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PART I

SCALING OF LINEAR DIFFERENTIAL EQUATIONS
FOR ELECTRONIC DIFFERENTTIAL, ANALYZERS

1. Introduction

One of the most important problems in successful utilization
of electronic differential analyzers involves the scaling of the com-
puter, i.e., the proper choice of dependent and independent variable
changes from original problem to computer problem. This scaling proce-
dure is necessary for both analog and digital computers, but it is
particularly important that it be done reasonably well in an analog com-
puter because of the limited range of variables over which accurate
computing is possible. These notes contain a discussion of methods for
scaling mathematical problems for the electronic differential analyzer
(analog computer). This is accomplished by considering several typical
example problems among which are the common mass-spring-damper system,
a two-degree-of-freedom system representing an sutomobile suspension
system with both a linear and a nonlinear shock absorber, and finally
the problem of heat flow in a slab, solved by two different methods.

The scaling problem generally involves the consideration of
two basic categories:

1. Scaling of the dependent variébles (e.g., the problem out-
put variables).

2. Scaling of the independent variables (e.g., the time scale
in a dynamic problem). :

This second category must be considered in both linear and
nonlinear problems; the approach for dynamic problems depénds on whether
or not it is necessary to solve the problem in real time. The first
category must also be considered in both linear and nonlinear problems,
but the degree of consideration is much different for linear as opposed
to nonlinear problems. In linear problems it is the scaling of depend-
ent variables relative to each other that is important while in non- -
linear problems the absolute scaling of each variable is important.

2. Example of a Second-Order System

As a first example, consider the mass-spring-damper system
shown in Figure 2.1. Ilet the mass be constrained to move in the verti-
cal direction. Denote the mass by m, the spring constant by k, and the
viscous damping constant by c, and let the vertical displacement of the
mass from its equilibrium position be denoted by y. The external force
is £(t), where t is the time variable.
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Figure 2.1. Mass-Spring-Damper System

2.1 Equation Describing the Second-Order System
Summing vertical forces acting on thevmass gives
my + ey + ky = £(t) (2.1.1)
To completely specify the problem it is necessary to denote the initial

conditions. These are the values of the dlsplacement y and the velocity
¥ at the beginning of the problem. Iet

() = y0, ¥(0) = o (2.1.2)

We will now consider the possible electronic differential analyzer cir-
cuits for solving this problem.

2.2 Computer Circuit Without Regard for Scaling

It will be assumed that the reader is famlliar with the basic
element of the electronic differential analyzer, namely, the operational
amplifier. A brief description of the basic characteristics of opera-
tional amplifiers is given in the Appendix. To obtain the analyzer cir-
cuit for solving (2.1.1) we first solve for the highest-derivative term.



Thus from (2.1.1)
my = -cy -ky + £(t) (2.2.1)

Starting with a voltage assumed equal to my, we synthesize the right-
hand side of Equation (2.2.1) as shown in Figure 2.2.1.

The voltage my is first multiplied by l/m by sending it
through an attenuating potentiometer set at l/m. The resulting signal
3’15 integrated in amplifier 1 to obtain -y, which is in turn integrated
with amplifier 2 to obtain y. These voltages, multiplied by the appro-
priate constants through potentiometers 2 and 3, are summed with f(t)
at the output of amplifier 4. This voltage represents the right side
of Equation (2.2.1) which, according to the equation, must equal the
left side my. This is assured by completing the connection shown by
the dashed line in Figure 2.2.1, and the analyzer circuit is now com-
plete. TFollowing the release of initial-condition voltages on integra-
tors 1 and 2, the output voltages -§ and y will represent the dynamic
solution to the problem, which will, of course, depend upon the forcing-
function voltage f(t).

| [-cy-ky+f(t

cy - f(t)

l
f(t) o————'W\oJ

A1l Resistor Values are Megohms
All Capacitor Values are Microfarads

Figure'2.2.l. Synthesis of the Differential Equation by Means
of Operational Amplifiers. '



One advantage of the circuit in Figure 2.2.1 is that there is a one-to-
one correspondence between potentiometer settings on the computer and
parameters in the physical problem; thus the setting of potentiometer 1
represents l/m, while potentiometers 2 and 3 represent ¢ and k respec-
tively. But for almost any combination of m, ¢, and k normally encoun-
tered, the circuit of Figure 2.2.1 is almost certain to cause scaling
difficulty. Consider the following example:

m = 600 slugs, c = 2500 lb.sec/ft., k = 50,000 1b./ft.

According to the circuit of Figure 2.2.1, the settings on potentiometers
1, 2 and 3 would be 1/600, 2500, and 50,000. ©Since one cannot obtain
gains of greater than unity through a potentiometer, amplifiers 3 and

4 would need to have larger gains than the unity gains shown. For ex-
ample, we might obtain a gain of 10,000 with amplifier 3 by means of a
0.0l megohm input resistor and a 100 megohm feedback resistor. Poten-
tiometer 2 would then be set at c/l0,000 or 0.25. ©Similarly, amplifier
4 might be given a gain of 100,000 by using a 0.0l megohm ihput resistor
and a 1000 megohm feedback resistor. Potentiometer 3 would then be set
at k/lO0,000'or 0.5. The resulting circuit is shown in Figure 2.2.2.

—

600y .
-2500y -50000y+f(t)
1000
100
— VW
00’25 00t | 3
2500y - f(t)
100
f (1) O—AWW—

Figure 2.2.2. Poorly Scaled Circult for an Underdamped
Second-Order System.



This circuit is an example of very bad scaling for the follow-
ing reasons:

1. Summing amplifiers should never be used with gains very
much larger than unity except in some unique special circuits which re-
quire it (there is no such unique requirement here). This is because
amplifier noise and zero drift at the output is essentially magnified
by the closed-loop gain of the amplifier, which here is 10,000 for
amplifier 3 and 100,000 for amplifier‘h; Also at these large gains the
wide-open gain of the amplifiers (i.e., the gain before feedback) is not
sufficient to insure an accurate closed loop gain. For example, if
amplifier L4 has an open-loop gain of 500,000 (this is the gain from sum-
ming junction to output), then the gain with a 1000 meg feedback and a
0.0l meg input resistor will be 100,000/(1 + 100,000/500,000) or 83,300
instead of 100,000. Mathematical derivation of this relationship is
given in the Appendix.

Although there is no example here, it can also be stated that
summing amplifilers should never be used at gains very much smaller than
unity if they are part of a main computing loop. This is because no
matter how small the amplifier galn, there is a certain minimum noise
and drift level at the amplifier output (see the Appendix). Thus de-
creasing an amplifier gain to well below unity at one point in the cir-
cult will not decrease the noise or drift appreciably at that amplifier
output, but the corresponding increase in amplifier gain to many times
above unity at some other point in the circuit will increase the noise
or drift at that amplifier output by the factor of the amplifier gain.
Thus it is best to keep all summing amplifier gains near unity when
they are in a main computing loop.

2. When two or more amplifiers are used as integrators, they
should never be used at time constants which are extremely different
from each other if they are part of a main computing loop. The time
constant of an integrator with an input resistor R and a feedback capaci-
tor C is equal to RC seconds. Thus an -amplifier with a 0.1 microfarad
feedback capacitbr and a 0.1 megohm input resistor should be considered
as having a time constant of 0.0l seconds. In the circuit of Figure
2.2.2 integrator 1 has a time constant of 1/600 second if potentiometer
1 is considered part of the integrator, while integrator 2 has a time
constant of 1 second. This is bad because in general this will mean
very unequal voltage levels at the outputs of the integrators.

- 3. Potentiometers cannot be set accurately at values which are
very small compared with unity. Thus it would be difficult to set poten-
tiometer 1 at 1/600 to closer than 10 or 20% accuracy.



L4, Amplifier output voltages are limited to maximum positive
and negative values. For most computers this 1imit is the order of
+ 100 volts. Thus the output of amplifier 4 should not exceed + 100
volts which means that the output y of amplifier 2 must not exceed
+ 1/500 volt. Hence the maximum amplitude of solution we could hope to
obtain with the clrcuit of Figure 2.2.2 1s + 1/500 volt for y. This
would not only be inaccurate due to noise and drift effects, but it
would also be difficult to record.

2.5 Computer Circult With Proper Scaling

Our statements of the previous section said that all summers
in a main computing loop should have & gain somewhere near unity, while
all integrators should have about the same time constant. In the cir-
cuit of Figure 2.2.2, it should then be apparent that the output of '
amplifier 4 must be the order of [-cy -ky + f(t)] x 10-2 in order to
have a gain of unity and a potentiometer setting of 0.5 for potentiome-
ter 3. Thus the input to potentiometer 1 becomes my x 10-2. With
potentiometer 1 set at 500/m or 5/6 the input to integrator 1 becomes
¥/200. This is shown in Figure 2.3.1.

_ -
—=

. 5 -
500/m g | | o0.05 1> o
10%ny ~ |20 y |

l [-ey-ky+f(h]10®

¢/5000 ,

h@—'\/\ilv—<3'

|
10°% £(t) o——AN—

[ey-fh)] 10°°

Figure 2.3.1. Correctly Scaled Circuit for an Under-
damped Second Order System.



We should now choose the time scales of the integrators 1 and
2 to be roughly equal and such that we pick up a gain of 200 in going
from §/200 to y. In Figure 2.3.1 this has been done by using a time
constant of 0.1 seconds for integrator 1 and 0.05 seconds for integrator
2. The time constants shown could equally well have been obtained by
using 0.1 mfd feedback capacitors instead of 1 mfd, in which case the
input resistors to integrators 1 and 2 would have been 1 and 0.5 megohms
respectively.

The output of integrator 1 is now -y/20, and potentiometer 2
is set at ¢/5000 or 0.5 in order to produce an output of [ecy - £(t)] x107°
at amplifier 3. Note that the input to amplifier 3 is now f(t) x 10-2.
The circuit of Figure 2.3.1 has achieved the objective of near unity gain
for the summers and time constants about equally distributed among the
integrators. All potentiometer settings are reasonably close to unity.

