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TRAJECTORY CALCULATIONS FOR SOUNDING ROCKETS

SUMMARY

This report describes the derivation of the equations used to calculate
sounding-rocket peak altitude, range, and sensitivity to velocity error, flight path
- elevation error, and yaw angle at burnout. Curves which allow rapid computation
of these quantities are shown for rockets with equivalent straight-up altitudes of

0-2000 miles and burnout flight path angles of 60-90 degrees,

1. Basic Free-Fall Equations

We will use as an inertial coordinate frame of reference a systei‘n with
origin fixed at the center of the earth, The axes of this system will be non-rotating,
so that the earth rotates with respect to the system. We will neglect perturbations
due to the non-spherical earth corrections, so that any free-fall trajectory will be
in a plane determined by its velocity vector at any point and the center of the earth,
In general, we will use polar coordinates r, 8 as shown in Fig, 1.1 to locate the
rocket in this plane,

Since we will find it convenient

to use energy methods for many of the
calculations, we will use Lagrange's
equation to set up the usual equations
of motion for a point mass m (the
rocket mass = m) in a central force
field. Thus the Lagrangian function
Center of Fig., 1,1 > L

Earth v
general coordinate, then the equations of motion can be written as

d oD\ _ oL _
4 _aq_D 4 =0 (1.1)

= 0,

T-V, where T = kinetic energy and

X

potential energy*, If q; is the ith

For our polar-coordinate case there are two general coordinates, 9 =T, qq

Hence

Kinetic Energy = T = ——é— m (r% + rzéz) (1.2)

¥
Slater and Frank, Mechanics, McGraw-Hill, 1947, pp 72-74,




- and :
Potential Energy = V = - l/}l\[[_r_rl (1,3)
where V is the gravitational constant and M is the mass of the earth. Eq. (1,3)can

be written in more useful form by noting that at the earth's surface (r = ro)

"~ _ Y Mm
r
0
where go is the acceleration of gravity at the earth's surface, not including the term
row due to the angular rate of earth rotation w. In subsequent calculations we will

assume g, = 32, 2 ft/secz. In terms of Eq, (1.4), Eq. (1, 3) becomes *

r02 |
V=-mg, — (1,5)
Thus L becomes
r 2
- _ 1 2, 2.2 0
L=T-V=5m("+r70) +mg, — (1.6)
Substituting Eq. (1.86) into (1.1) we have
2
Y o
¥ - ro +g0r2 =0 (1,7)
and’
._.d__ [mrza =0 (1'8)
dt

Eq. (1.7) states that the acceleration due to the trajectory balances the accelera-
tion due to gravitational attraction, Eq, (1, 8) is simply the equation for constant

angular momentum, since after integration

mrd = p = angular momentum = constant.

The time variable can be eliminated from Eqs.(1,7) and (1. 8) to yield an
equation describing the trajectory shape (i.e,, involving r and 6 only) by defining

a new variable u given by

1
uE— (1.9)
Then
dr

.. P du
m de (1,10)



Similarly
2 2

p o= (%) ;17 39‘5 (1.11)

From Eqgs. (1.10) and(1.11) Eq. (1, 7) becomes

2 2 2

e . (1.12)
de p2

But the solution to this equation can be written immediately as

22

1 _ m gy,

+ =u=Cecos(6-0) + —p— (1.13)
P

where 90 and C are arbitrary constants which depend on the initial conditions of the
trajectory, or, in this case, specified values of r and @ at some given time and the
angular momentum p,

Solving Eq. (1,13) for r, we have

2
P

m2gr 2
r o= 020 (1.14)

1+ cﬁp__2 cos (6-6,)
m-gyr

The equation for an ellipse of eccentricity € has the form

' 2
a(l-€ )
1+ E€cos 0 \ (1.15)

where a is the semimajor axis and where the origin of polar coordinates is at the

right hand foci of the ellipse (see Fig. 1.2). This

m

r Y
/ ae 0

¥

Fig. 1.2 Ellipse



can be seen from the law of cosines for the triangle formed by r and r' and from the

equation r + r' = 2a = constant, which defines an ellipse,

r"'z = r“z + (2a€)2 + 4r(a €) cos ©

Next we consider the determination of € and a in terms of initial conditions

for the trajectory. The solution to Eq. (1.12) can also be written as

2 2
1 m g%
-—r—:uzACOSG+Bsin9+—2-— (1.16)
p

where A and B are constants determined by initial conditions. Differentiating Eq.

