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ABSTRACT

During the past few years the College of Engineering of The University of Michigan has been
exploring the use of electronic computers in ifs undergraduate curricula. This report describes
the experiences and current phllosophy of the faculty of the Department of Aeronautical and

Astronautical Engineering concerning classroom computer use.

Included are a description of the Department's curriculum and computing facilities, and a
discussion of the extent to which computers have been used in Departmental course work. Seven
computer-oriented example Aeronautical ‘Engineering problems with complete analog or digital

computer solutions are also included. This set of problems may be considered as a supplement to
the 104 example engineering problems, including several of interest to aeronautical engineers,
which have been published previously by the Project on the Use of Computers in Engineering

Education.
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USE OF COMPUTERS IN AERONAUTICAL ENGINEERING EDUCATION

I. INTRODUCTION

The extensive use of computers, both analog and digital, in the field of aeronautics and
astronautics raises the question of the role they should play in the education of engineers for
work in this field. The present report describes the experience and current philosophy of the
Aeronautical and Astronautical Engineering Department of The Unilversity of Michigan in this regard

Since 1948, electronic analog computers have been used extensively for instruction in
the Department. Originally used for laboratory simulation of control systems in graduate
courses in automatic control, analog computers have more recently been used for classroom lecture
demonstrations of air-frame dynamics, satellite orbits and re-entry trajectories. In addition,
they continue to be used in a number of laboratory courses, both graduate and undergraduate, to
simulate linear and non-linear control systems. Thus, analog computers have been used both in
lecture demonstrations and in the laboratory. When used in the laboratory there are usually
only two students operating each computer. The students learn something of the capabilitles of
analog computers, develop a "feel" for the dynamic behavior of various systems through analog
simulation, and gain some experience at analyzing recorder output traces.

In the example analog computer problems which are ineluded in this report, it is assumed
that the reader has a knowledge of the working principles of analog computers. The problems
presented include a number of control-system and airframe dynamics problems as well as a
satellite orbit and re-entry trajectory problem. These examples are sultable either for lecture
demonstrations or for individual laboratory experiments.

The Department of Aeronautical and Astronautical Engineering has placed little emphasis
on the application of digital computers in its undergraduate program. Instruction in digital
computer programming has not thus far been made a requirement of the program, although most
other engineering curricula at The University of Michigan do have such a requirement. It is
felt that such instruction would be most meaningful if provided in conjunction with instruction
in numerical analysis. With this in mind, the Department is deferring a decision in this area
until a current study of the mathematics curriculum in the College of Engineering is completed.

The main reason for the reluctance of the Department of Aeronautical and Astronautical
Engineering to emphasize digital computer programming is concerned with the manner in which
digital computers are used in the aerospace industry. Typlcally, a company in that industry
will have a large computer facility with a staff of programming speclalists who handle most, 1if
not all, of the programming work of the company. Under these circumstances it is not essential
for the englneering staff to know programming. If such knowledge is desirable in individual
cases, appropriate instruction is usually readily available within the company. These circum-
stances, and the great pressure to provide more room in the curriculum for the teaching of

scientific principles,explain the current policy of the Department.
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It is recognized that the advent of greatly simplified programming languages may alter the

mode of operation of computing facilities in industry and elsewhere and permit more direct access

to the computer by the engineer. This, in itself, would call for a reappraisal of the need for

instruction in programming at the undergraduate level.

At the graduate level considerable use has been made of the digital computer by students

engaged in research or thesis work. It has been found that when the need for such use arises,

the student can usually acquire the necessary programming knowledge in a sufficiently short time.
The areas in which it is presently felt that the most effective use can be made of

digital computers are structural analysis and space flight mechanics. In the former, the advent

of the digital computer has stimulated the development of numerical methods for the analysis

of complex structures. Much of the structural analysis performed in the aerospace industry at

the present time involves the implementation of such methods on digital computers. In the
field of space flight mechanics, the digital computer shares with the analog computer the status
of an indispensible tool 1in the solution of trajectory problems.

Two digital computer example problems are presented in this report. While they have not
been used for classroom instruction, it is felt that they would be sultable for that purpose.

One of the problems is 1in the field of structural dynamics while the other is in the field of

space flight mechanics.

IT. THE CURRICULUM

Freshman Year (First Semester):  Hours Freshman Year (Second Semester): Hours
i 4
Mathematics 4 Mathematics
Chemistry L Chemistry g
English 4 gng;lsh e Granhics 2
ngl il hics 3 ngineering Graphic
Engineering Grap B on :
Sophomore Year (First Semester): Sophomore Year (Second Semester):
i 4
tics 4 Mathematics )
%ﬁ;gi@g 5 Chem.-Met. Engineering g
tics 1 English .
gigigié Aeronautre 3 Mechanics of Materials ) 4
Elective 3 Laboratory in Mechaniecs of Materials 1
Thermodynamics I 3
Summer Session
Elective . 3
Cireult Analysis and Electronics 4
Junior Year (First Semester): Junior Year (Second Semester):
Mathematics 3 Flight Structures I 3
1 L Propulsion I
%;igiﬁggmlcs : 3 *¥Mechanics of Flight E
Structural Mechanics 3 Aerodynamics II 3
Elective 3 Elective
Senlor Year (First Semester): Senilor Year (Second Semester):
Flight Structures II 4 *Automatic Control Systems 4
Propulsion II 4 Airplane Design I g
Electives 6 Electlves S
Economics 3 English

* This course has used the analog computer in the laboratory.

**This course has used the analog computer as a lecture demonstration tool.



Use of Computers in Aeronautical Engineering Education

ITI. ANALOG COMPUTER FACILITIES IN THE DEPARTMENT OF AERONAUTICAL AND ASTRONAUTICAL ENGINEERING

At the present time some 13 small table-top analog computers are avallable within the
Department; eight of these have 6 amplifiers each, while the remaining five have 10 amplifiers
each., Plug-in quarter-square multipliers and dlode function generators are avallable for use
with the 10-amplifier computers. In addition, analog equipment totaling some 116 amplifiers is
availlable with removable patch boards for solving more elaborate problems. Almost all of the
equipment has been designed and bullt within the Department, although any future equipment will
probably be purchased comnercially due to the availabllity of sultable low cos£ computers from
several computer manufacturers.

It is interesting to note that the original computers used back in 1948 employed external
plug-in components, whereas the more recently constructed computers within the Department all
have internally mounted computing components and have been designed for maximum programming
simplicity and reliability. It is felt quite strongly that these features are important in
order to make certain that the student gets maximum utilization from his time in the laboratory
and accomplishes his problem-solving goals. Too often the students (and the instructors, for
that matter) can get discouraged when attempting to use unreliable or difficult-to-program

computling equipment.

Iv, EXAMPLE PROBLEMS

The remainder of the text of this report is made up of seven example problems. Five of
these employ analog computers and are suitable to be used either as classroom demonstrations
or laboratory experiments. The two remaining problems involve digital computer solutions to
problems in space flight mechanics and structural mechanics. The problem titles are listed in
Table IH and may be considered as a continuation of problems 1 through 115 published in pre-

vious reports of the Project on the Use of Computers in Engineering Education.

TABLE IH
Example Problems
Number Title Author Page
105 A Third-Order Control System R. M. Howe H6
106 A Multiple-Loop Alrcraft Control Problem R. M. Howe H10
107 Solution of the Linearized Longitudinal R. M. Howe H19
Flight Equations
108 Solution of the Linearized Lateral R. M. Howe He2
Flight Equations
109 Two-Dimensional Re-entry Trajectories for R. M. Howe H26
Lifting Vehicles
110 Free Vibration Characteristics of a Uniform G. Isakson H32
Cantilever Beam with Elastic Root Restraint
111 Re-Entry Flight Path of a Lifting Vehicle G. Isakson and H43
J. L. Lemay
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Example Problem No. 105
A THIRD ORDER CONTROL SYSTEM
by
R. M. Howe

Problem Statement

Consider the feedback control system shown in Figure 1. Represent the system by means
of an analog computer circuit, lnvestigate the step response of the system as a function of K

and correlate the results with the theoretical ones predicted by the Nyquilst and root-locus

techniques.
System Controlled
S0 Controller
) Y e.-0 )
i + i 70 1 0
¢ K . p(0.2p+1) (0.5p+1 —
Input Qutput
Figure 1. Block Diagram of Third-Order Control System
Solution
The system belng controlled has the transfer operator,
90 1
—_ = = 1
¥ ¢(p) p(0.2p+1) (0.5p+1) (1)
and hence can be described by the differential equation,
0.1 85+ 0.7 85+ 90,5 =7v (2)
where, when the feedback loop is closed,
y = K€ = K(ei-Qo). (3)

An analog computer circuit for representing the system is shown in Figure 2. An alternative
circuit which synthesizes the transfer operator G(p) directly by cascading three separate

transfer operators is shown in Figure 3. Here amplifier 2 has an equivalent feedback resistor

]
—r——

il

0.1 GO+O.7GO+GO

Figure 2. Computer Circult for Third-Order Control System
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equal to 0.1 megohms times the reclprocal of the pot setting, i.e., 0.2 megohms. Thus the
amplifler behaves llke a simple first-order system with the time constant RC = 0.2 seconds and
static gain of 0.2. Simllarly, amplifier 3 represents a simple first-order system with time
constant RC = 0.5 seconds and statlic gain of 0.5. The circult of Flgure 3 bears more of a one-
to-one correspondence with the physical system being controlled, assuming it consists of the

three cascaded elements shown.

