A Checklist of the Herpetofauna of Guatemala

BY

L. C. STUART
Department of Zoology

ANN ARBOR
MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN
APRIL 2, 1963
MISCELLANEOUS PUBLICATIONS
MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN

The publications of the Museum of Zoology, University of Michigan, consist of two series—the Occasional Papers and the Miscellaneous Publications. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb.

The Occasional Papers, publication of which was begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series.

The Miscellaneous Publications, which include papers on field and museum techniques, monographic studies, and other contributions not within the scope of the Occasional Papers, are published separately. It is not intended that they be grouped into volumes. Each number has a title page and, when necessary, a table of contents.

A complete list of publications on Birds, Fishes, Insects, Mammals, Mollusks, and Reptiles and Amphibians is available. Address inquiries to the Director, Museum of Zoology, Ann Arbor, Michigan.

LIST OF MISCELLANEOUS PUBLICATIONS ON REPTILES AND AMPHIBIANS

No. 8. The amphibians and reptiles of the Sierra Nevada de Santa Marta, Colombia, by Alexander G. Ruthven. (1922) 69 pp., 12 pls., 2 figs., 1 map. $1.00

No. 29. A contribution to a knowledge of the herpetology of a portion of the Savanna Region of Central Petén, Guatemala. By L. C. Stuart. (1935) 56 pp., 4 pls., 1 fig., 1 map. $0.50

No. 47. A contribution to the herpetology of the Isthmus of Tehuantepec. IV. An annotated list of the amphibians and reptiles collected on the Pacific slope during the summer of 1936. By Norman Hartweg and James A. Oliver. (1940) 31 pp. $0.35

No. 49. Studies of Neotropical Colubrinae. VIII. A revision of the genus Dryadophis Stuart, 1939. By L. C. Stuart. (1941) 106 pp., 4 pls., 13 figs., 4 maps. $1.15

No. 50. A contribution to the knowledge of variation in *Opheodrys vernalis* (Harlan), with the description of a new subspecies. By Arnold B. Grobman. (1941) 38 pp., 2 figs., 1 map. $0.35

No. 56. Taxonomic and geographic comments on Guatemalan salamanders of the genus *Oedipus*. By L. C. Stuart. (1943) 33 pp., 2 pls., 1 map. $0.35

No. 61. Home range, homing behavior, and migration in turtles. By Fred R. Cagle. (1944) 34 pp., 2 figs., 1 map. $0.35

No. 69. The amphibians and reptiles of Alta Verapaz, Guatemala. By L. C. Stuart. (1948) 109 pp., 10 figs., 1 map. $1.50

No. 76. Studies of the black swamp snake, *Seminatrix pygaea* (Cope), with descriptions of two new subspecies. By Herndon G. Dowling. (1950) 38 pp., 6 figs., 1 map. $1.25

No. 94. The anatomy of the head of *Ctenosaura pectinata* (Iguanidae). By Thomas M. Oelrich. (1956) 122 pp., 59 figs. $1.85

No. 96. The frogs of the hylid genus *Phrynohyas* Fitzinger, 1843. By William E. Duellman. (1956) 47 pp., 6 pls., 10 figs., 4 maps. $0.70

No. 97. Variation and relative growth in the plastral scutes of the turtle *Kinosternon integrum* Leconte. By James E. Mosimann. (1956) 45 pp., 1 pl., 24 figs. $0.75

(Continued on inside back cover)
A Checklist of the Herpetofauna of Guatemala

BY

L. C. STUART

Department of Zoology

ANN ARBOR
MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN
APRIL 2, 1963
ILLUSTRATIONS
FRONTISPICE (courtesy Jean Guibe), OPPOSITE PAGE 5
MAP, FOLLOWING PAGE 150
CONTENTS

Acknowledgments ... 13

Key to the Families of Guatemalan Amphibia and Reptilia 13

Class Amphibia .. 16

- Order Gymnophiona ... 16
 - Family Caeciliididae ... 16
- Order Caudata .. 16
 - Family Plethodontidae ... 16
- Order Salientia .. 24
 - Family Rhinophrynidae ... 24
 - Family Batrachidae .. 24
 - Family Leptodactylidae .. 27
 - Family Centrolenidae ... 33
 - Family Hylidae .. 33
 - Family Microhyliidae ... 42
 - Family Ranidae .. 45

Class Reptilia .. 46

- Order Testudines .. 46
 - Family Dermatemyidae ... 46
 - Family Cheilodidae .. 47
 - Family Testudinidae ... 50
 - Family Cheloniididae .. 52
 - Family Dermochelyidae ... 54
- Order Sauria .. 54
 - Family Eublepharidae ... 54
 - Family Sphaerodactylidae .. 55
 - Family Gekkonidae .. 56
 - Family Xantusiidae .. 58
 - Family Iguanidae ... 59
 - Family Scincidae ... 73
 - Family Teiidae .. 76
 - Family Anguidae ... 80
 - Family Xenosauridae .. 83
 - Family Helodermatidae ... 83
- Order Serpentes .. 84
 - Family Boidae .. 84
 - Family Leptotyphlopidae ... 85
 - Family Typhlopidae ... 85
 - Family Colubridae ... 86
 - Family Elapidae .. 125
 - Family Viperidae .. 127

- Order Crocodylia .. 132
 - Family Alligatoridae ... 132
 - Family Crocodylidae .. 132

Addendum ... 134

Index .. 135
MARIE-FIRMIN BOCOURT 1819–1904
Naturalist Explorer Artist
Primogenitor of Central American Herpetology
A CHECKLIST OF THE HERPETOFANA OF GUATEMALA*

SOME ten years have now elapsed since the first draft of this checklist was completed. During the interim various academic duties other than research assured the accrual of a reasonably thick layer of dust upon the original manuscript. The negligence to which the initial essay was subjected proved to be a blessing. As I review it now, that primitive effort could be described only as "naive." During the course of the past ten years our knowledge of the systematics of the herpetofauna of northern Central America and of adjacent Mexico has been increased immeasurably, while herpetological explorations through the same region have produced a wealth of new information concerning the nature of faunal units and a more exacting knowledge of the distributions of lower systematic categories. Upon reviewing my original draft it becomes apparent that had its parturition occurred upon its completion, our herpetological knowledge of northern Central America would have been set back at least several decades. The version herein presented, though still deficient, has been enhanced through the delay owing not only to the great body of data that has accumulated in the meantime but also to a more thorough consideration on my part of a number of systematic and geographic problems that were posed at the moment of the earlier draft.

At the time I initiated revision of my original manuscript I toyed with the idea of presenting a checklist of the herpetofauna of all northern Central America, i.e., the Isthmus of Tehuantepec through northern Nicaragua. Such would not have entailed much additional labor. The herpetofauna of the southern states of Mexico, dealt with in the Mexican checklists of Smith and Taylor, is not greatly different from that of Guatemala. That of El Salvador has been summarized fairly recently by Mertens (Abhand. Sencken. Naturf. Gesell., 487, 1952: 1–83, pls. 1–16, map), those of Honduras and Nicaragua are so poorly known that not many additional forms would have had to be included, while the British Honduras fauna, with one or two exceptions, is essentially the same as that of northern Guatemala. I discarded this idea, however, largely because I am unfamiliar with much of the included terrain. Though I have a somewhat more than nodding acquaintance with the lands of southern Mexico, my knowledge of the other countries, especially those to the south, has been gained mostly from the literature.

The conclusions set forth in the following are based in a large measure upon collections assembled by me during the years 1933–58 and these com-

* Funds to defray the cost of publication of this checklist were derived from the income on the endowment of the Horace H. Rackham School of Graduate Studies, University of Michigan, and made available by the Executive Board of that school as Project 32.
prise approximately 10,000 specimens, exclusive of tadpoles. These are contained almost in their entirety in the Museum of Zoology, University of Michigan. Needless to say, I have studied most of the Guatemalan materials contained in other museums in this country. It is unfortunate that I have not been privileged to examine the large Guatemalan collections in several of the European institutions, especially the British Museum (Natural History), the Museum National d'Histoire Naturelle, and the Naturhistorisches Museum Basel. In addition to Guatemalan material I have studied, naturally enough, a great number of specimens from adjacent regions, particularly those stemming from the upland mass and associated lowlands between the Isthmus of Tehuantepec and Nicaragua. All in all I would hesitate to estimate the quantity of herpetological material that has contributed to my current conclusions.