(1. 16) with respect to time

—%Pﬂ[—Asin9+Bcos€£| 9 (1.17)
r
At r = r‘15 let t = 1‘19 0 = 919 Q= 91
Then Eqgs. (1.16) and (1, 17) can be written as
2 _
A cos 9, +B sin 9 =L . £0%0 (1.18)
1 1 r 4.2 °
1 r. 0
1 71
and
1 I%1
-A sin®, +Bcos 0, = - — — (1.19)
1 1 2 .
9

Solving for A and B, we have

A =cos 0, |-& - gol‘f“oz + sin 0 1 (1. 20)
1|7, T Az e :
1 r. 0 r.” e
171 1 7]
L. -l
and —
B = o E 8070 1
=sin® |-== - —p—t +cosO |- 3 (1.21)
1 r, o r6
171 171
Note that rlél = Vg o where Vo is the component of total velocity v parallel to the
earth's surface at r = r. : 9
Comparison of Eqs. (1. 14) and(1. 15) shows that € = C -92——7 . But from

m gdo
Eqs. (1.14) and (1.16) it is clear that C =A%+ B2, Thus

4



r 4y 2
/a%+B* L2
g0 0
or
rlzflbl 2
+ ; (1.22)
g0%0

For a circular satellite orbit, € = 0, For € >1 the ellipse turns into a
hyperbole and the rocket escapes from the earth's gravitational field. Thus to pre-
vent escape, € L1, and from Eq. (1.22) this implies that

r 2
v 42 2 0 .
(rlgl) + ()7 < 2 r.go <—-——rl> (1.23)
But rlgl = v91 and 1‘1 = vrl, where v91 and vrl are the components of rocket vel-

ocity at r = r parallel and perpendicular, respectively, to the earth's surface,
f 2 2 _ 2 2 _ .2 _ .
Hence (r 8 )%+ ¢ “=v, “+v_“=v", where v, = total rocket velocity, At the
171 1 91 ry 1 1

earth's surface ry=ry and v12< 2r0g0 to prevent escape, Hence we define the

escape velocity Vg as

vg = /Zrogo (1. 24)

= /2 x 3950 x 32,2 x 5280 = 36,700 ft/sec

In terms of the escape velocity vy Eq. (1, 22) for € can be rewritten as

\ 2 2 V. Vg q2
€= 2Pl<—\;—1> -1 +EF1 ——1—2—1] (1. 25)
\ VE Vi

where (01 =@ atr= r,, and where (° is a dimensionless radius equal to the ratio
Thus

of actual radius r to earth's radius ro.

r

P = (1.26)
o

If we know the radius (01 and the velocity components Vg and V.. » then

, 1 1
Eq. (1.23) allows us to calculate € , To calculate the semimajor axis a we note

by comparing Eqs, (1, 14) and (1. 15) that



9 pZ 2 91'
Yo —
a(l-€ ﬂ--mzrz 2/01 o o
& o
or
2/ V0, ?
B 2"Ol VR o

1l -€
Now that we have developed the basic equations describing trajectories of
a rocket in free-flight in the gravitational field of the spherical earth, we turn to

consideration of some specific trajectory problems,

2. Vertical Launch Free Flight Trajectory

In the case of a vertical launch the problem is complicated by the rotation
of the launching platform, namely, the earth. Thus the velocity vector at burnout
will be the sum of the rotating-earth component and the propulsion-unit contribution.
To simplify the initial analysis, let us assume that this sum is such that at final-
stage burnout, i.e., at the beginning of free-flight, the total velocity vector is per-
pendicular to the earth's surface. Since this will give maximum altitude, small
deviations from this perpendicular direction will only cause second order effects
in total altitude.

