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ABSTRACT

PION DEUTERON ELASTIC SCATTERING AND
BREAK UP AT 3.65 BEV/C

by
Hsien-chih Hsiung

Chairman: Byron P. Roe

An experimental and theoretical investigation of pion-
deuteron elastic scattering and deuteron break up reaction
is presented.

The differential cross section for the elastic scattering
of positive pions from deuterons at 3.65 BeV/c has been mea-
sured. Measurements were made for -t, the four momentum
transfer squared, in the range 0.043%-1.0 (BeV/c)g. The data
were obtained in a 222,000 picture exposure of the 20-inch
deuteron bubble chamber at Brookhaven National Laboratory AGS.
Experimental results are compared with calculations based on
the Glauber high-energy approximation, utilizing the total
5Sl + 3Dl deuteron wave function and pion-nucleon scattering
amplitudes. The experimental data do not show evidence for
a pronounced dip. The agreement between experimental data
and theoretical prediction is good.

The differential cross section for the deuteron break up

reaction, o+ d s p+n, at 3.65 BeV/c has also been

measured for -t in the range 0.0625-0.30 (BeV/c)z. A theo-
retical prediction, based on Glauber's approximation, was cal-
culated for a particular final state, Ep = En , and compared

with the experimental results.

ix



CHAPTER I

INTRODUCTION

The problem of coherent elastic scattering of high energy
particles from bound states has received a good deal of atten-
tion in past years. The deuteron can be considered to be a
non-relativistic bound state of a neutron and a proton. The
weak binding of the deuteron and the large distance (3 fermi)
between its components compared to the range of the neutron-
proton interaction (ﬁ/mwc = 1.4 fermi) encourage one to
believe that it is a good approximation to treat the neutron
and the proton in the deuteron as free particlesl and thus,
calculate the hadron deuteron elastic scattering cross section
by using hadron nucleon elastic scattering amplitudes. For
the pilon-deuteron elastic scattering calculation, we will
require pion-nucleon scattering amplitudes. Fortunately, a
large amount of information about these amplitudes is avail-
ablec2

The pion-deuteron elastic scattering differential cross
section for pions with laboratory energies 613, 854, 1405,
1426, and 5OO7 MeV havebeen measured. Above 300 MeV, pion-
deuteron elastic scattering data has been scarce. Vegni et
al.8 have determined the differential cross section at a pion
momentum of 6 BeV/c for values of four momentum transfer
square (-t) out to 0.14 (BeV/c)g. In the present experiment

the elastic differential cross section for an incident pion



momentum of 3.65 BeV/c has been measured for (-t) out to
1.0 (BeV/c)g, corresponding to a cosine of the center-of-mass
scattering angle of 0.861. The differential cross section
for the deuteron break up reaction has also been measured for
(-t) out to 0.30 (BeV/c).

The dynamical model used here for theoretical predictions
is the multiple scattering model proposed many y=2ars ago by
clawber? ™. This is described in detail in Chapter IT. In
Chapter III the experimental techniques and results of elastic
scattering and deuteron break up reaction are presented. In
Chapter IV a comparison of the experimental elastic scattering
cross section with the prediction based on the Glauber formal-
1sm 1s 'discussed. Finally in Chapter V a comparison of the

experimental deuteron break up reaction result with the theo-

retical prediction is given.



CHAPTER TII

MULTIPLE DIFFRACTION THEORY OF HIGH-ENERGY COLLISIONS

A. HIGH ENERGY APPROXIMATION BY GLAUBER

The common characteristic of high energy scattering of
strongly interacting particles is a very strong forward dif-
fraction peak. The description of this characteristic on
the basis of a partial wave expansion would require a large
number of terms with delicate cancellations. This character-
istic occurs naturally in the semi-classical theory of scat-
tering, which bears a certain family resemblance to the dif-
fraction theory of physical optics. However, the situations
encountered in scattering theory are usually quite different
from those of optics. For example, the target particles in
a nucleus are free to move about a bound state while the
particles in a diffraction theory are always stationary.
Therefore it 1s necessary to develop mathematical methods
which are more general than those of physical optics. 1In
diffraction theory one assumes that the incident plane wave
sweeps, virtually undeviated, through the region of interac-
tion, and emerges suffering only a position dependent change
of phase and amplitude. When one makes use of a co-ordinate
frame in which the target particle is displaced from the
origin, the scattering interaction loses its azimuthal sym-
metry about the axis parallel to the direction of incident

particle. Near theforward direction, the scattering amplitude



at high energy is given by

-$

f(g',g) =~§%T [ exp i(k—g') . g{exp [iX(g)]’ 1}d28

(2-1)

where g is the impact-parameter in the plane perpendicular
to the direction of incidence, x(g) is the phase shift, K

is the initial propagation vector, g' the deflected one,

k is the magnitude of ﬁ, anddgg is an element of area in the
impact vector plane. For an axially symmetric region of
interaction centered at b = 0, the expression for the scat-
tering amplitude reduces to

.4 2 - = lX(g)
f(k',K) = ik [T J ([k - kK'[p)[1 - e Jbdb (2-2)

in which the Bessel function Jo may be recognized as the
asymptotic form of a Legendre polynomial valid for small
scattering angles. A general expression for this amplitude
is shown in Appendix A. It will be convenient to employ an

abbreviation by defining a profile function

iy (B
M@ -1 e (2-3)

o

Then the scattering amplitude for momentum transfer ha is

the Fourier transform of the profile function,



£(q) = —;-7}% [e r(b)ds . (2-1)

Conversely, the profile function is the inverse transform

S ~ig-b
0E) = g [ o £(3)a28 (2-5)

where the integration is over a plane perpendicular to ﬁ,
The integration over a plane is approximately correct. A
precise way would involve integration over the surface of

a sphere which more accurately represents the locus of 3 for
fixed energy and varying angle. However, the corfection due
to this approximation can be considered small because of the
fact that f(a) 1s sharply peaked forward and we don't look
at large angles.

The formulas we have written for the scattering ampli-
tude are the correct form for describing the collision of
the incident and the target particles in their center-of-
mass system. In order to compare cross-sections of nuclei
(e.g., deuteron) with those of free nucleons by calculating
scattering amplitudes in center-of-mass systems, however, we
should have to make use of at least two such systems. It is
considerably simpler to do the calculation in the laboratory
system. In fact, it is shown in Appendix B that expressions

(2-1) and (2-2) can be easily transformed to the laboratory



system. Because of the simple geometry and small recoil
effect which are associated with the nearly forward scatter-
ing we simply substitute laboratory values for R and K! into
Equations (2-1) and (2-2) to obtain the scattering amplitude
in the laboratory system.
For a target particle (nucleus) consisting of a total

of A nucleons with coordinates ?l’ ceee EA, assuming that
the incident particle interacts with the target particles

by means of two-body forces, the total phase shift is the

sum of' the phase shifts by the individual particles,

-.’

(B,rl, = 3 x.(P - g.) (2-5)

ot A)

where g is the projection of the position coordinates on a
plane perpendicular to the incident beamn.

The optical analogy of this approximation can be seen
as follows. The total phase shift as a photon passes through
a lens is simply the sum of the infinitesimal phase shifts

along the trajectory r. That is,
§X = n(r)g(r) .y (2-6)

where n(r) is the local index of refraction, K is the local
propagation vector of the wave. Glauber's theory assumes

that it is a good approximation to obtain the total phase



shift not by adding up the infinitesimal phase shifts along
the true trajectory of the photon, but rather along a straight
line, in the undeviated beam direction. The Glauber approx-
imation takes advantage of the fact that the motion of a
nucleon that is a part of the target particle is character-
i1stically rather slow in comparison to that of a high energy
incident particle. Therefore, the nucleons are fixed in
their instantaneous positions during the passage of the inci-
dent particle through the nucleus. This approximation amounts
to neglecting the energy communicated to the target nucleons
by the incident particle. In a nonrelativistic picture,
however, the interactions between the incident particle and
the nucleons are determined by the cloud of virtual particles
surrounding the nucleons' cores, and these clouds might rea-
sonably be expected to be distorted when the nucleons are
brought together. If the distortion is significant one can
hardly believe that treating nucleons in a nucleus as if
they are free nucleons is correct. However, for a nucleus
which has open structure (e.g., deuteron) the nucleon clouds
overlap only slightly, and the approximation, assuming the
total phase shift is the sum of the phase shifts of the indi-
vidual particles, might well give a good approximation.

By expressions (2-3) and (2-4) the scattering amplitude

for the fixed configuration of the nucleons is

= [expli(d) « (B)] Ty,



where

+ -+ ) + 9 -+
E}b,sl, ree 8y) =1 - explixgoy (0581, «-- 5,)1. (2-8)

One may consider that the nucleons are not rigidly fixed in

the positions ?i e

can be regarded as an operator. Since one does not observe

- ) 5 -
r, by noting that Ttot(b,rl, cen rA)

the positions of the nucleons one must average the scatter-
ing operator rtot over the positions of the A nucleons.

The scattering amplitude for a collision process in
which the incident particle suffers a momentum transfer
ﬁq =’ﬁ(£' - g) while the target nucleus undergoes a transi-

tion from the initial state iy to final state <f| may be

written as

-+ ik g ng
Fei(d) = == [ exp[id - b]

x {E[ T (8,87, «ov S01L00%8 . (2-9)

tot

The initial state |1> is usually a nuclear ground state, but
the final state <f| may be the ground state (elastic scatter-
ing) or any excited state (inelastic scattering).

If wi and wf are the wave functions of the target parti-
cles for the initial and final states respectively, then one

may write the scattering amplitude as



-
2 b (... )77 32
Fey(a) = f r de rp)diry ...d7ry
X Teop(Pssys 5p) ¢1<Fi ;i)
3,1 A - 2
Oz = T.) 4B . (2-10)
=1 Y

in which the delta function in the nuclear center-of-mass
variable expresses the fact that the final nuclear state
has a well defined momentum.13 Using expressions (2-5) and

(2-8) one can rewrite Equation (2-10) as

N l * 4 - -+ "
Fey(q) = 55 [ e f WE L )R @’7,
A 43
x{L - 7 [1- x(b - S )1} x ¥y ( . Th)
1=1
-1 A -+ 2
x8(A 5 r.)db . (2-11)
=1 ¢

One can further express the scattering amplitude for the
nucleus in terms of individual scattering amplitudes by using

expression (2-4)» This leads to the expression
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—’
: ig- A
+, ik 3 3 * 43 +3 3,1 -+
Ffl(Q) - "2-_’7_' I e ‘rd I'l .d rA d)f(rl . I‘A) ) (-.A— jz.l I‘J.)
-+ +
A ig.°(b-s.)
1 - D9
r e iy -z e © T r5() ¢7dy0
x (72 ... 1) a8 (2-12)

for the general nuclear scattering amplitude. If one expands
the product in the integrand in Equation (2-12) one finds
that the nuclear scattering amplitude F can be expressed by
a polynomial in the nucleon amplitude f. This can be inter-
preted as a multiple scattering expansion. (An elaborate
general sort of expansion can be found in the references on

multiple scattering theory15’16’17’18°)

It is worth noting
that the order of the polynomial is A, and that the lowest
order term corresponds to the single scattering process and
the second order term corresponds to the double scattering
process, etc.

To evaluate the scattering amplitude F i in expression

f
(2-12), one has to specify the structure of the initial and

final state wave functions.

B. GLAUBER'S APPROXIMATION FOR DEUTERON SCATTERING

Let Fn and ;p be the coordinates of the neutron and

proton in the deuteron. Then the relative internal coordinate
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. -+ - -+
is r = rp - T, o
In the case of elastic scattering of an incident parti-
cle on a deuteron ¢1 and ¢f are the same, and the incident
-
particle transfers momentum -hq = ﬁ(E - g') to the deuteron.

