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SUMMARY

This final report summarizes the investigation of the solution
of both linear and nonlinear partial differential equations by difference
techniques using the electronic differential analyzer. Complete details of
the research are given in three technical reports. Two categories of
physical problems are considered: . (1) the lateral vibration of beams,
and (2) heat flow. In both cases time is preserved as a continuous vari-
able, while the spacial variable is broken into stat‘iotns or cells. Thus
spacial derivatives are approximated by finite différences, and the re-
sulting set of simultaneous ordinary differential equations are solved by
the electronic differential analyzer.

Theoretical accuracy of the difference method as a function of
the number of cells along the spacial variable is investigated by comparing
the eigenvalues (normal-mode frequencies for the beam, decay constants
for heat flow) and normal-mode shapes with those for a continuous medium.
Results show suprisingly few cells are required for’represent'ation of the
first few modes to several percent accuracy. Theoretical as well as com-
puter solutions are obtained for cantilever, hinged-hinged, free-free, and
clamped-clamped beams, both uniform and non-uniform. Beams with
viscous 'damping and time-varying boundary conditions were also solved,
and the vibration of beams including deflection due to transverse shear
are treated by the difference method. Cantilever beams with nonlinear
damping terms such as velocity~squared damping and Coulomb damping
are solved successfully.

Dynamic heat-flow problems treated by the difference method,
both theoretically and with electronic differential analyzer solutions,
include one, two, and three-dimensional flow in rectangular media as well
as flow in cylindrical and spherical media. Change of independent variable
to imp‘rove accuracy and to solve flow in semi-infinite media is demon-

strated. The nonlinear heat equation for a medium having a conductivity



proportional to temperature is solved with the electronic differential
analyzer and results are compared with a particular exact solution.

As a result of these investigations it seems clear that the
electronic differential analyzer is an excellent tool for rapidly solving
many partial differential equations, both linear and nonlinear. There
is a one-to-one correspondence between resistor values in the circuit and
physical parameters in the problem, and the desired dependent variables
(e.g., beam displacement, velocity, bending moment, or temperature,
heat flux, etc.) are all available as time-varying output voltages of the
computer,
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SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS BY
DIFFERENCE METHODS USING THE
ELECTRONIC DIFFERENTIAL ANALYZER

INTRODUCTION

Whenever we wish to solve partial differential equations by
means of the electronic differential analyzer, it is necessary first to convert
the equations to ordinary differential equations, since the analyzer can
integrate with respect to only one variable, namely time. If the partial dif-
ferential equation is linear, this conversion to of;iinary differential equations
can often be done by separation of variables, which results in ordinary dif-
ferential equations of the Ieigenvalue type. The normal modes, or eigenfunc-
tions, can then be found, after which the complete éolution is built up by
combining the normal modes.

The above ‘method of separating variables and obtaining a series
type of solution can be carried out fairly efficiently on an electronic differen-
tial analyzer. 1-4 Certainly, for most problems the analyzer is much faster
than any hand methods. But for the engineer who is interested in getting
quantitative answers to specific problems even the analyzer approach might
seem somewhat tedious. Then too, the control engineer would often like to
have a real-time simulation of the system being controlled, and in many
cases partial differential equations are required to describe this system. It
therefore would be highly advantageous to solve the pafrtial differential equa-
tions directly with the electronic differential analyzer. This can be done by
replacing some of the partial derivatives by finite differences in order to
convert the original partial differential equations into a system of ordinary
differential equations.

Assume we are interested in solving a partial differential equa-
tion in which the dependent variable y{(x, t) is a function of both a distance
variable x and a time variable t. Instead of measuring the variable y at all

distances x, let us measure y only at certain stations along x; thus, let Yy
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be the value of y at the first x station, Y, be the value of y at the second
X station, Yn be the value of y at the nth x station. Further, let the
distance between stations be a constant Ax.

Now clearly a good approximation to 8y/9x/|, /5 (e, the
partial derivative of y with respect to x at the 1/2 station) is given by the
difference
= _}:_1___}79_ . (1-1)

AX

dy
ox

1/2

In fact the limit of equation (1-1) as Ax- 0 is just the definition|

of the partial derivative at that point. Writing (1-1) in more general terms

dy . In " n-1 (1-2)
0| 1)z Ax
In the same way
2 .
9yl - L {% -9 (1-3)
ox Ax | 0x ox
n+l/2 n-1/2
or from equation (2-2)
8%y _Yn41 T 2¥y t ¥n-1 (1-4)
axz n (Ax)2

Thus we have converted partial derivatives with respect to x
into algebraic differences. The only differentiation needed now is with
respect to the time variable £, so that we are left with a system of ordinary

differential equations involving dependent variables yo(t), yl(t), .. .yn(t), .

SOLUTION OF THE HEAT EQUATION

2.1 Basic Equations for Heat Flow

The basic equation of heat flow is given by

c6% - 2Kvu+S (2-1)
at
where
u = temperature and is a function of the spacial

coordinates and time,
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K = thermal conductivity, in general, a function of
the spacial coordinates,
¢ = specific heat, a function of spacial coordinates,
6 = density, also a function of spacial coordinates,
t = time,
'S = rate of heat supplied per unit volume by sources,

in the medium, a function of spacial coordinates

and time,.

The left-hand side of equation (2-1) represents the rate at
which heat is stored in a unit volume due to the heat capacity of the medium.
The right-hand side represents the rate at which the unit volume receives
heat, first due to heat conduction into the volume from the neighboring
medium (the ¥ - K ¥V u term) and second, due to the heat flow into the volume
from sources within the volume itself (the S term). The conductivity times
the gradient of the temperature (-KV u) is a vector representing the heat
flux. The components of -Ky u represent the heat flow through a unit sur-
face normal to the direction along which the component is taken.