Since the problem considered here is linear, the choice of re-
lationship between problem units and computer units for the dependent
variable, y, is rather arbitrary. If the maximum expected mass dis-
placement y is one foot, then we might let one foot = 100 volts, or full
scale output at amplifier 2. A 100 volt output of amplifier 2 would
then represent a displacement of one foot; a 100 volt output of ampli-
fier 1 would represent a velocity y of -20 ft./sec. A 100 volt output
of amplifiers 3 or 4 would represent a force of 102 lbs. A step func-
tion input force £(t) of 104 1bs. would consist of a step voltage of 10
volts applied to the input of amplifier 3.

Several times we have referred to the "main computing loop."
By this we mean the chain of amplifiers which has the primary influence
on the solution to the problem. In more complicated problems the main
loop or loops are often difficult to recognize, particularly if the
general nature of the solution is not known. In the simple mass spring-
damper problem of Figure 2.3.1 the main loop consists of amplifiers 1,°
2, and 4 for an underdamped system ({ = 0.228 in the example considered,
where { is the fraction of critical damping). If, on the other hand,
¢ = 50,000 1b. sec./ft. instead of 2500 1lb. sec./ft., as given earlier,
the system is overdamped (¢ = 4.57) and amplifiers 1, 3 and 4 constitute
the main computing loop. We might then denote the output of amplifier
1l as -&, in which case, potentiometer 2 would be set at ¢ x 10~° as 0.5;
this would maintain the output of amplifier 3 at [ecy - f(t)] x 10~ as
before, and the output of amplifier 4 at [-cy -ky + £(t)] x 10-5 as be-
fore. (See Figure 2.3.2). The input to potentiometer 1 is my x 10-2.
If we set potentiometer 1 at 500/m as before, the time constant of inte-
- grator 1 must be 1/200 in order to provide an output of y. This can be
achieved with a 0.05 megohm input resistor and a 0.1 mfd feedback capaci-
tor as shown in the figure. '
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Figure 2.3.2. Correctly Scaled Circuit for an Over-
' demped Second-Order System.

In the steady state following a constant input force f(t),
the velocity ¥y will be negligible, as will the acceleration Y. Hence
the input voltages to amplifier 4, one coming from y, one coming from
f(t), must be equal and opposite. Thus we expect y values the same
order as 10~° f(t), so that we shall let the output of amplifier 2 be
y as before, rather than some constant factor times y.

Reference to Figure 2.3.2 shows that this 1s a case where the
integrator time constants are nowhere nearly equal for a properly scaled
circuit. The important point is that amplifier 2 is not part of the
main computing loop, at least as far as the initial transient operation
is concerned. The main loop consists of amplifiers 1, 3 and 4, as ex-
plained earlier. Had we used the circuit shown in Figure 2.3.1 for the
case considered here namely, C = 50,000 1lb. sec./ft., amplifier 3 would
have needed a gain of at least 10, and we would have been amplifying a
small signal —§/20 from amplifier 2 by a large gain in amplifier 3 in
order to produce a nominal output cy x 10->. The superiority of the
circuit in Figure 2.3.2 is evident. Here all amplifier voltage levels

will be the same order of magnitude.



2.4 Change of Time Scale

We saw in Figure 2.3.1 for the case where m = 600, ¢ = 2500,
and k = 50,000 that integrators 1 and 2 have time constants of 1/10 and
_1/20 second respectively. The resulting dynamic solutions will ex-
hibit damped oscillatory transients of about 1-1/2 cps because w,, the
undamped natural frequency, equals J&/m =90,12 radians/second. Although
such solutions will not tax the bandwidth capabilities of the operational
amplifiers, they may be too fast for some recorders, e.g., X - Y type
recorders. If the problem had one or more nonlinearities for which
servo-driven multiplying potentiometers or function generators were used,
oscillations at 1.5 cps might also be too fast. Then, too, some dynamic
systems may have oscillatory transients which are so high in frequency
that they are too fast for the operational amplifiers themselves. Or
they may be so low in frequency that low-frequency limitations such as
amplifier drift or the patience of the computer operator become a factor
to consider. In any case it is frequently desirable to elther speed up
or slow down the computer time scale relative to the original problem
time scale. About the only situation where this cannot be done is when
a "real time" simulation is necessary because of the tie in of physical
hardware with the computer.

Probably the simplest argument to explain the method of time
scale change for the circuit in Figure 2.3.1 begins with the following
realization. In discussing the circuilt shown it was assumed that 1
second of computer time equaled one second of problem time. Thus an
integrator with a 0.1 megohm input resistor and a 1 microfarad feedback
capacitor has a time constant of 0.1 second in problem time. But if we
assume that 10 seconds of computer time equals one second of problem
time, then an integrator with a 1 megohm input resistor and a 1 micro-
farad feedback capacitor still has a time constant of 0.1 second in
prcblem time, i.e., the computer will run ten times as slow as the actual
problem. Thus by increasing the input resistors of integrators 1 and 2
in Figure 2.3.1 from 0.1 and 0.05 to 1 and 0.5 megohms respectively, we
can slow the problem down by a factor of 10. This might then allow us
to use a slower responding recorder. On the recorder trace 10 seconds
along the abscissa would equal one second for the actual problem.

Thus the computer can be slowed down or speeded up relative to
"real time" simply by changing the input resistor or feedback capacitor
of all integrators by the same factor. For the case discussed in the
previous paragraph we slowed the computer down by a factor of 10. It is
equivalent to introducing a new time variable T given by

T =10t (2.4.1)
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from which

4 _4d dr_ 494 (2.4.2)
dt dr dt dT
and
2 2
4= _ 100 & (2.4.3)
at2 ar

Written in terms of the new time variable T, Equation (2.1.1) becomes

2
100 &Y + 106 W rxy =£@) (2.4.1)
dr dar
or
lOOmd2y=-lOc .dl-ky+f(t) (2.4.5)
5?5 - dT o

The computer circuit for solving Equation (2.4.5) is shown in Figure
2.4.1. It is precisely the circuit suggested in the previous paragraph
in order to slow the problem down by a factor of 10, but here it was
arrived at formally by rewriting the equation with a change of time
variable, whereas before we simply took the circuit of Figure 2.3.1 and
increased all input resistors to integrators by a factor of 10. Either
method is suitable, and it becomes more a matter of personal preference
as to which way one prefers to look at the problem of time scale change.

2.5 VUse of Dimensionless Time

Another approach to thé time-scale problem, and probsbly the
most preferable approach, in many cases, is to introduce a dimensionless
time in the differential equation to be solved. Consider again Equation
(2.1.1).

By dividing through by k we can write

v+y= % £(t) (2.5.1)

This equation can be rewritten in terms of the undamped natural frequency
w, and the damping ratio §. Thus

1 u+
O ™n Un

no
e

§+y=i £(t) (2.5.2)
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Figure 2.5.1 Circuit for Underdamped Second Order System Using -
Dimensionless Time, '

R
%f_(t) O—AM—

Figure 2.5.2 A Three-Amplifier Circuit for an Underdamped Second-Order
System Using Dimensionless Time.
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where

oy =K (2.5.3)

¢ == (2.5.4)

Let us now introduce a dimensionless time variable T given by

T =@t (2.5.5)
from which
2 2
S s, &, §_§ = m,° §_§ (2.5.6)
dt dr dt ar

Equation (2.5.2) then becomes

]

fl+2 t W +y=21r(t) (2.5.7)
d72 ar : k

The analyzer circuit for solving this equation is shown in Figure 2.5.1.
Note that the time constant for each integrator is RC seconds. Our '
cholce of RC will dicate the number of seconds of computer time equilva-
lent to one unit of dimensionless time 1. If R = 1 megohm and C = 1
microfarad, then 1 second of computer time equals one unit of dimension-
less time .

The advantage of introducing the dimensionless time T = wut
for this problem is obvious; the scaling problem for reasonable € more
or less solved itself, and the change of computer time scale 1s parti-.
cularly easy to visualize. Note also that the forcing function is
actually a displacement, % f(7) so that all voltage inputs and outputs
represent displacements. Hence a single choice of relationship between
volts and feet is adequate.

A three amplifier circuit equivalent to the circuit of Figure
2.5.1 is shown in Figure 2.5.2.

3. Example of a Two-Degree-of Freedom System

We have already examined in Section 2 the many scaling prob-
lems which arise in determining the electronic differential analyzer
circuit for solving a mass-spring-damper system. A varlety of solutions
to these scaling problems was discussed. In this sectlon we turn to a
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two-degree-of -freedom system. Here we have all the scaling problems
of a one-degree of freedom system with a few more thrown in.

M .
y,
K I::JC
m Y,
x(t)

ST T

Figure 3.1. Simplified Automobile Suspension System.

Consider the system shown in Figure 3.1, which represents a
simplified automobile suspension system. The upper mass M exhibits a
vertical displacement yq, with respeét to a fixed equilibrium reference,
and represents the sprung mass. It Is coupled to the lower, unsprung
wheel of mass m with a spring constant K and viscous damping constant
C (shock absorber). Displacement of the lower mass is denoted by yo,
and k represents the spring constant of the tire. Finally, x(t) is
the vertical displacement of the support (road).

The following constants represent approximately one-half the
front end of a 1956 Chevrolet.

M = 22 slugs, C = 100 lbs.sec./ft., K = 1600 1lbs./ft.
The wheel mass and tire spring constant are given by

m = 3 slugs, k = 12,000 lbs./ft.
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3.1 Equations of Motion

. The equations of mdtion describing the system are obtained
by summing the forces acting on the upper mass and on the lower mass.
The following two equations result:

Mg"]_ +C (3’1 - .').fg) + K (yl - Yg) =0 (3.1.1)

Mys - C (31 - ¥2) =~ K (y1 - y2) + k (yo - x)

=0 (3.1.2)

3.2 Preliminary Examination of the Problem

Before attempting to formulate the computer circuit, includ-
ing scaling, it is well to make some preliminary calculations concerning
the expected behavior of the system. This will often aid in such de-
cisions as time scale, relative magnitude of displacements, etc.