Included in this checklist are only those forms (species and subspecies) known to occur within the limits of Guatemala. This list includes 319 forms distributed as follows:

<table>
<thead>
<tr>
<th>CLASS AND ORDER</th>
<th>FAMILIES</th>
<th>GENERA</th>
<th>FORMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPHIBIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnophiona</td>
<td>9</td>
<td>24</td>
<td>88</td>
</tr>
<tr>
<td>Caudata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salientia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPTILIA</td>
<td>25</td>
<td>91</td>
<td>231</td>
</tr>
<tr>
<td>Testudines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eublepharidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerodactylidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geckonidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xantusiidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iguanidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scincidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teiidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anguidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenosauridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heleodermatidae</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The systematic scheme adopted herein certainly demands some explanation. In my research I have never dealt with the higher systematic categories and, as a result, I hold no very definite opinions regarding them. My colleague, Charles F. Walker, suggested the amphibian arrangement which is an amended edition of Noble's classic system. The reptilian classification follows no author in particular. I follow Romer (The Osteology of the Reptiles) in dealing with the turtles and Mertens and Wermuth (Zool. Jahrb., Syst., 83, 1955: 323–440) in the case of the crocodilians. I accept Schmidt's elevation of the lizards and snakes to ordinal rank (Evolution, 4, 1950: 79–86). I return to Romer for the family arrangement of the lizards except for the gekkos which have been studied by Underwood (Proc. Zool. Soc. London, 124, 1954: 469–492). I accept Dowling's treatment of the snake families (Copeia, 1959: 38–52). Though this scheme in its entirety is probably acceptable to no one, this display of impartiality should spare me somewhat from the full wrath of all those concerned with the higher categories. In the final analysis a checklist of a local fauna is no place to become deeply involved in such matters.

In handling the nomenclature of the various forms I have, in general, accepted the conclusions of the authority who has dealt most recently with a particular group in a comprehensive manner. I have, however, departed from this procedure in those instances in which my own investigations convince me that others' conclusions are unwarranted or in which I feel that conclusions have been based upon inadequate study. In treating wide-ranging forms displaying local diversity, I have followed a rather conservative course. It seems to me that nothing is to be gained at this time in recognizing, for example, local Mesoamerican variants of Rana pipiens. In my opinion recognition of local populations not based upon broad, comprehensive studies frequently confuses rather than clarifies systematic and geographic pictures. Finally, as is well known to any who have dealt with the still poorly-understood herpetofauna of Central America, recognition of certain populations as species or as subspecies must be purely subjective in
many instances. No generic changes are made herein, and I even recognize
the "genus" Trimetopon which I have previously suggested (Proc. Biol. Soc.
Washington, 62, 1949: 165) is very probably a polyphyletic assemblage. I
retain it herein merely as a convenience.

In handling the mechanics of nomenclature and synonymy citations I
have not followed blindly the recommendations of the International Code
of Zoological Nomenclature adopted by the XV International Congress.
I have not used parentheses to enclose authors' names in those instances in
which a form has been transferred to a genus other than that of the original
description. Inasmuch as the original genus-species combination is cited
first in my synonymies, such procedure seems unnecessary and, furthermore,
provides an excellent source of personal and typographical error. Contrary
to the recommendation of the Congress, I use a comma to separate the name
of a subsequent user of a scientific name from that name. In such cases
it seems to me that a comma is just as serviceable a form of punctuation
as is a colon, period, or dash. Recommendations regarding the problem of
i versus ii in the formation of the genitive of patronomials in which the
nominative ends in ius have been carefully avoided (except by inference) by
the XV Congress. Classical Latin permitted (indeed, I believe, demanded)
the contraction of the ii to i. Regardless of the form in the original descrip-
tion, I have utilized the classical form throughout.

Selection of material for inclusion in the synonymies has presented some-
thing of a problem. Inasmuch as I regard this checklist as merely a prelimi-
ary effort to assemble in usable form what little is known of the Guate-
malan herpetofauna, I have made an effort to present as much basic data
as possible and yet retain reasonable brevity. These basic data included in
the synonymies are: first, citation of the original description; second, refer-
ence to all synonyms based wholly or in part upon Guatemalan materials;
and third, citation of the first appearance of the genus-species (subspecies)
combination utilized herein. Where necessary the synonymies include these
data in the order stated and they are cited in full. In the case of synonymys
the location and catalogue number of the type (s) and the type locality are
enclosed in parentheses following the literature citation.

In addition to the above, I consider the following absolutely essential to
the investigator working with the Guatemalan herpetofauna:

Brocchi, P. Etudes des batraciens de l'Amerique Centrale. Mission Scientifique au Mexique
et dans l'Amerique Centrale, Recherches Zoologiques; Paris, Imprimerie Nationale,
1881-83: 222 pp., 21 pls.
Dumeril, A., M. Bocourt, and F. Mocquard. Etudes sur les reptiles. Ibid., 1870-1909:
1012 pp., 77 pls.
Gunter, Albert C. L. G. Reptilia and Batrachia. Biologia Centrali-Americana; London,
Taylor and Francis, 1885-1902: 326 pp., 76 pls.
Because I have made an effort to keep my own investigations on the Guatemalan herpetofauna in line with the work of Smith and Taylor on that of adjacent Mexico, I further consider the Mexican checklists of those authors of no less importance than the foregoing. These are:

The above six references are all cited in those instances in which Guatemalan materials were examined and listed by the authors or, in the case of the Smith-Taylor checklists, in which Guatemala is included in the range of forms occurring in Mexico. They are all cited in the order listed above. In order to avoid needless repetition, however, these are cited, except in the case of type descriptions, merely with author(s), date, page and plate, e.g., Brocchi, 1883: 120, pl. 21, figs. 2–2a.

It had been my intention to include in the synonymies reference to the most recent systematic treatment of the form under consideration. In many instances, however, the “most recent systematic treatment” is so antiquated as to be of little value while in other instances the modern literature is so fraught with differences of opinion, frequently based upon inadequate data and as often as not highly subjective, that its inclusion could be misleading. As a result, I concluded that such material is beyond the scope of “basic data” and ferreting it out becomes the problem of the individual investigator.

In citing literature, the volume date and the publication date frequently has caused problems. This is particularly true of certain portions of the Proceedings of the Academy of Natural Sciences of Philadelphia and of the University of Kansas Science Bulletin. Inasmuch as there is but a single instance in this checklist in which dating raises the problem of priority and since the investigator will seek a reference in the library by volume number, I have in all instances cited the date as it appears on the cover or fly-leaf of the volume.

Except as otherwise stated, e.g. “(fide Fulano, etc.),” every citation has been checked by me.

I have made a sincere effort to discover the location of all type material, but I have not checked the majority of such materials personally. In many instances I have drawn my information from one of the several lists of types in various museums which have appeared during the course of the past decade. Lacking such sources, I have had to rely upon the patience
and good will of curators, both domestic and foreign, for the catalogue numbers of specimens under their charges.

Museum abbreviations utilized herein are: AMNH (American Museum of Natural History); ANSP (Academy of Natural Sciences of Philadelphia); BMNH (British Museum, Natural History); CNHM (Chicago Natural History Museum); MCZ (Museum of Comparative Zoology, Harvard College); MNHN (Museum National d'Histoire Naturelle); UMMZ (Museum of Zoology, University of Michigan); USNM (United States National Museum).

In citing type localities I have made no effort to be consistent. In some instances I have given the locality as it appeared in the original description or have presented a reasonable translation thereof. In other instances I have taken liberties, but in no case have I altered the original context. The recent trend towards the restriction of type locality where the original was either very general, e.g. "Mexico," or where several localities are cited, as in the case of syntypes, I find repugnant. In the first instance restrictions have been based frequently upon inadequate evidence and/or failure on the part of the individual to undertake sound systematic and historical research. In the second instance the investigator too often restricts type locality without first having given due consideration to the syntype bearing that locale and which becomes by fiat the lectotype (lectoholotype). In cases such as this the systematist had best designate a lectotype which would perforce restrict the type locality. The late Emmett Dunn and I have commented at some length on these points (Copeia, 1951: 55–61, and Science, 113, 1951: 677–78). Smith (Systematic Zoology, 2, 1953: 37–41) has presented a reasonable defense of restriction. In some instances, where conclusions seem warranted, I have noted type locality restrictions, but I have disregarded many as too ridiculous to be preserved in the literature.