1
0.1 1 1
—— AN L AANA—
@O 1 1
1 | |2 0.5 | |
%w | | N
1 1
o— AL WA~ f;?\\\ AN r\§\\\ o
_ei y=K€& Azgv--- J L_~__%57;__L7/{§4;90) t 0

0.2 ptl 0.5 ptl

Figure 3. Alternative Circuit for Third-Order Control System

Let us examine the step-response curves of the control system for various gain-constants, K.
The results are shown in Figure 4. Note that for K=7, the system is essentially neutrally stable
with a frequency of approximately 3 radians/second. For larger K the system becomes unstable.
For K = 1 the response exhibits a reasonable transient. The student must be reminded that for
large values of K the step input voltage Gi must be kept small enough to avoid overloading ampli-

fier 1, unless the scaling of both amplifiers 1 and 2 is changed appropriately in Figures 2 or 3.

Figure 4. Step Response of Third-Order Control System for Various Gain Constants K

Having observed the step-response characteristics, let us correlate the results with theory.
Flrst, consider the Nyquist plot of G(p) shown in Figure 5. This plot can either be made

analytically by computing G(jw) from Egqn. 1 for various w, or it can be obtalned from the computer
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A Third Order Control System

circult of Figures 2 or 3 by driving the input y to amplifier 2 from a sine wave generator.

By recording y and QO on two channels, the amplitude ratio and phase shift at each frequency

can be measured. Output drift of the open loop system can be eliminated by recording 0.1 éO

from amplifier 3 and correcting the reading to QO (90O additional phase lag, gain factor of lqﬁw).

In practice the student should use both the analytic and experimental technique to obtain and

plot G(jw). I
/ \
P Plane \
! G plane \\\\
* —4)
-5 -2 J “'\" \
3
’ ® \
— ; , ) real axis
0<K<T7, N=0, Z=0, Stable 5 4 -3 -2 > ' ' ' - ——
T<K , N=-2,Z=2, Unstable
K< 0, N=-1,7Z=1, Unstable we2 /

X=7, Neutrally Stable,

w = 3.2 rad/sec ///

/
K:;.z /
— 4

Figure 5. Nyquist Plot for the Third-Order Open-Loop System
1

¢(p) = T(oZpFI(05p1T)

From the Nyquist plot it is evident that the system 1s stable for O0<K<T because the
critical point (:%730) is not encircled, while for K>7 it is unstable. For K=7 we have neutral
stability at 3.2 radians/second. This corroborates our computer response curves of Figure 4.

Finally, consider the root-locus plot shown in Figure 6. Here for K=0 the closed-loop
characteristic roots,Al,Ae, and X3,begin at the three zeros,Bl=O, 52=—2, and B3=—5, respectively.
X3 moves out to the left on the negative real axis for increasing K, while Xl and AXE move
together along the real axis, Jjoilning at K=0.4. For higher K they move out into the complex
plane, crossing the imaginary axis at K=7 (neutral stability). Again the results confirm the
computer records of Figure 4. For K= 1.06 the root locus diagram predicts a damping ratio of
f = 0,5 and an undamped natural frequency, uh = 1.38,radians/second for the oscillatory part

of the transilent. The corresponding damped transient period of —ar - - 5.2 seconds 1is
a:n /l_¥2
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Example Problem No. 105

evident in Figure 4. The third root, XS = -5.6,gives a damped exponential with a time constant
of (5.6)'l = 0.18 seconds. This part of the transient is not evident in Figure 4 for K=1.06

because 1t is so small in initial amplitude and decays so fast.

- 10(p+1 ,
¢(p) = S(5i2) (55

For K=2
>‘l, S, =5 rad/sec,
{=o0.62

—l/)\3 = 1.25 sec

Figure 6. Root Locus Diagram for the Third-Order System With
10

¢(0) = 51575 (5vE)

Discussion
In this example control-system problem the student 1s given an opportunity to set up a
control-system simulation on the analog computer, to take recordings and analyze them, and to

compare results with the Nyqulst and root-locus techniques.
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Example Problem No. 106
A MULTIPLE-LOOP ATIRCRAFT CONTROL PROBLEM
by
R. M. Howe

Problem Statement

Consider the control of the attitude angle of the aircraft shown 1n Figure 1. Assume the
alrcraft remains in symmetrical flight (no bank angle, sideslip angle, or yaw angle) and denote
the attitude as measured from the horilzontal reference by the symbol GO. The alrcraft is con-
trolled by the elevator displacement angle;d. If the angles QO and 8 are kept small, a linear

differential equation can be used to describe the airframe system and hence a transfer operator

Yq(p) = QO/CS .

Figure 1. Geometry of Aircraft System

The elevator deflection angle,§ ,will depend on the torques applied to the elevator.
These will include the torque from the control-surface actuator (usually hydraulic) and the
aerodynamic forces. The latter will depend in a complicated fashion on the airframe attitude
angle 90 through the transfer operator Y5(p) as shown in the block diagram of Figure 2. In order
to minimize this effect the elevator 1s positioned by a closed-loop system with input,éi, the
desired elevator displacement angle from the autopilot, and with output,d‘, the actual elevator
angle. Let us wrlte the output of the closed-loop elevator servo in terms of the transfer
operators of Figure 2. Thus

~ Y2Y3 . Y

5= b meSe T 1
1+Y2Y3 i 1+Y2Y3 a ( )

where ’I‘a 1s the aerodynamic torque acting on the elevator. Inspection of Egn. 1 shows that if
we make the servo amplifier transfer operator Y2 sufficiently large, the Ta term in Eqn. 1 can
be made quite small and the aerodynamic feedback loop through Y5(p) can then be neglected. This
assumption, valld in practice, simplifies considerably the design of the overall control system.
Next let us assume that the open-loop transfer operator of the elevator control system

takes the form
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$ K
es - Y2¥3 7 7o) (2)

i.e., behaves as a conventional open-loop second order system with veloclity constant KV and

time constant 7 . This implies that the system has inertia, output or viscous damping, and

proportional control. The closed-loop transfer operator Y6(p) then can be written

1

4
Y p) = = = 3)
6( 12p2+2!ep+1 di (
wne Wp

e
where

1
Wy =Y €= 4
“e Y7o 3 N &

For actual numerical constants we will assume the following values for the undamped natural

frequency,wne,and damping ratio f of the elevator servo:

(Dne = 25 rad/sec, ? e = 0.4 (5)
) 6 Servo Amplifier Elevator
QO Autopilot and Actuator Surface Airframe QO
0. - EE—
i, c S+ Es )

—»(ﬁé}—» Y Y ¥
1 2 4

Actuator

Torque
Aerodynamic Moment Y5 B

Figure 2. Block Diagram of Aircraft Control System

Although our second-order system model for the closed-loop elevabtor servo 1s never exactly cor-
rect in practice, it is close enough to a reasonable representation to make our illustration
meaningful.

Next consider the airframe transfer operator relating attitude angle QO and elevator dis-
placement . To simplify the problem somewhat we will assume the ailrcraft velocity remains
constant. Thils neglects the phugoid motion, which exerts only a minor influence on the transient
behavior of the overall control system. By summing pitching moments acting on the airframe, one

can show that the transfer operator takes the following form:

-H1l-



A Multiple-Loop Aircraft Control Problem

o k(Tep + 1)

”‘30_“ = Y3(p) =

(6)

p(a2p2+ a;p + ao)

where the constants TS, ag, al, and ao are normally all positive. However, we will assume in
our example that g is negative. This makes the aircraft longitudinally unstable; e.g., when
1t pitches up, the aerodynamic moment 1s such as to make it tend to pitch up further. When the
center of gravity of the alrcraft is located behind the aerodynamlc center of pressure, such an
instability occurs. Most ballistic missiles are aerodynamically unstable in this manner. Let

us assume the following numerical values for the constants in Y3(p).

B(p + 1) %

Y3 (p) = b0 T o) - g (7)

from which the equation of motion for the alrframe becomes

0.3 6, + 8y - 6, = 48+ 48 (8)
Represent the system by means of an analog computer circuit. Add proportional control and
determine the effect of the controller constant, B, on the stability of the system. Examine the
system theoretically using the Nyquist and root-locus methods and try to predict the observed
results. Recommend additional autopllot compensation which should improve the stability and

dynamic performance of the system.

Solutlon
Usual strailghtforward representation of this equation on an electronic differential
analyzer would require differentiation of the voltage representing 6, which is undesirable.

A better approach is to consider the transfer operator Y3(p) in Egn. 7 as broken into two

parts. Thus
v5(p) = ¥3(p) + pY5(p) (9)
where _
%, (o) ! i (10)
Y.(p) = - 2 10
3 0.3p° + p° - p $
Then
6O = -Y-3(p)(§
and
QO = (Y3(p) + p:f:))(p))(g = 6O + —Q_O (ll)
From Eqn. 10, 60 satisfies the equation
0.3 %% + 55 = 66 + 4 (12)

which can be set up directly on the analog computer with both 60 and @o available as integrator

50, the final output ©

output voltages. By adding 50 and is obtained without requiring the

0
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Example Problem No. 106

differentiation of 6.. This is the technique used in the cilrcuit diagram of Figure 3, which also
includes the dynamic representation of the elevator servo in accordance with Egns. 3 and 5, along
with an autopilot with constant gain,B,(i.e., proportional control). In the circuit, amplifier 1
represents the autopilot of Figure 2, while amplifiers 2, 3, and 4 simulate the elevator closed-
loop servo (the aerodynamic moment Ta is neglected as explained earlier). Finally, amplifiers 5
through 10 represent the ailrframe dynamics. The block dlagram of the simplified system ié shown
in Figure 4.