First let us calculate the natural frequency of each of the
mass systems assuming that the other is held fixed. For the upper mass
M

_ JX _ [1éoo _
Wy = ~f§ === 8.52 rad/sec.

For the lower mass m

@, =J-£f;7IS = \I}j%__éQ_Q = 67.3 rad/sec.

On the basis of these frequencies, we would guess that the time con-
stants of the two integrators which will be part of the upper-mass
system should be the order of 0.1 seconds (this will give a natural
frequency of about 10 rad/sec), vhile the time constants of the two
integrators for the lower system should average about 0.02 seconds
(this would give a 50 rad/sec. frequency in conjunction with a unity
gain summer). These integrator time-constants are, of course, based
on the assumption that we wish to solve the problem in real time. ILet
us proceed on this basis; later we can easily slow the problem down by
changing all four integrator time constants by the same factor.

We might also note that although the displacements yq, y»o
and x will be the same order of magnitude, the relative displacement
yo - x will be much smaller (this represents the compression of the
tire), This means that even though y;, yo and x are scaled to cover
the full-scale voltage range, yo - X can be followed by a gain factor
of 4 or 5 without danger of amplifier saturation.
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3.3 Circuit for Solving the Ride System

The circuit for solving Equations,(}.l.l) and(}.l.E) on a
one-to-one or real time scale 1s shown in Figure 3.3.1. It was
arrived at by keeping in mind the preliminary considerations of the
previous section, and by applying the basic method of approach pre-
sented in Section 2.3.

Note that all potentiometers in Figure 3.3.1 have settings
between about 1/3 and unity. The time constant of the different inte-
grators 1s the same order of magnitude as the predictions of the pre-
vious section. Even though the output -yp of amplifier 4 is scaled so
that 100 volts (full scale) equals the full excursion of yo (say 0.5
ft.), and amplifier 8 has a gain of 4, its output 4(yo - x) is not
likely to saturate. Note also that we have solved for +y; and for -yo.
The opposite signs allow us to take the necessary differences y; - yo
and'yl - ig without additional inverters. By taking these differences
we require only a single potentiometer to set K, and a single poten-
tiometer for C. If we had collected terms in y» in Equation (3.1.2)
and computed (K + k)yo, this would not have been possible.

As the size of the problems considered becomes larger, it is
always more difficult to perform a near-optimum Job of scaling before
the problem is set up on the computer. What one tries to do is to
make reasonable estimates of the scaling based on prior knowledge of
the problem. It will often be necesgsary to readjust the scaling once
the problem has been set up and run. Frequently one finds that one or
more amplifiers saturate, or that the output level of one or more ampli-
fiers is too low. When this is the case, the modification of gailns
necessary to correct the situation is apparent.

We have already pointed out that if the time scale of the cir-
cuit in Figure 5.3.1 is too fast, the problem can easily be slowed down
by changing all of the integrator time constants by the same factor.

For example, by increasing all feedback capacitors from 0.1 mfd to 1 mfd,
10 seconds of computer time will equal 1 second of problem time.

3.4 Computer Circuit Including Nonlinearities

Up to now we have discussed only linear problems. Actually,
one of the chief advantages of the electronic differential analyzer
(or any high-speed computer) lies in its ability to solve nonlinear
differential equations. For example, in the automobile ride problem
we might wish to represent the viscous damping constant C as a non-
linear function of the velocity (y% - yp). This can be accomplished
on the computer by the use of a diode function generator (other methods
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are also available but will not be considered here). The diode function
generator can be set up to provide a series of segmented straight line
approximations to the function under consideration, where the break
point between segments can be set anywhere over the full voltage range
of t 100 volts, and where the slope of each segment can be set so that
the output voltage of the function generator falls anywhere within

+ 100 volts. Because of limited function-generator accuracy it is

best to use as much as possible of the t 100 volt range for both the
sbscissa and ordinate. '

c (¥-Y,)|wBS)

#100* f e — — — ——

i

+

y-y, (ft/sec)

-100%

Figure 3.3.2. Nonlinear Shock Absorber Characteristic

To deal with a specific example, let us assume that the shoek

“absorber saturates at 100 lbs. when the relative velocity is 1 ft./sec.
In Figure 3.3.2 is shown the resulting plot of viscous damping force

C (§1 - ¥o) versus y1 - yp. If we let 0.5 f£t. = 100 volts for our
basic scaling in the problem, this allows a maximum excursion for Y1
and Yo of + 0.5 ft. or 1 ft. total. Since the output of amplifier 7 in
Figure 3.3.1 is —c(&l - ig)/hOOO, it will represent viscous - damping
force in 1lbs. x 4000. Assuming that 0.5 lbs. = 100 volts, a viscous
force of 2000 lbs. will produce 100 volts at the output of amplifier 7.

Let ué now assume that the diode function generator is inserted
following amplifier 7. From Figure %.3.2 it is evident that we want the
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function generator to pass the viscous damping force output without
attenuation until it reaches + 100 lbs., at which point the output
must saturate. From the previous paragraph we see that this will
correspond to a + 5 volt output, since 2000 1lbs. = 100 volts from

amplifier 7. Hence the diode function generator must be set up as
shown in Figure 3.3.3.

VOLTS
OUTPUT

AP U —— !

/ | [\\\\\\ DIODE
O—ANN 7 FUNCTION

/
d - L,//// GENERATOR
1 #5 vouts ool NiYe) -

y INPUT

-

TO AMPLIFIERS | AND 3
] -5 «—

Figure 3.3.3. Diode Function Generator Simulation
of Nonlinear Shock Absorber.

Actually, it would be better to utilize more of the full-scale output
of the function generator than + 5 volts. For example, if the function
generator output were fed into amplifiers 1 and 3 through 1.0 meg
resistors instead of 0.25 meg resistors, the function would need to be
magnified by a factor of 4, and the characteristic of Figure 3.3.4

would apply. This would use more of the full-scale output range of the
function generator.

4. Scaling of FEigenvalue Problems.

Since the electronic differential analyzer can integrate only
with respect to time, it can solve only ordinary differential equations.
In order to solve partial differential equations, we must first convert
them to one or more ordinary differential equations. This can be done
either by.separation of variables, in which case an eigenvalue problem

results, or by finite-difference techniques. In this section we will
consider the eigenvalue problem.
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Figure 3.3.4. Improved Diode Function Generator Simulation
of Nonlinear Shock Absorber.

4.1 Equation for Heat Flow

As a simple example of a well-known partial differential
equation, let us consider the heat flow problem shown in Figure hfl.l.
Here we wish to find the temperature u in an infinite conducting slab
as a function of distance X through the slab ‘and time t. The left
boundary at X = O is held at constant temperature ugy, while the right
boundary 1s an insulator. If C is the heat capacity per unit volume of
the slab, and K is the thermal conductivity, then the equation of heat
flow balance is

0 —=—K=— (4.1.1)
with boundary conditions
u(0,t) = 0, _S_u. (1,t) = 0 (k.1.2)
X

In solving partial differential equations it 1s almost always wise to
introduce dimensionless time and space coordinates. First ¢onsider a
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Figure 4.1.1 Heat Flow Through a Slab.
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dimensionless space coordinate x given by

=X (h.1,
X T ( 3)
Then
Q.90 & _1 9 (h.1.4)
X ox dx L ox

In general the heat capacity C and thermal conductivity K may be func-
tions of x. Let ' ’

c(x) = Co B (x) (+.1.5)

and

K(x) = Ky i (x) (4.1.6)

Where Cyand Kprepresent the maximum values of C and K, and where ¢C(X)
and ¢K(x) are dimensionless functions which represent the variation of
heat capacity and conductivity with x, and which have a maximum value

of unity. In terms of (4.1.4), (4.1.5), and (4.1.6) Equation (4.1.1)

becomes

C W=l O [f(x) X h.1.
Eg;zﬁc(x) - [Bye (x) =] (.1.7)

Next we introduce a dimensionless time variable t given by
Kot
t = ——% (4.1.8
CoL )

In terms of t Equation (M.l.?) becomes
du _ 9 ou
_— =T X = l".:L-
with boundary conditions
u(0,t) = 0, ég(1,t) =0 (%.1.10)
ox
Let the initial temperature distribution be denoted by
u(x,0) = U(x) (4.1.11)

Equation (4.1.9) with boundary conditions of (4.1.10) and the initial
condition of (L4.1.11) defines our heat-flow problem.



-23.

4.2 The Eigenvalue Problem

To solve Equation (h,l.9) by separation of variables we
assume that

u(x,t) = X(x) T(t) (k.2.1)

Substituting (4.2.1) into (4.1.9) we have

g <) ar(t) _ -4 <) ax(x
X(x) fo(x) L8l = p(x) L g (x) o)y
1 ar(t) - 1 4 [@(X) axX(x) 4
T(t) at folx) X(x) ax &y 0.2)

Since the left side of (4.2.2) is a function only of time t while the
right side is a function only of distance x, to be equal for all t and
x they must both equal a constant, say -p. Thus

1 dT- g or L 4pr=0 (k.2.3)
T at dt

In the same way
a4 x X =0 b2k
= [y (x) dX] + B fe(x) ( )

The solution of Equation (4.2.3) is simply the exponential decay
T = re Bt | (k.2.5)
where A is an arbitrary constant.

The boundary conditions (4.1.10) of the original problem will
be satisfied only if
: dX
X(o) = (1) Q1) 0 (k.2.6)
dx
Equation (4.2.4) can be solved with the boundary conditions of (4.2.6)
only for discrete values of the constant f. These discrete values, By,
are called elgnevalues, and the corresponding solutions Xn(x), are called
eigenfunctions or normal modes. . Once the B, and X, are computed, ‘the
complete solution can be written as the infinite series of functions.

u(x,t) = nzi AX, (x)e~Pnt (M.E;Y)

where the constants A, are determined by‘the initial temperature distri-
bution U(x).
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4.3 Computer Solution of the Eigenvalue Problem

We will now consider the computer circuit for solving
Equation (4.2.4). To simplify the problem, assume that the thermal
conductivity is constant throughout the slab, so that ¢K(x) =1,
Then Equation (4.2.4) becomes

93% +B Polx) X =0 (%.3.1)
dx

with boundary conditions
X |
X(o) == (1) =0 L.3.2
() = & () (5.3.2)

Since the electronic differential analyzer can integrate only with re-
spect to time, we must let X correspond to time on the computer. Thus
(4.3.1) is analogous to a mass-spring problem with a time-variable
spring constant. The boundary'conditions»become initial and final
conditions; we must find a computer solution which, starting with zero
initial X, have zero X' one unit of computer time later. We will, of
course, find such computer solutions only for discrete values pp of
the parameter B. The lowest such value of B we call By, the next
lowest Bo, etec.