Under these conditions a calculation based on energy conservation is the
easiest approach. Assume r = ry at burnout and r, at the apex of the trajectory.
Then the change in potential energy Vl - V2 must equal the change in kinetic en-

ergy -T;, or from Eq. (1.5)

1 2

2 /1 1 _
mgoro <’r"; - 'IT - - T m vl (Ze l)

where vy is the total velocity at burnout. Replacing gOI;Oby sz/Z in accordance

with Eq. (1.25) and solving for v, we have

1 1

V., =V - (252)
LV ST P, |

where (’1 = rl/r’0 and (@, = ry/r,. If we let h, equal the altitude at burnout and

h, equal the peak altitude, then /ol 1+ !y ) /02 =1+ Do . Since hl/r0 <1
r r

0 0

under normal circumstances, 1/,0l 71 - hler and Eq. (2. 2) becomes



~ _ 1 _ 1
v, = Vg 1 7y h2 , h1 << r, (2. 3)
1+
o
Eq. (2. 3) can be solved exactly for peak altitude h,. Thus
v2
h, +r 1
1 0 2
h, % VE by
2 5 , <1 (2. 4)
r
h1 vy 0
]_ - -
ry V?
E

In Fig. 2.1 the peak altitude h2 in miles for various burnout velocities vy is plotted

for h1 = 0. For h1 > 0, the maximum altitude is obtained approximately by adding
: \8] 2 h1

h /[1 - (—-———) } to the ordinate shown, providing — (1.
1 Ve g

3. Calculation of Peak Altitude for Non-Vertical Launch

Next we consider a calculation of the peak altitude reached when the vel-

ocity vector at burnout is not vertical but makes an angle ¥ with the plane par-
allel to the earth's surface directly below the burnout point. It is assumed that
the velocity vector is measured with respect to the inertial (non-rotating) frame
of reference with the origin at the center of the earth, as in Section 1. Let vy be

the velocity at burnout

Max.
Alt,

Burnout

Fig. 3.1

Center of
Earth
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with components Vg and v, parallel ta and perpendicular to, respectively, the
1 1
earth's surface, as shown in Fig, 3.1, Let ry be the polar radius of the rocket

at this point. At the apex of the trajectory the velocity Vg = Vg and r= ro. The
2
most direct method to calculate r, and hence h2, the maximum altitude, is to use

equations for constant energy and constant angular momentum. From Eq. (1.5)

we have for constant total energy

2 2
1 2 o 1 2 To
- myv, -mg r, = g mv, -mg, r,

(3.1)

Replacing g% by vE2/2, where vi is the escape velocity, it follows that

L, |2 (v 2
1 2 1 1
- - + = 0 (3' 2)
VE VE A ,,

where {ol = rllro, (02 = r2/r0, r, = radius of earth,

Since the angular momentum is constant, we have

mr, v, cos Y = mr,v, (3.3)

Eliminating v, in Eq. (3. 1) by means of (3. 3), we obtain

2 2

2 |1 [V V1 2 2
_— - - + |—| cos =0 3.4
(02 2 Ve (OZ Ve yPl ( )
Solving for © 9 Which répresents maximum (2 » We have
\ 2 2 v
- 1 1 2,41 171
@, = —— _ 1+ /1-4 P, cosVY|— -|— (3.5)
2 1 v, 2 \ Vg 1 A Vg
ol L _ . ‘
A | VE