If one introduces the form factor

—9

s() = [e |5, (P)° o (2-13)

for the deuteron ground state, then the amplitude, Equation

(2«12), for elastic scattering by a deuteron can be reduced

to
1 1 1
%ga=fﬁ&ﬁ;qm+%mm@q)+QKINWﬁM§3+30
x fn(% g - ar) d°q (2-14)

It is worth noting that the recoil effects of the deuteron
are included. The elastic scattering differential cross-
section is the square of Fii(a) and may be written in the

form

W= s ard +r
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-’

5 O, + 7, (@))% + 2 rRe £ (D)r(3)

1 o1 * 3 . 1 >
- 7% S(z a) Iml(f(a) + £(d)) [ s(a")f,(5 4

L 1 -+ -+ 2=

x £ (5a-~q')d"q "’

]

+ a')

2

ml s N g + ] - -+
! )° “ S(a")fp(G g+ a')fy(z 4~ a') a°d

In this expression the first term represents single scatter-

ing from the individual nucleons, the third term corresponds

(2-15)

to pure double scattering , and the second term is the inter-

ference between the single and double scattering.

In the case of inelastic scattering one can write the

inelastic scattering amplitude for a deuteron as

where
+ 15—’ - -+ -
F(q,8) = exp(z iq « s)f (q) + exp(- 5 id -

i . -
= I exp(iq' < s)f

(2-16)
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C. THE DIAGRAMATIC FORMULATION OF GLAUBER THEORY

The semi-classical optical model of Glauber is a simple
and intuitively appealing approximation to the scattering of
a fast particle by a deuteron or a more complicated nucleus.
In order to illustrate the approximations that were made in
the previous sections and in the hope of improving upon them,
it is instructive to consider the diagramatic derivation of
the theory.

One may start by considering the impulse approximation
to pion-deuteron elastic scattering. The deuteron virtually
dissociates into a neutron-proton pair, the pion interacts
with proton and the deuteron is reformed. The impulse approx-
imation corresponds to Figure 1 together with the same diagram
with the neutron and proton interchanged. Figure 1 is a
Feynman graph; in a certain approximation one can show that
it leads to Glauber's formulation. Following reference 19,
we write the pion-deuteron scattering amplitude as a four
dimensional Feynman integral. By applying Glauber's approx-
imation that while the pion and proton are interacting, the
neutron is completely unaffected, the neutron propagator
associated with Figure 1 can be replaced by a delta function.
If all the nucleon spins are ignored, this leads to an ampli-

tude

= pefdr e (@) pT(d - ) p(@ + d4) (2-18)
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where a' is the Fermi momentum of the neutron and ¥ is the
deuteron wave function in momentum space. The off-the-mass
shell correction is neglected and the physical pion-proton
amplitude is fed into Equation (2-18). However, this ampli-
tude 1is required at an energy which is a function of both
the incident pion momentwn and the Fermi momentum a'. I
one considers that the target nucleons are frozen in their
positions during the proJjectile's passage in the preceding
sections then pr(a) can be taken out of the integration at

o*
an energy corresponding to q' = O,
-+ -+ -+ * = Y - -
Fra(d@) = £,.(a) [ d7ar g (d' - a/4) p(d" + a/4)

= fvp(a) s(a/2) (2-19)

where S is the deuteron form factor. This is the same result
obtained using conventional Glauber theory (c.f., Equation
(2-14)). An identical computation with n,p interchanged
gives the second term of Equation (2-14). The approximation
of neglecting the Fermi motion can be very misleading if

. . . 20 .
there is a resonance in the direct channel™", e.g., for pion-

g
deuteron scattering below 2 BeV/c.

A graphical diagram also gives the rescattering correc-
tions. The Glauber method envisages a two-stage process in

which the pion first scatters off the neutron and then off

the proton, before the deuteron reforms; see Figure 2. As
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before, while one nucleon is interacting with the incident
pion the other one 1s unaffected. The approximation is made
by assuming that in between the two scatterings, the fast
pion is also on its mass shell. This assumption would be
Justified if the proton and neutron were far apart compared
to the high energy pion-nucleon force, a situation which is
better approximated by light nuclei than the heavier ones.
The same method is used, replacing the three propagators by
delta functions and neglecting the Fermi motion; and Equa-
tion (2-14) is obtained.

Figure 3 shows a diagram in which both nucleon scatter-
ing amplitudes involve charge exchange and which was ignored
in the simple derivation in the previous sections. The
amplitude associated with Figure 3 is simply related to
Figure 2 by isospin considerations. If the amplitude asso-
ciated with Figure 2 is proportional to fﬁi fié , then the

amplitude associated with Figure 3 is proportional to

c.e.)2
pn
pair are interchanged at a deuteron vertex, where the wave

-(f 5 the minus sign arises because a neutron-proton
function is antisymmetric. The charge exchange amplitude is

expressible in terms of elastic amplitudes

pCe€0 _ (2)—1/2(f

o (2-20)

0

™ Wn)

A simple method to take account of isospin is to make the

following replacement in the double scattering amplitude
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1 c.e. 2
TP TN Wpfwn -2 [fpn ]
_ 1 > ‘
= fvrpfwn i [fvp - f_n_n] (2_2‘]')

The correction here is proportional to a charge exchange
amplitude squared. The charge exchange amplitude is not

large at high energies and can be neglected entirely above
about 2 BeV/c. A calculation of the differential cross-
section for 71d elastic scattering with and without the charge
exchange correction will be given later, in Chapter IV.

The correction due to double spin flip can also be con-
sidered in a similar way; however, at high energies one has
little knowledge of the spin structure of the pion-nucleon
amplitude, therefore no simple expression like Equation (2-19)

can be written down.

The main purpose of this section was to give a clarifi-
cation of the Glauber approach, especially with regard to
charge and spin variables. There are also a series of cau-
tions about the use of the Glauber theory especially away
from the forward direction, t = 0, and the Jjustification of
neglecting the off-the-mass correctiongo. Albers et al,19
point out that in a Regge pole model the shadow term calcu-
lated by Glauber's method should decrease rapidly with
increasing energy. This decrease could be somewhat compen-

sated by an increasing contribution from terms due to
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inelastic intermediate states, but the effect due to the

intermediate states is small.
These problems will be neglected in the application of
Glauber's formulation in this thesis. They should, however,

be borne in mind in assessing the value of any results

obtained.
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Figure 1. Feynman diagram for the impulse approximation
to elastic plon-deuteron scattering.

Figure 2. Feynman diagram for the elastic double scattering
contribution to elastic pion-deuteron scattering.
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Figure 3. Feynman diagram for the double charge-exchange
contribution to elastic pilon-deuteron scattering.



CHAPTER TIT

EXPERIMENTAL PROCEDURES

A. THE BEAM

The 3.65 BeV/c 77 beam used in this experiment was
designed and constructed at the Brookhaven Alternating Grad-
ient Synchrotron during 1960 and 1961. It has been used in
conjunction with the 20-inch liquid hydrogen-deuterium bubble
chamber. Only the essential features of the beam will be
presented in this thesis. A detailed description may be
found in the literaturegle Figure 4 shows the beam layout
at the AGS.

The beam consisted of four main sections, the transport

section, two similar velocity separator stages, and a beam
shaping section. The total length of the beam was 270 feet.
The beam was taken off an aluminum target in the F-10 straight
section at an angle 8 degrees with respect to the internal
circulating proton beam. Eight degrees was the smallest
angle at which the beam was able to clear the AGS fringe
field. The purpose of the transport section was twofold.
The major purpose was to transport the beam from the internal
aluminum target to a focused point on slit 2. The other pur-
pose of the transport section was a rough momentum selection.
This was achieved mainly by the large bending magnet and also
by the dispersive focus at slit 2 of the first two quadru-

poles. S1it 1 positioned before the quadrupoles restricted

20
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the angular acceptance of the beam to 40 x 10_6 steradian.

The two separator stages were similar. Each contained
a pair of quadrupole magnets before and after the velocity
separator. These quadrupoles were operated symmetrically in
a manner such that the beam particles traversed the separator
parallel to the separator plates and widely spreaded horizon-
tally and thus produced maximum separation. Two beam sepa-
rators consisting of crossed electric and magnetic fields
served as a velocity spectrometer to effect mass separation.
Precise momentum definitions were achieved through the large
bending magnet located between the two separation stages.
The shaping section defocused the beam vertically and focused
it horizontally in order to properly fill the bubble chamber.
When the beam operated as a selector of 3.65 BeV/c W+ each
separator stage provided adequate proton rejection individ-
ually. The beam was tuned in such a way that when the first
separator was adjusted so that a maximum number of W+ parti-
cles were passed through slit 3, no appreciable amount of
protons entered the second separator. Thus when the second
separator was swept through a velocity selection no proton
peak was found when the beam was swept past the final mass
slit. We thus estimated that the proton contamination of
the beam was negligible.

The chief contamination of v+ beam arose from u+ decay
of the W+ beam itself. No direct experimental determination

of the u+ contamination at the 20-inch bubble chamber was
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known. However, a detailed description of the estimation of
u+ contamination at %.65 BeV/c can be found in reference 22.
The estimation was based upon assuming all u+ of the momentum
and angle resulting from the decay of W+ arrived in the cham-
ber as contamination. The calculation of the contamination
was the approximate integral over the total length of the
beam of the probability that a beam W+ decayed into a M+
within the momentum and angular acceptance of the beam. The
contamination of u+ at the chamber was estimated to be
5 £ 3%.

The W+ beam entering the bubble chamber had a momentum

dispersion, Ap/p, of + 1%.

B. THE CHAMBER

The Brookhaven National Laboratory Shutt 20-inch bubble
chamber filled with deuterium was used as the device for
exposures for this experiment. The chamber was 20 inches
long, 9 inches wide, and 10 inches deep with the beam enter-
ing from the 9" x 10" side. Two 1.25-inch thick tempered
glass windows sealed with Berkeley-type indium seals were
placed on both 20" x 9" sides. Fiducial markings etched on
the surface of the front and back glass provided reference
points on the film for spatial reconstruction of interactions
in the chamber. There were four fiducial markings on the
front window and seven fiducial markings on the rear window.

All glass surfaces were coated to minimize light reflection.
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Photographs, demagnified about 9 times, were taken on 35 mm.
film with four cameras arranged on a 9-inch square about

4O inches from the chamber's center with their optical axes
perpendicular to the glass window. Figure 5 shows the dimen-
sions of the bubble chamber and the camera positions in space.
The chamber was illuminated from the rear by an arc lamp.

The light from the arc lamp was filtered, diffused, and then
focused by means of a lens system to a point midway between
the cameras. 1In this way only light scattered by bubbles
reached the cameras. The illuminated volume in this chamber
was about 19 inches in the beam direction, by 8 inches in
height, by 9 inches in depth.

A piston located at the end of the wide chambér neck
expanded the chamber. The expansion-compression cycle was
adjustable down to a minimum of 10 ms. A magnet containing
5.5 tons of copper and 20 tons of iron provided a field of
17,000 gauss. The field was uniform within 3% throughout
the chamber. A detailed description of the chamber can be
found elsewhere.EB’24

During the run the chamber was filled with liquid deu-
terium. The chamber was operated at a temperature 30.9
+ 0.2°K throughout the exposure. The operating pressures
of the liquid deuterium were 77 lb/in.2 and 5.3 lb/in.2
before and after expansion.