Computer step-response recordings for the entire system are shown in Figure 5 for various
autopilot gain constants B. Note that the response is stable only for 0.385< B <i.7. For
autopilot gains lower or higher than this range the closed-loop system is unstable. This is
confirmed by referring to the root-locus diagram of Figure 3.6. For large B care must be
exercised not to let the amplitude of the input step-voltage Qi be large enough to saturate
amplifier 1 in Figure 3.

Reference to Figure 4 and Egns. 3, 5, and 7 shows that the open-loop transfer operator

G(p) for proportional control is given by
4(p + 1)

b (502 + %—g—p +1)(0.3p% + p - 1)

(13)

Figure 3. Computer Circuit for the Multiple-Loop
Aircraft Control Problem, Propoqtional Control

@O Autopilot Elevator Servo Airframe
Y e
IIIIIII o
0

Figure 4. Block Diagram of Simplified Aircraft Control System
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A Multiple-Loop Aircraft Control Problem

VAR VIR
B=.35 B= 385

B=l25

uY
n
N
~
o)
A
0
(2]
-
]
—r
S|
1

Figure 5. Step Response for Autopilot System with Proportional
Control for Various Galn Constants, B.

The Nyquist plot for G(p) is shown in Figure 7. Since G(p) has a pole at p = O, the
p-plane contour makes a small counter-clockwise semicircle about the origin. The corresponding
G-plane contour is a large clockwlse semicircle as shown in the figure. Reference to the figure
shows that the G plot crosses the real axis at the point -2.60 for w= 1.3, and again at the
point -0.213 for w= T7.5. There are 4 ranges in autopilot gain factor which give different

encirclements of the critical point (-1/B,0). These are summarized below.

Range in B N
0 <B<0.385 -1
0.385<B<i4.7 +1
4,7<B -1
B<O 0

~H14-



Example Problem No. 106

\ B=9.25

75 2o s ~io /35\/< A

/ %

Figure 6. Root Locus for Airplane Autopllot System
With Proporticnal Control

Since N = P - Z and we wish to determine Z, the number of roots of l/B + G lying in the
right half p plane, it is important to determine P, the number of poles of G lying within the
right half p plane. This can be done by inspecting the zeros of the denominetor of Egn. 13.
The zeros of the quadratic term representing the elevator (E%)E + Qégg + 1 are both in the left
plane. The zero at p = O represents a pole of G(p) which we avoided i1n our contour in the
p plane. The quadratic O.3p2 + p - 1 has two zeros, namely 0.80, -4.14. The first of these
does lie in the right-half p plane, so that P = 1. This pole of G(p) in the right half p plane
accounts for the airframe pitching instabllity. Thus we are dealing here with an unstable open-
loop system, as reflected by the fact that P = 1. For a stable closed loop system Z must equal
zero, and since N = P - Z, N must equal 1 for stable closed loop operation. But from the

Nyquist plot of Figure 7 it is evident that N = 1 only if 0.385< B <4.5. For all ranges of B

the following values of Z are obtained:

-H15-



A Multiple-Loop Aircraft Control Problem

/D P/ane

-2

o

£

N

wst3

/,—"'*‘~~‘ 0 rca/ axis

N

14 5 \

20 3 \,\

w=75

(-0.224,0)

Figure 7. Nyquist Plot for Airplane-Autopilot System

Range in B N Z
0 <B <0.385 = 2
0.385<B<4.7 +1 0
4L.7<B -1 2
B <0 0 1

For B = 0.385 we have neutral closed-loop stability with w= 1.3 rad/sec. For B<0.385 there
are 2 characteristic roots of the closed-loop system with positive real part, and the system
is unstable in an oscillatory manner. For B = 4.7 we again have neutral stability with
w= 7,5 rad/sec, while for B>4.7, Z = 2 and the system is unstable in an oscillatory manner.
For B<O (l.e., negative) Z = 1 and must represent a positive real characteristic root.
The resulting instability 1s pure exponential.

This 1s an example of a conditionally stable system, 1l.e., one which goes unstable for too

low a galn constant as well as too high a gain constant. Step response curves for the closed-
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Example Problem No. 106

loop system with different gain constants B were shown in Figure 5. Our determination of the
range of gain constant B for closed loop stabllity using the Nyquist method agrees with the root-
locus plot of Figure 6. Note that the response in the stable region is still quite oscillatory.

To improve performance let us modify the autopilot transfer operator Yl(p) from pure pro-
portional control by adding bandwidth-limited error-rate control with error-rate constant
Ce = 1 second. Thus let c

o) - Gg - & )

where the time-constant in the denominator is 0.1 Ce = 0.1 second. ©Now the entire open-loop

transfer operator G(p), written in factored form, becomes

83,300 (pt1)°
G(p) = % o(p) = p—(p+10-?2g.9)%gil%+j22.9)(p+4.14)(p—0.80) (15)

The new root-locus plot is shown in Figure 8 and predicts reasonable closed-loop performance
for 1/3<B<2/3. This is confirmed by the computer step-function response curves of Figure 9.
The analog computer circuit used to represent the autopllot transfer operator of Eqn. 14 can be

synthesized by rewriting Y6(p) in the following manner:

_ l+p 0.9
%(v) = Ticos = 1+ Toouip (16)

The appropriate analog circult of Figure 10 replaces amplifier 1 in Figure 3. Agaln, care must
be exercised to avoid step lnputs which are large enough to cause saturation of amplifier 12 for

large gain constants B, unless the wnole circuit of Figure 3 1s rescaled.

// Ezmz///

>J'ZO

=845 Py
Figure 8. Root Locus for Compensated Autopilot System
~H1T7-



Figure 10,

A Multiple-Loop Aircraft Control Problem
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Figure 9. Step Response of Compensated Autopllot System

for Variocus Gain Constants,B.
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Analog Circuit for Representing the Autopilot Transfer Operator
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Example Problem No.

107

SOLUTION OF THE LINEARIZED LONGITUDINAL FLIGHT EQUATIONS

Problem Statement

by
R. M. Howe

Let us conglder the linearized longitudinal flight equations of an alrcraft. They can be

written in terms of the dependent variables, velocity perturbation, vp,

piltch-rate, q, and angle

of attack perturbation, @. These equations can be obtained by considering perturbations from

body axes which are displaced from the original body axes by the trim angle of attack, al’ 50

that in the new body-axis system the trim attitude ang;le,@:l = O for level flight. We also

note that the perturbation, @W, in flight-path elevation angle is given by @W = a + 0, where ©

is the perturbation in attitude angle from its trim value @ 1 =0. It can then be shown that

perturbation equations from level flight take the form:

1l
z Vp = kvvvp + kvaa - QW
a = kzvvp + kzaa + q + kzéege
q = kqaa + kq& a + quq + kqéese
6= -3
where
Koy = _%’ (- Egg)
g L
k= - Pa
va CL
_ _ 28
kzv B VE
P C
-2 (L
Ko =7V (- Za)
p C
c L
k=5 CLJe
Zée V? L
C
v - mge Mo
qa Iyy CL
C
Kk . = mgc® Mg,
q a 2Iny CL
C
_ omge® Mg
@ By, G
C
Kk o= D3C Mg
qdé I C
yy L
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Solution of the Linearized Longitudinal Flight Equations

Here we have replaced o - /adt by 9, and have added Eqn. 4 to compute 9, from q and a.

Using the following data (for the F86-D, flying at Mach 0.8 and 10,000 feet), represent the abov
equations on an analog computer and plot the various longitudinal variables for Mach 0.8 and
10,000 feet. How would one excite only the short or long-period pltching motlons?

Flight constants for the F86-D, flying at Mach 0.8 and 10,000 feet are:

a; = 0.017 radians kQa = -23.8
m = 465 slugs kzde = -0.238
- 2 - -

I, = 29,400 slug ft k, = -0.983
v, = 862 feet/sec k,, = -2.17
pS = 0.505 slug/ft Kqg = -0.363
¢ = 8.09 ft kgg = “OH.T
gk, = -0.0143 qu = -1.57
gk__ = -0.0027

zv

Solution
The electronic differential analyzer clrcult for solving the above equations is shown in

Figure 1. Note that the velocity, v, actually appears as vp/g in the circuit. This is done

p
to eliminate the dimensions of feet, so that all variables in the circuit will be dimensionless,
or have dimensions of seconds or Seconds_l. Since we are computing in real time (one second in
the problem equals one second in the computer solution), this actually means that all dependent
varlables on the computer can be considered dimensionless. Because of this we can arbitrarily
assign a relationship between volts and radians, say 100 volts = 1 radian. Then 100 volts =
1 rad/sec, and 1if vp/g = 100 volts, vp/g =lorv,=g ft/sec.

Note also that angle of attack perturbation appears as 5a in Figure 1. This is done to
better distribute the gain between integrators 4 and 6.