Statement of range is always a problem, and especially so in the case of Guatemala and northern Central America. In an effort to summarize ranges I find it difficult to convey direction to those not fully familiar with the region. Guatemalans orient their country with reference to the Capital which lies at 14° 30' N, 90° 50' W. Thus, the "north coast" refers to the lowlands facing the Bay of Amatique off the Caribbean as opposed to the "south coast," the Pacific. The bulk of the country is aligned east-west, the east facing Honduras and El Salvador, the west contacting Chiapas, Mexico. By "north" I mean the lowlands north of the mountains of Alta Verapaz, i.e., the lowlands of the Alta Verapaz and of the Peten. "South" refers to the Pacific versant. The "southwestern highlands" comprise that portion of the Guatemalan plateaus lying west of Guatemala City and south of the Sierra de los Cuchumatanes (Stuart, Contrib. Lab. Vert. Biol., Univ. Mich-
The "southeastern highlands" encompass the uplands to the east of Guatemala City and south of the Motagua Valley (Stuart, Contrib. Lab. Vert. Biol., Univ. Michigan, 68, 1954). The Sierra de los Cuchumatanes and its eastern piedmont comprise northwestern Guatemala. By "eastern lowlands" I mean those facing the Gulf of Honduras, the "north coast" of Guatemaltecos. "Central Guatemala" includes the mountains of Alta Verapaz, Baja Verapaz, and the Sierra de las Minas, or all the terrain bounded by the northern lowlands and the Motagua Valley (north and south, respectively) and by the southwestern and northwestern highlands and the eastern lowlands (west and east). Finally I make use of the geologists' definition of the Yucatan Peninsula which extends southward only to the fault line that borders Lake Peten on the north and which has a general east-west trend through central El Peten.

In describing vertical limits I have been purposely vague. The exact limits of many of the forms listed herein are unknown, though there are sufficient data on the majority to permit vertical distribution descriptions in general terms. I recognize in Guatemala four vertical belts which may be defined roughly as follows:

"Lowlands" or "low elevations," sea level to about 600 m. The "banana belt" of some authors.

"Moderate elevations," 600 m. to about 1500 m. The "coffee zone" of some authors.

"Intermediate elevations," 1500 m. to about 2700 m. On windward slopes, the "cloud forest" of some authors.

"High elevations," above 2700 m.

The vertical limits stated herein apply primarily to the distributions of the various forms in Guatemala and not necessarily extralimitally to the north or south.

Owing to the fact that a balance between scale and legibility had to be maintained, the included map is not all that it purports to be. Some localities, especially in the Lake Atitlan and Coban regions, had to be omitted. Major points of reference, however, are sufficient in number to enable the user to pinpoint locales that have not been plotted. The classification of sites as "major" or "minor" is not a quantitative measure. By "major" I mean those localities which have been studied herpetologically in some detail. For the most part these are centers at which I have worked. Some, on the other hand, were bases for earlier collectors. Among these might be mentioned Coban, visited by the Englishmen Godman and Salvin and by the Frenchmen Morelet and Bocourt; Dueñas, also a Godman-Salvin locality; El Porvenir, which served as the late Karl Schmidt's base during the course of his studies on Volcan Tajumulco; and Mazatenango, from the vicinity of which was probably assembled the Bernoulli collection now housed at Basel.
Though the greater portion of Bernoulli's specimens were labelled merely “Costa Grande,” i.e., the Pacific coastal plain between Retalhuleu and Escuintla, I am of the opinion that the majority of that material stemmed from the vicinity of Hacienda Chitalon just west of Mazatenango.

It seems unnecessary to comment on the keys presented herein. I have made an effort to restrict key characters to superficial structures, and this involved a certain amount of subjectivity in many instances. Nevertheless the non-professional herpetologist undoubtedly will find such characters far more usable than had girdle form, teeth, or other “deep structures” been employed. I would estimate the keys to be about on a par with one which I presented several years ago and upon which I have commented (Stuart, Misc. Publ. Mus. Zool., Univ. Michigan, 91, 1955: 10).

Throughout this checklist I have refrained from the use of diacritical marks either for Spanish place names or authors, e.g., Günther rather than Günther. Such marks are frequent sources of personal and typographical error, and a checklist is prone to error even without this added orthographic burden.

The included index is incomplete in that variations in spellings are not all listed. Thus, the variant Stenorrhina for Stenorhina does not appear, neither do baudinii (baudini) nor flavomaculatum (flavimaculatum).

Before concluding this Introduction, I beg leave to comment briefly on several other matters. First, an apology! In the past I have expressed myself verbally in no uncertain terms on the quality of various checklists which I have had occasion to use. That, however, was before I had essayed a checklist myself. This is just a little checklist, encompassing a total number of amphibians and reptiles only slightly larger than the amphibian fauna alone of the United States or of that of Mexico. It is with due humility, therefore, that I retract and apologize for my previous unkind remarks.

Second, I wish to make it clear that this checklist is at best only a preliminary effort on my part. I wish to express herein merely my own opinion as to the status of the amphibian and reptilian faunas of Guatemala. It presents only a basic plan. It is representative of the drudgery and low productivity that characterize any initial effort. I offer it now in the hope that it may stimulate further research on the herpetofauna of northern Central America.

Finally, I know that this checklist will be subjected to remarks unkind as those I have directed at others. For those inclined to be unduly critical, I would refer them to Bairnsfather, Bruce. Fragments from France, G. P. Putnam's Sons, New York, 1917: [p. 15, pl. 9].
Herpetofauna of Guatemala

Acknowledgments

During the course of compiling this checklist I have been aided by numerous investigators. Some have been specialists on the faunas of areas adjacent to Guatemala, others have established reputations through their investigations of major taxonomic groups, while still others have published or anticipate publication of systematic monographs of lower taxa. All have been most cooperative in supplying me with data (frequently unpublished) on matters in which they are far more competent than I. To list them individually would require no little research into my correspondence dating back at least several decades. I take this opportunity, therefore, to extend to them as a group my gratitude for their aid and patience and trust that none will take offense at this blanket expression of thanks. I am, further, most grateful to all those authorities in charge of collections in various European museums. They have, one and all, been most generous of their time in ferreting out type specimens and in supplying me with the catalogue numbers of the same.

I must, however, single out for special acknowledgment my indebtedness to my colleagues here at the University, Norman E. Hartweg and Charles F. Walker. On innumerable occasions I have solicited their aid and opinions on matters of systematics and geography, and they have been most generous with their assistance. I am indebted also to Floyd Downs, Fred Gehlbach, and Curtis Allen, of the University of Michigan, for the aid they have rendered in rechecking literature citations, reading proof, and in testing the keys. The included map (based upon Mapa Preliminar de la Republica de Guatemala, Direcccion General de Cartografia, [Guatemala], 1959, 1/750,000) is the work of Miss Stanlee Lonsdale.—L. C. Stuart, 30 June 1962.

Key to the Families of Guatemalan Amphibia and Reptilia

1. Body covered with smooth to strongly tuberculate skin; never with externally visible scales or dermal plates .. 2 (Amphibia)
 Body covered with externally visible scales or dermal plates or encased in a shell ... 10 (Reptilia)

2. Worm-like, lacking both fore and hind limbs Caeciliidae, Gymnophiona (p. 16)
 Not worm-like, both fore and hind limbs present 3