In determining the computer circuilt we must try to make the
time constants of the two integrators about equal and the gain of any
summers about unity. With this thought in mind the circuit of Figure
4.3.1 has been drawn. In this circuit RC seconds equals one unit of
computer time and hence unity in x. Thus if we wish the problem to run
for 5 seconds, corresponding to x running from O to 1, we might let
R = 5 megohms, C = 1 mfd.

Since potentiometer 1 cannot exceed unity in 1ts setting but
should not be too low in value, the additional factor a2 is incorpo-
rated with B, so that the potentiometer is actually set at GQB. In
this way we can always choose O such that potentiometer 1 is reasonable
in value.

The method of solution is as follows: We select a convenient
time length for the problem, say 5 seconds. This sets RC for the inte-
grators at 5 seconds. We then guess at a value for B and hence a reasona-
ble setting for a. Starting with zero initial X and arbitrary dX/dx
(initially the output of amplifier 1 should be close to 100 volts to use
up full scale) we run the problem and by means of a recorder determine
whether the output of amplifier 1 (i.e., dX/dx) vanishes 5 seconds later.
If it doesn't (and it never will the first time), we try a new value of
B and repeat the run. After a moderate number of trials it 1s possible
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Figure 4.3.1. Circuit for Determining Eigenvalues.

to converge on the correct B necessary for an exact solution which
satisfies the end condition. During the convergence process it may
be necessary to change the setting of o in order to keep potentiometer
1l at a reasonable setting.

A sketch of some typical solutions along with the f and O
settings is shown in Figure 4.3.2.

For each solution the initial condition on amplifier 1 should
be adjusted as necessary to make X, the output of amplifier 2, reach a
maximum of near 100 volts. This will allow accurate use of the multi-
plier.

Note also that the input x to the function generator is ob-
tained from an integrator with the same time constant as integrators
1 and 2 and with a -100 volt input. This generates an output starting
at zero and sweeping in RC seconds to 100 volts. This represents the
input necessary for the function generator to use up its full scale.
Since ¢c(x) was designed to have a maximum value of unity, this will
correspond to a maximum output voltage of 100 volts from the function
generator.
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Figure 4.3.2. Typical Computer Determinations of Eigenvalues.

When using nonlinear equipment it is particularly important
to scale inputs and outputs so that they use up nearly the full avalla-
ble voltage range, in most cases + 100 volts. This is because the
nonlinear equipment, either function generators or multipliers, is the
weakest link with regard to accuracy, particularly zero drift. This is
not quite such a problem when servo-type nonlinear equlpment is used,
however. ' '

5. ©Scaling of Difference Equations

It was pointed out at the beginning of Section 4 that partial
differential equations must be converted to ordinary differential equa-
tions before they can be solved with the electronic differential analyzer.
In Section 4 this was accomplished by separation of variables, resulting
in an eigenvalue problem. In this section it will be accomplished by
replacing derivatives with respect to the distance variasble by finite
differences.
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5.1 Basic Difference Equations for Heat Flow

As in the previous section, the problem of heat flow in a slab
will be used to illustrate the solution of a partial differential equa-
tion by difference techniques, and, in particular, the scaling of such
a problem. Consider the problem illustrated in Figure 4.1.1. After in-
troducing a dimensionless distance variable x = ¥X/L and a dimensionless
time variable t =Y(KO/COI?)E, we have for the equation describing the
temperature U in the slab

du _ 0 du
¢c(x) S‘E = = [féK(X) &] (4.1.9)
with boundary conditions
u, (0,t) = o, ou (1,t) = 0 (4.1.10)
ox
and initial condition
u(x,0) = U(x) (k.1.11)

Instead of considering the temperature u at all values of x, let us

consider u only at certain discrete stations in x, as shown in Figure
5.1.1.

///_o
7,

X=0

INSULATOR

Figure 5.1.1. ©Slab Divided Into Discrete Stations.
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Let the separation Ax between stations be a constant, and let uy de-
note the value of u at x = 0, uj denote the value of u at x = &x, up
denote the value of u at x=2Ax, u, denote u at x = nAx. Then clearly
a good approximation to the heat flux frou/dx at the n-1/2 station is

|
b2 oDman ) (5.0

|n-1/2 &

Here ¢K _ is the value of the dimensionless heat-conduction parameter
¢K at x = (n—l/2)Ax. In the same way we can approximate

3 [y )

ox ox
at the nth station as

‘ du

Olpe B =L {ige M - I 2 }

ox ox n Ox X n + 1/2 ox pn - 1/2

(5.1.2)

Thus the equation for heat flow balance at the nth station becomes

dnn l

Ben at ~ ()? [¢Kn +1/2 (un+1 - un) - P, - 1/2 (un - up-1)]
(5.1.3)

Note that since uy is the temperature at a fixed value of x (e.g.,
X = nAx), Oup/Ot becomes the total derivative duy/dt with respect to
time.

Equation (5.1.5) is iterated for each of the stations across
the slab. If there are N stations in all, then a set of N simultaneous
first-order equations results. The boundary condition at the left edge
vhich says that u(o,t) = O is replaced by

u, = 0 (5.1.4)

and the boundary condition at the right edge which says that %% (1,t) =0
is replaced by

uy = uN + 1 (5.1.5)

The initial condition u(x,o) = U(x) becomes an initial condition on
each of the station temperatures u,.
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5.2 Electronic Differential Analyzer Circuit

From the discussion of the boundary conditions in the pre-

" vious section it should be clear that for N active temperature stations,
there are actually N +-l/2 distance increments Ax making up the slab
thickness of unity, i.e., the right boundary occurs at the N + 1/2
station, and Ax = 1/(N + 1/2). For reasonable values of N, say N = 10,
the coefficient 1/(Ax)2 in Equation (5.1.3) will be very large. This
will make scaling of the cbmputer circuit more difficult, so the (Ax)2
term is often incorporated into the time variable. Thus let a new
time-variable T be given by

= (N +1/2)2 ¢ (5.1.6)

Equation (5.1.3) then becomes

dup ,
Pon 7o ™ Pa s 1/2 (ume - un) - P, 1/2 (g - wpo)
(5.1.7)

where the ﬁcn or ¢Kn 4 1/p 8Te the order of unity. Thus the scaling of

Equation (5.1.7) is particularly simple. The electronic differential
analyzer circuit is shown in Figure 5.2.1. Note that RC seconds equals
unity in 7. Often RC = 0.1 second is chosen for the integrator time
constants when solving heat-flow problems. Thils is because for large N
the dimensionless time variable T must take on large values to repre-
sent reasonable excursions in the original dimensionless time variable
t [see Equation (5.1.6)]. Hence it is convehient to speed up the com-
puter by at least a factor of 10 in relation to the variable T.

To summarize, in scaling a partial differential equation for
the electronic differential analyzer when using difference techniques,
the original Equation (4.1.1) was simplified by introducing dimension-
less distance x and dimensionless time t. After writing the difference
Equation (5.1.3) we eliminated the Ax from the equation by introducing
a new dimensionless time variable T. The resulting Equation (5.1.7)
was then in such a form that the computér circuit of Filgure 5.2.1 satis-
fied the basic aims of scaling, i.e., summers with unity or near unity
gain, integrators with equal time scales, and potentiometer settings
near unity.

6. Summary

The basic points to remember in scaling mathematical problems
for the analog computer are as follows:
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Figure 5.2.1 Circuit for One Dimensional Heat Flow
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1. Bet the gains of all important summing amplifiers close
to unity.

2. ©Set the RC time constants of all important integrators
to approximately the same value.

3. Arrange the circuit so that all important potentiometers
are set between 0.100 and 0.999.

L. Arrange the time scale in the machine so that the band-
width capabilities of the operational amplifiers, nonlinear
computing elements and recording equipment are not exceeded.
Calculation of system natural frequencies will help in
choosing a time scale. Use dimensionless time wherever
possible,

Although all these rules must be broken from time to time, it
‘will generally be true that when a mathematical problem has been properly
scaled for the analog computer, the output voltages of all the important
amplifiers in the circuit should approach full scale at some time during
the solution.



APPENDIX

BASIC CHARACTERISTICS
OF OPERATIONAL AMPLIFIERS

A.1 Summing Amplifiers

The basic building block of the electronic differential
analyzer is the operational amplifier} This consists of a high-gain
d-c amplifier with a feedback impedance and one or more input imped-
ances. For summation the impedances are all resistors, as shown in
Figure A.1.1.

INPUT
VOLTAGES

HIGH GAIN DC
AMPLIFIER, GAIN = -4

Figure A.1.1. Operational Amplifier as a Summer

Here eg, ep, and e; are the input voltages, and e, is the output voltage.
If we neglect any current into the amplifier itself (this neglects the
grid current in the first stage of vacuum-tube amplification and is.
normally justifiable),then the sum of the input-currents equals the
feedback current or

ig + ip + 1g = 1f : (A.1.1)

-32-
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But from Ohm's law,

where e' 1s the input voltage to the amplifier proper. Using similar
expressions for iy, 1,, and ip, we have

- ! _ ! - ot o
g S . €y e €a e € (S

+ = o) (A.1.2)
Ry Ry Ra Ry
But eqg = -pe', where p is the gain of the amplifier (thé minus sign
takes care of the phase reversal). Thus e! = ‘eb/u and Equation (A.1.2)
can be solved for ey, obtaining -
R R R
- (iea'l'ieb +_£ec)
Rg, Rp Re
E, = (A.1.3)

1 R Rf Re
1+=(1+==+=—+=—
u( Ra  Rp Rc)

Normally the amplifier gain p 1s quite large (between 350,000 and
100,000,000) and hence p >> 1 + Re/Ry + Re/Ry + Re/Re for a properly
scaled summer. Thus the denominator in (A.1.3) is essentially unity,
and the summer output is seen to be proportional to the sum of the in-
put voltages, the constant of proportionality in each case being equal
to the ratio of feedback to input resistance.