Computer recordings of the various longitudinal variables for Mach 0.5 and 10,000 feet
are shown in Figure 2 following an initial a. Both the short-period and long-period pitching
motions are apparent. To exclte only the short period, one should start with an initlal q; to

excite only the long period, one should start with an initial QW. Computer solutions for Mach 0.¢

will be similar, except for a longer phugoid period and a higher frequency short-period motion.

Revised F86-D Characteristics for Dynamic Stabllity and Autopilot Studies, Report NA-50-107A,
North American Aviation, Inc., January 15, 1952,
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Example Problem No. 107

Figure 1. Electronic Differential Analyzer Circ

uit for

Solving the Linearized Longitudinal Flight Equations
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Figure 2. Typical Longitudinal Transient
Simulated Pitching Motion of F86-D Showing Shor
and Phugold Response - Mach 0.5 - Altitude 10,000
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Example Problem No. 108

SOLUTION OF THE LINEARIZED LATERAL FLIGHT EQUATIONS

by
R. M. Howe

Problem Statement

Let us consider the linearized lateral flight equations as obtalned from perturbations

from steady-state symmetrical level flight with trim lift coefficient, C The dependent

L

variables are roll-rate p, yaw rate,r, and angle of side-slip,f. The equations of motion take

the form:
. Ixz s
= === 1 +k +k _r+k + k 1
Pomr Trkpp Pt Pt Ky pg %2 Fps, 4 (1)
a
: IXZ- 6
r=—p+ krB B + krp D+ k. r+ kré a t kré 6} (2)
z2 a r
- g
= + + == +
p kyB p Kyp P+ ke T 7, ¢@ kygr E. (3)

ng p cos aq + r sin o

(4)

Q@ is the flight-path axls bank angle. The various k's are given in the following equations:

TL, 2 C
mgh B _ mgb N,
ko = (5) Kpp = (12)
B Ixx cL re 2Isz CL
T T,
2 L Ng
_ mgb P _ mgb a
ko, = DB P (6) g = BED (13)
PP ngpr CL rSa IZZ CL
T [of
2 CL N&
_ mgb r _ mgb r
k. =5 § (7) Kpg = 7 (14)
pr 2Ixxvp ‘L ér zz L
T —
Lg C
mgb %9a Y
Kk = =2~ 8 __g B
Ps,” T, Cp (8) gy = ¥, o (15)
T Ty
_ gb LS K = 8P —2 4 sina (16)
Kpg, =T T (9) T T
.
_gb Yr
T k=52 = - cos a (17)
x = bgb “Np (10) yr 2V2 Cy,
e I, Cy P T
. . - & _Yér (18)
2 Cx Ve 'V Cy,
x = mgb D (11) p
rp 2IZZVp CL

where the stability derivatives with bars are referred to body axes.

analog computer using the data given below.

rolling modes excited?

How are the "Dutch-roll," spiral, and uncoupled

-H22-
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Flight constants for the F86-D flying at Mach 0.8 and 10,000 feet are:

o, = 0.017 radians kg = 22.8
I, = 8630 slug ££° kpp = 0-305
I,, = 35,000 slug £t° K, = -0.917
m = 465 slugs kYB = -0.393
v, = 862 ft/sec Kyp = 0.017
pS = 0.505 slug/Tt kyr = -1
b = 37.1 ft kpg, = ~7. 4
kg = -66.0 kpg = 1.72
k= -7.60 kep g, = =0.0702
Kop = 1.84 krgr: -0.95
ky&}: 0.061

Solution

The electronic differential analyzer circult for solving these equations is shown in
Figure 1. All of the computer outputs are angles, angular rates, or angular accelerations, and
hence, if the problem is solved in real time (one second in the computer solution equals one
gsecond 1n the problem), it is only necessary to choose a single relationship between computer
volts and radians, say 100 volts = 1 radian = 1 radian/sec = 1 radian/secz. Note that the
roll-rate p appears as p/5. This is because the roll-rate will in general be much higher than
the yaw rate, and at the same time it 1s convenlent to have the outputs of all amplifilers at
roughly the same voltage level. For the same reason 58 and not B appears as an output voltage.

To excite the lateral oscillatory (Dutch-roll) mode one can start the differential analyzer
gsolution with an initial yaw-rate r. To excite the spiral mode it 1s necessary to start the
solution with an initial bank angle ﬂw. To exclite the uncoupled rolling motlon the computer is
started with an initial roll-rate p.

Computer recordings of the various lateral variables for Mach 0.5 and 10,000 feet are shown
in Figure 2 following an initial bank angle ﬂw. Solutions for Mach 0.8 will be similar except

for a higher frequency in the Dutch-roll motion.

-H2%-



Solution of the Linearized Lateral Flight Equations

1, /201,
r l ! |
~kyg/100
~58 025
~kp/16 ‘ !
0.25
-p/5 o—( - b 5 0
ker/20 | 20 5 °5
r o—(OvwWn—
kp§4/20
|
8q
kpsr/20 |
8y

Figure 1. Electronic Differential Analyzer Circuit for
Solving the Linearized Lateral Flight Equations
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Showing Short Period Response and Descaying Spiral
- Altitude 10,000 - CG 24%

Example Problem No. 108

Simulated Lateral Motion of F86-D

Mach No. 0.5
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Figure 2. Typical Lateral Transient
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Example Problem No. 109
TWO-DIMENSIONAL RE-ENTRY TRAJECTORIES FOR LIFTING VEHICLES

by
R. M. Howe

Problem Statement

In this problem we are concerned with the calculatlon of the trajectory of a 1lifting
vehicle as it re-enters the earth's atmosphere from satellite velocity. The computation of
vertical forces acting on a satellite requires calculation of the small difference between
centrifugal acceleration and gravity, both of which involve nonlinear terms. The usual analog
mechanization may yield unsatisfactory results for thils reason. However, by using a modified
flight-path axis system with suiltable equatlons one can overcome this difficulty.* In this
system the x, axis is horizontal and in the plane of the motion (positive forward) and the zy
axis 1s pointed toward the center of the earth. The motion of the vehicle can then be described

in terms of horizontal veloclty U, along the x, axis and vertical veloclty W, along the z,_  axis.
h h h h

If we let X and Zh be the external vehicle forces not including central force-field gravity,

h
and r be radial distance from the center of the earth, then the following equations can be
derived*:
rX rU]
th% /__k.ld'r + lt=0_ (1)
m r
2 2
. gnT U Z
T T (2)
r r m

where m 1s the vehicle mass and 8o is the central force-field gravity acceleration at a fixed
radial distance Ty For computer scaling purposes it is usually best to choose Ty equal to the
mean radial distance of the trajectory.

Equation 1 is essentially the angular momentum integral; when the external force Xh
equals zero, it makes the horizontal velocity Uh an algebraic function of radial distance r and
avoids an open-ended integration. Equation 2 includes the gravity, centrifugal, and vertical
acceleration due to external forces.

The equations are more convenlent for computer scaling 1if we define a dimensionless radial

perturbation variable ép given by:

P—PO
ép = — (3)
0
Also, let us define a dimensionless horizontal veloclty perturbation, 5uh,given by:
Uh—UhO

- U, -
$u, = T 0 Mo TV (4)

* Fogarty, L. E., and R. M. Howe, Analog Computer Solution of the Orbital Flight Equations,
IRE Transactions on Electronic Computers, Vol. EC-11, p. 55b, August, 1962.
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U

Here hO 1s the velocity of a satellite in a cilrcular orblt at radial distance r

0
Finally, we introduce a dimensionless time T given by

'f:/_%t (5)

In terms of these dimensionless varilables, Equations 1 and 3 become

tr‘
X
o1 h [(1+6p) (1+8un) & _

(SU_h = m /(l+c§p) Eé—o— aT + Trép A T =0 (6)

0

2

Eﬁﬁ _ d%fp _ & ) 25uh + Juh . Eﬁ. 1)
ar ar? (1+8p)° 1+6p mgg

‘Here Wy 1s dimensionless vertical velocity, i1.e., W,

still exact. For purposes of re-entry simulation we will now assume Jp< <1 (in typical re-entry

= Wh/UhO. At this point our equations are

trajectories $p ranges over iQ.OQ), whereupon Equations 6 and 7 become:

p
X
h
0
aw 2 Z
aT are P h h mgg (

where Suho 1s a constant which takes on the approprilate value to make 5uh(o) correct. Note
that 5uh in Equation 8 will be approximately zero in orbit and will equal approximately -1 near
the end of re-entry.

Let us turn next to the computation of the external forces Xh and Zh'
path angle of a 1lifting re-entry vehicle will remain quite small except near the termination of

Since the flight-

trajectory, where the range 1s 1nfluenced very little, we willl assume that the aerodynamic drag

force D acts horizontally and that the 1ift force L acts vertically. Thus we write

X, D

mg, ~ T mg, (10)
o fy (11)
€0 20

If we assume an exponentlal atmospheric model, then the drag acceleration —Xh/mgo can be written:
r
0
- HS(JP+PO*)

Pp€ 2 C.S
_ h _ "0 v2 U D (12)
mg 2 a 0 mg

where po* is a constant, hO 1s the scale helght of the atmosphere, Po is the atmospheric density
when &3+po* = 0, CD is the drag coefficient, S 1s the characteristic area on which CD is based,
and vy is the dimensionless total velocity given approximately by

v, = 1+ bu (13)
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Two-Dimensional Re-Entry Trajectories for Lifting Vehicles

This approximatlon assumes that the flight—path,x sremalns small enough that cos ¥= 1. Simulate
this system on the analog computer and, assuming L/D = 2.0, plot several re-entry trajectories.