The arc light was flashed 150 p second after the arrival

of the beam in order to produce optimum bubble size.
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A total of 256,500 pictures were taken in 1964 of which
222,000 pictures were analyzed for this experiment. Each

picture contained on the average fifteen incident pions.

C. DATA REDUCTION
C.1l The Scanning

Pictures were scanned on machines which project the film
image onto a vertical green translucent screen. Three of the
four scanning machines magnify the image approximately 1.3
times of the life size and the fourth one approximately 1.1
times. All four machines are able to project two views
simultaneously onto the screen. Superposition of one view
on the other can be easily achieved. With this facility one
can easily distinguish tracks which stop in the chamber from
those which leave the chamber through glass windows.

Camera views 1 and U4 of the chamber were used for scan-
ning. Events were accepted only if they satisfied the fol-
lowing criteria:

a) the beam track which interacts be parallel to the
other beam tracks;

b) the vertex lies within or on the boundary defining
the fiducial volume;

c) the number of beam tracks entering the bottom of
the fiducial volume be less than 40; and

d) tracks leaving the chamber or with secondary scatters

have a measurable projected length of at least 2.1 cm.
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Since the purpose of this experiment is to measure the
pion deuteron elastic scattering differential cross section,
scanning personnel were instructed to scan for pion scatter-
ings with a visible recoil track (two pronged events) and
to eliminate events which did not belong to the elastic scat-
tering process as follows:

a) Two prong events (two non-decaying outgoing tracks)
with either one track or both tracks identified as a proton
or protons by positive identification were not recorded.
(Curvature templates were used to give ionization-momentum
relations for positive identification of different particles);
and

b) All two prong events with the interacting vertex
connected with any V}s or g's were not recorded.

A more detalled description of the scanning rules for this
experiment may be found in reference 25.

From the appearance of the tracks it is difficult to
distinguish a W+ from a proton if the momentum of the parti-
cle is greater than 1700 MeV/026, and difficult to distin-

gulsh a deuteron from a proton if the momentum of the parti-
cle is less than 350 MeV/c. With these restrictions there
were cases in which the events were ambiguous. The scanners
were instructed to record all the ambiguous events.

All pictures used for this experiment were scanned twice
by two different scanners. Every disagreement of the two

scanners was checked and resolved by experienced professional
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scanners. Scanning efficiency for the events used 1in this
experiment was estimated to be 96% (for events with slow out-
going tracks longer than 0.58 cm in the chamber and appropri-

ate azimuthal angle cuts).

C.2 The Measuring

Events were measured on three conventional "B" type
measuring machines. These machines have both low and high
magnification, the low magnification gives an overall view
of the film and the high magnification with a magnification
of 2.6 times life size gives a view of a portion of the film.
All measuring 1s performed at high magnification.

The film 1s carried by a moving stage which is digitized
in two orthogonal directions (x and y coordinates). Two
machines used Moire-fringe counting devices which give a
least count of 1/10,000 inch. The third machine used a disc
encoder with a least count of 1/8,000 inch.

The operator measured points on a track by moving the
stage until the cross hair attached to the screen and the
point on the track to be measured coincided. The operator
then initiated the automatic punch device to record the
values of x and y digitizers on IBM cards.

Special points such as fiducial marks and the interac-
tion vertex were also measured in a similar manner. In
addition to the coordinate points, the cards also contained
the frame number, view number, charges of the tracks, etc.
Two views were used for the measurements.

The punched cards were fed into a computer program
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CHECK27° The program carried out simple checks on the data

in order to detect any possible format errors on the punched
cards. After all errors were corrected CHECK wrote a magne-
tic tape in the format acceptable to the track reconstruction

program.

C.3 Spatial Reconstruction

The geometry program used for this experiment was the
TRED reconstruction program.28 TRED was originally developed
by Brookhaven National Laboratory. This program is designed
to reconstruct events into three dimensional space from
measurements in two stereo film views. TRED uses the coor-
dinates furnished by measurements to determine the momentum
and orientation for each track and estimates for the uncer-
tainties of these quantities.

The reconstruction program can be divided into two
steps, first the geometric reconstruction of points along
the track, and second the fitting of the geometrically recon-
structed points into a curve. The geometric reconstruction
program is based on the fact that i1f the film position of a
given bubble on a track is known in two views, then tracing
the light ray from the two views back through the optics
into the bubble chamber produces an intersection of the two
rays at the position of the bubble. 1In actual practice,
measurements are not made at corresponding points in two

different views, therefore it is necessary to generate an
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artificial point in some view by interpolating between two
measured points. The interpolation process is simple in the
case of an ideal lens system but in an actual case it is
quite involved. Effects which must be considered are lens
distortion, film shrinkage, a thick glass window, and the
index of refraction of the liquid in the bubble chamber.
The corresponding point is found by iterating. A detailed
description of the iteration process is given in references
28 and 29.

The same procedure is applied to all‘points measured
on one view to yield the space coordinates of a sequence of
points that lie along a track. A curve is then fitted to
these points, and uncertainties for the fitted variable are
estimated.

For a stopping track range-energy relationships are
used to calculate the momentum. For a non-stopping track
TRED determines momentum from curvature at the midpoint of
the measured portion of the track and then computes the momen-
tum at the vertex point by means of range-energy relationships.
Since the range-energy relation depends on the mass of the
particle TRED computes momentum for five different particles:
electron, pion, kaon, proton, and deuteron. TRED program
also computes the bubble density of each track for five dif-
ferent mass hypotheses.

The geometrical reconstruction program was not always

successful in the reconstruction process. The average fail-



ure rate for events submitted to TRED was 10%. Most of the
events which failed TRED program were due to poor measure-
ments. That 1s the measured points were too far from the
fitted curve. All the events which failed TRED were remea-
sured. The fallure rate for the remeasured events submitted
to TRED was 25%. No more than two measurements were attemp-
ted. Hence 2.5% of the events found were considered unmea-

surable.

C.4 Kinematic Analysis

TRED reconstruction is not connected with the properties of
the events as a whole but rather with the data of each track
separately. Therefore the estimated momenta and angles of
all the tracks at an interaction vertex are not generally
consistent with conservation of energy and momentum for a
given assumption about the interaction taking place at the
vertex. The kinematic analysis program examines the vertex
based on a set of hypotheses and adjusts track variables sub-
ject to two conditions. First, the energy and momentum must
be conserved for the interaction assumed at a vertex, and
second, track variables should be modifled as little as pos-
sible. The second condition can be expressed more precisely
in terms of x2° The adjustment is restricted to rather lim-
ited changes in the variables by requiring X2 to be smaller

than a certain value. X2 is defined as
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n

2 _ m -1 m

X = (Xi - Xi) Gij (Xj - Xj)
i,j=1

where n = number of measured variable for vertex

Xl = adJjusted value of ith variable
X? = original measured value of ith variable
Gij = 6X? 5X? , a product of the measured errors

in Xi and XJ |
The CERN kinematics program, GRIND, written by Bbc‘)o,
was used for the kinematic analysis for this experiment.
In this experiment all events were tested by GRIND with

the hypotheses

™ +Dart+D (A)

+

T +D-+7T +p+n (B)

+ o

T +Da4p+p+T 5 (C)
and 7 + Do +D+T° . (D)

x2 for Reaction (A) was minimized subject to four constraint

equations (4C fit), one for each of the three momentum com-

ponents and one for the energy. For Reactions (B), (C), and

(D) energy conservation is the only constraint (1C fit) since

three of the four equations were used to calculate the momen-
2

tum components of the missing neutral particle. A X~ value

smaller than 5.4 or 11.6 was considered as giving a good fit
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for 1C or 4C fits respectively. Both the x2 values corres-
pond to a X2 probability of 2%. The relationship between x2

and X2 probability is as follows:

x2 probability = faj dp(xg)
2
X
and
n
x2 2 (?‘l)
(X2) EXP(_’? )(X )
P = n/2 _.n
P/ r'(3)
where n is the number of constraints.

Another feature of GRIND is 1ts capacity to distinguish
automatically between different precisions of input variables.
GRIND classifies measurements as Well Measured, Badly Mea-
sured, Unknown, and Fixed. This feature avoids great mathe-
matical difficulties during the manipulation of matrices in
the fitting procedure. In GRIND the beam momentum was set

at 3.65 BeV/c with an error of 37 MeV/c at the entrance point.

C.5 Event Identification

After passing through the fitting program GRIND a large
fraction of the events were classified as ambiguous events.
These were the events which fitted more than one hypothesis.
In some cases one can resolve the ambiguity by means of

bubble density checking. That is, one compared the observed
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and predicted bubble density (from TRED) for each possible
fit.

Bubble density is defined as the number of bubbles per
unit length of track normalized to a minimum ionizing track.
In this experiment we arbitrarily chose the bubble density
of the beam as unity. It can be easily shown that the bubble
density of a track is approximately proportional to 1/62,
and B is the ratio of the velocity of the particle to the
velocity of light,Bl Figure 6 shows the approximate depen-
dence of bubble density on momentum for pions, protons, and
deuterons. It can be easily seen that fast protons are not
distinguishable from r (~ 1700 MeV/c) and slow protons can
not be distinguished from deuterons (< 350 MeV/c). With
these restrictions bubble density check usually does not
suffice to resolve the ambiguity. However for -t > 0.3 (BeV/c)2
(-t is the four-momentum transfer squared), the deuterons
do not stop in the chamber but they can be easily disting-
uished from protons by plotting bubble density versus curva-
ture.

Table I summarizes the event classification. All events
were carefully examined by means of bubble density checking
except events classified as Reaction (C). The later analysis
of these fitted events was performed by using POLISH. The
program POLISH reads the GRIND output tape and calculates
for each event all the physically interesting variables that

one may want written onto magnetic tapes, papers, or cards.
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TABLE I
EVENT CLASSIFICATION

(After bubble density checking except for ppm° unambiguous
events.)

Category Number of Events
TTd Unambiguous Los
,n_+pn " : 2190
7 dre " 1067
ppT° " 545
v+d
W+pn } Ambiguous 2001
W+d ‘
w+dv°} Ambiguous | 84
W+pn
ppr® } Ambiguous 3991

+

T pn

W+dW°} Ambiguous 1950
ppr°
v+dw°} Ambiguous 629
W+d
W+pn } Ambiguous 2540
ppT°

+

T pn

ppr° Ambiguous 1470
rHdre

W+d
W+pn

pp7r° Ambiguous 20

W+dW°
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This program was written at Michigan by B. P. Roe and C.

Arnold. In the analysis for this experiment IBM cards or

tapes containing x, y, and z components of the momentum for
each track of an event were obtained through POLISH. These
were then analyzed with a program SCATTERGRAM which displayed

on paper any desired scattergram.

D. EXPERIMENTAYL, RESULTS
D.1 Elastic Scattering Cross Section

In order to fit Reaction (B), (C), and (D) an event
need only satisfy one constraint of energy conservation,
whereas to fit Reaction (A) each event must satisfy the four
constraints of energy and momentum conservation. Thus a fit
for Reaction (A) is not easily faked. Therefore events which
were ambiguous between (A) and either of the others were
classified as Reaction (A). A total of 5050 events corres-
ponding to the elastic process were found.

We can get some estimates of the purity of the elastic
sample by looking at the kinematics of the events.

