, including the cross-coupling term, are satisfied instead of one.
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Figure 31. Two-Degree-of-Freedom System
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Two-Degree-of-Freedom System with Equal Initial Displacements

Figure 32.

As a sample computer problem, let m; =mg = 1, k1 = k2 =1, and
k3 = 0.2. In Figure 32 recordings of the displacements Y1 and Yo with zero
initial velocity conditions and equal initial displacements are shown. Note
that the masses oscillate with pure sinusoidal motion at a frequency of 1
radian per second, as expected. This is one of the normal modes of the two-
degree-of-ireedom system. The other normal mode of oscillation is shown
in Figure 33, where the masses have been started with equal but opposite
initial displacement. Here the frequency is 1.4 or 1.18 radians per
second.

Finally, in Figure 34 one mass has been started with a finite, the

other with zero, displacement. Energy is transferred back and forth be-
tween the masses as shown in the recording. The motion is actually a
superposition of the two normal modes, and the beat frequency of 0.18
radians per second is evident in Figure 34.

Without using any additional amplifiers it is apparent that viscous
damping effects or externally applied forces can be considered in solving

the two-degree-of-freedom problem with the 6-amplifier analyzer.
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Figure 33
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4.5 System with Coulomb Damping

One type of damping force which is often encountered in physical
problems is coulomb damping or dry friction. Here the damping force,
instead of being proportional to the velocity as in the viscous case, is
constant in magnitude but changes sign whenever the velocity reverses sign.
Thus for a second order system with coulomb damping the following

equation is appropriate.

my + fc(y) + ky = f(t) (28)
where
fc(y) =+ C, y>0 (29)
= - C, y<0

The analyzer circuit is shown in Figure 35. Note that the fC function
representing the coulomb damping is simulated by feeding the y voltage
into amplifier A4, which has no feedback connection, The output of A4

will therefore be saturated positive or negative depending on the sign of y.
From Figure 13 it is evident that a total load resistance of around 250 K
will cause the amplifier output to saturate equally for both positive and
negative inputs at about 80 volts. The output of A4 is then summed into A1
to represent the coulomb damping. Since the resistor labeled 80/C is
normally much larger than 250 K, the proper loading on A4is obtained
approximately by connecting a 250 K resistor from output to ground. The

effect of the 80/C resistance in parallel is then usually negligible.
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Figure 35. Second-Order System with Coulomb Damping
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Figure 36. Response of Second-Order System with Coulomb Damping

Transient response of the second-order system with coulomb

damping when displaced from equillibrium with zero force input is shown in

42




DEPARTMENT OF AERONAUTICAL ENGINEERING
UNIVERSITY OF MICHIGAN

Figure 36. Note that the envelope of the decaying oscillations is linear
rather than exponential, as it would be for a linear system with viscous

damping.

4, 6 Additional Problems
Many additional linear and simple nonlinear problems can be solved

with the 6-amplifier electronic differential analyzer. The unit has been used
for problems in radioactive decay, consecutive chemical reactions, beam
oscillation, heat flow, etc. For these and other examples the reader is

referred to the bibliography.
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