Let CDA/mgO = .0066.

Solution

The electronic differential analyzer circuift used to solve the translational equations of
motion in the plane of the orbit, i1.e., Equations 8 and 9, is shown in Figure 1. The only non-
linear operation, that of squaring Suh, is accomplished using one-half of a quarter-square
multiplier. The circuit is set up to operate with 1 second of computer time equal to one
unit of dimensionless time. By switching the integrators onto repetitive operation
this will be speeded up by a factor of 100, since the 1 mfd feedback capacitors are replaced by
0.01 mfd capacitors. At this speed a 10,000 mile re-entry trajectory will require roughly
30 milliseconds. The circult 1s scaled with the reference voltage (lOO volts) considered equal
to unity. Thus by computing 808p we allow 5b to range through +1/80, equivalent to +50 statute
miles. Pots A2, A5 and A6 set initial values of horizontal velocity, vertical velocity, and
altitude, respectively.

The most challenging of the equations presented in the previous section for solving the
re-entry trajectory is Equation 12 for the aerodynamic drag acceleration, since this involves
the multiplication of an exponential functlon which ranges over a number of decades with a
velocity squared term which also ranges over several decades. A reasonable solution is to

utilize fixed logarithm function generators. Thus from Equation 12

2
U
X P~"hn CAS r
log (—ll) = log 0 07> 0.434 9 (8p + po*) + 2 log v (14)
mg 2mgo ho 0] a
If we choose po* such that po, the density when Jb + po* = 0, 1s given by
2mg
p = ———
0 2
Uho Cps (15)

then Equation 14 becomes
(16)

where po* is proportional to log (CDS/mgO). The electronic differential analyzer circuit is
shown in Figure 2 and employs fixed diode logarithm generators accurate to better than 0.2
percent over two input decades. Amplifier AT computes total dimensionless velocity,

Vs in accordance with Equation 13. The two dilodes prevent the amplifier output from

ever going negative. Pot A7 sets 80po* and hence represents a quantity proportional to
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Example Problem No. 109

0.1
0.1 — _x2 &
(Suh)2
Su -8u - - SWptSWh
h h 2 0 o}
'\/\‘/\r—"‘
0.5L/D
Zﬂ_ Qg 0.1
Mo 0.0625
A3 AAN—]
i 0.1 0.1 0.1
OS'B 0.1 N 0.1
L 089 —BOSP
Owho ]
+100 - +100 -
X
h
Su, = - dT -8g + 8Su
h z( e ho
Mo
d Z
_lvh = —89 -28uh -(Suh)2 + -b—-
dT Mg

Figure 1. Circuit for Solving the Translational Equations in the Orbital Plane

log (CDS/mgO). For the simulation illustrated in this problem we will assume that the drag
coefficient CD remalns constant, representing an approximately constant re-entry angle of attack.

Note that a Mach-dependent C. would require only an additive function of Mach number into

D
amplifier AL, Pot A8 provides a convenient method of obtalning the required gain of 382/80 in
summing 80(6ép + po*) into amplifier B5. By using the log generator in the amplifier feedback
loop the output becomes —Xh/mgo as required. The diode prevents the amplifier output from going
more than about one-half volt negative, whereas the two dlodes used with amplifier B6 prevent
Xh/mgo, from ever goling positive (l.e., the drag —Xh/mgO from ever going negative). When this
tends to happen (as it will when the range of the log generator in the feedback of amplifier B5
is exceeded for altitudes that are too high) the lower diode around amplifier B6 conducts and
the point labeled Xh/mgO 1s simply connected to the amplifier summing Jjunction through a 100K
resistor. Thus Xh/mgo becomes less than 100 microvolts, which 1s important to insure negligible

aerodynamic forces outside the atmosphere.

The dimensionless downrange horizontal distance traveled, Sy is given approximately by
T

5. = /(1 + du,) aT (17)
0
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Two-~Dimensional Re-Entry Trajectories for Lifting Vehicles

-100

I%;.'lll logX

m
21.0K %o
22\
@
808, 0.1 0.1 (Ungrounded Pot)
100 N 80(8p+p *) 10 X
ks @ ®"® log (- hl- 2 log lOva—382 (8(> + po*)
mgdo

C.S )
6409 D >
MY,
Figure 2. Circuit for Computing Drag Acceleration

Consider first the solution for the zero-1ift, zero-drag case, i.e., X Zh:O. Further,

=
assume that the vehicle 1s in a near-circular satellite orbit, in which case Suh<-<1. Neglect-
ing (Suh)2 in Equation 9 and eliminating 5uh between Equations 8 and 9, we obtain
4%
53 +bp = 28uh (18)
aT 0]

Thus, for small éuh and Xh=O, the circuit of Figure 1 should behave like a simple harmonic
osclilllator with natural frequency of one radian per second. The resulting 5p represents the
periodic deviation of satellite altitude from circular reference orbit as the satellite goes
through apogee to perigee to apogee.

Next, consider solutions for finite 1ift and drag. A recording showlng several typlcal
re-entry trajectories for L/D = 2.0 is shown in Figure 3. It 1s also interesting to record and

display other variables, such as vertical velocity, Wi velocity, v ete.

a}
For the case of a non-lifting re-entry vehicle, the flight-path angle X does not remain

small. In thils case Equations 10 and 11 become

X (1+5u )
L = - __‘p__. COSX = - __D— h_. (19)
mgo &g M&g  Va
and
Z W
_.11_ = - _D._ sin X = - __D_ _.ki (20)
m&o &g 8o Va
X
Equation 16 for 1log (- ﬁg_) can then be written
0
X Yo (g
log (- HEE) = 0.434 By (bp + pg*) + log v, + log (1 + uy) (e1)
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Example Problem No. 109

In the same way we can write

Z r
log (- Dy o0.434 E% (8p+ po*) + log v, + log wy, (22)

mgo

Thus by means of three additional fixed log generators to compute log (1+5uh), log w,, and

_ Z
log l(— EEB)’ circults similar to Figure 2 can be used to compute re-entry trajectories for

non-lifting vehicles.* Total velocity, Va,must be computed from the equation

v, = (l+5hh) oW (23)

which can be implemented by fixed diode squarers. Since the peak re-entry accelerations are

appreciably higher in this case, appropriate rescaling is necessary.

T PTG
R

T
haftiet

EaeE

U
i i ; |

ALTITUDE, STATUATE MILES

PR 3

Reentry Trajectories from 338,000 Feet L/D = 2.0, CpA/mg, = 0.0066

0 2 4 € 8 10 12 14 16 18 20 22
RANGE, THOUSANDS OF STATUATE MILES

Figure 3.

*
Fogarty, L. E. and R. M. Howe, "Analog Simulation of the Re-Entry of a Ballistic Missile
Warhead and Multiple Decoys,” Proceedings of the Spring Joint Computer Conference, 1962.

_H3l_



Example Problem No. 110
FREE VIBRATION CHARACTERISTICS OF A UNIFORM CANTILEVER BEAM
WITH ELASTIC ROOT RESTRAINT
by

G. Isakson

Course: Structural Dynamics Credit Hours: 3 Level: Senior Elective - Graduate

Problem Statement

Using Targoff's matrix formulation (Jour. Aero. Sciences, October 1947) of the Holzer-
Myklestad method, set up a program to determine the natural frequencies and mode shapes of
vibration of a uniform cantilever beam with elastic bending restraint at the root. Divide the
beam into a varilable number of equal segments and distribute the mass of each segment equally
to its ends. Determine the variation of the frequencilies and mode shapes with the magnitude of
the spring constant of the root restraint. Express all parameters and variables in non-

dimensional form.

Solution
The uniform beam,as shown in Figure la, is divided into n equal segments and the mass of

each segment distributed equally to 1ts ends to yileld the lumped mass representation shown in

Figure 1b.

AN VWY
| ]

Figure la. Uniform Beam

~0—0~0~0—0—0—0—0-0—-04
Il gk
#l 1

AMAVANN

Figure 1b. Lumped Mass Model

Figure 1. Beam Representation

The lumped masses are thus all equal, except for that at the tip, which 1s half as large

as the others.

The following linear relationship between variables at statlons 1 and i+l may be written

for the general case of a non-uniform beam,

_H32_



where VL2/EIO
{A} = I;IIL/EIO (2)
/L
== 2
-1 0 0 7oA T
[ ] 0 1 0 0 )
Fl., = 3
+ 0 0 0
L0 0 0 1 -
( 1 0 0 0
I 1 0 0
(Bl = o, ()
-1°/°EI -Z/EL 1 0
PAET /o8 oA 1
L _
and v = shear
M = bending moment
§ = slope
é = deflection
L = length of beam
L = length of beam segment
L = AL
p = mass of beam per unit length at station i
po = mass of beam per unit length at root
P = PPy
EI = bending stiffness at station 1
EIO = bending stiffness at root
EBL = EI/EIO
w = natural frequency, radians/second
A

= ” %OLH
EIO

Combining matrices {E] and [F] , BEquation 1 may be written as follows
{o} 100 =[6]; (o} (5)
where 1 0 0 Q§A2
L 1 0 ZEEAE

al, = . _
(41 JRRET -7/FT 1 -Top )/ eRT
JV6RT TREET 7 1T Ne/6nt
Equation 6 applies across all segments except the tip segment, where p is replaced by p/2.