We take all the events (from a sample of the film) which
fit Reaction (B) only and plot in Figure 7 the proton-
neutron effective mass. Figure 8 is a plot of proton-
neutron effective mass determined by the one-constraint fit
to Reaction (B) for ambiguous events which fit (A)-(B) and
(A)-(B)-(C). In Figure 8 we have a narrow psak around the

deuteron mass. This is strorgevidence that the ambiguous
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events were elastic events. In particular for -t > 0.3 (BeV/c)2
deuterons do not stop inside the bubble chamber as we men-
tioned in the previous section, and they have been positively
identified by plotting bubble density versus curvature.
Thus the contamination in the elastic scattering data was
considered negligible. |
There is a serious scanning bias in the analysis of the
very small angle region. This difficulty arose because of
the short recoil-deuteron tracks when the plane of the scat-
tering is parallel.. - to the camera axis. This effect was
seen in this experiment and has been seen elsewhere52
A study of the expected bias in right-left as opposed
to up-down scattering of the recoil deuterons in the elastic
events indicated severe losses at small momentum transfer
region. Figure 9 shows the distribution of events in the
azimuthal angle ¢ about the beam direction as polar axis,
as a function of cosine of the center-of-mass scattering
angle (cos ecm) where @ = O is defined by a plane perpendi-
cular to the camera axis. The distributions have been folded
into one quadrant. At very small angles (cos Oop = 0.990)
the losses in the region 60° < ¢ < 90° are almost complete.
In order to avoid scanning losses we have decided to restrict
the data presented to cos ecm < 0.992, this corresponds to
-t > 0.043 and the deuteron range of 0.58 cm in the chamber.

Moreover, for 0.043 < -t <0.225 we restrict to f@[ < 30°,

and for -t » 0.225, to || < 60°. The deuteron range energy
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relation 1s shown in Figure 10, and the relation of cos ecm
to -t 1is presented in Figure 11.

The differential cross section of elastically scattered
W+ at 3.65 BeV/c from deuterons is tabulated in Table II and
shown in Figure 12.

The cross section per event which was used in this sec-
tion is 0.524 pb. The normalization of this cross section
was obtained from the scanned path length and has an overall
uncertainty of #6%. The method of normalization of cross
section is given in Appendix C.

Approximately one year after the completion of the exper-
imental part of this investigation, Chase et al.j-5 reported
their preliminary result of 7 -d elastic scattering at
3.75 BeV/c for 0.2 < -t £ 0.9. The 7 d data are in good
agreement with this experiment. The comparison of these two

sets of data is shown in Figure 13.



57

TABLE IT

DIFFERENTTAL CROSS SECTION OF W+d ELASTIC
SCATTERING AT 3.65 BEV/C

-t Range (BeV/c)2 Midpoint of -t %% (mb/(BeV/c)E)
0.043 - 0.075 0.059 29.2 i 3.0
0.075 - 0.1 0.0875 13.6 + 1.77
0.1 - 0.125 0.1125 741 o+ 1.12
0.125 - 0.15 0.1375 5.14 £ 0.87
0.15 - 0.175 0.1625 2.39 % 0.52
0.175 - 0.2 0.1875 1.84 + 0.44
0.2 - 0.225 0.2125 1.04 1+ 0.31
0.225 -~ 0.025 0.2375 0.428 + 0.140
0.25 - 0.275 0.2625 0.214 + 0.093
0.275 - 0.30 0.2875 0.183 + 0.086
0.30 = 0.40 0.35 0.0535 £ 0.0234
0.4b0 - 0.50 0.45 0.0535 + 0.0234
0.50 - 0.60 0.55 0.0230 + 0.015
0.60 - 0.80 0.70 0.008 + 0.0055
0.80 - 1.00 0.90 0.012 =+ 0.007L4

D.2 Deuteron Break Up Reaction Cross Section
In this section the experimental cross section of

deuteron break up reaction will be presented. TFor the

the

break up reaction the target deuteron breaks up into two
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components, namely proton and neutron. A total of 9,601
events were obtained for this process, among them 2,190
events that fit Reaction (B) alone, and 7,411 events that
were ambiguous with Reaction (C) or (D) (c.f., Table I).

The maximum contamination in this sample was estimated to be
15.8% by a method given in Appendix D.

The purpose of this experiment was to determine the
elastic scattering cross section, therefore the scanning
rules were set to eliminate events when the scanners were
able to identify the slow outgoing particles as protons.
However, due to the difficulties in distinguishing a slow
proton from a slow neutron, events for Reaction (B) were
recorded for proton momentum less than 350 MeV/c.

Due to scanning losses for small angle regions we only
)2

present data for -t » 0.0625 (BeV/c)”, and our scanning rules

were not able to allow us to pick up events for Reaction (B)

for -t > 0.30 (BeV/c)Qc Therefore we only present data in

the range 0.0625 g -t < 0.30 . Again for reasons similar to

the elastic case we only used events with 0° < || < 30°.

do
dt

tion as a function of -t is tabulated in Table ITII and shown

The cross section for the deuteron break up reac-

in Figure 14.
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TABLE ITI

MEASURED DIFFERENTIAL CROSS SECTION FOR
THE DEUTERON BREAK UP REACTION

(Errors are statistical.)

-t Range (BeV/c)2 Midpoint of -t %% (mb&BeV/c)g)
0.0625 - 0.08 0.073 25.18 + 1.38
0.08 - 0.12 0.10 19.68 + 0.86
0.12 - 0.16 0.14 17.74 + 0.85
0.16 - 0.20 0.18 11.95 + 0.69
0.20 = 0.24 0.22 9.92 £ 0.63
0.24 - 0.28 0.26 6.54 + 0.52
0.28 - 0.30 0.29 5.60 + 1.30

The cross section of the break up reactiornn with events
selected for a symmetrical configuration of final state is
tabulated in Table IV and shown in Figure 15. For the sym-
metrical configuration the energy of the proton is equal to
the energy of the neutron. This configuration is of theor-
etical interest and we will discuss it in Chapter V. Exper-
imentally one can not select events with proton and neutron
energies exactly equal. We have included all events with

E, - Epl< 2 MeV.
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TABLE IV

MEASURED DIFFERENTTAL CROSS SECTION FOR THE DEUTERON

BREAK UP REACTION FOR EVENTS Ep - Erl < 2 MEV

(Errors are statistical.)

-t Range (BeV/c)2 Midpoint of -t %% (mb/(BeV/c)z)
0.0625 - 0.08 0.0733 3.64 + 0.54
0.08 - 0.12 0.10 0.9 + 0.19
0.12 - 0.16 0.14 0.31 =+ 0.065
0.16 - 0.20 0.18 0.11 + 0.396
0.20 - 0.24 0.22 0.094 + 0.038
0.24 - 0.30 0.27 0.0267+ 0.016




41

*3UTPTING SHY 2U3 2e qnoLel wedsd °f 2INTTJ

e T SR SR I

k _

TS ~

19/1/8-€-V3 ON

v NOILO3S
v W3V WININE3GX3 L5V

NOYLOHHONAS ANDOVHO ONLUYNYILTY

| A NNOL
| W TAUSNIAM QLVOOSSY .
. §1¢4 g&!!g

3

e T o

1t -+




ho

. . o1
*SUOT3Tsod BILWERD pu® JBqUWBYD STQqnQ 9U3 JO SUOTSUSWIQ *G 9aNSTJ

3NVId )
SV83NYD




TUNTJSYNep Ul WNjuauwow a71o1qard SA £qTsuap

o/N3N

UNJUSWON 8TOTIaB]

000¢2

aTqqng jo

uoTqeT Y

0001

T ovane T

0001
T

uoIaqna(g

uoq0ad

uoTg

O
4

0L

K1ruoeg etaqny



Ly

(D) pue

(g) “(v) pue ‘(g) pue (¥) 31J 3%euUl "(d) uotzoeey 311 gE'UY
SquU8A® J0J wWaqsAs uoaxinau-uojoad Jo squsaAs J0J weyshs uoagzneau-uoqouad Jo
umaqo9ds SSBW-S9AT109JIH ‘Q 2aInsT4g unx3oads SSBUW=-9ATY09JJH * /L SanSTJ
ASW (u‘d)n AeW (u‘d)n
006T 068T  088T 0.8T 00671 0631 088T 0.8T
-Ir\lrlrll“; ' ] ! dv
|
|
! 4 oot B 7 oot
i =
| °
]
i ]
| 4ooz 7 - -1 ooe
] b=t
i <
} D
i s
] ct
“ w
i 4 00¢ - 4 00¢
!
[
% “ n — % — v
5 1E 508
L < | < | 4 001 - < i< 4 oot
T A ~ T 0091 g 4 C
o u s 5 oa00B
i .
! i
| - _
4 "00LT™

N

squaAyg Jo



Number of Events

45

1000 I I 1000 I I 250 T I
800 ‘o> cosaponts 4 Soof 2185 > cose.z0980 | DOQF ed10>Ces8 zodes ]
600]- 4 600} 4 150} -
Tole)= 4 Look 4 100} 4
200} - 200--—4——1__j 50t -
0 1 0 1 1 0 —_—1‘_—_‘}_—‘
1000 omf)] C059c,,7,l3-q‘?0 1000 T I 250 I T
BOOF—" ] A 8oof “®Tw=1 1 o0l Lasscesssane o
600} - 600} -4 150f -
400} 4 400} -4 100L -
200} 3 200k 4 sol , -
0 L 1 o_—lr_—'—}—" ol I+
1000 , | 250 I , 250 , ,
BOOf- VT B2 oo o9 Z w2910 500 L sase > 058,k —
600} 4 150} - 150} ~
hook 1 d 100k 4 100 .
200} = 50:_11 50 |- -
ol | I 0 1 | ol T
0% 30° 60° 90° 0° 320° 60° 90° 0° 30° €0° go°
®
Figure 9. Azimuthal distribution of the outgoing

deuteron about the incoming pion direction
function of cos bop ©

as a



cm

Range R

L6

f I
100 200 500 Loo 1000

P MeV/c

Figure 10. Deuteron range energy relation 1in
deuterium.



cos 6

cm

7

1.0

0.95

0.90-

O.8C): l | l ] |
0 0.2 0.4 0.6 0.8 1.0

-t (Bev/c)?

Figure 11. Relatlion of cosine of center-of-mass
scattering angle and -t (four momentum transfer
squared).



L8

100 u | I | ] l | | |
10 .
Q
1. -
Q
- @

qi §§
O
S 0.1 b i —
Q
2
N = i -
L0
£

do

dt
+——O0—

—0—

0.01

0.001

0, 0001 | i 1

| | ] { ] |

0 0.2

Figure 12. Measured di

elastically scattered Tt

0.4 0.6 0.8 1.

-t (Bev/c)®

fferential cross section of
at 3.65 BeV/c from deuterons.

0



b9

1000 T [ T ] T ] ! [
A This Experiment
~ o o Chase et al. .
1
o)
a 100~ ]
> F 8 .
N = -
>
| ] ~
Nl : ‘
3 F D .
< " | -
TI|T
q
: Q ¢ ]
§§ §T
¢
| 34
10: A i
i ! i [_ ] f 1 [
0 0.2 0.4 0.6 0.8
-t (BeV/c)?

Figure 13. Comparison of 7 d elastic scattering differen-
tial cross section at 5.75 BeV/c (data are from Chase et al.)
with this experiment.



100

g mb/(Bev/c)®

TI|T

50

Lo

30

20

.10

50

| | | | | | | 1 i
0.1 0.2 ° 0.3 0.4 0.5

)2

-t (BeV/c

Figure 14, Measured differential cross section for
the deuteron break up reaction (errors are statistical).