The above expression reduces to (°y = /01 for V= 0 and to Eq (2 2) of the pre-

vious section for Y = 90°. For the case where 4
s - <<1,

which occurs when ( > < {1 or cos \/((1 Eq. (3.5) can be written approx1mately
E

v

in terms of h ( pz . Thus



n

h sin® v/ (3. 6)

h
2 2y. 2

where h is the maximum altitude given in Eq. (2. 4) for the case of a

2y - ml2

vertical launching, Thus the effect of burnout angle Y different from 90 degrees
is,approximately, to reduce the altitude by the factor sin2 Y . The same result

is obtained by considering the firing as one straight up with a velocity equal to the

| 8in Y of the velocity v,. The correction factor which must
be applied to Eq. (3. 6) for various altitudes and launch angles is shown in Fig, 3, 2.

vertical component v

The peak altitude reached is always somewhat higher than that given by Eq. (3. 6)

due to the influence of centrifugal acceleration,

4, Calculation of Sounding Rocket Range

The calculation of range is of interest not only because it is necessary for the
prediction of impact point but also because it provides the equations necessary to
calculate the sensitivity of range to burn-out velocity and flight-path angle,

The equation for the trajectory of free-flight after burnout is given by Eq,
(1.16), which is repeated here for convenience

Acos@+Bsinf= - - €070 (4.1)

r 4- 72 '
r. o
171
where A and B are given in terms of the burnout variables, i.e., ry 91, fl, él’
in Eqs. (1. 20) and (1. 21), Let us arbitrarily assume that the impact occurs at
0=0. Alsor = ry at impact., For these values of r and 6 we have from Eqs. (4.1)

and (1. 20)

L cos 8, + |1 |sing =L & (4. 2)
T O Flo |8 v T -2
1 r191 0 r191

Replacing g,r by VE2/2, rlél by vg , and #; by v, we have

1 ! 1
—————vgl 2 - cos 0, + Vrl Vgl sin@, = P V91 2— L (4.3
VR 271 1 VE Vg 1 1 Vi 2(01 '
where @, = rl/ro. Finally, vr1 =v,sinvy, v91 = v, cos V. Thus Eq. (4.3)
becomes

10
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2 2
v Vv
1 2 1 1 1 \ . V . _
— cos \/ - cos 9, + |=—|—=— | sin2Y {sinB, =
v 2F1 1 2 VE/ 1
2
v 2 1
1 cos’Y - (4. 4)
P.l— 2'2‘1

For a given velocity Vi flight-path angle v, and radius ’01 at burnout, the angle
91 given by Eq. (4.4) represents the burnout 6 coordinate necessary to give im-
pact at 8 = 0, The range of the rocket is, then simply —r091.

Eq. (4.4) has the general form

C1 cos 91 + C2 sin 91 =D (4.5)

But this can be rewritten as

/C12+C22 cos(91+ 7)=D (4. 6)
where
C
?): —tan-l Tj__z (4.7)
1
Hence
4] "cos—1 ——1—)-——— + tan ! Cz (4.8)
1 /c 2,c.2 T '
1 2

2
v
'o]_ __l__ COS2‘)/ - _1_
-1 v 2 1
8, = cos i
¥ v 2 2 v 4
1 2 1 1 1
—= | cos“Y - + —| ——1] sin“2Y
(VE 2F1 4 VE
\ 2
!
1_(-‘,—-— sin 2V
+ tan”! 212 (4.9)
v
1 2 1
cos Y - 7%
VE 2 Pl

For the special case where @ 17 1, i.e., where the burnout is assumed to take

place at sealevel, the two angles on the right side of Eq. (4.9) are equal and

12



1 \ / sin 2 Y
a1 T\ B _
91—2tan . 5 , (01 =1 (4.10)
—‘71—— cos?y - ——;f—
E

Since the burnout altitude for most sounding rockets is low (perhaps 10-30 miles),
Eq. (4.10) will give a reasonably accurate estimate of sounding-rocket range. For
more accurate computation Eq, (4.9) can always be used. Eq. (4. 10) should, how-
ever, be quite adequate for establishing the dependence of range on vy and Y. Note
that we have also ignored the reentry trajectory here.