Applying the condition V=M=0 Jjust outboard of the tip mass, we can write the relation,
’ n -1 !
- T
{8], = (T, [4];) [B] {5/L t (7)

-H33-



Vibration Characteristics of a Uniform Cantilever Beam

where subscript r denotes root, and subscript t tip, and

0 1oAe/2
=0— D
[B] - 0 f pA /2 (8)
1 - IS5A°/uET

I 1+I“5A2/12ET
Specializing again to the case of a uniform beam, we can set p = EI = 1 in Equations 6 and

8, and Equation 7 becomes

(], = [e] {‘s/} (9

[¢] =[] [3]

and the subscript has been dropped from the [A] matrix.

where

Specializing further to the case of elastic bending restraint at the root, with spring

constant K, we have

M, = K& (10)
and, from BEquation 9, eliminating the first row and setting SP:O,
KL/EI, ¢ Cop { /8 }
1 = | C3; C3p 4 /LJ'r (11)
0 | Cua Cup
Thus,
{:1:} [ €32 ] Jse/8s }
0 L Cyy Cyo 155 /Lé,
or
-1
8'/80 {031 Csp {jl:}
5, /L8, i Cup 0
= T21C,5-CanC
3174273241 -Ca1
and

C 88 CupCo1=Cn1Cop
KL/EL, = |Cnhs c = (12)

In the specilal case of rigid root restraint, K = o0, and we have the condition,
CypC317Cy7 03070 (13)
Similarly, in the speclal case of a hinged root with no bending restraint, K=0, and we

have the condition,

CupCop=Cyy Cpp=0 (1)
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Example Problem No. 110

The left-hand side of Equations 13 and 14 may be termed the "residual." In these special
cases, the determination of the natural fredquencies involves a search for the zeros of the
resldual by a trial procedure.

Following determination of the frequencies, the mode shapes, normalized so that St/L=1,

may be determined by extracting the following relatlon from Equation 11,

Cyié'e + qugt/L =0 (15)
Thus
sio- - e (26)
t Ciq

{A?t is now known and {A}i for 1=1,2,...,n may be determined by applying successive matrix
multiplications as indicafted 1n Equation 5, ylelding the non-dimensional values of shear, bending
moment, slope and deflection at the selected stations along the beam.

The method 1s implemented on the IBM 704 computer by means of a MAD program. Two main
programs are used, one of which determines the value of the spring constant of the root res-
traint and the residuals for fixed and hinged root conditions for trial values of the frequency
parameter, and the other of which determines the mode shape. Both of them make use of two
external functions, SETML. and SETM2., which set elements into the matrices [A) and [B] and
which are defined for the general case of a non-uniform beam, so that parameters ;'and EL are
used. The first of the main programs also calls upon an external function RESUN., which performs
the cumulative matrix multiplication.

The main program for spring constant and residual determlnation will accept eilther an
assortment of trial values of the frequency parameter or an initial trial value to be incremented
by a specified amount a given number of times.

The external function SETMl. sets those elements of [A] and [B] which are independent of
the frequency parameter A . The external function SETM2. sets the remaining elements of [A]

and {B]

The following additional symbols used in the flow charts and programs are defined:

CRITER = Switch determining whether frequency data 1list 1s complete or is to be
incremented.

M = Number of frequency values to be read in.

RCANT = Residual for cantilever beam with rigid root restraint.

RHINGE = Residual for beam with freely hinged root.

SPRING = Spring constant of root restraint in non-dimensional form.

NN = Number of mode shapes to be determined.

CASE = Identifies by means of the alphabetic names CANTIL, HINGED, SPRING,

whether the root of the beam is rigidly restrailned, freely hinged or
elastically restrained respectively.
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Example Problem No. 110

Flow Diagram - Subroutine RESUN.

BETA
J=1,1, Cry © BI,I
Jvz

PRI

J;l% CIT:
Jy72

MAD Program - Main Program for Frequency Determination

$ COMPILE MADs EXECUTEs DUMPy PRINT OBJECT

START

PSI

ALPHA

RPROGRAM FOR UNIFORM BEAM NATURAL FREQUENCIES BY
RHOLZER-MYKLESTAD METHOD

DIMENSION A(169DESC)sB(89DESC(3))sCI89DESCI3)) s LAMDA(200)
VECTOR VALUES DESC=291394923192

INTEGER NsiMsQsCRITER

READ FORMAT INPUT1sNsCRITERM

VECTOR VALUES INPUT1=3I2s119I13%$%

PRINT FORMAT OUTPT1sNsi )

VECTOR VALUES OUTPT1=363HINATURAL FREQUENCIES OF UNIFORM BEAM
1 BY HOLZER=MYKLESTAD METHOD/4H N =9[395593HM =414%%
WHENEVER CRITERWEs1

READ FORMAT INPUT2sLAMDA(L)esaLAMDA(M)

VECTOR VALUES INPUT2=%(9F845)%%

OTHERWISE

READ FORMAT INPUT3sLAMDA{1) sDELLAM

VECTOR VALUES INPUT3=32F8e¢5%%

THROUGH PSIs FOR Q=2519QeGeM

LAMDA(Q)=LAMDA(Q=1)}+DELLAM

END OF CONDITIONAL

LBAR=1s/N

EXECUTE SETMle(LBARSLeslesUesAsB)

THROUGH ALPHAs FOR Q=1919QeGei

LAMDAA = LAMDAI(Q)

EXECUTE SETMZ2e (LBARsL1esle sLAMDAASAIE)

EXECUTE RESUNs (A9B3sCoN}

RCANT=C(492)%C(31)=ClLyl)*C(392)
RHINGE=C(492)%C(291)=C(49]1)%C(292)

SPRING=RHINGE/RCANT

PRINT FORMAT QUTPT29LAMDAAYRCANT 9 RHINGE 9SPRINGC(491) 2 C(492)
VECTOR VALUES OQUTPT2=38HULAMDA =9F943/11H KESIDUALS=s50
112HCANTILEVER =9E15489 559 8HHINGED =9E19e8/181 SPRING COUNSTANT
2 =9E15e8/9H Cl49l) =9E1548951UscHC(492] =9EL1D48%3
TRANSFER TO START

END OF PROGRAM
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MAD Program - Main Program for Mode Shape Determination

$ COMPILE MADs EXECUTEs DUMPy PRINT OBJECT

START

TAU
THETA

ZETA

RPROGRAM FOR DETERMINING UNIFORM=BEtAM MODE SHAPES BY
RHOLZER=MYKLESTAD METHOD

DIMENSION A(16sDESC)sB(8sDESC(3))9sSHAPE(B859DESCI(6))
VECTOR VALUES DESC=291s49291929294 4

INTEGER PslsJsKaNsNN

READ FORMAT INPUT1sNsNN

VECTOR VALUES INPUT1=%$12s13%%

LBAR=1¢/N

EXECUTE SETMle(LBAR®1ssles0asAsB)

THROQUGH ZETAs FOR P=191sPeGahliN

READ FORMAT INPUT2sCASEsSPRINGsLAMDAASC419C42
VECTOR VALUES INPUT2=3C69E15489F84592E15e8%5

PRINT FORMAT QUTPT19CASEsSPRINGsNyLAMDAAYCL4L»C42
VECTOR VALUES QUTPT1=%1HUsC6s55517HSPRING CONSTANT =3sZ1648935
193HN =913/8H LAMDA =39F10e59S595HCALL =9E10e895545HCAH2 =9E16e3%
2%

EXECUTE SETMZ2e(LBARs1es1lesLAMDAASAIB)

SHAPE{O0s1)=0s

SHAPE(092)=0s

SHAPE (093 )==C42/C41

SHAPE (Osb)=10

SHAPE(191)=5(192)

SHAPE(192)=B(2s2)

SHAPE(193)=SHAPE(U93)+B(392)

SHAPE (194 )=B(4s1)*SHAPE(Cs2)+8(492)

THROUGH THETAs FOR J=1slsJeGeN=-1

THROUGH THETAs FOR I=1slsleGes

$=04

THROUGH TAUs FOR K=19lsKeGe4

S=S+A (I 9K ) *SHAPE(JsK)

SHAPE (J+1s1)=S

PRINT FORMAT HEAD

VECTOR VALUES HEAD=%1HU S5 s THSTATION S8 95HSHEAR 9 SLUsOHIMOMET
159 95HSLOPE 9S109 1OHDEFLECTION*S

FTHROUGH ZETAs FOR I=UsleleGeN

PRINT FORMAT DATAsIsSHAPE(I91)eeaSHAPE(Is4)

VECTOR VALUES DATA=%1H 9I19sF18e592F1l5e5sF170a5%8%
TRANSFER TO START

END OF PRGCGRAM

MAD Program - Subroutine RESUN.