Next let us consider the effect of nolse in the amplifier.
If the noise is very low in frequency,we refer to it as drift. In any
case 1t is convenient to designate the noise as the equivalent voltage
en which would need to exist at the amplifier input in order to produce
the same effect on the output as does the noise. If this 1s the case,
then,the equation relating e' to eq is

ep = —ufe' + en) (A.1.4)

We can eliminate e' between Equations (A.1.2) and (A.1.4t), obtaining

e, = - Re eg +'§£ ep + gi ec] - [1 + Rr , Be 4 Ei] e

n
° Ra b c Ry Rb Rc

(A.1.5)

Here we have assumed p >> 1 + Re/Rg + Re/Bp + Re/Re
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The second term is the output due to the noise e, referred to input.
Clearly the higher the gain of the summer, the larger the noise compo-
nent in the output. For example, for a summer with three inputs repre-
senting a gain of 10 each, the output noise = 31 en. For ep = 10-5
volts offset due to drift, the output drift will be 31 x 10-3 or 0.03
volt. For ey =5 x 10-3 volts rms of high-frequenecy noise, the rms
noise in the output will be 0.15 volts rms. On the other hand, no
matter how low the summer gain is made, the output noise will always

be at least e,. This may be seen by setting R;j = Ry = R, = «» in (A.1.5).

Finally, let us consider the dynamic error of a summer re-
sulting from the limited bandwidth of the dec amplifier. This is best
illustrated by calculating the phase shift of the summer for sinusoidal
inputs of frequency w. One might realize, of course, that the d-c
amplifier gain p is actually a function of frequency, and for reasons
of stability will fall off approximately as l/w for large frequencies
®.  In general let p(®) = yp(w) ¢dP1(®) where u] is the magnitude of
the amplifier transfer function and ¢1 is the phase shift of the ampli-
fier transfer function. Then from (A.1.3) it 1s apparent that the
summer output voltage due to the input voltage eg = Eed®t ig given by

- Eﬁ Ee‘jwt
R
ep = v & (A.1.6)
1+ & - (1 + Re , Be . Rf)
M1 Ry Ry Re

Often the amplifier phase shift ¢l is the order of -90° or -ﬂ/2 radians.
If the gain

R

w >> (1 + =L

Rq

R
_f+.R_f)
R, R

+
(&4

which is in general still a good assumption, then the summer output e,
for the sinusoidal input e, can be written as

e0=-E£E [1-4d (1+Eﬁ'+Ei+E£)] edot (A.1.7)

R, ML . Ry BRp Re
> e ged (@t + Q) (1.1.8)
a

where the summer phase shift o is given by

Q= - L (1 + Re + Eﬂ + Eﬁ) (8.1.9)
K1 Ra Rb Re
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As in the case of the noise or drift effects, the summer phase shift
becomes proportional to one plus the summation of the summer gains.
Thus the larger the gains, the more the phase shift. However, even
for zero gain the phase shift is l/ul. Thus the maximum bandwidth is
obtained by distributing gains evenly through summers.

A.2 TIntegrating Amplifiers

When the feedback resistor Re in Figure A.1.1 is replaced by
capacitor C, the operational amplifier becomes an integrator. Since
the capacitor has an impedance l/Cp, where p is the operator d/dt,
Equation (A.1.3) becomes

e = - (El(—?i e Ei?_P o R_c—laiec) (A.2.1)
l+%1[l * R.;LCp * R]j_Cp * R;LCp
if
w > 1+ i ., 1, 1 1,
ReCp  RyCp RLCp
then
eo = - [f [-5%5 eg + Rb% ey + ﬁi_c eo] at (A.2.2)

where l/p has been replaced by the integral. Thus the output is pro-
portional to the integral of the sum of the input voltages.

Next let us consider the effect of noise or drift voltage e
referred to the integrator input. Replacing Rf by l/Cp in Equation
_(A.l.5) we have

n
' _rpl 1 1 _
co=llggea*trgger tggeeld

1 1 1
- + + + e dt A.2.
len + [ (Gl * 55 * ) o] (a.2.3)

Here the second term in the brackets is the output resulting from the
nolse ey. It not only appears directly but is also integrated, as if
en applied to each of the input resistors. This second error can become
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quite serious for open ended integrations when ep repreéents a drift
voltage. For example, if eﬁ =.10"2 volts and

I+ 1+ 1 =3 = 30 sec™L P

R,C R,.C R,C 0.1

after 20 seconds the integrator output would be 20 (30) 103 = 0.6 volt.

Up to now we have neglected the grid current ig flowing into
the amplifier. This may sometimes not be possible for integrators. One
can show that grid current produces an integrator output voltage given
by f(ig/C)dt which, of course, is added to any other integrator outputs.
Note that the effect of grid current is independent of the input resis-
tors. TFor example, if ig = 10-10 amps and C = 0.1 microfarads, the
output of an open-ended integrator will increase at lO‘5 volts per
second due to grid current. '

Finally, consider the bandwidth problem with integrators. We
have seen that the ideal integration given in Equation (A.2.2) is
achleved only if the amplifier gain

1 N 1 1 ]

|_,|.>>[]_+

At very high frequencies p will fall off until this approximation no
longer holds. In general the additional integrator phase shift at a
high frequency w is approximately -l/ul, where py is the amplifier gain
at that frequency. Generally this is not a severe limitation compared
with summer phase shifts.

At very low frequencies

1 1 1 1
/& "R

becomes
Ra . Rb RC
which can become quite large, so that again the approximation

u > [1+ (g; + ﬁ% + é;) é;]
is no longer valid. Also, leakage resistance of the feedback capacitor
is a limiting factor at low frequencies. Thus integrators cannot be
operated at too low a frequency. However, since the leakage resistance
of the capacitors is generally 1012 ohms or higher, and since p may be
107 or greater for drift stabilized amplifiers, this low-frequency
limitation is seldom met in practice.



PART II

SCALING OF NONLINEAR DIFFERENTIAL EQUATIONS
FOR THE ELECTRONIC DIFFERENTTAL ANALYZER

1. Introduction

In Part I we treated a number of linear examples, including
a mass-spring damper system, a two-degree-of-freedom automobile ride
problem, and the equation of heat flow solved first by separation of
variables and secondly by the difference method. In one of these
examples, the two-degree-of-freedom ride problem, the inclusion of a
simple nonlinearity in the viscous damper was considered. - At the
end of Part I the following basic points to remember in scaling pro-
blems for the analog computer were made:

1. Set the gains of all important summing amplifiers close
to unity.

2. Set the RC time constants of all 1mportant integrators
to approximately the same value.

5. Arrange the circuit so that all important potentlometers
are set between 0.100 and 0.999.

4. Arrange the time scale in the machine so that the band-
width capabilities of the operational amplifiers, nonlinear computing
elements, and recording equipment are not exceeded. Calculation of
system natural frequencies willl help in choosing a time scale. Use
dimensionless time whenever possible.

It is the purpose of Part II of these notes to consider the

problem of scaling of nonlinear differential equations by considering
a number of examples.

2. Example of a Control System, Including Nonlinearities

Consider the feedback control system shown in Figure 2.1,
Here © represents the output of the system and can be considered an
angle of shaft rotation. The input is ©;, the desired shaft angle.
The purpose of the controller is to make the output angle 6, equal
the input angle ©;. To accomplish this, the output is fed back to
the input and subtracted from it, producing the error signal € = 84~ 04-
To this signal is added a quantity proportional to the output rate, i.e.,
-Cdéo, in order to provide damping. The resulting signal e - Gdéo is
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Figure 2.1 Schematic of Feedback Control System.

fed into an amplifier which produces an output torque Ty = p(e - Cg8o),
which is applied to the output shaft. In addition there is a torque

¥ C due to the coulomb (dry) friction.* If we assume that the system
has inertia I and a viscous-damping constant f referred to the output
shaft, then the transfer function relating the total torque T, applied
to the output shaft and 6,, the output angle, is simple 1/(Ip® + fp)

as shown in the figure, where p is the operator d/dt.

Next consider the torque amplifier as a linear device which
saturates at the output torque level + T,. Figure 2.2 shows the in-
put-output characteristic. In order to have a specific problem, let
us assume the following values for the parameters in the problem:

I =0.05 slug ft° T, =5 ft#
f = 0.25 ft# sec C =0.2 £t
b = 50 ft#/rad Cq = 0.03 sec

The equations describing the system can be written from
Figure 2.1. Actually, in this case it is just as easy to proceed
directly from the figure itself in determining the eomputer circuit.
Without regard for scaling and as a point of departure, consider the
differential analyzer circult shown in Figure 2.3. Here the diode
function generator (DFG) following amplifier 2 is used to represent

*¥Actually, the coulomb friction torque is equal and opposite to Ty for
|To| < C, and is equal to FC for 8, positive or negative, respectively,
when |T,| > C.
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Figure 2.2 Torque Amplifier Characteristic

the amplifier torque saturation characteristic of Figure 2.2 Pot 1,
set at 1/u, is connected in the feedback loop of amplifier 2 to pro-
vide an amplifier gain of u for the case where p > 1. For p <1 the
pot would be inserted between amplifier 2 and DFG no. 1. Amplifier
6 with no feedback resistor drives a second DFG the output of which
represents the coulomb frinction torque + C.*

2.1 Circult Using Direct Representation of the Problem Variables

Let us redo the circuit in Figure 2.3 with proper scaling.
One of the most popular methods of scaling nonlinear problems is to
let a convenient computer unit, say one volt, equal unity in each of
the problem variables. Scaling is then accomplished by appropriately
relabeling each amplifier output. For éxample, in Figure 2.3 the
input 61 and output 6, represent angles, so that we might let 1 radian
equal one volt. Then if the full-scale range of input and output.