3. Tail present in adults .. Plethodontidae, Caudata (p. 16)
 Tail not present in adults .. 4 (Salientia)

4. Two elongate, aligned, free-edged, spade-like tubercles on inner side of hind limb .. Rhinophrynidae (p. 24)
 Never two such tubercles on inner side of hind limb 5
5. Dorsum warty; a conspicuous parotoid gland dorsolaterally above or just anterior to arm insertions; a symmetrical system of cranial crests on upper surface of head .. Bufoinidae (p. 24)
 Dorsum smooth or warty; if warty, no parotoid glands or system of cranial crests 6
6. Small frogs; head very narrow; mouth very small; a distinct transverse fold across top of head posterior to eyes Microhylidae (p. 42)
 Size variable; head not conspicuously narrow; mouth proportionally large; no transverse fold behind eyes .. 7
7. Web between toes IV–V, if present, incised to well below midpoint between proximal and distal tubercles of toe V Leptodactylidae (p. 27)
 Web always present between toes IV–V and incised no more deeply than midway between proximal and distal tubercles of toe V .. 8
8. Small green frogs (white in preservative) with translucent belly wall revealing ventral body organs Centrolenidae (p. 33)
 Size variable; belly wall thicker and never translucent .. 9
9. Tips of the three fingers (as opposed to thumb) expanded to form an adhesive disc Hylidae (p. 33)
 Tips of the three fingers pointed or blunt; never expanded to form an adhesive disc Ranidae (p. 45)
10. Body encased in a shell 11 (Testudines)
 Body not encased in a shell; body covered with scales or dermal plates 15
11. Limbs modified to form paddle-like structures; strictly marine turtles 12
 Limbs, though feet may be fully webbed, not paddle-like; terrestrial or confined to inland waters .. 13
12. Shell covered by leathery skin except in juveniles in which the covering is a mosaic of numerous, plate-like bones; no claws on limbs Dermochelyidae (p. 54)
 Shell covered by horny scutes; limbs with claws Cheloniidae (p. 52)
13. At least one scute of carapace in contact with pectoral scute Testudinidae (p. 50)
 Scutes of carapace separated from pectoral scute of plastron either by a ligament or by one or more inframarginal scutes of bridge .. 14
14. At least four inframarginal scutes Dermatemyidae (p. 46)
 Fewer than four inframarginal scutes Chelydridae (p. 47)
15. Cloacal opening (or anal opening) longitudinal 16 (Crocodylia)
 Cloacal opening transverse .. 17
16. Fourth mandibular tooth fitting into a pit in the upper jaw and not visible when mouth is closed Alligatoridae (p. 132)
 Fourth mandibular tooth fitting into a notch in upper jaw and visible when mouth is closed Crocodylidae (p. 132)
17. Both fore and hind limbs present 18 (Sauria)
 Fore limbs lacking; hind limbs, if present, reduced to mere vestigial, claw-like structures 27 (Serpentes)
18. Belly covered with large, squarish, juxtaposed, plate-like scales or with large, smooth, imbricate, cycloid-like scales 19
 Belly covered with numerous small, rounded or pointed, imbricate or subimbricate scales, either smooth or keeled, or with small granular scales 24
19. Except for several enlarged, plate-like supraoculars (Xenosauridae only), scales on upper surface of head numerous and either knobby or granular in appearance. 20. Scales on upper surface of head relatively few in number and large and plate-like. 21. A pair of frontonasal scales. 22. Scales of dorsum like those of ventrum, cycloid-like; no femoral pores; eyelids present. 23. Scales of dorsum granular, not uniform in size; some distinctly larger than others and scattered randomly among smaller ones (lateral) or arranged linearly (dorsal). 24. Upper surface of head covered with scales of variable size, some even plate-like; never granular in appearance. 25. Granular scales on upper surface of head of two distinct sizes, the larger scattered among and standing out prominently from the smaller. 26. Several lamellae, or at least terminal lamella, beneath toes expanded and double. 27. All scales on body subequal in size or nearly so; tail round. 28. Fourteen longitudinal rows of scales around midbody. 29. A deep pit between eye and nostril; a pair of erectile fangs anteriorly in upper jaw. 30. A pair of grooved, non-erectile fangs anteriorly in upper jaw; loreal plate never present. 31. Vestigial hind limbs evident as a small spur on either side of cloacal opening except in Ungaliophis which may be recognized readily by the single, enlarged prefrontal plate.
Class AMPHIBIA
Order GYMNOPHIONA
Family CAECILIIDAE
Genus Gymnopis Peters

GENEROTYPE.—Gymnopis multiplicata Peters.

KEY TO GUATEMALAN SPECIES OF GYMNOPIS

Primary annuli fewer than 120 mexicana mexicana
Primary annuli more than 120 .. oligozona

Gymnopis mexicana mexicana Dumeril and Bibron

Siphonops mexicanus Dumeril and Bibron, Erpet. Gen., 8, 1841: 284; Brocchi, 1883: 120, pl. 21, fig. 2.
Dermophis mexicanus, Gunther, 1901: 305.

TYPE.—MNHN 4275. Mexico.
RANGE.—Low and moderate elevations from central Veracruz, Mexico, south to Tabasco on the Caribbean versant and from the Isthmus of Tehuantepec to Nicaragua along the Pacific.

Gymnopis oligozona Cope

TYPE.—USNM 25187. Type locality unknown.

Order CAUDATA
Family PLETHODONTIDAE

KEY TO GUATEMALAN GENERA OF PLETHODONTIDAE

1. More than 15 costal grooves between axilla and groin Oedipina (p. 22)
 Fewer than 15 costal grooves between axilla and groin 2
2. Sublingual fold present ... 3
 No sublingual fold .. 4
3. A distinct white stripe across head between eyes Chiropterotriton (p. 19)
No white stripe between eyes ... Pseudoeurycea (p. 23)
4. All phalanges of all digits enclosed in web Bolitoglossa (below)
At least terminal phalanx of digit III free of web (barely so in helmrichi)
... Magnadigita (p. 19)

Genus Bolitoglossa Dumeril, Bibron, and Dumeril

Generotype.—Bolitoglossa mexicana Dumeril, Bibron, and Dumeril = Salamandra platydactylus Gray.

KEY TO GUATEMALAN SPECIES OF BOLITOGLOSSA

1. Small species, adults not exceeding 40 mm. head-body length; tail much shorter than head and body; dorsal pattern typically consisting of fine, dark streaks or pepperings on a lighter background ... 2
Larger species, adults well over 50 mm. head-body length; tail length variable; dorsal pattern of light marblings or light stripes on a dark background or dark stripes or spots on a light background ..

2. Maxillary teeth present .. occidentalis
Maxillary teeth absent .. rufescens

3. Large and robust; tail considerably shorter than head and body; dorsal pattern of light brown marblings on a dark brown background dofleini
More slender; tail only slightly shorter than head and body and generally somewhat longer; dorsal pattern variable but consisting of light yellow stripes or spots on a dark background or vice versa; never brown marblings .. 4

4. Head anterior to eyes with yellow fleckings dorsally and/or laterally 5
Generally no yellow markings on head anterior to eyes mulleri

5. Dorsal body pattern of either a middorsal yellow stripe or a yellow dorsolateral stripe on either side salvini
Dorsal body pattern of a broad yellow stripe broken by dark spots generally to give an overall appearance of three yellow dorsal stripes with cross connections .. moreleti

Bolitoglossa dofleini Werner

Spelerpes mulleri, Brocchi, 1883: 116 (in part).

Type.—Originally in Zoologische Sammlung des Bayerischen Staates; now lost. Guatemala [possibly Alta Verapaz].

Range.—Known only from low and moderate elevations of Alta Verapaz, Guatemala.

Bolitoglossa moreleti Smith

Bolitoglossa mexicana Dumeril, Bibron, and Dumeril, Erpet. Gen., 9, 1854: 93, in part (Peten specimens, MNHN 4747, two individuals mentioned in addenda to type description).

Spelerpes mexicanus, Brocchi, 1883: 113 (in part).

Type.—USNM 116079. Vicinity of Palenque, Chiapas, Mexico.

Range.—Caribbean lowlands from southern Veracruz, Mexico, to northern Honduras, exclusive of the outer end of the Yucatan Peninsula.

Bolitoglossa mulleri Brocchi

Type.—MNHN 6895 (four syntypes). Several localities in Alta Verapaz, Guatemala. Restricted to “mountains which dominate Coban” (Stuart, loc. cit.)

Range.—Moderate elevations in the mountains of Alta Verapaz, Guatemala.

Bolitoglossa occidentalis Taylor

Bolitoglossa occidentalis Taylor, Univ. Kansas Sci. Bull., 27, 1941: 145, fig. 1c, pl. 9, figs. 1–4; Smith and Taylor, 1948: 23.

Type.—USNM 111085. La Esperanza, Chiapas, Mexico; 500 feet.

Range.—Low and moderate elevations of southern Veracruz and eastern Chiapas, Mexico, and along the Pacific versant from Oaxaca, Mexico, south to western Guatemala.

Bolitoglossa rufescens Cope

1 Guibe (Catal. Types Amphib. Mus. Nat. Hist. Natur., ND: 10) lists the Peten specimens as the syntypes (four rather than two as stated in the type description) of mexicana. I suspect this to be a lapus on the part of Guibe. Furthermore, considering the confusion associated with this name (Mittleman and Smith, Journ. Washington Acad. Sci., 38, 1948: 318) I retain the name moreleti only tentatively for the Guatemalan population.

2 Until such a time as a thorough revision of the platydactyla complex between Veracruz, Mexico, and northern Honduras is forthcoming, I believe it best to relegate Bolitoglossa odonnelli to the synonymy of Bolitoglossa mulleri. Such procedure will certainly clarify the geographic picture. This leaves two lowland species on the Caribbean side, platydactyla to the north and west and moreleti to the south and east, and a single upland species, mulleri. The three may eventually be shown to be subspecies.
Type.—Originally USNM 6886; apparently lost. Orizaba, Veracruz, Mexico.

Range.—Lowlands and moderate elevations of the Caribbean versant from San Luis Potosi, Mexico, possibly to northern Honduras.

Bolitoglossa salvini Gray

Spelerpes variegatus, Gunther, 1902: 302, pl. 75, fig. B.

Type.—BMNH 1946.9.6.26. Guatemala.