51

10.

mb

I (Bev/c)?
o
H
T

—O—

—O—
]

0.01 -

0.001 i i L ! 1
0 0.2 0.4 0.6

-t (BeV/c)®

Figure 15. Measured differential cross section for
the deuteron break up reaction for events |E_ - En|g
2 MeV. (Errors are statistical.) P



CHAPTER TV

COMPARISON OF EXPERIMENTAL ELASTIC CROSS
SECTION WITH THE GLAUBER THEORY

A. CALCULATION OF THE CONSTANT-PHASE CROSS SECTION
USING BS:L STATE DEUTERON WAVE FUNCTION

To evaluate the differential cross section by Equation
(2-15) an expression must be found for the scattering ampli-
tudes fp(iﬁ and fn(ﬁ). For the calculation of pion deuteron
elastic scattering the pion nucleon amplitudes can be repre-

sented by

ko
(1 + o) (R) exp(-a, o°/2)

QY
~
il

ol

- ko 2
£,(d) = (i + a ) (=) exp(-A, a°/2)

( for the t range of our interest ) (4-1)

where Gp is thetotal pion-proton cross section, o, is the
total pion-neutron cross section, ap is the ratio of the
real to the imaginary part of the pion-proton scattering
amplitude, an is the ratio of the real to the imaginary part
of the pion-neutron scattering amplitude, Ap is the slope of
the pion-proton elastic differential cross section, and An
is the slope of the pion-neutron elastic differential cross
section.

Substituting Equation (4-1) into Equation (2-15) yields

b2
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+ (2 + 2apa ) 9,0, ©
2 : 2
kK 0 0 —%A
- 2 2
=gz;_n.zlﬁ._s(%) [(,L+Onn) o e T (1 ap) o
1 2 2
-5 Aad"1 -(A*A )a"/8
xe 2 P J e P I(a
2 1 2
k"0 _o - (A_+A )a
+>165ﬁ%26-(l +a” + ol + a az) e ¥ RUP Iz(q)
T

(4-2)
where

I(a) = [ S(a') expl-3(h, - A,) & + d'7 exp[-3(a, + A)) a'°] ad"

(H-3)

As input for the calculations we have used the quantities

o, = -0.286, oy = 28.1 mb, and Ap = 6.64 (BeV/c)_2 from

Sauly and Hohler et al.,34’35 and a = -0.187, o, = 31.5 mb,
and A = 7 .34 (BeV/c)-'2 from correspondence with m-nucleon

values assuming 0O L = o by charge symmetry.35 The
T N T P
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ground state deuteron form factor, S(q), was calculated from
the analytical expression for the Gartenhaus deuteron wave

function given as "Approximation III" by Moravcsik36

p(r) = Je™ - &7y (1 - 7Ty (1 - &7 (4-4)

in which the parameter a may be regarded as the reciprocal
of the radius of the deuteron, and is given in terms of the
deuteron binding energy, Ed’ by a = (2uhEd)l/2, where u is
the reduced mass of the proton and neutron. The numerical
value of a is 0.232 Fermi—l; the other constants in Equation
(4-4) have numerical values d = 8.19 a, ¢ = 6.853% a, g =

10.766 a, and N is the normalization constant. This wave

function contains the 3S state component only. The effect

1

of BD:L state component in the deuteron wave function will be

discussed in the next section. Using Equations (4-4) and

(2-13) one obtains

2
s(a/2) = SZN [tan‘l e+ tan™h g+ tan™t S
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-1 q -1 q

+ 4 tan Io ¥ 2c + 28 T 4 tan 2(a + c + d)
-1 a -1 q

+ 4 tan 2(a + d + g) ~ 8 tan 2(a tc +d+ g)
-1 -1 o]

+ b tan~t R gd T2y 7 ° tan”™ 2(2a + gc + 2)

- 2 tan™t R %C Ty * b tan™t 2(a + 2cq+ d + g)

- 2 tan™t o 2 ¥ 2g) " 2 tan™ 2(a + g + 2g)

+ U tan~t 2o T ¢ E d+ 2g) ~ 2 tan™ 2(a + 2cq+ d +2g
- 2 tan™t 4 - 2 tan™t -

2(2c + 2d + g) 2(c + 2d + 2g)

(H-5)

One may see that the form factor S(g/2) is a function of the
deuteron configuration only. It approaches zero for very
weak binding and unity for very strong binding. It is always

unity for zero momentum transfer. From Equation (2-13) one
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observes that 1t decreases monotonically with increasing
magnitudes of momentum transfer. In Figure 16, S(q/2) is
plotted as a function of -t, using the approximation, -t = q2.
I(q) was calculated in a simplified manner. Because of the
near equality df An and Ap, and the oscillatory nature of
a'a', I(q) has neglible g dependence. Little error is intro-
duced by taking TI(q) = I(0) = I . This I can be calculated
by numerical integration and has a value of I = 0.173 mb—l
for the parameters we used. The value of I can also be

checked experimentally from its relation to the defect in

the total cross section

by evaluating Equation (2-14) at g = 0. One obtains

87550
I= . L.6
%y o, (L - o ) ( )

Using37 66 = (1.5 £ 0.5) mb one gets I = (0.14 + 0.05) mb™ ~,
in good agreement with the calculated value.

A plot of the predicted differential cross section
calculated on the basis of Equation (4-2) is shown (solid
curve) in Figure 17 along with the experimentaldata (the
normalization of both data and theory is absolute). The

agreement of the theoretical curve with the experimental
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points is good, except in the region of the dip (-t = 0.3 -
0.5). A similar disagreement has been observed in proton

deuteron scattering at 1 BeV38 and 2 BeV12

incident proton
kinetic energies. The theoretical dip occurs at a point
where the first and third terms of expression (4-2) are
nearly equal and are almost canceled by the second term.
Figure 18 shows the magnitudes of the three different terms
in Equation (4—2) as a function of -t. The single scattering
term (1st term) is overwhelming in the forward direction and
goes down with -t with a law which is mainly governed by the
form factor of the deuteron. The double scattering term

(3rd term), which is small at -t = O, goes down with -t with
a much smaller slope. Double scattering therefore overwhelms
single scattering at large -t. However, there exists an
interval of -t, around -t = 0.40, in which the single and
double scattering amplitudes are of the same order of magni-
tude, and therefore they interfere appreciably and cause a
dip in the differential cross section.

The dip region 1s particularly sensitive to the ratio
of the real to imaginary part of the pion-nucleon forward
scattering amplitudes if the D-state component of the deuteron
wave function is ignored. If the free-nucleon amplitudes
are purely imaginary, then the cancellation will be complete.
The values used in the calculations in this section for fp

and fn were based on known pion-nucleon differential cross

sections and were taken to have a phase independent of
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scattering angles and equal to the values established for
forward scattering (-t = 0). The effect of the real parts
of the free pion-nucleon amplitudes on the pion-deuteron
differential cross section is shown in Figure 19.

The increase of the Oy (N is for proton or neutron)
changes the magnitude of the pion-nucleon amplitude slightly.
One can renormalize the amplitude easily for the optical

point and to keep o, constant by multiplying it with a factor

N

s Where a& is the new value used in the amplitude.

However, in this calculation only the size of the dip is
significant.

The double charge exchange is a small effect at high
energy. The contribution it makes is indicated explicitly

in Figure 20.

B. EFFECT OF D-WAVE IN THE CROSS SECTION CALCULATION
Figurei7 shows that the agreement between theory and
experiment in general 1s very good, except in the region
0.3 < -t < 0.5 where the theory predicted a dip which is
inconsistent with the experiment. Similar disagreement was
also found in proton deuteron scattering,38’l2
In this section we will show that the large dip calcu-
lated in the previous section was mainly the consequence of

3p 39,40, 41

ignoring the 1 state of the deuteron wave function.

The inclusion of a small D-state component in the deuteron
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wave function allows large S-D transition in the interference
region and the dip is then transformed to a shoulder-like
region when the differential cross sections are summed over
the deuteron spin states.

According to the Glauber approximation, the differential
cross section for pion-deuteron scattering for momentum trans-
fer a, summed and averaged over final and initial deuteron

spins, is given by

40 _1 5 (o (2] | _
""jMﬁ'ITMMr(q), (47)

21 Q

where T is the scattering amplitude from a deuteron of

Mbd'
spin projection M (in the direction of the momentum transfer

d) to M', and Ty can be written as

Tt (3) = J 7% 8 () 1(d 5 7) g, (D) (4-8)

and T(a s ?) is related to the pion-nucleon scattering ampli-

tude f(a) by
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The deuteron wave function; ¢M(?) can be expressed in terms

of radial wave functions and spin-one spinors Xy @S follows42

=
=Y

) w(r)l %, (4-10)

where u(r) and w(r) are the radial S and D wave functions,

Ql

S15(F) = 3(3, - F)(o, - T) - 3 - 3, (4-11)

is a tensor operator, and the o's are the Pauli spin matrices.

The nine scattering amplitudes for T,,,, can be shown

MM
to be:

Ty = (@) + £, (@)1086(3 @) - 8, (a/2)//2)

AV TR

Y
-
+q') T % - q')

i
+ = f q'dqg'dg fp( n(

x[Sg(a') - Sy(a')(3 cos” a -1)/2y2]

-1-1 ~ "11

Too = [F5(@) + ()54 (F) + 42 5,(2)]
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-+ -
_ i q_ > q _ 2
T11 Zrk J a'da’de £o(z+a') £ (5 - q')
x§§§ S5(q') sin® «a s
T.in=Ty o
T19 =0 5
Top =0
Ty =0
and
T 10=0 - (4-12)

The functions S, and S, are deuteron "spherical" and "quadru-

0 2

pole" form factors, respectively,
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S.(a) = j: arfu®(r) + w'(r)] jglar) (4-15)

S,(a) = j; dr 2w(r)[u(r) - %8 w(r)l Jo(ar) . (4-14)

A detailed derivation of Equation (4-12) can be found in
Appendix E.

From Equations (4-7) and (4-12) we find

@ - %‘[21T1112 + ] Too] © + 2IT1-1[2J (4-15)

where

729 |? = 5, @) + £,@)1P18,@) - 5, (a/2)/7°

S ('Cl) ' * *
_ :I-TE[SQ(-%) - 725_2_] Im {[fp(q) + (@)
[ atdatae £(3 + @) £ (3 - d')(So(at) - Sy(ar)

(3 cos® o - 1)/2¢2]}

(2rk)

[So(a') - Sy(ar) (5 cos” « '—l)/2«/2], °
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)12

)Vl ffe}

| Too|® = (@) + £,(@)1°056@) + 2 55
Tr::LE [So(3) + 42 5,(2)] Im{ [f;(é') + f;(a)l
«f q'dq'dd fp(%-+ q! )[S - —*'S o(a’)

x(3 cos2 a -1)]]

-+ -
+ .(-é—-_é-lj atdatds £ (% + d) o (d - )
TK
425 (g 2 :
x[so(q ) + %5 8,5(a") (3 cos” a - 1)” and

-

iy
g, 2 2
[ a'dq'da fp(E +q') fn(% - q')

l 1- 1’ 21k)E

2

[535 Sp(at) sin” o]

Equation (4—15) can be simplified by integrating over the

variable a. Then, it follows,

N R S >
2= ety @ + 1, @F G a) - 25
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I, .2 R |
* (%o - 7:1.7%)] " (;k)g (1o - zq/g) + (f5(q) + fn(q))2
1

o 3 I2 2
" e | ’?)j

w- (@) + (&) (4-16)
0 2
where
do 1 i 2

(@) - ,Efp(q) +£.(a)] Sp(5.9) + =% IOI
0

(£2) -7 [l,@ + £,(@] 5,6 0)°
2
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and

rf =
<
+
QL
-
w

I, = f 2rq'dq’ fp(

The first term, ()%% ) . in Bquation (4-16) is the differ-
/g

ential cross section if the D-wave component of the deuteron
is ignored except for the small w2 term in SO(% q) . The

contribution of (-%%) to the cross section is small compared
2

with (-9%) except in the dip region where the single and
0]
double scattering contribution to (-%%) interfere destruc-

0
tively and tend to cancel.