* Actually, a pair of biased diodes can be connected across amplifier
6 so that the amplifier has no feedback (i.e., wide-open gain) until.
the output voltage reaches ‘the diode bias voi%age, at which point
one of the two diodes conducts and the amplifier does not overload.
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angles 1s + 2 radlans, this will represent + 100 volts providing we
lebel the input as 50 61 and the output as 50 9, (see Figure 2.4).

In the same way the output of amplifier 1 is 50e. Thus if amplifier

1 has a 20 volt ocutput, 50€ = 20 volts = 20 radians, and € = 0.4 radian.

We have already seen that summer gains should be kept near
unity. But amplifier 2 in Figure 2.3 has a gain of p where u = 50.
We can reduce this to a gain of 2 by relabeling the amplifier output
so that it is l/25th what it otherwise would have been. In Figure 2.4
we see that the output of amplifier 2 becomes (1/25)[-u(50€ --50C38o) ]
= 2u(e - Cdeb). Again 1 volt equals one unit of the output varilable,
i.e., 1 £ 1b of torque. Thus an output of 5 volts from amplifier 2
would mean that - 2u(e - Cg6,) = 5 volts = 5 £t lbs, and the unsaturated
torque output p(e - Cgdo) = -2.5 ft lbs. If we let the diode function
generator have a gain of unity in the unsaturated region, then it should
saturate at an input voltage level corresponding to u(e - Cdéo) =+ T, =
+ 5 ft 1bs, or 2u(e - Cg6y) = + 10 volts. Thus the DFG has unity slope
for inputs smaller than 10 volts in magnitude, and saturates at + 10
volts for larger inputs. The output of the DFG represents -2T.

We could have let amplifier 2 have a gain of unity by reducing
its gain by a factor of u rather than p/2. But by keeping pot 1 in the
circult we can make small adjustments in u without repatching the cir-
cult.

Since the input to amplifier 3 from DFG no. 1 is -2T,, so
also is the input from DFG no. 2 given by + 2C, representing the coulomb
friction torque. Since C = 0.2 ft lbs, + 2C = + 0.4 ft 1bs = + 0.4 volts.
Because the DFG is not very accurate at such low voltage levels, in
Figure 2.4 we have let the output be + 4 volts and then added a pot
set at 0.1 to attenuate the output.

The output of amplifier 3 in Figure 2.4 is 2T,, where again
1 volt = 1ft 1b. Note that we need a total gain of (1/2I)(50) = 500
through integrators 4 and 5 in order that the output of 5 will be 50 Bo-
Following the rule of distributing gains (i.e., time constants) approxi-
mately equally through integrators we have let integrator 4 have a gain
of 25 and 5 have a gain of 20, as shown in Figure 2.4, The setting on
pct 2 1s then 1/80I = 0.250 while the setting on pot 3 is £/8I = 0.625.

The input to pot L4, which sets the derivative feedback
constant Cp (Cp =.0.04% sec) 1s now -2.5 8y, while the output of pot 4
should be -50 Cdéo. Hence the setting of pot 4 is 20 Cp =9.8.
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The circuit of Figure 2.4 is now adequately scaled. All
amplifier gains are reasonable and amplifier outputs are labeled so
that one volt equals unity in the particular output variable. If
the time scale 1s not correct, e.g., if the solution is too fast for
the type of recorder being used, the RC time constant of integrators
4 and 5 can be changed. Thus the solution can be run at l/lO real
time by replacing the 0.1 mfd feedback capacitors with 1.0 mfd cap-
acitors.

When scaling nonlinear problems using the technique of this
section, or, for that matter, using any technique it 1s important to
know the expected full-scale range of the variables. If this is not
known in every case, then a reasonable guess must be'made, subject to
correction after the problem has been set up and several trial solu-
tions run off. In general the scaling has been successful if, during
the course of a solution, the output voltage of each amplifier in im-
portant computing loops reaches some reasonable fraction of full scale
output, normally + 100 volts. This is particularly important at the
input to nonlinear elements, since their accuracy is usually the limit-
ing factor in the overall computer accuracy.

3. The van der Pol Equation

An example of a famous nonlinear differential equation which
represents an interesting scaling problem is the van der Pol equation,
which represents the behavior of certain electronic oscillator circuits.
After choice of a dimensionless time variable, the van der Pol equation
results:¥

x=pu (1 - xg)i +x=0 (3.1)

where y 1s a constant. This can be thought of as a mass-spring-damper
equation with unit mass and spring constants and a damping constant

which 1s negative for [x| < 1 and positive for ]xl > 1. It turns out
that regardless of the initial conditions the solution x reaches a

stable 1limit cycle of amplitude approximately 2. By a stable limit

cycle 1n this case we mean a periodic solution which is always approached
regardless of the initial conditions. This is evident in the curves of
Figure 3.1, which show differential analyzer solutions for pu =0, 1,

and 5.

This problem is an example of one where prior knowledge of
the general nature of the solution is extremely helpful in scaling the
problem. If such knowledge is not available, then one must make some
reasonable guesses. Since we know in this case that the solution x

* J. J, Stoker, Nonlinear Vibrations, Interscience Publishers, Iné.,
New York, 1950; pp. =247-252. '
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will not normally exceed + 2 in magnitude, we can make a choice in
voltage scale for x. 1If we were to follow the procedure used in the
previous section, we would let unity in x be one volt. Then 50 x
should be the quantity we compute, since x = + 2 would correspond
to + 100 volts.

However, in this section let us use a slightly different
scaling technique. Let x be the quantity we compute rather than
50 x. To have x = + 2 correspond to + 100 volts, then, we should
let unity in x be 50 volts.

Reference to Equation (3.1) shows that all terms are linear
. except the term p x°%x. This can be obtained by multiplying X by x
and the resulting product by x again. Almost all analog-computer
multipliers, whether electronic or servo-type, produce 100 volts
output when the two inputs are each 100 volts. Thus a multiplier
with inputs X = + 100 volts and x = + 100 volts produces an output

of 100 volts. But if unity in x = 50 volts (similarly in %), the
product % x should in this case be 2 x 2 = k4, which corresponds to

200 volts if 50 volts équals unity. Thus the actual analog multiplier
output of 100 volts corresponds to ivx/2. In general, if unity in
each of the problem variables equals V volts, then the output Z of an
analog multiplier with inputs X and Y is Z = XYEES . This assumes

the computer reference voltage is + 100 volts.

This is illustrated in Figure 5.2, which is the circuit for
solving van der Pol's equation. Multiplier no. 1 has inputs of —X/S
and x, and since unity = 50 volts, the output is -x%/10. Similarly,
the output of multiplier no. 2 is -x“x/20.

The scaling of this equation is made particularly difficult
for large values of p because the velocity x and acceleration X go
through much larger peak values than for a simple-harmonic oscillator
(b =0). This is evident in Figure 3.1. This is the reason X/10 and
-x/5 are computed in Figure 3.2 rather than x and -X, respectlvely,
which would have been more reasonable were it not for the p(l - x )x
term. Actually, when u = 5 the circuilt of Filgure 3.2 is fairly close
to being scaled in an optimum fashion, i.e., the outputs of all ampli-
fiers exhibit near full-scale voltage excursion during the solution.
For higher values of pu the gains of integrators 2 and 3 must be in-
creased even further, with an accompanying reduction in gain of ampli-
fier 1 for the x input.

Had we mnot known the nature of the solution to van der Pol's
equation we would probably have scaled the circuit with unity gain in
amplifier 1 for the x input and equal gains (time constants) in ampli-
fiers 2 and 3. For large p we would have observed overloads in ampli-
fiers 1, 2, .and 5, and would have had to rescale the problem in a
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manner similar to Figure 3.2. Note that pot 4 is placed in the feed-
back loop of amplifier 5 and is set at 1/2 u. This gives amplifier 5
a gain of 2u. An alternative approach would have been to place pot L
between the output of amplifier 5 and the 0.1 meg input resistor to
amplifier 1. However this would limit p to a maximum value of 0.5.
By giving amplifier 5 a gain of 10, the maximum value of pu could be
raised to 5 (pot 4 would be set at p/5); however, by placing pot k4

in the feedback loop of amplifier 5, we can set p at any value above
0.5, being limited oniy'by the possible voltage saturation at the
amplifier output. For the p = O case, the output of amplifier 5

into amplifier 1 is disconnected.

If the multipliers used for this problem are of the servo
type, thén the high velocity and acceleration in x for large p (see
Figure 3.1) may exceed the servo capability. Under these conditions
the computer time scale can be slowed by decreasing pots 1 and 2 by
the same factor. In fact, if these pots are available ganged together
on a common shaft (a servo multiplier with multiple ganged pots works
well for this purpose), then the time-scale pots always move together
and we can slow computer time down or speed 1t up right in the middle
of a solution. If an XY recorder is used with an integrator output
on the x axis to glve a time sweep, then a third ganged time-scale pot
at the integrator input slows down or speeds up the recorder sweep
simultaneously with problem time-scale changes. Thus we can slow the
problem down in the areas where x changes rapidly and speed it up in
other areas so as not to exceed the dynamic capabilities of multipliers
1l and 2, 1f they are servo driven.

4, Solution of the Satellite and Ballistic-Missile Trajectory Problem

An interesting problem which illustrates several techniques
in scaling is the problem of the trajectory of a satellite or ballistic
missile. We will consider the vehicle a point mass m and will assume
that the earth provides a pure central-force gravitational field. As
long as we neglect any external forces other than gravity (i.e., neglect
any power plant or serodynamic forces), then the fact that the angular
momentum of the body remains constant requires the motion to take place
in a plane which contains the center of the earth. Hence it actually
becomes a two-dimensional problem, and we choose to use polar coprdinates
r, © to describe the location of the point mass m in the plane of motion.
Thus let r be the distance of the body from the center of the earth and
© be the polar angle, measured from an arbitrary reference line, as
shown in Figure 4.1. Note that the plane of the motion (the xy plane
in Figure 4.1) is non-rotating with respect to inertial space, i.e.,
the earth's surface rotates with respéct to this plane.
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In Appendix A the following

familiar equations are derived:
VELOCITY

g Ro”
VECTOR 3 _ 14° - _Q;EQ. (4.1)

m and
re+2re =0. (k.2)
S Here g, 1s the acceleration
X due to gravity at the surface

of the earth, and Ry is the

radius of the earth (we assume

a purely spherical earth for
EARTH simplicity).