Range.—Upper coastal plain and moderate elevations of the Pacific versant of southwestern Guatemala.

Genus *Chiropterotriton* Taylor

Genotype.—*Oedipus multidentata* Taylor.

Chiropterotriton bromeliacea Schmidt

Type.—CNHM 21062. Volcan Tajumulco, on trail above El Porvenir, San Marcos, Guatemala; 8000 feet.

Range.—Known only from intermediate elevations on the south slope of Volcan Tajumulco, Guatemala. Probably more widely distributed at similar elevations on the volcanic chain to the east.

Genus *Magnadigita* Taylor

Genotype.—*Bolitoglossa nigroflavescens* Taylor.

KEY TO GUATEMALAN SPECIES OF MAGNADIGITA

1. Underside of body and especially tail very dark, with or without scattered light spottings or fleckings .. 2
2. Underside of body and tail essentially light, with or without scattered dark fleckings or marblings .. 4
3. Middorsal region uniformly dark or almost so; occasionally with scattered light flecks ... *morio*
 Middorsal region light with dark spots or dark with bold light spots or marblings. . 3
3. Tail long; equal to head-body length or almost so. \textit{franklini}
Tail short; equal to no more than distance between posterior margin of vent and eye. \textit{lincolnii}
4. Tail short; equal to no more than distance from posterior margin of vent to gular fold. \textit{5}
Tail long; generally equal to distance from posterior margin of vent to eye or snout. \textit{6}
5. Upper surface of upper arms and legs light. \textit{flavimembris}
Upper surface of upper arms and legs dark. \textit{omniumsanctorum}
6. Web between toes II–III and III–IV incised to level of articulation between proximal and middle phalanges. \textit{rostrata}
No more than distal phalanx of toe III free of web. \textit{7}
7. Distal phalanx of toe III completely free of web. \textit{engelhardtii}
Distal phalanx of toe III not completely free of web. \textit{8}
8. Underside of tail generally immaculate light color though occasionally with scattered dark flecks. \textit{helmrichi}
Underside of tail light but with darker marblings to produce a much darker condition than is ever noted in \textit{helmrichi}. \textit{cuchumatana}

\textbf{Magnadigila cuchumatana} Stuart

\textbf{Type.}—UMMZ 89110. Two km. N Nebaj, El Quiche, Guatemala.

\textbf{Range.}—Known only from the type locality, but probably generally distributed through the eastern Sierra de los Cuchumatanes at intermediate elevations.

\textbf{Magnadigila engelhardtii} Schmidt

\textbf{Type.}—CNHM 21605. Volcan Atitlan, Solola, Guatemala; “7000 feet above Olas de Moca” [obviously in error as \textit{M. engelhardtii} is confined to elevations 5000–6500 feet, \textit{fide} Schmidt, \textit{op. cit.}: fig. 15.]

\textbf{Range.}—Intermediate elevations along the Pacific versant of Guatemala from western El Salvador to the Mexican border.

\textbf{Magnadigila flavimembris} Schmidt

\textbf{Type.}—CNHM 20381. Volcan Tajumulco, on trail above El Porvenir, San Marcos, Guatemala; 7200 feet.
Range.—Known only from intermediate elevations on Volcan Tajumulco. Probably more widely distributed at similar elevations on the volcanic chain to the east.

Magnadigita franklini Schmidt

Type.—CNHM 21061. Volcan Tajumulco, on trail above El Porvenir, San Marcos, Guatemala; 5600 feet.

Range.—Intermediate elevations along the Pacific versant of Guatemala from Volcan Pacaya to the Mexican border.

Magnadigita helmrichi Schmidt

Type.—CNHM 21063. Finca Samac, Alta Verapaz, Guatemala; 5000 feet.

Range.—Intermediate elevations of Alta Verapaz, Guatemala.

Magnadigita lincolni Stuart

Type.—UMMZ 89107. Salquil Grande, El Quiche, Guatemala; 2450 meters.

Range.—Intermediate elevations in the eastern Sierra de los Cuchumatanes of Guatemala.

Magnadigita morio Cope

Spelerpes bocourti Brocchi, Miss. Sci. Mex., Batr., 1883: 111, pl. 18, fig. 2 (MNHN, type not definitely identifiable; heights of Tonicapa [sic, = Totonicapan], Guatemala).

Type.—Originally USNM 6888; apparently lost. Mountains of Guatemala.

Range.—Intermediate elevations on the southwestern highlands of Guatemala.
Magnadigita omniumsanctorum Stuart

Type.—UMMZ 102285. Todos Santos, Huehuetenango, Guatemala; 2500 meters.

Range.—Known only from the type locality but probably widespread at intermediate elevations along the western face of the Sierra de los Cuchumatanes of Guatemala.

Magnadigita rostrata Brocchi

Type.—MNHN, type not definitely identifiable. Heights of Tonicapam [sic = Totonicapan], Guatemala.

Range.—High elevations of the Guatemalan Plateau.

Genus *Oedipina* Keferstein

Generotype.—*Oedipina uniformis* Keferstein.

Key to Guatemalan Species of Oedipina

All phalanges of all toes completely enclosed in web *elongata*

At least terminal phalanx of toe III free of web *taylori*

Oedipina elongata Schmidt

Type.—CNHM 20059. Escobas, the site of the water supply for Puerto Bartios, Izabal, Guatemala.

Range.—Low and moderate elevations of the humid forest regions of east-central Guatemala and adjacent British Honduras.

Oedipina taylori Stuart

Type.—UMMZ 102281. Four km. E Hacienda La Trinidad (23 airline km. SE Chiquimulilla), Jutiapa, Guatemala; 100 meters.

Range.—Low and moderate elevations from south central Guatemala into El Salvador.
Genus *Pseudoeurycea* Taylor

Generotype. — *Spelerpes leprosus* Cope.

Key to Guatemalan Species of Pseudoeurycea

1. Undersurface of tail with light marblings on a dark groundcolor *goebeli*
 Undersurface of tail light or dark, but always unicolor without marblings 2

2. Addressed limbs never failing to overlap by at least two costal ridges *exspectata*
 Addressed limbs failing to overlap to the extent of two costal ridges *rex*

Pseudoeurycea exspectata Stuart

Type. — UMMZ 107999. Broadleaf forest 3 km. W Aldea Miramundo (about 7 airline km. SE Jalapa), Jalapa, Guatemala; 2525 meters. [Miramundo is actually about 7 km. southwest of Jalapa.]

Range. — Known only from the type locality. Possibly occurring also at intermediate elevations on some of the isolated volcanic peaks of southeastern Guatemala.

Pseudoeurycea goebeli Schmidt

Type. — CNHM 21064. Volcan Tajumulco, on trail above El Porvenir, San Marcos, Guatemala; 8000 feet.

Range. — Intermediate elevations on the volcanos of the Pacific versant of Guatemala from Volcan Tajumulco to Volcan Agua.

Pseudoeurycea rex Dunn

Type. — CNHM 1814. Sierra Santa Elena (near Tecpam), Guatemala; 9500 feet.

Range. — High elevations of the southwestern highlands and the Sierra de los Cuchumatanes, and probably the annectant volcanos (known definitely from Volcan Tajumulco) of Guatemala.
Order SALIENTIA

Family RHINOPHRYNIDAE

Genus Rhinophrynus Dumeril and Bibron

Generotype.—Rhinophrynus dorsalis Dumeril and Bibron.

Rhinophrynus dorsalis Dumeril and Bibron, Erpet. Gen., 8, 1841: 758, Atlas, 1854: pl. 91, figs. 2-2a; Smith and Taylor, 1948: 34.

TYPE.—MNHN 743. Mexico.

RANGE.—Lowlands of Middle America from Tamaulipas, Mexico, on the east and Guerrero on the west, southward into Guatemala on the east and to Costa Rica on the west.

Family BUFONIDAE

Genus Bufo Laurenti

Generotype.—Bufo vulgaris Laurenti = Rana bufo Linnaeus.