If a missile with velocity vy and flight path angle Y were launched in a constant-
gravity field of acceleration g, then the total time of flight would be (2v,sin Ylig,
and the horizontal distance traveled would be [(*2v1sin‘/)/g0] I:vlcos V] =

(v 2 sin 2 Y )/g0° This makes a convenient norm to compare the actual distance

1
traveled along the earth's surface as computed from Eq. (4.10). The required
correction factor K)/ is shown in Fig, 4.1 as a function of rocket altitude for
vertical burnout for various burnout angles Y . Thus

v 2 sin 2 Y

1 .
Range = K (4.11)
g g, Ty

This allows a quick calculation of range for a wide variety of burnout conditions.
In Fig. 4.2 are plots of actual range R for various ¥V versus peak altitude for

straight-up launch.

5. Effect of Errors in Burnout Velocity and Angle on Impact Point

5.1 Effect of Velocity Error

In Eq. (4.9) we derived the launch polar angle 91 for an impact at @ = 0° with
velocity vy and flight-path angle & at launch, Eq. (4. 10) is an excellent approxi-
mate representation of 91 ( it is exact for the case where launch, or more cor-
rectly, burnout occurs at P 1= 1, the earth's surface). Eq. (4.10) can be re-

written as

1 sin 2 )/
1 2

E —2c052)/

(5. 1)

13
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Taking the partial derivative with respect to vy, we have

4 sin 2 Y {VE 3

avl 5 (5.2)
v 2
: E -2 COSz\/ + sinzz Y
1l V1

The change in range R due to changes in vy is simply ry 5@1/8 K Thus the

error in range AR is

99,
AR:-I'O —W AVl (53)

where A vy is the change in burnout velocity from the norm value,

A good approximation to Eq. (5. 2) can be written for Eq. (5. 2) for near-
vertical sounding rockets. Thus if ( /v ) >>2 cosz'y/ , and (vE/v1)477sin22 Y,

4 P, sin 2vY v,

28,
av1 - T Vg Vg (5. 4)

For a 1000 mile sounding rocket with a burnout angle of 75° the approximate ex-
pression (5. 4) gives rO?GI/ 2v, = -0. 0968 mi/ft/sec compared with the exact
value of -0,099 from Eq. (5.2). The exact value corresponds to 16. 4 miles error
in range for a 1% error in velocity vy In Fig. 5.1 are shown plots of rg 391/3 vy
for burnout angles between 60°% and 90°.

5.2 Effect of Elevation Angle Error

Next we calculate the effect of errors in flight-path elevation angle ¥ at

burnout. Taking the partial derivative of Eq. (5. 2) with respect to ¥, we have

v 2
o0 4 Tol' E -2 cos2>/
57— * 5 1-ctn2y] F1\ V1 (5. 5)
Fl Ve |2 5 I_ sin 2 v _|
-2 cos“Y| +1
A2 ;
i " sin2Y J

Again a fa1r approx1mat10n is obtalned for sounding rockets when (v /v >72 cos \/

(vg /v) >> sin 2\/ and| (vp, /v) cos 2V‘>>sm 2Y

17
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(5.6)

v 2
cos 2\/

26 o 1
4 _4 P
1 Vg
For a 1000 mile sounding rocket with ¥ = 75°, & 91/9)/ = 0,706 from the approxi-
mate Eq. (5.6) and 0,763 from the exact expression (5. 5) the error in range AR
(5.7)

Y
For the rocket example earlier this turns

is given by
20
_ 1
AR = 1) —o— %
where AY is the error in Y at burnout.
out to be 48.7 miles/degree,
In Fig. 5.2 are shown plots of r, 601/8\/f0r burnout angles between 60° and

90°,
5.3 Effect of Yaw Angle Error
velocity vector at burnout but normal to the desired plan'e of motion, as shown in
This defines a new plane of free-flight