SCOMPILE MADs PRINT OBJECT

BETA

EPSIL
DELTA

PHI
GAMMA

RSUBROUTINE FOR UNIFORM BEAM FREQUENCIES BY HOLZER-MYKLESTAD
RMETHODe MATRIX PRODUCT FOR RESIDUAL DETERMINATION

EXTERNAL FUNCTION (AsBsCoN)
DIMENSION D(BsDES)

VECTOR VALUES DES=291s2

ENTRY TO RESUNe

THROUGH BETAs FOR I=1s1s14Ge4
THROUGH BETA» FOR J=1slsJeGae2
ClIed)=B(1sJ)

THROUGH GAMMASs FOR P=1s13PeGeN-1
THROUGH DELTAs FOR I=1slsleGes
THROUGH DELTAs FOR J=1lslsJeGe2
5=04

THROUGH EPSILs FOR K=1s19KeGet
S=S+A(TaK}*C(Ked)

D{IsJ)=S

THROQUGH PHIs FOR I=1slsleGe4
THROUGH PHIs FOR J=1slsJeGeZ
Cllsd)=D(1sJ)

CONTINUE

FUNCTION RETURN

INTEGER I9JsPsKsN

END OF FUNCTION
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MAD Program - Subroutine SETMl. and SETM2.

$COMPILE MADs PRINT OBJECT

RSUBROUTINE FOR BEAM NATURAL VIBRATIONS 8Y HOLZER-MYKLESTAD
RMETHODs SETTING ELEMENTS INTO A AND B MATRICES
EXTERNAL FUNCTION{LBARSEIBARIROBARSLAMDAAIASID)
ENTRY TO SETMls

A(lsl)=1

A(291)=LBAR

A{192)=0

Al292)=14

A(392)==LBAR/EIBAR

A(331)=e5%LBAR¥*A(392)

Al4s2)==A(391)

AlGel)=(1e/3e) % BAR*A(4)2)

Al(133)=04

A(253)=0

A(3D3)=10

Al493)==LBAR

B{191)=0s

B(291)=0,

Bi{3s1l)=1e

Bl49l)==LBAR

FUNCTION RETURN

ENTRY TO SETM2s

LAMS=LAMDAA&P 42

A(1l94)=LBAR*ROBAR*LAMS

A(294)=LBAR*A(1s4)
A(394)==e5%#(LBAR/EIBAR) %A (294)
Albsb)==(1e/34)*LBAR*A(394)+14
B(1s2)=e5%A{1s4)

Bl2s2)=e5%A(294)

B(3s2)=e5%A(394)

Bl492)=eb*A(b4slt)+4e5

FUNCTION RETURN

END OF FUNCTION

Computer Qutput - Typical Results from Mode Shape Determination Program
CANTIL SPRING CONSTANT = =Uel159CTL36E 06 N = 10 CTTTTTTm T
LAMDA = 3450000 C4l = =06411007704E C1 C42 = 0el15194210E 01
STATION SHEAR MOMENT SLOPE DEFLECTION

0 600000 GeLUTOD 1638032 1400000
1 Ueb1250 Celib125 1437725 ' 0686207
2 le06854 Jec22810 1e36278 0e72493
3 2455658 Ue4B376 1e32719 0659022
4 3427959 Oedl1172 lecb24? Ve&6U46
5 3484366 1419609 lel6dQ3 0633892
6 4425884 1662197 leUZ112 Ue22941
7 4453986 2407596 Jec3623 CGel3616
8 4470666 2854662 Cebubl10 Qe063T7L
9 4478470 3402509 Ue32651 0e01672
10 4480519 3450561 ~UeUluUQ?2 ~0e¢C000V

-H39-



Vibration Characteristics of a Uniform Cantilever Beam

Computer Output - Typical Results from Freduency Determination Program

UMIFOERM RE

At

=0, 20EE
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Discussion of Results

The spring constant data are shown plotted versus frequency parameter in Figure 2. It is
seen as expected that a beam with positive elastic restraint in bending at the root will have
an ith mode frequency which lies between the corresponding frequencies for the hinged and
rigidly cantilevered beams.

The residual data were used to determine the first two natural frequencies for the hinged
and ridigly cantilevered beams. A comparison between these results and exact analytical results

is shown below:

Frequency Parameter

Root Condition Mode Present Exact % Error
Method Solution
Hinged 1 0 0 0
2 15.219 15.418 -1.32
Rigidly Restrained 1 3.500 3.516 -0.46
2 21.690 22.030 -1.55

Mode shape data were computed only for one case, namely, the rigidly cantilevered beam.

The data agree with the exact solutlon within plotting accuracy.
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Vibration Characteristics of a Uniform Cantilever Beam

Comments and Critique

The method treated in the present example is gaining wide acceptance in practice and, in a
more general form, 1s applicable to a wlde variety of static and dynamic structural problems.
It illustrates to the student how a method which would be very laborious for hand computation is
readily implemented on a digital computer and can yield a large volume of data in a very short ti

Its extension to the more general case of a non-uniform cantilever beam and beams with othe:
support conditions can be readily accomplished.

By varylng the number of segments into which the beam 1s divided, the student can determine
the effect of thls number on the accuracy with which specific mode frequencies and shapes can
be determined.

The present example could be used appropriately in any course concerned with vibration

theory for continuous elastic bodies.
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Example Problem No. 111
RE-ENTRY FLIGHT PATH OF A LIFTING VEHICLE
by

Gabriel Isakson and Joseph L. Lemay

Course: Flight Mechanlcs of Space Vehicles Credit Hours: 3 Level: Senior or
First Year Graduate

Problem Statement

Given the values of altitude, velocity, flight path angle and direction, and geocentric
latitude at the initiation of re-entry of a 1lifting vehicle into the atmosphere, determine the
re-entry flight path. Include the geometric effects of earth oblateness, but neglect oblateness
gravity effects. Assume the ratio of 1ift to drag of the vehicle to remain constant. Consider
only symmetrical motions and assume that the vehicle is at all times trimmed so that there is

zero moment about the pitch axis.

Mathematical Formulation of Problem

The coordinates and motion variables of the vehicle are shown in Figure 1.

/
/Q—LOCAL HORIZONTAL
(NORMAL TO RADIUS VECTOR)

FLIGHT

PATH INITIAL RADIUS

VECTOR
EARTH SURFACE

EARTH CENTER

Figure 1. Coordinates and Motion Variables of Vehicle

The following two kinetic equations for forces normal and tangential to the flight path
may be written,
L+mV (6+¥) -mgcos) =0 (1)
D+mgsind -m V=0 (2)

where

= aerodynamic 1ift
= aerodynamic drag
vehicle mass

= vehicle veloclty

R << B O &
il

= acceleration due to gravity
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EQUATOR

ASCENDING —a
NODE

Figure 2. Geometric Parameters for an Inclined Orbit

and dots denote differentiation with respect to time. In addition, the following three rela-

tions are needed,

r = -V sin ¥ (3)

rd = V cos ¥ (4)

r=R+h (5)
as well as the aerodynamic relations,

L = % pV°AC; = 5 pV2 ACL(E) (6)

D = % pVPACy (7)

where

A = reference area for CL and CD

CL = 1ift coefficlent
CD = drag coefficient
p = alr density

The variation of alr density with altitude may be approximated as follows through most of the
altitude range of interest,

P =Po e PR (8)
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where Py = 0.0027 slug/ft> and P = 1/23,500 £t7%,
The radial distance R from the center to the surface of the earth can be related to the

geocentric latitude, % , as follows,

R = R (1-Tsin%p) (9)
where

£ = 0.003367

R, = 20,926,428 feet

From Figure 2 it can be seen that 76 can be related to the angular coordinate @ in the
orbital plane as follows:
sin? = sina sin g (10)
permitting the rewriting of Equation 9 in the form:

R = R, (1-fsin“a - s1n°g)

Furthermore,

g=pgy+8 (11)
where ¢O is the initilal value of 4. Combining Equations 5, 9, and 10, we have

n = r-Ry {1-¢ sina-s1n®(g10)} (12)

Equations 1 to 4 inclusive and Equations 6, 7, 8 and 12 now comprise the set to be solved.
4 reduction in the number of dependent variables can be effected by a transformation in which

time is replaced by © as the independent variable. Thus, from Equation 4,

§ = _Y_%QSE_ (13)
and, applying this relation,

. av s _dv v ocos¥ 2.1 cosY

V- w3 - (14)
' SR V cos¥

b=ggo= ¥ —F— (25)
. dr V cos ¥

r= §go=r 5L (16)

where primes denote differentiation with respect to O.
Substituting Equations 6, 7, 8, 14, 15 and 16 into Equations 1 to 4 inclusive, and

defining the drag mass parameter, M. = CD ApO/Qm, we have

D
- 2 :
% Mp e Bh 2 ¥¥- cos ¥ (1+Y') - g cos Yy =0 (17)
-Mp, e 2 L g s ¥ - (V) Cgiy =0 (18)
r' = -r tan?¥ (19)

The variable V2 can be put in a non-dimensional form by dividing 1t by the square of the circular

orbital velocity corresponding to radial distance r from the center of the earth. Thus we define
2 2
=2 v Vr
Vo= o= X
o m (20)

where g =1¢/T2, with p the gravitational constant neglecting oblateness effects.
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We can now write

2 =241 =2 ! =2, =2
(vo)r = (V9) % -V u Eg = (V") gr - V° gr! (21)
Substituting Equations 20 and 21 into Equations 17 and 18, and rearranging, we have

) L/D iy e PPy

¥'=m ol —omy (22)
v

! s 2M, e Phry?