KEY TO GUATEMALAN SPECIES OF BUFO

1. Tympanum concealed beneath warty skin .. 2
 Tympanum visible externally ... 3

2. Feet broadly webbed; toes II and V webbed to tip on medial side; parotoids not over twice as long as broad, their greatest length equal to no more than the distance from tip of snout to center of eye .. tacanensis
 Feet not broadly webbed; web not extending to tips of toes II and V on the medial side; parotoids at least twice as long as broad; at least as long as distance from tip of snout to posterior border of eye .. bocourtii

3. Large toads with enormous parotoids, the greatest length of which equals distance between tip of snout and tympanum; a strong tarsal fold marinus
 Small or medium sized toads; length of parotoids not exceeding distance between tip of snout and posterior margin of eye ... 4

4. Small, slender toads with poorly developed cranial crests which lack a parietal spur ... canaliferus
 Cranial crests well developed with parietal spur extending posteriorly and medially from supraocular crest ... 5

5. Parotoids comparatively small, their greatest length not greater than distance from tip of snout to precocular ridge; a row of elongate and well differentiated warts forming a tarsal ridge on inner side of tarsus .. lutkeni
 Parotoids generally as long as distance from tip of snout to anterior margin of eye; if present, row of warts on inner side of tarsus only weakly differentiated 6
6. A conspicuous dorsolateral row of enlarged, pointed warts extending from parotoids
 almost to groin ... 7
No conspicuous row of enlarged warts between parotoids and groin 8
7. Parotoid glands less than 2.5 times the length of the supratympanic crest
 ... valliceps valliceps
Parotoid glands at least 2.5 times the length of the supratympanic crest
 ... valliceps wilsoni
8. Surface of head between cranial crests with numerous, small pustules or warts in
 interocular region and on snout .. coccifer
 Surface of head between cranial crests in interocular region smooth or with only
 a few small pustules ... ibarra

Bufo bocourtii Brocchi

Bufo bocourtii Brocchi, Bull. Soc. Philom., ser. 7, 1, 1877: 186; Brocchi, 1882: 84, pl. 7,
figs. 1–1d (1883).

Type.—MNHN 6343–44, 6471 (nine syntypes).a Totonicapan, Guatemala.

Range.—Intermediate and high elevations of southwestern Guatemala and adjacent Chiapas, Mexico.

Bufo canaliferus Cope

Type.—USNM 30315–24 (ten syntypes). West Tehuantepec, Mexico.

Range.—Low and moderate elevations along the Pacific versant from Oaxaca, Mexico, possibly to El Salvador.

Bufo coccifer Cope

Range.—Moderate and intermediate elevations of the Central American plateaus from Costa Rica to southeastern Guatemala. Smith and Taylor (1948: 44) list this species from Mexico, but I seriously question that it is conspecific with the species herein considered. For further comments see Duellman (Univ. Kansas Publ., Mus. Nat. Hist., 15, 1961: 21–22).

Bufo ibarra Stuart

Type.—UMMZ 108000. Oak-pine zone at Aserradero San Lorenzo (about

*a In his *Catalogue des Types*, Guibe omits No. 6471 though he supplied it to me earlier (*in litt.*).
12 airline km. slightly east of north of Jalapa), Jalapa, Guatemala; 1725 meters.

Range.—Moderate and intermediate elevations of central and southeastern Guatemala.

Bufo lutkeni Boulenger

Type.—Originally three syntypes (Boulenger, *loc. cit.*), now only one, BMNH 1947.2.21.67. Cartago, Costa Rica.

Range.—Low and possibly moderate elevations along the Pacific versant from Costa Rica to southeastern Guatemala.

Bufo marinus Linnaeus

Bufo marinus Schneider, Hist. Amphib., 1799: 219; Brocchi, 1882: 82; Günther, 1901: 249.

Range.—Low and moderate elevations from Texas south through Brazil.

Bufo tacanensis Smith

Bufo tacanensis Smith, Copeia, 1952: 176, pl. 1.

Type.—UMMZ 88359. Volcan Tacana, Union Juarez, Chiapas, Mexico; 1500 meters.

Range.—Intermediate elevations along the Pacific versant of eastern Chiapas, Mexico, and western Guatemala.

Bufo valliceps valliceps Wiegmann

Bufo valliceps Wiegmann, Isis, 1833: 657; Brocchi, 1882: 79; Günther, 1901: 252; Smith and Taylor, 1948: 44.

? *Bufo canaliciferus*, Brocchi, 1882: 74, pl. 8, figs. 2–2b.

Type.—Zoologisches Museum Berlin 3525–32 (eight syntypes). Mexico.

Range.—More or less widespread at low and moderate elevations from southern United States to Nicaragua, exclusive of Pacific Mexico north of the Isthmus of Tehuantepec and the Grijalva Valley of Chiapas, Mexico, and northwestern Guatemala.
Bufo valliceps wilsoni Baylor and Stuart

Type.—UMMZ 119391. Jacaltenango (ca. 50 airline km. NW Huehuetenango), Huehuetenango, Guatemala; ca. 1525 meters.

Range.—Moderate elevations in the valley of the Rio Grijalva in Chiapas, Mexico, and its headwater systems in northwestern Guatemala.

Family Leptodactylidae

Key to Guatemalan Genera of Leptodactylidae

1. Vomarine teeth absent .. 2
 Vomarine teeth present .. 4

2. Warty and toad-like in appearance; a conspicuous conical tubercle at proximal termination of inner tarsal fold *Engystomops* (p. 31)
 Smooth or rugose and frog-like in appearance, never warty; if inner tarsal tubercle on tarsus, no tarsal fold 3

3. Ventral disc extending onto proximal undersurfaces of femora *Microbatrachylus* (p. 32)
 Ventral disc terminating anterior to femora *Syrrhopus* (p. 32)

4. Legs short; distance from tip of coccyx to heel, when leg extended, not or but very slightly exceeding distance from tip of coccyx to anterior margin of eye *Leptodactylus* (p. 31)
 Legs longer; distance from tip of coccyx to heel almost equal at least to that from coccyx to tip of snout *Eleutherodactylus* (below)

Genus Eleutherodactylus Dumeril and Bibron

Generotype.—*Hylodes martinicensis* Tschudi.

Key to Guatemalan Species of Eleutherodactylus

1. An inner tarsal fold or tarsal tubercle present 2
 No inner tarsal fold or inner tarsal tubercle 8

2. A conspicuous inner tarsal tubercle situated at about the middle of the tarsus but no inner tarsal fold .. *rhodopis*
 An inner tarsal fold or ridge extending from the inner metatarsal tubercle part or all the length of the tarsus 3

3. Posterior surface of thighs dark with bold, light spots 4
 Posterior surface of thighs either light with faint dark spots or very dark with or without inconspicuous, fine, light reticulations 5

*Not recognized herein are various “species” of the *rhodopis* complex such as *E. dorsococoncolor* Taylor and *E. venustus* Günther. The investigations of Goin (Univ. Florida Studies, Biol. Sci. Ser., IV, 1947: 66 pp., 6 pls.) suggest that such sympatric variants are mere phenotypic differences in a single gene pool. Smith (Herpetologica, 15, 1959: 211–12) has discussed similar variations.*
4. A strong inner tarsal fold; fold with free edge in males \textit{rugulosus}
 Inner tarsal fold weak, more of a ridge than a fold \textit{brocchi}
5. A conspicuous dark anal patch, frequently triangular in shape \textit{6}
 No dark anal patch \textit{7}
6. A distinct row of outer tarsal tubercles which may be fused to form a well-developed outer tarsal ridge \textit{lineatus}
 No outer tarsal tubercles or ridge \textit{rostralis}
7. A distinct dark line, diffused below, from nostril to eye \textit{stantoni}
 No dark line from nostril to eye but a conspicuous dark spot or several dark vertical bars beneath eye \textit{bocourtii}
8. Ventrum, especially undersurfaces of legs, heavily mottled with black or brown;
 dorsum extremely rugose with pustules and glandular ridges; tympanum frequently concealed beneath thickened skin or pustules \textit{matudai}
 Ventrum light though often peppered with dark; dorsum smooth or only finely ridged \textit{anzuetoi*}
9. Tip of finger III dilated, forming a disc which is emarginate to give bilobed appearance \textit{10}
 Tip of finger III not strongly dilated or with bilobed appearing disc \textit{anzuetoi*}
10. Distance from tip of coccyx to heel, when leg extended, greater than from tip of coccyx to tip of snout \textit{sucanebi}
 Distance from tip of coccyx to heel less than from coccyx to tip of snout \textit{conspicuosus}

\textit{Eleutherodactylus anzuetoii} Stuart

\textbf{Type.}—UMMZ 89160. Two km. N Nebaj, El Quiche, Guatemala; about 1985 meters.

\textbf{Range.}—Intermediate elevations of the highlands of Alta Verapaz and
the eastern Sierra de los Cuchumatanes, Guatemala.

\textit{Eleutherodactylus bocourtii} Brocchi

\textit{Hylodes bocourtii} Brocchi, Bull. Soc. Philom., Ser. 7, 1, 1877: 130; Brocchi, 1881: 50,
pl. 16, figs. 2-2c (1883).