Equation (L4.2) actually
represents the condition of
constant angular momentum,
since d/dt (r248) =r § + 2r 4.
Thus Equation (4.2) can be
Figure 4.1 integrated to give

m r% = p = constant angular momentum (4.3)

From Equation (4.3)

6 =5 . (4.1)
Equations (4.1) and (L4.4) must be solved to determine the
trajectory of the point mass m. They are clearly nonlinear. Often
the scaling of nonlinear problems is simplified by introducing a
dimensionless dependent variable. Here we let the ratio of r/RO
(actual radial distance to earth's radius) be denoted by p. Then
Equation (4.1) becomes

5=pé2-§9§2 . (4.5)

We have seen previously that the scaling is also frequently
simplified if we define a dimensionless independent variable, here time.

The choice is evident if we write Equation (4.5) as

1 d% _ 1 (982 1
— =P — (——) -
8o 4t g, dt p

RO RO
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where
c = A2 Po veo/v .

Again all quantities are dimensionless including VQO/VE, the
ratio of initial tangential velocity to the escape velocity.

Now that all variables, both independent and dependent, are
expressed as dimensionless quantities, the scaling is relatlvely simple.
The differential analyzer circuit is shown in Figure 4.2, where we have
let 50 volts on the computer be unity. Since the solution is in terms
of the polar coordinates p, 8, we need to convert to rectalinear coordi-
nates x and y to record the trajectory on an XY plotter. This can be
accomplished using the conventional servo-driven sine-cosine pot shown
at the bottom of the figure, where from Figure 4.1 it is evident that
x/R, = p cos 6, y/R, = p sin 6.

In Section 3 we saw that if unity equals V volts for the
input variables X and Y to a multiplier, then the output Z = XY 1%5 .
In Figure 4.2 servo-driven pots are used in the feedback circuit of
amplifiers 4, 5, and 6. Since the shaft angle 1s in each case propor-
tional to p, the gain of each amplifier is proportional to l/p; in -
effect we have divided the amplifier input voltage by p. In general,
if unity equals V volts and the amplifier has an input X which is
divided by Y with a servo driven pot in the feedback loop, then the

amplifier output voltage Z = £ 100 .

Y V
Pot 9 in the feedback loop of amplifier 7 is used to convert
© in radians to 6 in degrees, where 50 volts = 100° for the particular
servo-driven resolver pots used in this computer. A separate pot 8 is
used to set the parameter c independently of pot 9.

If a resolver servo is hot available, a circult employing

only multiplliers and integrators can be used to obtain p cos © and
p sin @ from d9/dr and p (see Appendix B).

5. Solution of Perturbation Equations for the Trajectory Problem

The electronic differential analyzer is limited in accuracy
and probably can solve the trajectory problem of the previous section
to 0.1 - 1% accuracy. But this accuracy is not adequate for detailed
trajectory studies, e.g., determination of miss distances for ICBM
missiles resulting from small errors in velocity at cutoff. For this
reason it is convenient to introduce a perturbation vector Z?which
represents the deviation from some norm trajectory, perhaps the desired
trajectory.
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or
2
—dp - L (k.6)
So 2 o2
a( R, t)

The new dimensionless time is clearly glven by

=, (w7

(o)

from which Equation (4.6) becomes

2 2
o) - -5)

In terms of p and t Equation (4.4) becomes

a6 - /
2 mR 2 (4.9)

Next consider the initial velocity vy, which makes an angle o with the
line parallel to the earth's surface and has tangential and radial com-
ponents Ve and vro, respectively, as shown in the figure.

The angular momentum p is given by

P = mrgvecos O =1 poRoVg, (k.10)

where ro, is the initial radius
(po =T /R ). It can be shown
that the escape veloclty Vg at
the surface of the earth is

simply

vy = egg Ry - (4.11)
In terms of Voo /vy Equation (4.10)
becomes

p=m pOR 285 Ry V ) ()-#.12)

"~ which, when substitued into Equation

(4.9) yields

a6 Nepg Po _ ¢ b1
a8 _Eg: _° (k.13)

d.T' VE P
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pcosf =x /R, NOTE: The pots labeled s set the

computer time scale; s seconds of
problem time equals one second of
computer time.

P sind = y/R,

Figure 4.2 Circuit for Trajectory Equations
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Thus let
I
R=r+A (5.1)
—9 .
where r is an exact and known solutigg to the trajectory equation for
specified initial conditions. Thus r satisfies by definition the equa-
tion of motion, which can be written as

2 2 :
dr _ _ gReT (5.2)
at2 )

where we have written ep/r2 as r/r’. The equation for R, the position
vector from the earth's center to the actual location of the point mass
m, 1is

2

2=

-
—%
AR _ _ 8RR, 7 (5.3)
at2 RS

_9
where we have included an additional perturbing force f which could in-
clude aerodynamic forces, vernier thrust force, forces due to the fact
that the earth is not perfectly spherical, etc.

Let us calculate first the term §7R5 in terms of r and A.
Assume that the perturbation vector A has components A, along é? and
Ag along &g , i.e.,

2=Are_;+Age_g>A (5.4)
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Since - N
Al < |R| , REr + 4,

and

é% (rE} + A, E} + D EB) (r + Ar)'5

(rg} + A, E} + Bg EB)_(r'B . Br'k A+ LLL)

1

-

T+l (24 & + g eg] (5.5)
rd r3

Substituting Equations (5.1) and (5.5) into (5.3), we have

o R o) 2
d:+d§=_%oRgr_%§o (-2 Ar op + Ag 80) + T
dt dt r r (5.6)

But from Equation (5.2)

and Equation (5.6) becomes

Y
GEIN gOR02

‘ - - -
—5=- 50 (2 a G v ageg) ¢+ E (5.7)
This is the perturbation equation, where all of the terms are small
compared with the original terms in Equation (5 5) Next let us calcu-
late d?A/th in terms of AT and Ag. As noted in Appendix A, the coordi-
nate system with er and eg is rotating with angular velocity 0 eZ.
Thus

%%:: AT E; + ég EB + 0 EE x (A E} + N EB)
=,@Ar - N 0) E; +'(é© + A, o) e
2—»

a*_-t-g (Ar Agé‘AO'Q.):r'}'(‘A-Q"'Aré"'Ar.é):Q
+ 0 ey x [(A, - B 0) & + (Ag + A, 0) &

S8 (R -2hy6-2056-0.6) 5
+ (Bg+2Ar 0+ A 6 - A 6°) 2 . (5.8)
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: = - -
If we let the perturbing force f = fy. ep + fg eg, then Equation (5.7)
becomes from (5.8)

. .. . . O
Bp =285 0+85 0+ A o° + 2_%%5Q49E + 1 (5.9)
and
.. . o . . P
Ag=-2Ar9-Are+Ag92-_g_95%_§+fg (5.10)
r

These are the equations to be solved with the electronic differential
analyzer. Their solution will give the deviations A and Ag from the
norm trajectory. The equations are linear, since the variables r, 0,
and © are prescribed functions of time, namely, the solution of Equa-
tion (5.2). The equations have time-varying coefficients for this
‘reason.

To solve Equations (5.9) and (5.10) on the electronic differ-
ential analyzer the circuit of Figure 4.2 will be used to generate the
time varying coefficients. Thus the solution of both problems will
proceed simultaneously, the solution of Equation (5.2) acting as an in-
put in the solution of Equations (5.9) and (5.10).

Equations (5.9) and (5.10) must be rewritten in terms of the
dimensionless radius p = r/Ro and time T =~JgO/RO t. We will also assume
that fyr = fg = O 1n our illustrative problem. For economy of notation
we wil write dAn/dt as Ay, dAr/dr as Ag, etc. i.e., from now on all de-
rivatives are wlth respect to 7. Then

Zir=2Agé+A95+Ar62+%Ar (5.11)
: o
..— . . LX ] '2 l
Ag—-EArG-Ar9+AQQ-53Ag (5.12)
Also note from Equation (.2) that © is given by
o =2 P e
p

The electronic differential analyzer circuit is shown in
Figure 5.1. Note that unity is equal to 50 volts as before. However,
since the problem is now linear as far as A, and Ag is concerned, the
scaling of these variables can be changed at will without changing the
circuilt.
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5.1 Determination of Initial Conditions for the Example Problem

As an example problem we will consider a 6200 statute mile
minimum-energy ballistic trajectory (one fourth the circumference of
the earth). If © = O at launch, then 6 = 90° at impact. From other
calculations it can be shown that Voo = 0.595 vgp at launch, and

= 0.245 vE at launch, where vE = escape velocity =~2Rggg = 36,700
ft sec. Now c =2 po vgo/vE 0.8k2 Po. If we assume for simplicity
that the velocity cutoff occurs at the earth's surface, then po = 1
and ¢ = 0.842.