We have made numerical calculations with scattering
amplitudes of pion nucleon represented by Equation (4-1) and
the input quantities are known pion-nucleon values. The
qunatities used for free pion-nucleon amplitude are as fol-

lows:

i

ap(t) = ap(O) -0.187

a (t) = o (0) = -0.286
op = 28.1 mb
o = 51.5 mb
A, = 6.6 (BeV/c)™?
A =T.31 (Bev/e)™®

The "spherical" and "quadrupole" deuteron form factors SO(%)



66

and 5,(2) are taken from the "potential No. 3" table of
212 L
3

Glendenning and Kramer and theilr values are plotted in
Figure 21 as a function of -t, the four momentum transfer
squared. This wave function calculated by using "potential
No. 3" of Glendenning and Kramer has a D-state probability
of 5.97%.

The theoretical predictions calculated according to
Equation (4-16) along with the experimental data of positive

pion elastic scattering on deuterons are shown in Figure 22.

The dashed curve is the contribution of ( do’) , the dash

dQ 0
dot (————- ) curve is the contribution of (-g%) and the
2
solid curve is their sum. All calculations were performed
in the laboratory frame and then transformed to %%

The original dip region has been raised by a factor of
seventeen (17) and thus the dip has been filled in quite
neatly. The inclusion of the D-state produces modifications
to render a smooth transition from the slope of the diffrac-
tion peak to a slope of approximately half of its value.

The theoretical predictions are slightly higher than the
experimental data in the region between -t = 0.25 and -t =
0.80. It does not seem to be due to statistical errors since
the deviationsare all one-sided in this region. Improvement
was made by renormalizing the "Potential No. 3 Glendenning
and Kramer" wave function (5.97% D-state probability) we used
before to 4% and 2% D-state probabilities and recalculating

the differential cross section using Equation (4-16). The
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effect of changing D-state probability is significant in the

transition region. It can be seen from Figure 23 that the

height of the curve in the dip region 1s essentially propor-

tional to the D-state probability. The experimental data

are in favor of the wave function with 4% D-state probability.
Further improvement was achieved by multiplying the

double scattering amplitude with a parameter K(qg) and thus,

the modified I, and I, in Equation (4-16) are expressed as

0
follows:

o}

QY
+

Qd
-
)

2
= A 2rqidqgt f
I (a%) [ 2rqrdq’ £

and

o) 1 - -+ 1 - -
I, = Ma") [erq'da’ £ (3 a+a') f(5a-a') s,(a")

Figure 24 shows the calculated result for x(qg) = A(0) = 0.7,
0.9, and 1.0 along with the experimental data. In this
calculation a D-state probability of 4% for the "Potential
No. 3 Glendenning and Kramer" deuteron wave function was used.
A significant change was observed in the region where the
double scattering contribution dominates. A similar calcula-

tion was performed by using a varying X(qg):



68

The result is shown in Figure 25. The agreement between the

calculation and the experimental data is very good.

C. CALCULATION OF CROSS SECTION WITH VARYING PHASE PION-
NUCLEON SCATTERING AMPLITUDES

Without considering D-state component of the deuteron
wave function the depth of the dip, i.e., the extent of the
cancellation which occurs appears to be quite sensitive to
the values of the phase in the scattering amplitud837, How-
ever, in this section we will show that with the inclusion
of the D-state of the deuteron wave function the cross section
predicted in the dip region is not sensitive to a phase vari-
ation of the pion-nucleon scattering amplitudes.

Instead of using a Gaussian form of free pion-nucleon

amplitudes we use a phase varying pion-nucleon amplitudes

parameterized as:

£ (3) = op* [(i+ o) exp(-A q2/2) + b.g°]
p T P P p
(H-17)
-» Onk

£ (3) = g [(i + o) exp(-A a°/2) + b a°]

where bp and bn are constants.

We rewrite Equation (4-16) in the form:

do _
S== {Ay + B

5 o7 CO} + 151 Ay + %I{Ae + B, + 02} (4-18)
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and

Subst
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(4-18a)
By = 5 So(3 @) Im[(£,(d) + £,(3)) [ sy(a")
oz d+ar) £33 - a) ad') (4-18b)
¢y = 72_715{—)?“ so(a') Tz d+d) £ (54 - ) ad'|®
(4-18c)
Ay = 8553 QLI @)F + |27 + e £(d) (31
(4-184)
B, = 7 S,(5 @) ImL(f(d) + £(a)) [ 5,(a")
ENCEREDENC QR (4-18¢)
¢, = (;k)g [ 5200 Tz @+ d) 133 - @) ad]?

(4-18r1)

ituting Equation (4-17) into Equation (4-18) we obtain:
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Aq2 Aq2
2,1 1,2 - 2 - =
So(z a)k [( 2 R
= o, € + o €
167 P n
2 2
_ B _ At
2 5 2
+ (cpap e + opbpq + o0 e
2
2
+o‘bnq) ]
A_+A 2
1 .2 - (2-2) ¢
S~(z a)k“0 o S pi
:qu b n [(—-1+aa)e Ky
6l pn
2 2
Aa A q
A
+(anbp e + b e ;
2 2
e Al
q2 = 2
A(E—K2+K5)]X (Ope +0ne )
q2
-(Ap+An)8—
—[(ap-i—an)e Kl
2 2
A_q A_q
n
T T8 "‘g‘— q2
+(bpe + Db e )(E‘K2+K5)J



q2 Anq2
kgcgci [( ) -(Ap+An) 8 T T8
—F =1+ a_a e K. + (a . b_e
10244 pn 1 ( np
A q2
- _g___ q2 2
+ o b )X(E—K2+K5)J
q2 Anq2
_(Ap+An) 8- T T8
+[(ap+an)e +(bpe
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2
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A q2 A q2 A q2
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where K

and L

I

Il
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A_+A )
p 2
- n2 q? N
[ 8p(ar) e dq
-
5 4
[ 8g(at) e dq!
A 2
-
[ 8ola') a'® e dq!
(A_+A_) o
- 2 p qf
[ so(at) e dq'
2
-5 ql
[ 8p(at) e aq’
A 2
o 2%,
[ 85(a') a'" e dq'
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Due to the fact the An and Ap are almost equal, we make the

assumption Ap =A =A=T7.0 (BeV/c)“2 in evaluating K, Ky
Lg, and Lj.
In evaluating AO through Cg, some negligibly small terms
were dropped, e.g., terms containing bpbnqu and
A 2
y -~z .
f S(q')q' " e aq' . bp and b may be different for

proton and neutron but we assume them to be the same in the

calculation to make the calculation simpler. Thus bp = bn = b,

The differential cross section calculated with varying phase
amplitudes parameterizedby Equation (4—17) is shown in Figure
26 with various b values. Again, in the calculation we used

the values S, and S, from the "potential No. 3" table of

Glendenning and Kramer. It is easy to see from Figure 26

that the effect of phase of the pion-nucleon amplitudes is
indeed very small. One can calculate the phase, 6 2),

as a function of q2 approximately by assuming Ap = An = A,

ap =0, = Qs and writing
2 -1 2

where
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or Aq2

. 2)
2) = q + bqa e

For b = 0.15, q2 = 0.5 (BeV/b)29 o = -0.24, A = 7.0, one

finds

eph(o‘B) = T79° 9
and for q2 = 0
9pn(0) = 103°

The change of phase between qg = 0 and q2 = 0.5 for b = 0.15

is thus quite large.
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Figure 16. The form factor S(q/2) as a function of -t,
the four momentum transfer squared. Moravesik IIT fit
to Gartenhaus wave function was used.
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state deuteron wave function was utilized, along with
experimental data.
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Figure 18. Comparison of magnitudes of single scattering,
double scattering and the interference of single and
double scattering.
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Figure 19. Effect of real parts of the free pion-nucleon
scattering amplitudes on the pion-deuteron cross sectlon.
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Figure 20. The 7t-d elastic differential cross section
shown with and without the contribution of double charge

exchange collisions.
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Figure 21. "Spherical and "quadrupole" form factors,
So(a/2) and S5(q/2), as a function of -t. Values taken
from the "poténtial No. 3" table of Glendenning and
Kramer.
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Figure 22. The theoretical predictions élong with experimental
data of 3.65 BeV/c pion-deuteron elastic scattering. The
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Figure 23. Effect of .the D-state probab’lity of the
deuteron wave function to the 71-¢ elastic scattering
cross section, along with experimental data.



1000

100

ub/(Bev/c)®

i

dg

10

84

l T [ T T T [

A This Experiment

= o) Chase et al,

- L A(q°) = 1.0 .
N e A(6®) = 0.9 i
I L r(a%) = 0.7

1 l i l i | |

0 0.2 0.4 0.6 0.8
-t (BeV/c)®

Figure 24, Effect of the parameter A(g°) to the 7 -d
elastic scattering along with experimental data.
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Figure 25. Theoretical prediction of m-d elastic
scattering cross section calculated with modified double
scattering amplitude with X(q®) = 1 - gq2/3 . The
"Glendenning and Kramer potential No. 3" wave function
renormalized to D-state probability of 4% was utilized.
Data are from this experiment and Chase et al.
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Figure 26. Effect of phase variation to the elastic
scattering cross section calculated with amplitudes
parameterized as Equation (4-17). The solid curve is
for b = 0, the dashed curve is for b = 0.1 and the
dash dot curve 1s for b = 0.15.



CHAPTER V
COMPARISON OF THE EXPERIMENTAL RESULT WITH THE

THEORETICAL PREDICTION FOR THE DEUTERON
BREAK UP REACTION

The interference between single and doﬁble scattering
amplitudes which produces the theoretical dip in the differ-
ential cross section is not limited to elastic scattering
process, but occurs also in the deuteron break up reaction,
if all the independent variables in the final configuration
are specified.

For our interest, we will only discuss the case of the

deuteron break up reaction with incident v+,

m+d+7"+p+n (5-1)
for one particular final state configuration.

The method used to calculate the theoretical prediction
for the deuteron break up reaction developed by Bertocchiuu
will be discussed briefly in this chapter. A detailed report
may be found in reference 44. 1In treating this problem, we
will neglect all the complication with the spin variables and
other effects stated in Section C, Chapter II.

For the break up reaction four independent variables are
needed to describe the final state of the system (the total

energy being fixed). We choose four independent variables in

the laboratory system of the deuteron (c.f. Figure 27) namely:

87
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2 _ 2, .2 2 3 o
(P, - Ppy)” =a° 5 ky; 5 kI 5 and K, ° g (5-2)

(3 vectors squared)

-’ —b 3 . .
where p_ and p! are the momenta of the incoming and outgoing
T T v

+ o -+ . . -+ - -+
T, Kyq and kK, are the projections of kg =_(kp - k.)/2

along the beam direction and in the plane perpendicular to

the beam. Note Eﬁ is different from K defined in previous

chapters.

In the high energy limit, but small momentum transfer

(pi 4 , but -t, kg, ki <<m (m = nucleon mass)), energy

and momentum conservation give the following constraints

2 2~ 2
= - f - P
t=(E -E)" -q q
-+ -
kp + kn = +q
+
d-p =0
> 2 > g (5-2)
_ q
ko + k= 2k + L
2 2 _ o2 03
ko -k = +2Ry - g

The scattering amplitude for the break up reaction can be
expressed with Equation (2-16), and the cross section is the
square of the amplitude. For the final state «fl we use plane
waves for the wave functions of the proton and neutron and

neglect the effect of final state interactions. This leads to
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dte 1 £ (t) $(R) + £ (t) w(E,)
dtd5kB C8r%pc | P P P n
2
b [ a3 @ - i) (-2 4 D)
-+ 3 2
(@ - 3)| (5-4)

where 3' is the impact parameter, on the plane orthogonal to
the beam, ¢(E) is the Fourier transform of the deuteron wave
function. Only the dependence upon the momentum transfer is
explicitly indicated in Equation (5-4). Equation (5-4)
includes single and double scattering processes corresponding
to the diagrams given in Figure 27.