Let us define a yaw angle M as measured in the plane through the desired

motion which makes an angle ’)" =Nl cosY
with the original plane, assuming ¥ < <1,

Hence as long as the range R is not so
long that spherical-surface effects pre-

Fig. 5.3.
Actual Vel) | esired Vel,
Vector Vector at
! Burnout
dominate, the error in impact position
X" f d at right angles to the plane of the mo-
/o L
Projection of tion is given by
7Vel, Vecotrs on
\\ Horizontal Plane /))
For the 1000 mile rocket with Y = 750,
R = 820 miles and d = 55, 3 miles/deg.

Fig. 5,3
6. Effect of the Earth's Rotation on Sounding Rocket Trajectories

6.1 Calculation of the Burnout Flight-Path Angle and Velocity in

All of the trajectory computations up to now have been made with respect to

Inertial Coordinates
a non-rotating coordinate system with its origin at the center of the earth. Actually,
19



the rocket is launched from the surface of the earth, which is moving eastward at
~a velocity v_ = S r,cos ' = 1515 cos8'ft/sec, where J is the angular velocity of
rotation of the earth, ry is the earth radius, and 6' is the latitude of the launch
point. All of the rocket performance calculations are made with respect to the
moving-earth's surface at the launch point, To the burnout velocity vl' calculated
with respect to this system we must add vectorally the eastward velocity compo-
nent Ve to obtain the burnout velocity vy with respect to the inertial coordinate
system. The simplest case is the one where we fire the rocket directly east or
directly west, i, e., where vl' and Ve lie in the same plane, as shown in Fig, 6, 1.
Here the horizontal velocity component

Vig = vy'cos )" + vel and the vertical
component Vig = vl'sin\' ', where ¥ ! is
is the burnout angle as calculated with
respect to the rotating earth and Y is the
burnout angle as calculated with respect
to the inertial coordinates, For an east-
ward launch we have +ve in the formula

for Vi for a westward launch we have

Ve The total velocity vlin the inertial

coordinate system is given by

5 5 2V Ve 2
V1= le +V1y =V1' 1+ T CcCOSs V'+T,IT ‘ (6.1)

If we assume that I E 2ve/v1' cos Y'+ (ve/vl')zl <L 1, we can write approxi-

mately
- Ve 1 Ve 2
Vl—Vl li—;l—l—f—COSV"l""z_—v—l"— (6.2)

This approximation formula should be quite accurate for near vertical launches of
rockets to several hundred miles or higher, |

From Fig, 6,1 it is apparent that
' sin V!

'cosV'ive

v v

1 1

1

Y = tan~ ly = tan ! (6. 3)

1x v

If l V! -\/ I <{1, then we can write the approximate formula

20



\/:)/";—%T sin V! (6. 4)

As a specific example, consider a nominal 1000 mile sounding rocket fired
eastward at a latitude of 40°N. Let v,'= 16,500 ft/sec and ¥ ' = 75°. Then v_=
1160 ft/sec, vy = 16840 ft/sec, and ¥ = T1.1°. Thus the effect of launching the
rocket east has been to raise the burnout velocity by 340 ft/sec and lower the
flight path angle at burnout by 3. 9°. If we had neglected this effect the peak alti-
tude for the original 16500 ft/sec velocity and 75° burnout angle would have yielded
a calculated peak altitude of 951 miles. With the earth's rotational velocity taken
into account the peak altitude is 970 miles,

For a westward launch with vl" = 16500 ft/sec and ¥Y' = 75° as before, vy E
16240 ft/sec and Y = 78.9°. The correct peak altitude is then 935 miles. Thus an
eastward launch yields a slight advantage in peak altitude.

For azimuth angles at launch which are approximately eastward or westward,
the above results will apply with reasonable accuracy. For other azimuth angles

the analysis is more complicated but is equally straightforward.
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