This provides all of the parameters and initial conditions
for the circuit of Figure 4.2 which is used to compute the reference
trajectory. As stated earlier the outputs from this circuit (e.g.,

P, é, 6) are used as inputs for the circuit of Figure 5.1 which solves
the perturbation equations. An initial value of corresponds to an
error in v, at launch,»while‘ég cor;eSponds to an error in vg. Com-
puter solutions for initial Ag and A values of 1 volt are shown in
Figure 5.2. The resulting Ar and Ag values at impact are tabulated
below. ‘

Oy = +3.25 volts
Initial Ag of + 1 volt

At impact,
Ay = -1.67 volts

A, = +2.71 volts

Initial A. of + 1 volt At impact,

g = -3.15 volts

Let us arbitrarily set 1 volt = 1000 ft. Since
b =20 R gy
dr g, dt dt

the initial AQ of 1 volt corresponds to 1000 p 1,24 ft/sec. Similarly

the initial A, corresponds to 1.2k ft/sec.o)1L

Next consider the actual mlss at impact corresponding to the
JAN and’Ag values found from the computer. A sketch of the impact
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Figure 5.1 Circult for Perturbation Equations
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‘aAr

—4A9.
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Ar = | volt

v

Ar= I volt

Figure 5.2 Computer Solutions for Perturbation Equations
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geometry is shown in the figure, and it is apparent that

.
miss = e +.Ag
~
~
~
N ~N
\ r"o . ™ \
\\\Jbbﬁo’ N
y |
.7 N N N
a N
l ~ ~
: \.
Ag -
Ar/tana

For the example here

VI‘
o = tan-l 0 =22.,5°
) VgO

and the following miss distances are computed:

. o 3250 )
Ay = 1.2k ft/sec, miss R 1670 = 6160 ft
A = 1.2h ft/sec, miss = t—ai%g“.é'; - 3150 = 3380 ft

These compare with 6930 ft and 2860 ft respectively when calculated
theoretically. Had we chosen initial conditions on Ag and A&. of, say,
50 volts instead of 1 volt, then an order of magnitude increase in
accuracy might have been expected.

‘6. Summary of Nonlinear Scaling Techniques

We have seen that in general the scaling of nonlinear problems
is more difficult than linear problems, although all of the rules for
linear scaling should, whenever possible, be followed. Thus the four
rules given in Section 1 still apply. In addition, the following rules
are helpful and have been illustrated in the preceding sections.

1. In general it 1s best to redefine a dimensionless dependent
variable or variables, e.g., the dimensionless radius
p = r/Ry, in Section 4. Under these conditions some con-
venient voltage level, say 20 volts or 100 volts can be
set equal to unity in the dimensionless dependent variable.
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Another technique is to represent the variables directly
in dimensional form and to let a convenient voltage, say
one volt, equal unity in each variable. Amplifier outputs
are then relabeled to insure proper full-scale voltage
excursions, e.g., the example in Section 2.

Amplifier gains should be selected so that voltage inputs
to nonlinear elements such as function generators and
multipliers exhibit full-scale excursion during the prob-
lem.

If V volts equals unity for the_ inputs X and Y to a multi-
plier, then the output Z = XY 100 ° For a divider the

output Z = X 100 , assuming that Z = 100 volts when
X =Y = 100 volts.

When using a diode function generator to generate f(x) it
is frequently convenient to let f(x) = fof(x), where £,
is a constant equal to the maximum absolute value of f(x)
and f(x) i§ a dimensionless function with a maximum abso-
lute value of unity; When f(x) is a pure linear function,
then ﬁ(x) is simply a linear function of x with a value
of unity at the meximum value of x. If f(x) is a parti-
cularly simple function, such as the torque-saturating
function of Figure 2.2, this procedure is not worthwhile.

Often we are concerned with small deviations from a parti-
cular solution to a linear or nonlinear differential equa-
tion as a result of small changes in initial conditions or
forecing functions. In this case the perturbation equations
can be solved with the electronic differential analyzer,

as in Section 5.

When nonlinear elements with limited bandwidth (such as
servos) are used, i1t may be useful to use a "time throttle"
consisting of ganged pots ahead of each integrator (see
the end of Section 3). This allows the solution to be
speeded up when the variables are changing slowly or to

be slowed down when the variables are changing rapidly.

In general a nonlinear equation cannot be scaled perfectly
the first time. It is usually necessary to rescale the
circuit in a number of places after running the first
solutions.



APPENDIX A

DERIVATION OF THE EQUATIONS OF MOTION FOR A POINT MASS
MOVING IN A CENTRAL-FORCE GRAVITATIONAL FIELD

Consider the equation of motion of a point mass m in the earth's
central gravitational force field. The motion will take place in a plane,
and we will use polar coordinates r and © to describe the location of
the point mass.

f

| _,

First we calculate the expression for the components of acceleration
along the direction of increasing r and ©. Let 5; be the unit vector
aligned in the direction of increasing r, and 53 be the uniE;vector
aligned in the direction of increasing ©. Then the vector R which de-
scribes the position of the point mass with respect to the origin (center
of the earth) is given by

- -
R=re,. (1)

- -

Next consider the rate of change R of the position vector R with respect
to thiéé;, éz coordinate system. Since dé}/dt = 0 in thls coordinate sys-
tem, R is simply

R =1 & (2)

But the inertial forces on m will depend on the acceleration with respect
to inertial space. Hence, we must calculate d§7dt and then d2§7dt2,
where the derivatives are with respect to inertial space. If we denote
é% as the unit vector perpendicular to é} and 53 in the figure, and hence,

directed out of the plane of the figure, then the &,., &) coordinate system
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is rotating with angular velocity éé;. Thus*

dR & -, e

a‘E=R+©e—)ZxR=ré-}+r9e_)g (3)
Similarly

d2§9 dﬁé .= ax

at dat dt

= (18} + #6ep + rbep) + (265 - ré°e))

or

4R

— = (f - rGE)E} + (r6 + 2fé)§5 ()

at

Here 2rd is the Coriolis acceleration.¥*¥

' Y
The gravitational force Fr acting on the point mass will be

Fo=-y¥M2 (5)

where 7y is the gravitational constant and M is the mass of earth. When
r = Ry, where Ro is the radius of the earth, Fr = -mg,, where 8o is the
gravity acceleration, not including the centrifugal component due to
the earth's rotation (the usual g includes this). Thus, Equation (5)

can be rewritten as ‘
2

- " (6)
r 2 r

T

% This equation, Equation (3), states that the velocity with respect to
inertial space measured in a moving system of coordinates is equal to
the time rate of change of R relative to the moving reference frame
plus the cross p{gduct of the angular veloci}y vector bé% and the
position vector R. This second term éeZ X R represents the velocity
of the coordinate system with respect to inertisl space due to the
rotation of the reference frame.

*¥* Equation (4) can also be derived from Lagrange's equation for the
point mass m (e.g., see Synge, J. L. and Griffith, B. A, Principles
of Mechanics. New York: McGraw-Hill, 1949, 458-462.
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. d2—9 -
The equation of motion is simply -m a;g + Fr.= 0, or from Equations (4)

and (6).

2
. R
i: - I'ge = - go 0

(7)

r
and

0+ 216 = 0 (8)
which are the equations which must be solved to determine the trajectory

of a ballistic missile or satellite in free flight (no external forces
such as thrust or drag).



APPENDIX B

TRIGONOMETRIC RESOLUTION IN ANALOG COMPUTERS
BY MEANS OF MULTIPLIER ELEMENTS

Many of the problems solved by analog computers require the
generation of trigonometric functions. In present general-purpose
electronic differential analyzers this is usually accomplished by
servo-driven sine-cosine potentiometers or by diode function generators.

The purpose of this appendix is to describe an alternative
method of generating sine and cosine functions which involves only
multipliers as nonlinear elements. Furthermore, this method allows
continuous angular travel through an indefinite number of revolutions,
whether servo or all-electronic multipliers are used.

The new resolving technique 1s based on the solution of the
equation

2
é;% +x=0, (1)
de
with initial conditions
_ dx _
x(0) =0, 5 (0) =1 . (2)

The solution to (1) with the conditions in (2) is simply

x = sin © (3)
y=%=cosg ()4')

which can then be used to pfovide coordinate resolutions involving the
angle O.

In (1) the independent variable 1s O, whereas the electronic
differential analyzer (electronic analog computer) can integrate only
with respect to time t. But by multiplying the integrand by dG/dt be-
fore integrating, the integration with respect to © is effectively
accomplished. Thus

[z (%%) dt = [ zde . (5)

The electronic differential analyzer circuit for accomplishing the
solution to (1) is shown in Figure 1. Note that the input to each
integrator is multiplied by do/dt (i.e., 8) before being integrated
with respect to time. The multipliers shown'schematically in the cir-
cult could be elther servo or all-electronic.
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y=0650 _yg_.

One unit in t = RC seconds

Figure 1. Simplified Computer Circuit for Trigonometric
Solution.

One difficulty with the circuit as it is shown in Figure 1 is
the tendency of the solution drift so that cos2 @ + sin® © % 1. For
example, if @ = & = constant, the theoretical solution would be
x = sin wt, y = cos wt., Due to power loss in the feedback capacitors
the solution may damp somewhat. The net result is that after several
cycles X2 + y2 is no longer unity, but perhaps a percent too low.

Other computer errors such as dynamic multiplier errors, integrator
drifts, etc., can cause similar errors.

This error in amplitude can be calculated using multipliers
and a summer to obtain 1 - (x2 + y2). Thus define the error by

€=l-(x2+y2). (6)

The magnitude of x and y can be adjusted automatically upward or down-
ward as needed by providing each integrator with negative or positive
damping proportional to €. This is shown in Figure 2 where € is com-
puted by (6) above, multiplied by x and y, and fed back into integrators
2 and 1, respectively.

When servo-driven potentiometers are used for multiplication,
this resolving circuit requires two servos, each with at least 3 multl-
plying potentiometers in addition to the reference potentiometer. The
shaft angle of each servo is proportional to cos © and sin 6, respectlvely.
This means that additional ganged potentiometers on each shaft can be
used to multiply cos © or sin © by other voltages. The output voltages
of integrators 1 and 2 are also proportional to cos € and sin O, respec-
tively.
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Figure 2. Complete Computer Circuit for Trigonometric
Solution.

If all-electronic multipliers of the time-division type are
used, two masters (one for cos 6, one for sin ©) are needed, with 3
slaves for each master. Additional slaves can be used to multiply
cos O or sin © by other voltages.

To summarize, the resolving method described here accepts
+ 6 and -~ 0 voltages as inputs, providing output voltages and shaft
angles (or master pulses) proportional to cos 6 and sin 6. The over-
all requirement is two multipliers, each with three channels, two in-
tegrating amplifiers, and four summing amplifiers.¥*

* R.M. Howe and E.G. Gilbert, "Trigonometric Resolution in Analog Com-
puters by Means of Multiplier Elements,” IRE Trans. Elect. Comp.,
EC-6, No. 2, (June, 1957), 86-92.