In a given heat-flow problem it is necessary to stipulate spacial
boundary conditions either on the temperature u or the heat flux -KV u, as
well as the initial temperature distribution throughout the medium.

> the form of Equation (2~1) and its

In technical report AIR-10
solution by difference methods and separation of variables is discussed for
Cartesian coordinates, cylindrical coordinates, and spherical coordinates.
For example, in Cartesian coordinates for heat flow through a homogeneous

slab we have the equation

2
ou o u
= = = (2-2)
ot X

where x is dimensionless distance through the slab and t is dimensionless

time. For boundary conditions

u(0,t) = u(t) (2-3)
ou
ﬁ"(l!t) =0 (2‘4)

corresponding to a prescribed temperature uo(t) at the left boundary and zerg
heat flow at the right boundary, the difference equations become
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du1 1 [
= u, - 2u, +u (t)]
dt (AX)Z 2 1 o
du2 1 [ ]
= u, - 2u, + u
dt ax)2 L3 2%
(2-5)
du 1
N-3/2 _ _
dn-1/2 DT .
dt (Ax)z N-1/2"“N-3/2

where AX is the interval between stations along x and N-1/2 is the total
number of x stations across the slab.

This set of N-1/2 simultaneous first-order differential equa-
tions can be set up and solved directly on the electronic differential analyzer,
In the technical report5 the time-dependent solutions for the temperature at

each station are shown for a number of representative initial conditions.

3. SOLUTION OF THE BEAM EQUATION

3.1 Basic Equations for Lateral Beam Vibrations

The basic equation for lateral displacement y of a beam is

given by
2 2
9 9 _ &P - -
% J y = -
aj‘ EI(X)W + P(X)g—z- = f(x,t) (3-1)
X X t
where
- X = distance along the beam,
EI = flexual rigidity, in general u function of x,
p = mass per unit length, in general a function of x,

t
f(%,1) = external applied force per unit length.

time

The bending moment M is given by
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2
M(xD = EI(®) 2 (3-2)
3%
while the shear force V is
vz = XD (3-3)

Boundary conditions depend on the type of end fastening. For a cantilever

(clamped end at x = L

y(L,-E) = .a._l(_]-:_’_t_)_ = 0, (3-4)
9 x
For a freeend at X = L
M(L,T) = V(L,t) = 0 (3-5)

while for a simple supported (hinged)end at x = L

y(L,t) = M(L,t) = 0 . (3-6)

In technical report:. AIR-7 the normal-mode frequencies and
shapes for Equation (3-1) are given for uniform free-free, cantilever,
hinged-hinged, and clamped-clamped beams, along with theoretical solu-
tions using the difference approximation. Electronic differential analyzer
circuits and solutions using the difference technique are presented for the
above cases and for nonuniform beams, beams with vidcous damping, beams
with timeAvarying boundary conditions, and beams for which Equation (3-1)
_is modified to include transverse shear effects (this is necessary for beams
whose thickness is not small compared with their length). In addition, tech-
nical report AIR-8 presents analyzer solutions for beams with nonlinear
damping terms, both velocity-squared damping and coulomb (dry-friction)
damping: |

3.2 Difference Equations for Uniform Cantilever Beam

As a simple example, consider the equation for lateral dis-

placement y of a uniform.beam. It can be written as

4 2

0 0

— Y 4 — Y = f(x,t) (3-7)
X t
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where x is dimensionless distance (the beam length in x is unity) and t
is dimensionless time. To solve Equation (3-7) using the difference method
we consider the transverse displacement y only at equally spaced stations

approximately as

2
- 8y ~ 1
m = ¥ ——(y -2y +y ) (3-8)

where Ax is the distance between stations. In the same way the complete

difference equation at the n-th station becomes

2
dyn 1
— = - W(mn” -2m +m o)+ 1 (1) (3-9)

where fn(t) is the applied force at the n-th station.

For a built-in end at the 1/2 station, the boundary conditions

of Equation (3-4) imply that

Yo = ¥1 = 0 (3-10)

while forafree end at the N + 1/2 station the boundary conditions of Equa-
tion (3-6) imply that

m - m = 0. . (3"11)

Thus the complete set of difference equations for an N-cell cantilever beam

becomes
—-—dzyz 1 ( 2 + ) + f.(t)
= - m, - zm m
dtz (Ax)z 3 2 1 2
d2y3 1 _(m, - 2m, + m.) + £.(t)
—y = -—— (m, -2m,+m
dt (Ax)2 4 3 2 3




i‘@zi - (my g - 2my_ptmy )+ o0
dt (%)

2

dyl\;_l ——-—1—2-(—2mN_1+mN_2) + ()
dt (bx

2
Td N 1 ) + £ (t)

- m
dt (A x)° N-1 N

where

1

m, o = (Yn-1 - 29Nn-9F In-3
N-2 (AX)§ N-1 N-2 N-3

m = 1 ( -2 + )
N-1~ 729N~ “N-17IN-2
(Ax)
Thus we have converted the original partial differential
equation given by (3-7) to a set of N - 1 simultaneous second-order
ordinary differential equations which can readily be solved with the

electronic differential analyzer. Computer output voltages represent

ENGINEERING  RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN
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time-dependent displacement, velocity, and bending-moment at each
station, while the external forces at each station are represented by time-
varying voltage inputs.

For computer circuits and recorded solutions of this and
many other representative beam problems, the reader is referred to the
technical reports. 6,7 For convenience the detailed list of topics and fig-

ures covered in these reports is given in Appendices II and III.
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