\textbf{Type.}—MNHN 6413–14 (originally eight syntypes); lectotype, 6413
of Coban, Guatemala.

\textbf{Range.}—Intermediate elevations of Alta Verapaz, Guatemala.

\textit{Eleutherodactylus brocchi} Bouleneger

\textit{Hylodes brocchi} Bouleneger, in Brocchi, Miss. Sci. Mex., Batr. 1882: 60, pl. 15, figs. 3–3a.

\textbf{Type.}—Institut Royal des Sciences Naturelles de Belgique I.G. No. 2616, Reg. No. 388. Guatemala.

* Also \textit{Eleutherodactylus greggi} Bumzahem (see Addendum, p. 134).
Range.—Moderate and intermediate elevations of the Caribbean versant of Guatemala.

Eleutherodactylus conspicuus Taylor and Smith

Type.—USNM 116509. Piedras Negras, Guatemala, near the Mexico-Guatemala border.

Range.—Known only from the type locality but possibly generally distributed at low elevations through northern Guatemala and adjacent Chiapas, Mexico.

Eleutherodactylus lineatus Brocchi

Type.—MNHN 4885. “Atitlan (Mexique)” [= probably vicinity of Lake Atitlan, Guatemala].

Range.—Intermediate elevations of the Pacific versant of Guatemala and possibly adjacent Chiapas, Mexico.

Eleutherodactylus matudai Taylor

Eleutherodactylus matudai Taylor, Univ. Kansas Sci. Bull., 27, 1941: 154, pl. 11 (specific name spelled “matudae” on plate and in several places in text); Smith and Taylor, 1948: 64.

Type.—USNM 110626. Mt. Ovando, Chiapas, Mexico.

Range.—Intermediate elevations of the Pacific versant from eastern Chiapas, Mexico, through western Guatemala.

Eleutherodactylus rhodopis Cope

Type.—USNM 16558 (lectotype, Smith and Taylor, 1948: 67). Veracruz (Mexico), at Orizaba and Cordoba.

Range.—Because of the confused status of the *rhodopis* complex, it is impossible to state the range of this species with any certainty. It may range from San Luis Potosi, Mexico, south to South America; south of the Isthmus of Tehuantepec to at least Nicaragua it appears to be restricted to low and moderate elevations along the Pacific versant. I suspect that it has
been confused with *rostralis* on the Caribbean side south of southern Mexico.

Eleutherodactylus rostralis Werner

?q _Hyloides sallaei_, Gunther, 1900: 227 (in part).

Type.—Originally in the “Petersburger Museum” [? St. Petersburg = Leningrad]. To further confuse the issue, the material studied by Werner was received from one W. Schluter of Halle, Germany; present location unknown. Honduras.

Range.—Low elevations of the Caribbean versant possibly from southeastern Mexico south to at least northern Honduras.

Eleutherodactylus rugulosus Cope

Liobyia rugulosa, Gunther, 1900: 221 (? in part).

Type.—USNM 29771–72 (two syntypes). Pacific region of the Isthmus of Tehuantepec, Mexico.

Range.—Low and moderate elevations from southern Mexico south to possibly Nicaragua.

Eleutherodactylus stantoni Schmidt

Type.—UMMZ 80673. Valentin, British Honduras.

Range.—Low and moderate elevations of southern British Honduras and possibly El Peten, Guatemala, south to the uplands of Alta Verapaz.

Eleutherodactylus xucanebi Stuart

Hyloides brocchii, Gunther, 1900: 236, pl. 68, figs. A–B (in part).

Type.—UMMZ 89914. Cloud forest above Finca Volcan (49 km. airline E Coban), Alta Verapaz, Guatemala; about 1300 meters.

5 In previous papers I have referred to this species both as *E. rhodopis* and *E. rostralis*. Following some discussion with William Duellman of the University of Kansas, I now allocate this little frog, not uncommon in the Peten of Guatemala, to *E. rostralis*. Mr. Duellman and I are agreed that it may be related to *E. guttiferi* Peters of lower Central America.
RANGE.—Known only from the type locality, but probably widespread through the Alta Verapaz uplands at moderate and intermediate elevations.

Genus *Engystomops* Jimenez de la Espada

Genotype.— *Engystomops petersi* Jimenez de la Espada.

Engystomops pustulosus Cope

Type.— Originally USNM 4339; apparently lost. Truando River, Colombia.

Range.— Low and moderate elevations from Veracruz and the Isthmus of Tehuantepec, Mexico, southward into South America.

Genus *Leptodactylus* Fitzinger

Leptodactylus Fitzinger, Neue Class. Rept., 1826: 38, 64.

KEY TO GUATEMALAN SPECIES OF LEPTODACTYLUlS

Toes with conspicuous, lateral, dermal fringe extending to tip; males with black, horny, nuptial tuberosities on thumb *melanonotus*

Toes without lateral dermal fringe; males without black, horny tuberosities on thumb ... *labialis*

Leptodactylus labialis Cope

Leptodactylus labialis, Brocchi, 1881: 20; Smith and Taylor, 1948: 56.

Leptodactylus caliginosus, Brocchi, 1881: 17, pl. 5, figs. 1–1c.

Type.— USNM 31302. Probably Mexico; uncertain.

Range.— Low and moderate elevations from Texas and Guerrero, Mexico, south to Costa Rica.

Leptodactylus melanotus Hallowell

Leptodactylus melanonotus, Brocchi, 1881: 20; Smith and Taylor, 1948: 57.
Leptodactylus echinatus, Brocchi, 1881: 18, pl. 5, figs. 4–4a.

Type.—Originally USNM 6264; now lost. Nicaragua.

Range.—Low and moderate elevations from southern Sonora and Tamaulipas, Mexico, south to Costa Rica.

Genus Microbatrachylus Taylor

Generotype.—Eleutherodactylus hobartsmithi Taylor.

Microbatrachylus pygmaeus Taylor

Type.—University of Illinois Museum of Natural History 16125. One mile N Rodriguez Clara, Veracruz, Mexico.

Range.—Low and moderate elevations from Guerrero and Veracruz, Mexico, southward into Guatemala where it occurs only along the Pacific versant.

Genus Syrrhophus Cope

Generotype.—Syrrhophus marnockii Cope.

Key to Guatemalan Species of Syrrhophus

A small tubercle lying immediately lateral and slightly distal to the large, central, palmar tubercle ... **pipilans nebulosus**

No such small tubercle present ... **leprus**

Syrrhophus leprus Cope

Type.—USNM 10040. Santa Efegenia, Oaxaca, Mexico.

Range.—Low elevations of the Isthmus of Tehuantepec region and southern Veracruz, Mexico, eastward into northern Guatemala.

Syrrhophus pipilans nebulosus Taylor

Type.—CNHM 100095. Near Tonola, Chiapas, Mexico.

Range.—Low and moderate elevations of the Pacific versant of Chiapas, Mexico, and of the valley of the Rio Grijalva into northwestern Guatemala.

Family CENTROLENIDAE

Genus Cochraneella Taylor

Generotype.—Centrolenella granulosa Taylor.

Cochranella viridissima Taylor

Type.—CNHM 100093. Agua del Obispo, Guerrero, Mexico.

Range.—Low and moderate elevations from Guerrero and Veracruz, Mexico, southward into Guatemala and probably through Honduras and El Salvador.

Family HYLIDAE

KEY TO GUATEMALAN GENERA OF HYLIDAE

1. A projecting, rudimentary prepollex ... Plectrohyla (p. 38)
 No projecting prepollex ... 2

2. Skin of surface of head co-ossified with cranial bones Triprion (p. 42)
 Skin of surface of head not co-ossified with cranial bones 3

3. Skin of dorsum thickened and glandular to give warty appearance; males with paired vocal sacs behind jaw angles Phrynophyias (p. 37)
 Skin of dorsum not thickened or warty in appearance 4

4. A distinct and well developed fold extending along forearm onto finger IV; fold with free edge at elbow and frequently throughout its length Phyllomedusa (p. 38)
 No distinct fold extending from elbow onto finger IV; a row of tubercles or skin thickened along outer edge of forearm in some species but never free-edged .. Hyla, Ptychohyla, Smilisca (below)

KEY TO GUATEMALAN SPECIES OF Hyla, Ptychohyla, Smilisca

1. A broad axillary web attaching to upper arm almost at elbow 2
 Axillary web absent or at most very inconspicuous 3

2. A strong, tuberculate ridge of thickened skin along outer edge of forearm .. Hyla loquax (below)
 No ridge of thickened skin along forearm Hyla ebraccata (below)