We can show the -t dependence of the differential cross
section by keeping all the remaining three variables fixed.
We can easily show that the maximum contribution to the double
scattering with a net momentum transfer, -t, arises from two
individual scatterings each with a partial momentum transfer
square -t/U4; that is, the best configuration for a large
double scattering contribution 1s a symmetrical one, in which
'Ep - Enl = 0, and therefore Eé ° 3 =0

Figure 28 shows a plot of the differential cross section
as a function of -t for the symmetrical configuration calcu-

lated with fp and f indicated in Equation (4-1) and all the

appropriate values for the input as follow:



90

ap(t) = ap(O) = -0.187
an(t) = an(O) = -0,286
op = 28.1 mb

oy = 51.5 mb

A, = 6.64 (BeV/c)™®
A = T.31 (BeV/c)™®

In the computation the Moravesik IIT f'it to the Gartenhaus

wave function for the deuteron without D-state component was
2
)

used. The dip is at =t = 0.28 (BeV/c
A comparison of the theoretical prediction with the exper-

imental data shows good agreement except in the dip region.

3

The disagreement in the dip region is perhaps due to the D

1
state of the deuteron which was ignored in the calculation.
The experimental data in Figure 28 were obtained by

selecting events with éEp - En‘s 2 MeV.
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Figure 27. Single and double scattering diagrams of the
deuteron break up.
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Figure 28. Theoretical predictions of the deuteron
break up with the condition E, = E, along with the
experimental data selected for events |E_ - E <

2 MeV. pn



APPENDIX A

HIGH ENERGY SCATTERING AMPLITUDE FOR
ASYMMETRIC INTERACTIONS

At large distances the wave function of the incident
particle from the target particle is the sum of an incoming
plane wave and an outgoing spherical wave with the elastic-

scattering amplitude
. o ik
£(g,0) = exp(ik < r) + (e~ /r) £(8,0)

where K is the propagation vector of the incident plane wave
and T is the position vector measured from a point in the tar-
get particle, 6 is the scattering angle measured with respect
to the direction of the beam (positive z direction) and ¢ is
the azimuthal scattering angle measured with respect to the
positive x axis. f(6,®) can be expanded in a series of spher-
ical harmonics as

0 2

fle,0) = = = £, (8,9) (A-1)
4=0 m=-¢

where

1 im m
fm(8:9) = 3¢ (284 1)(Cpp = & e pl(cos 9)

and the coefficients Cim are determined by the scattering
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interactions. For an azimuthally symmetrical potential, Clm

may be expressed as

Com = Opo €XP(218y) (A-3)

th

where 6, 1s the phase shift for the L~ partial wave. Near

the forward direction p? may be expressed by the Bessel func-

tion

pp(cos 8) =~ (-1)"( L+ 1/2)" [(24+ 1) sin(1/2)8]

(A-1)

Furthermore a Bessel function can be expressed by 1ts integral

representation

c ;sm 2 i(2041)sin(1/2) 8 cos atima
I l(28+ 1) sin(1/2) 8] = == £e da

(A-5)

Substituting (A-5) into (A-2) one obtains

( L+ 1/2) egi(l+l/2)5in(l/2)e cos a

M8

+1 :
x[ s i+ 1/2)% etm(ote-m) _ 17 4o
m=-4 Lm

(A-6)
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or
1 T e 1, 2i(f+1/2)sin & cos «
f(g,0) = 51K 5 (4+ E") e 2 da
o %=0
x [A(R,9) - 1] (A-T)
where ¥ =g + @ - T (A-8)
and
1 .
A(Lw) = = 1L+ 1/2) e (4-9)
m=-4 m

At high energies the wave length of the incident particle is
much smaller than the range of interaction, and so‘the summa.-
tion over 4 in the integrand of Equation (A-7) contains many
terms and may be approximated by an integral. Defining impact
parameter b by the relation kb = # + 1/2, the integral may be
expressed as one carried out over the variable b. One may

write Equation (A-7) as

am [ e21KD s1n(1/2)8 cos @

£(6,9) = == | [k - e ¥)] vapda

0 0
(A-10)
where A(R,9) is replaced by exp[iX(b,¥)] and X(b,¥) is the
complex phase shift.

By taking o to be the angle that the impact parameter

vector b makes with the positive x direction and using the
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small angle approximation
(ﬁ - E') - B = 2kb sin(6/2)cos (a - @ + ) ,
one obtains

£(8,9) = 5 [ expli( - B') - BI(L - exp[1x(B)1} o(?)8

(A-11)



APPENDIX B

TRANSFORMATION OF SCATTERING AMPLITUDE FROM THE
CENTER-OF-MASS SYSTEM TO THE LABORATORY SYSTEM

In this Appendix we will demonstrate the fact that the
formulas which describe small angle scattering in the labora-
“tory system are of the same form as those which describe it
in the center-of-mass system.

Let ¥ be the ratio of the incident-particle total energy
in the laboratory system to its rest energy, and A be the
ratio of the mass of the incident particle to that of the

target particle. We define

Il

2)—1/2

yp = (L 4+ 2y) (1 + 207 + )

and

NS
|

= (M + ¥)(L + 22y + xg)’l/g ,

to be two relativistic factors which will be used in the
Lorentz transformation, and use subscripts ¢ and L to indicate
guantities associated with the center-of-mass and laboratory
systems respectively.

L5

One can write the Lorentz transformation as

kL = (yl + kyg)kc
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and

For small-angle scattering this expression reduces to
< e )
fr(kl,kp) = (v + Ay,) £o(KLK) .

Because P is a vector perpendicular to the direction of the
incident particle, the Lorentz transformation will not affect

transverse components of the momentum. Therefore,

and

li
|
—

]

b
o]
M

’—J

~é

H
§

e
o

o’
| -}
P

o'y
p

(o)

—~

no

S
o’

The phase shifts are not affected by the Lorentz transforma-

11

tion™", therefore Equation (2-1) expresses the scattering
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amplitude correctly in the laboratory system as soon as the

- -+
laboratory k and k' are used in this expression.



APPENDIX C

THE NORMALIZATION OF CROSS SECTION

In this Appendix the normalization of the absolute cross

section will be given. The normalization was obtained from

the scanned path length. A detailed method to determine the

cross section can be found in reference 22.

The expression of the cross section per event for the

. . . 22
elastic process is given

o/event = [pLF.F.F F4F5F6]_l 5

1273

where p = density of liquid
L = track length
Fl = correction factor
F2 = correction factor
F5 = correction factor

F4 = correction factor
F- = correction factor

F6 = correction factor

deuterium in deuterons/cc

for
for
for
for
for

for

beam contamination
beam absorption
interaction loss
scan loss

events not measured

elastic events lost in

other reaction channels,

and Fi stands for 1 minus the values listed 1n Table V.

100
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TABLE V

VALUES USED IN EVALUATING THE CROSS SECTION

Value % Error
o, deuterons/cc 4.19 £ 0.08 x 10°° o%
L*, cm 1.14 + 0.04 x 107 U
FI (5 £ 3)%
F, (2.6 + 0.1)%
Fs (3.6 + 1.3)%
F) 1%
Fg 2.5%
Fg 9.8%
o/event, ub 2.72 + 0.16

*Values taken from reference 22.

The g/event listed in Table V is based on a portion of
the film which is only 19.4% of the total track length. There-
fore, the cross section per event for the film we used for
this experiment is 0.194 times the cross section given in

Table V. The elastic scattering cross section is thus

o, /event = 0.524 1 0.031 pb/event

F the correction for interaction loss, is obtained from the

3’

data given in reference 22 by consildering the ratio for
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interaction loss between 4 prong events and 2 prong events.
Benson22 concluded the correction for interaction loss for

4 prong events to be (7.2 4+ 2,5)%c It is reasonable to approx-
imate the interaction loss for 2 prong events as Jjust half

of that for 4 prong events since the ratio 6f number of out-
going tracks is two to one.

FM’ the correction factor for scanning loss, is calcu-
lated from the scan efficiency. The two-prong single scanning
efficiency is estimated to be 96% from the double scan (after
azimuthal angle cuts). This indicated both scanners missed
(1—96%)2 or < 1% of the total number of elastic events on the
film, since the entire film used for this experiment was
scanned twice by independent scanners.

F5, the correction factor for events not measured; given
in Table V is based on events failed to pass the geometry
program. Our failure rate for first measurement is 10% and
25% for remeasurement. This amounts to (25%)(10%) = 2.5% of
the events falled the geometry program after the remeasurement.

The last correction factor; F6’ is an estimation of elas-
tic events lost in reaction channels other than elastic pro-
cess, Table VI shows the estimation of elastic events lost
in other reaction channels.

Quantities in Table VI were obtained in the following
manner. For (1) and (2) we assumed all the events fit the
hypothesis W+pn and calculated the proton-neutron effective

mass, M(pn), and number of events which are above the smooth
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TABLE VI

ELASTIC EVENTS LOST IN VARIOUS REACTION CHANNELS

Reaction Channels No. of Events

(1) mpn Unambiguous 85 events

W+pn - ppr°®

(2) w:pn - Widw° - ppr’® Ambiguous 136 events
T pn - 7 dr’

(3) rtare Unambiguous 51 events

(4) ppr° - W+dW° Ambiguous 170 events

(5) No fit 50 events

Total 492 events

492 events corresponds to 492/5050 = 9.8%, since the total
number of elastic events is 5050.

curve of a phase space and have M(p,n) between 1876-1886 MeV
were counted for each reaction channel.

For (3), (4), and (5) we assumed all the events in these
reaction channels were elastic and the momentum components
for each event were obtained from TRED tape with properly
assigned particle mass for each track, then the missing energy,

and the missing momentum, P were calculated for

E faad
miss

miss?
each event. Events which satisfied the conditions
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miss <5 Mev

and

0 < Pmiss < 5 MeV/c

were considered to be elastic events and were counted for each
reaction channel. We assume that these 492 events have the
same t dependence as the other elastic events.

The cross section for deuteron break up process was cal-
culated in a similar way except F is 1% instead of 9.8%.
Because there is only 1% of break up events which was lost

in the elastic scattering channel, this gives

o/event = 0.482 1 0.029 pb/event
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APPENDIX D

ESTIMATION OF THE BACKGROUND IN THE BREAK UP REACTION

In this Appendix a crude estimation of the background
the sample of deuteron break up reaction will be given.
a) Background from elastic events.
From Table VI a total of 221 elastic events were
contained in the sample retained for the break up
reaction (both single fit and ambiguous events).
b) Background from charge exchange reaction,
rd p+p+7° (D-1).
The total cross section for this reaction is esti-
mated to be lBOub46. The estimation was made by
considering the proton as a spectator and charge
symmetry as valid. A maximum of 270 events due to
reaction (D-1) is possible in the sample.
¢) Background from reaction,

T rd+ e (D-2).

+

Td =+ T
There is no experimental cross section given for
this reaction. However, we can estimate the cross

section for this reaction by comparing reaction (D-2)

with the following reaction
K"+ d K +71°+d . (D-3)

The cross section of reaction (D-3) is 105 % 21 ub at
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4.5 BeV/c47 and 150 + 35 ub at 2.3 BeV/cA8. An estimated
cross section for reaction (D-3) at 3.65 BeV/c is 123 ub.