(V) = (2-7°) tanl - — (23)

cos §

which, together with Equations 12 and 19, comprlse the set of equations to be solved.
Round-off error in a digital solution can be greatly reduced by replacing Equation 19 by
(§r)" = -(fr+Ry) tand , (2k)
where
§r = r-Ry » (25)
and is small in magnitude as compared with r. Equation 12 can now be replaced by
h=dr+ Ry T sinq . sin2(¢o + 9) (26)
Rewriting Equation 25 in the form
o (27)
we have finally the set of equations 22, 23, 24, 26 and 27 to be solved.

r = {r + R

Initial conditions may be selected on the basls of an approximate solution for a

non-oscillatory trajectory around a spherical earth and are then given by the expressions,

Vs (28)
l+5 MD e r
: * 2D L -Bh 2
¥ = 1 5 (L + g My e r) + BRE sin“a rsin 2(f+0) | (29)
T-—pn t Br N
%MDS h r

for a given initial value of h. If it 1s desired to examine the characteristics of an oscilla-

tory trajectory, the initial conditions may be varied from the values given above.

Solution

Equations 22, 23, 24, 26 and 27 of the preceding section are solved on an IBM 709 computer
subject to initial conditions given by Equations 28 and 29. The program is written in the MAD
language.

After introduction of pertinent parameters, 1including initial values of h and ﬁ, initial
values of 72 and § are computed from Equations 28 and 29 respectively. The differential equa-
tions 22, 23 and 24, supplemented by Equations 26 and 27, are solved using a fourth-order Runge-

Kutta procedure (Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, p. 237, Eq.(6.16.8))

which 1s written into the main program.
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The step size in the integration procedure is decreased at specified altitudes to allow
for the fact that the wave length of any oscilllation which may be present 1n the trajectory
decreases wilth decrease in altitude.

The computation may be terminated by the satisfaction of any one of three conditions.
These are a.) § greater than 89°, Db.) VQ negative, c¢.) h negative.

Values of the variables 6,7 , VE, V, r and h are stored in a matrix until data for one
hundred successive steps are accumulated, and are then printed out.

The followlng symbolgeused in the program are defined:

ALPHA = o LIMGAM = limiting value of { rfor terminating condition
F=r¢f DEIR = &R

H=nh R=r

PHI = @, Ve = T

INC = increment in © gam = &

B=58 V=71

D = L/D THETA = 6 (in radians)

MD = Mp THETAD = 6 (in degrees)

RE = R

Flow Dlagram

_ B = /23500
INMPUT ] LD=3
ALPHA, F, H, =" =~ —>
PHI. TN MD=C. 003
) LNC RE= 2042¢428,

R=DELR +RE

V2 RS0 Ry

CIMGAM = $T.9 140 1% 3 14IST26 8
LMD = LO*LD ‘

X RE*Fa SINCALIAA). 7 2
DELR = H=XSin (PHI), B2

Y

Gam= ({1 eY)*2) /LD~ {17y +BxR)) 4+ (YaDx Xx SN (2.4PHL) /(14 Y ¥ RAB)

CHECK
ALPHA PHL
FR,LD mMD
RE, GANM, V2,
DELR,R, H

END
THETA = 0, INC
THETA>)

GEM > LIMGAM
OR. H< O

H< 220000. H< [70000.

-
l_ch -+ 0.00436332

oUrPUT
ST,
STIN-1)

INC = 0.008724L4

T

(29,

RUNGE ~-RUTT4

STIN+1) = GAw
sTiNy2)2 V2
sT(ard)e Vv
sT(n+d) = R
STEN +8) = H

PROCEDURE

STINY = THETAD

LUTPUT
5Tin-1)

*
Additional symbols in the program are used in connection with the Runge-Kutta procedure.
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MAD Program

START READ FORMAT INMUTALPHAsF sH9PHI s INC
B=14/235004
LD=3,
MD=,0003
RE=20926428.
LIMGAM=8949/(180,4)%3414159265
LDMD=LD*MD
X=RE*F*#SINe {ALPHA) eP o2
DELR=H=X*SINe (PHI)sPs2
R=DELR+RE
Y=LDMD*EXPe (=B¥H)*R
V2=1le/(1le+Y)
GAM=((1le+Y)#24)/(LD*(1e/Y+B¥R) )+ (y*B*X*SINe(24%PHE)} )/ (le+Y*R¥*
1B) .
PRINT FORMAT CHECKsALPHASPHI 9sF9Bs| . DsMDsRE»GAMyV29DELRIRH
N=1
THROUGH ENDs FOR THETA=UsINCYTHETAGeTe
WHENEVER Hele 22000049 INC=400872664
WHENEVER HelLe 17000049 INC=400436332
WHENEVER GAMeGeLIMGAMeOReHeLeOe
PRINT FORMAT OQUTPUT»ST(1)eeeST(N=1)
TRANSFER TO START
END OF CONDITIONAL
GAMDN=14/V2=1e=Y/COSe(GAM)
V2DON=(24=V2)*¥TANe (GAM) = (2 %*Y*V2)/(LD*¥COSe (GAM) )
DLRDN==(DELR+RE)*TANs ( GAM)
GAM51=GAM+GAMDN*INC* 45
V251=V2+V2DN*INC*45
DELR51=DELR+DLRDN#INC*45
R51=DELR51+RE
H51=DELRS1+X*¥SINe ({THETA+PHI+INC¥*e5)ePe2
Y51=LDMD#EXP e (=-B#H51)*¥R51
GAMD51=14/V251=1e=-Y51/C0OSe (GAM51)
V2D51=(2e=V251)#TANe (GAMS51)~(2%*Y51%V251)/(LD*COSe (GAM51))
DLRD51=-(DELRS1+RE)*TANs ( GAM51)
GAM52=GAM+GAMDS1#INC*e5
V252=V2+V2D51*INC*4¢5
DELR52=DELR+DLRD51*INC*45
R52=DELR52+RE
H52=DELRS2+X¥SINe { THETA+PHI+INC¥*45})4Pe2
Y52=L.DMD#EXP s (-B*¥H52 ) *¥R52
GAMD52=14/V252=1e=-Y52/C0Se {GAM52)
V2D52=(2¢~V252 ) %TANe (GAM52 )= (2%Y52%#V252) /(LD%COSe {GAM52))
DLRD52==(DELR52+RE}*TAN+ (GAM52)
GAM11=GAM+GAMD52#INC
V211=V2+V2D52%INC
DELR11=DELR+DLRD52*INC
R11=DELR11+RE
H11=DELR11+X*SINe (THETA+PHI+INC)ePs2
Y11=LDMD*EXPe (~-B*H11)¥#R11
GAMD11=14/V211-1e~Y11/COSe(GAM11)
V2D11=(2e~V211)*TANe{GAM11)=(2%Y11%V211)/(LD*COSe{GAM11))
DLRD11=~(DELR11+RE)*TANe (GAMI11)
GAMD=(GAMDN+2 ¢ XGAMDS51+2 ¢ ¥GAMD52+GAMD11) /6
V2D={V2DN+2e*V2D51+24%V2D52+V2D11) /64
DLRD=(DLRDN+2¢*DLRD51+2¢%DLRD52+DLRD11) /6
GAM=GAM+GAMD* INC
V2=V2+V2D*INC
WHENEVER V2elLeOe
PRINT FORMAT OUTPUT#ST(1)eeeST(N=7)
TRANSFER TO START
END OF CONDITIONAL
DELR=DELR+DLRD*INC
R=DELR4RE
HzDELR+X*SINe (THETA+PHI+INC) ePe2
Y=LDMD*EXP o (~-B¥*H) #R
V=SQRTe(V2)
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MAD Program, Continued

THETAD=(THETA+INC) #57429578C
ST(N)=THETAD

ST(N+1)=GAM
ST(N+2)=v2
STIN+3)=V
ST(N+4)=R
STIN+5)=H
N=N+6

WHENEVER NeGe600
PRINT FORMAT OQUTPUTsST(1)eeeST(N=1)

N=1
END END OF CONDITIONAL
INTEGER N

DIMENSION ST(1000)

INTERNAL FUNCTION TANe(Z)=SINe(Z)/C0Se(Z)
VECTOR VALUES INPUT=3$5F144+6%$%

VECTOR VALUES OQUTPUT=3%(6F20¢6)*$%

VECTOR VALUES CHECK=$(6F2048)*%$

END OF PROGRAM

Discussion of Results

Three typical trajectories computed by means of the preceding program are shown in Figure 3.
All are for a once-around polar orbit (a = 900). One involves the assumption of a spherilcal
earth (£=0). The remalning two are for an oblate earth, one starting at the equator and the
other at a pole. Otherwise, initial conditions are the same 1n all three cases. The results

1llustrate the effect of earth oblateness on the trajectory.

/—Oblo're, ¢y = 0°
400 i i
-
w j// Spherical
i 350 ¥
w — '~
© 300 Y ===
? \
4
5 250 Oblate, $, = 90° —
g 1 70 \\
2 200 > 2
e Oblate, $, = 00— >?\
! | l
e 190 Spherical
W [ ]
a 100
T
P Oblate, $, =90°—+"7
k50
<

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
6 -DEGREES

Figure 3. Comparison of Spherical and Oblate Earth Trajectories
for a Once-Around Polar Orbit
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Critigue

The present example serves to illustrate the power of the digital computer in solving
problems which are very difficult to solve by analytical means. In the present case the problem
involves the solution of a set of simultaneous nonlinear differential equations.

The program demonstrates the implementation of a typical numerical analysis technique on
the computer, in this case a particular form of the Runge-Kutta method of solving differential

equations. If desired, the program can be simplified by making use of a library subroutine for

solution of differential equations.
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