If we consider the diagrams, Figures 29 and 30, for
reaction (D-2) and (D-3) on the basis of a peripheral single-
meson exchange model, only isoscalar exchanée is possible for
both cases, and assuming the reaction mechanisms are both
through w exchange for reaction (D-2) and (D-3) and that the
SU5 model is valid, then the ratio of cross section for reac-
tions (D-2) and (D-3) should be 4 to 19,

Thus, the cross section for reaction (D-2) is 492 pub.
This amounts to a maximum possible of 1040 events in the
sample.

Therefore, the upper limit of the background due to (a),
(b), and (c) is 1531/9601 = 15.8%.

In fact, the contamination is much lower than 15.8%
since we used the total cross sections for both Reactions
(D-1) and (D-2) in this calculation.

In this experiment 1067 unambiguous events corresponding
to Reaction (D-2) have been found (c.f. Table I), therefore
the contamination due to Reaction (D-2) in the sample for
the deuteron break up process is probably negligible since
we estimated only 1040 (D-2) events could occur. If we

ignore the(D—E}background then the background of the break

up reaction is approximately (221 + 270)/9601 = 5.1%.
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Figure 29. Feynman diagram for Reaction (D-E).

Figure 30. Feynman diagram for Reaction (D-3).



APPENDIX E

EVALUATION OF MATRIX ELEMENTS TMM'

The total deuteron wave function can be written as:

d’M = ‘ﬂ;r'% [u(r) + ;%8‘ w(r> 812] X‘M > M =0, #£1 (E"l)

where XM is a triplet spin function.

It is equivalent to write Equation (E-1) as follows:

b= 2 u() o+ 2 )| b Yao(0:9) 1 - [T n (6.9 5
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where the Y,,,'s are the normalized spherical harmonics, and

iM
they are given as:

L l%g (3 cos® § - 1)

Y = L 15 sin g cos ¢ e+im

=
no
O

il
Ej

Y22 = Q@F} sin- 6 e
_ 1 15 _; -iep
Y2—l R?F) 5 sin 9 cos g8 e

1 L5 .. 2 -21%
Y2_2 = ;@ﬁﬁ—ﬂf'Sln g e

The coordinate system is chosen in a convenient way as shown
in Figure 31, where Y is the beam direction, a' is in the XZ
plane, a is in the Z direction, the angle between gq and qf
is a;, w is the angle between ? and a', and cos w = cos 6 cos a
+ sin § sin a cos @.

Typr In Equation (4-12) is simply <}M,T(a,?)|¢M:>
and may be expressed as follows:

T + T

m' = To,mue o, MM

where
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* *
B 3 1 u * W 1 * * 3 *
To,ll”fdr[ F oty UTo Yoo % - 190 Y21 %

J"”" 1 *ﬂtl (fn(a) + fp(a)) cAl/2)ar cos @

wy [T F
?(JE Ygo Xl ~JI0 Y2l XO
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T can be sim-

*
Using the orthogonality of XM XM' = GMM' s To 11
s

plified as:

o bf e /b R
To,ll = f dr sin g ded@'{ng=u +euw /o= /10 Yoo

~=~‘w2[-1- Yo Yoo+ o Yoo X
To Y20 Yoo t 10 Yo1 Yo

6 *
g Yo Yo
_irg cos 6
2
-+ -+
x (f (q) + fp(q)) e .

Integrating over ¢ we obtain,

— =+ . . 1 5 o
TO,ll = 2r(f (4) + fp(q)) | dr sin g d6 {EV? (U + w7) Py

_(1/2) -—i-g—lcose
w(u - 8 W

, )
t o PQO} e

where P&Mis are the normalized associated Legendre polynomials.

Several PhM's used in this appendix are listed as follows:

Pool8) = 715



112

Py ,q(0) = a/% sin ¢

2
Psq(6) =/§ (3 cos® § - 1)
Py (8) = $‘/§§ sin g cos @

P

/1 .2
Prun(8) = T%Sln 0

Using the following relationships between spherical harmonics

and spherical Bessel functiomns,

T . |
[ 1S cOS 8 Py(cos g) sin 6 do = 42 Jy(s)

0

T
f gis cos 0 Pg(cos 5) sin g dg

1l
i
-
ol
O
.
N
n
~

0

and the property of spherical Bessel functions

Jp(-ra) = (-1)" g (ra)
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or

where
*° 2 2y . 4T
S5o(3) = [ dr(u® + w%) Jy ()
0
and
o 1/2 r
S2(%) = I dr 2w(u - 8 / w) 32(79)
0
Next, T can be written as:

2,11

_ i g2 d
To,11 =) zer [ ¢7a" (3 - @1) £

where

*

* *
3 2 . 1 u W v/i
Ill(q!) = f rdr sin ¢ de(“p[Z@ﬁﬁ? X1 + T ( 10 Y2O X1

-Jd 10 Y21 %o TV IO Yo X1

4 e-Ta'(cos 6 cos a + sin § sin a cos ®)

1 u w, [1 3 /6-
"[RZFTF)? xp * ?(/;6 Y20 *1 -J;@ To1 % T/ 10 Yoo x_l)]
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Similarly using the orthogonality of the spin functions,

Ill(q') is then reduced to

2

0 . u 2uw 2,1 ¥
I)p(a') = [ dr sin 8 d8 dp| g + Sp5m Yoo + W (35 Yog Yoo
3% 6 * -irg'cos g cos a
+ 90 Yo1 Yo1 T 1o Yoo ngi] x e

" e-irq'sin 0 sin « cos ®

Integrating over the variable ¢ and using the formula

2T . .
f elS cos @ eln@ _ 2T I (S) ,
.\n n

0 _ | (-1)

we obtain,
2 2 -1/2
'y . u” + w w(u - 8 W)

Ipp(a") = Jdr sin g ds ["“Iﬁ?““‘ Poo * 75 Po

=101
x Jo(-rq' sin g sin a) T4 ¥ €08 6 COS @

The Bessel function Jn and the spherical Bessel function jn

are related according to

m o f
f olrgfcos 6 cos a Jm(nrq‘Sin 5 sin q) Pim(cos 5) sin 6 d#

0

- .
= 2i* M Pgm(cos a) JK(-rq')
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u” 4+ w o
(cos a) Jy(ra’)

2 )
Poo(cos a) j,(ra')

P,~(cos a)
: 20
= So(q ) = J5

SR

and then

2
| - 1
Iy = 8p(ar) - L2 N Ls,(a')

The expression for Tll is the sum of TO,ll and T2,11 and can

be written as follows:

q
_ -b q 2(
Tll = [fp(q + f ] [S 5, —7-~] + = EWK f g'dq'da

£, @ - @) [s(a") - sy(an) Geog e 1T
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Similarly, for M = M' = O,

We can also write

To,00 = (@ + 5@ [ {[F5 4 %6+ 4 (o o

—}—ér-ciCOSS

/N * * ﬁ * *
~JT10 Y20 %0 * VIo Yo1 X—])] x e

1 ‘/ Jﬁ: 3 -
"[;@T)r r( 10 To-1 X1 “JT10 Yoo X0t T You X_ﬁ}a’v’

Integrating over the variable ¢ and applying the orthogonality

of the spin functions, TO 00 is reduced to
s
T = (f (4) + f ( dr sin 6 df [u +
0,00 ntd 1)) [ —7z oo
-=Jl£ cos B8

- %5 w(u - g-1/2 w) PQO] e

= (fn(a) + fp(q f dr [ u- + w2) jo(%%)
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+ B 2u(u - 872wy (5]

or

To,00 = (Fn(@) + £,(@))[S5(3) + V2 8,(3)]

In evaluating T , we need only to evaluate I, .(q') in the
2,00 00

following expression

where

Toola = [ rdr sin o o d“’[;@r‘)r Xo T (\/éo Yo X1

L * * 3 * *
“/;G Yo0 X0 +~/‘;G Yoy X—l)]

x o-irq'(cos g cos a + sin 6 sin a cos ®)

uﬂ" r T O 2 1 M 10 "20 ~O

5
+/';5 To1 X—lS]

Integrating over angular variables § and ® we obtailn,
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W) (-2) Pyg(cos a) jg(rq'j] s
or

Ioo(q') = SO(q') + Wel Pgo(cos a) Sg(q')

= 8o(d") + %2 5,(a')(5 cos® « - 1)

thus,
Too = [£,(d) + £,(@)18(H) + v2 8,(3)] + g [ a'aa'da

A f

NP1t

.‘9

-+ -+ 2 2
JE ) @ - @) [so(ar) + & 5,(a")(5 cos® o - 1]
It is easy to show that TO,l—l = TO,lO = 0 because the orthog-
onality properties of the spin functions and the spherical

harmonics.

_ 1 EO-R d _ 2
T 1.1 =z [ 4@ £z +a') £(z - 4") I; 4(a")
where
> 1 u R "
Hy - - uopwf
I 1(a") = [ ridr sin ¢ de d“p[;]m?)r X1t ¥ (V15 Y20 X1
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3 * * /g *
_/;_YEI Xo T/ 10 Yoo X-l)]

x e-ia'r(cos g cos a + sin 6 sin a cos @)

1 u w jQ; '
X [:thr)? Xy ‘f«‘( T0 Youo X1 /10 You1 X0

+\/%'G Y20 Xl)]

I;_1(a") can be reduced to

2 S,(a") sin® g

Il—l(q') = - o2

therefore,

-+ -
- f"iz P! q g aqa _2
Ti1 = O+ 3¢ f qfdq'da fp<§ + q') fn(§ qa')

,l[-é% s,(a') sin ]

We will show that T2,10 is zero by writing T2,lO as

follows:
-

—b
_ 1 2 q ., 2 q_ 2
To10 = 77k J 47Q" Tz +d') f(5 - 4') Tjp(a’)

where
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Tio(a") = [ r°dr sin 6 a8 dcp[;{/-'i‘)r Xt (/; o0 %

/_3. * * ﬁ * *
~JT0 Y21 % T/ 10 Yoo X-1)

Lo . .
X e—qu'(cos 6 cos o + sin 9 sin a cos o)

1 u w 3 _V/E
X[ZZEm"f %o ¥ ¥ /o You1 X1 “J10 Yoo X0
)
+~/-Z'L—:5 Yoq X=1)]

I,o(a") can be reduced to

I,o(at) =~-1 ] dr[pég'uw 217 P,_q(cos a) j,(rq")

2
- ;75 21° Puul(cos ) ju(rq')

2
- 5617“9W 5 217

P,_q(cos a) jg(rq')]

Since P2—l and P4-l contain sin a to the first power they are
odd function of the variable a and therefore, when integrated
over da in d2q' from O to 2r we find that Ilo(q') =0 . It

follows that,

10 ~
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Similarly

T = 0

T2,10 = T2,-10 = T2,0-1

By symmetry one can easily show that

Tyy = To1g

and

In summary, the matrix elements of TMM' are shown as follows:

SNEY :
n N - 1 2\2
T, = [fp(q) + fn(g)J [So(ﬁvq) - 75 ] + ?%E [ a'dq'da

3 - 3 -+ e -
crg@ e ) @ - 3 [so(a) - syfar) L2e0s e )]

- -+
2o ) r(d - 3)0sgar) + % s,(a") (5 cos® w - 1)],
2 n\?2 0 -~

£
% p(
i d . =2 d _ 3\ [3
= § f 3 e 1 e
Ty = mpe J Q'dafde f(5+at) £ (3 - Q') [Evﬁ'se(q )sin® o],
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and T = T = T = T =
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Figure 31. Coordinate system chosen

for evaluating matrix elements TMM'
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