3. Upper jaw projecting strongly shelf-like over lower jaw anteriorly ... Hyla staufferi (below)
 Upper jaw not projecting shelf-like over lower jaw 4
4. Greatest diameter of tympanum at least two-thirds the length of eye; thighs generally mottled, spotted, or banded. .. 5

 Tympanum less than two-thirds, and generally less than one-half, eye-length; thighs immaculate, peppered with dark or striped 7

5. Web between toes IV and V attached to toe V not more than midway between distal subarticular tubercle and base of terminal pad Hyla bocourtii (below)

 Web between toes IV and V attached to toe V at base of terminal pad or very close to same ... 6

6. Posterior surface of thighs dark with numerous, small, light spots; sides, especially in groin region, with fine, dark reticulations; a distinct light stripe, bordered below by dark, along upper lip; tarsal fold weak; vocal sac of male single

 ... Smilisca phaeota cyanosticta (p. 42)

 Posterior surface of thighs unicolor, coarsely mottled with dark, coarsely reticulated with dark or with obscure light spots on darker background; groin region of sides weakly but coarsely reticulated or spotted; if light line present on upper lip, this diffused; generally a dark spot or vertical bar beneath eye; tarsal fold strong; paired vocal sacs in males Smilisca baudini (p. 41)

7. Web between toes IV and V attached to toe V at level of distal subarticular tubercle .. Hyla walkeri (below)

 Web between toes IV and V attached to toe V well distal of distal subarticular tubercle ... 8

8. A dark stripe, generally with a narrow light border above, extending from eye, above or through tympanum to varying distances posteriorly on the sides 9

 No dark stripe extending posteriorly from eye ... 11

9. Upper surface of thighs peppered with dark (seen under lens); dorsum yellow to reddish with scattered darker spots .. Hyla picta (below)

 Upper surface of thighs immaculate or with dark peppering restricted to knee region .. 10

10. Lateral dark streak from eye generally not extending beyond midbody; dorsum generally with fine, diffused, dark reticulations

 .. Hyla microcephala martini (below)

 Lateral dark streak from eye generally extending to above groin; dorsum without dark reticulations but occasionally with scattered, small dark spots

 .. Hyla robustertensii (below)

11. Webs between fingers poorly developed, those between fingers II and III and between III and IV attached to fingers II and IV, respectively, proximal of distal subarticular tubercles; a distinct white spot or oblique white bar beneath eye; males with paired ventrolateral glands but without nuptial tuberosities on upper surface of thumb .. Ptychodrya schmidtorum (p. 41)

 Webs between fingers well developed, those between fingers II and III and between fingers III and IV attached to fingers II and IV, respectively, either at level of or distal to distal subarticular tubercles; no light spot beneath eye; males with lateral or ventral glands and nuptial tuberosities on upper surface of thumb .. 12

12. Sides with brown motlings on a lighter background; males with lateral glands and nuptial tuberosities on thumb composed of large, discrete, horny spines

 .. Ptychodrya spinipolle (p. 41)

 Sides never mottled but frequently with light brown pepperings; males with lateral or ventral glands and nuptial tuberosities on thumb composed of many tiny spines .. 13
13. Posterior surface of thighs generally immaculate; border of cloacal opening darker than adjacent regions giving appearance of dark anal patch; skin of dorsum somewhat rugose; males with an unpaired chest gland. *Hyla brotneliacea* (below)

Posterior surface of thighs generally peppered with brown; border of cloacal opening generally not darker than adjacent regions; skin of dorsum smooth; males with paired, lateral glands. *Ptychohyla euthysana* (p. 40)

Genus *Hyla* Laurenti

Generotype. — *Hyla viridus* Laurenti = *Rana arborea* Linnaeus.

(Key to Guatemalan Species of *Hyla*, p. 33)

Hyla bocourti Mocquard

Hyla bocourti, Gunther, 1901: 265.

Hyla regilla, Brochli, 1881: 51, pl. 13, figs. 2-2a.

Type. — MNHN 1266 (2), 6370 (6), 6371 (6), 14 syntypes. Alta Verapaz, Guatemala.

Range. — Moderate and intermediate elevations of the Caribbean slopes of the mountains of Alta Verapaz and the Sierra de los Cuchumatanes of Guatemala.

Hyla bromeliacea Schmidt

Type. — CNHM 4718. Mountains west of San Pedro Sula, Honduras; 4500 feet.

Range. — Moderate and intermediate elevations on the Caribbean slopes of the mountains from western Honduras to the Sierra de los Cuchumatanes, Guatemala.

Hyla ebraccata Cope

Type. — ANSP 2079. Nicaragua. Original label states “Machuca”; see Dunn and Stuart (Copeia, 1951: 58).

Range. — Lowlands of the Caribbean versant from southern Mexico southward at least to Costa Rica.

6 Guibe (Catal. Types Amphib. Mus. Nat. Hist. Natur., ND: 18) was in error in citing No. 98-259 (4) as the syntypes of this species (Guibe, *in litt.*). This same error led him to give Tepic, Mexico, as the type locality.
Hyla loquax Gaige and Stuart

TYPE.—UMMZ 75446. Ixpuč Aguada, N of La Libertad, El Peten, Guatemala.

RANGE.—Lowlands of the Caribbean versant of northern Central America from Oaxaca, Mexico, into Costa Rica.

Hyla microcephala martini Smith

Hyla microcephala martini Smith, Herpetologica, 7, 1951: 187.

TYPE.—University of Illinois Museum of Natural History 20965. Encarnacion, Campeche, Mexico.

RANGE.—Low and moderate elevations of the Caribbean versant of Central America and Mexico from central Veracruz, Mexico, southward probably to about Nicaragua.

Hyla picta Gunther

Hylella picta Gunther, Biol. Cent.-Amer., 1901: 286, pl. 75, fig. C.

TYPE.—BMNH 1947.2.22.62. Jalapa, Veracruz, Mexico.

RANGE.—Lowlands from San Luis Potosi, Mexico, southward through northern Guatemala.

Hyla robertmertensi Taylor

TYPE.—CNHM 100096. Near Tapachula, Chiapas, Mexico.

RANGE.—Lowlands of the Pacific versant from the Isthmus of Tehuantepec, Mexico, southward through El Salvador.

Hyla staufferi Cope

TYPE.—USNM 15317. Orizaba, Mexico.

RANGE.—Generally distributed over the lowlands and at moderate elevations from Tamaulipas and Guerrero in Mexico southward into lower Central America.
Hyla walkeri Stuart

Type.—UMMZ 106817. Aserradero San Lorenzo (12 km., airline, slightly east of north of Jalapa), Jalapa, Guatemala; 1725 meters.

Range.—Intermediate elevations from the Mesa Central of Chiapas, Mexico, across the Guatemalan plateaus to southeastern Guatemala.

Genus Phrynohyas Fitzinger

Phrynohyas Fitzinger, Syst. Rept., 1843: 30.

Generotype.—Hyla zonata Spix.

Key to Guatemalan Species of Phrynohyas

Dorsal pattern of dark blotches on lighter ground color spilomma
Dorsal pattern of small dark spots on lighter ground color or with an unmarked, brown dorsum .. modesta

Phrynohyas modesta Taylor and Smith

Acrodytes modesta Taylor and Smith, Proc. U. S. Natl. Mus., 95, 1945: 594, pl. 27, fig. 2 and pl. 28, figs. 2–3; Smith and Taylor, 1948: 74.

Type.—USNM 115013. Cruz de Piedra, near Acacoyagua, Chiapas, Mexico.

Range.—From southern Veracruz, Mexico, thence crossing the Isthmus of Tehuantepec and extending along the Pacific coastal plain south to El Salvador.

Phrynohyas spilomma Cope

Hyla lichenosa, Brocchi, 1881: 33, pl. 14, fig. 2.

Acrodytes spilomma, Smith and Taylor, 1948: 75.

Type.—Probably originally in the United States National Museum; now lost. Cosamaloapam, Veracruz, Mexico.

Range.—Low and moderate elevations from Tamaulipas, Mexico, south to Nicaragua on the eastern versant and from the Isthmus of Tehuantepec, Mexico, to Guatemala along the Pacific.
Genus *Phyllomedusa* Wagler

Generotype. — *Rana bicolor* Boddaert.

Key to Guatemalan Species of Phyllomedusa

Ground color of dorsum extending over sides to belly and broken by several distinct, oblique, light bars

Phyllomedusa callidryas taylori Funkhouser

Type. — CNHM 100166. Tierra Colorada, Veracruz, Mexico.

Range. — Not definitely known. Low elevations of the Caribbean versant of northern Central America from central Veracruz, Mexico, southward certainly to Honduras.

Phyllomedusa moreleti Dumeril

Type. — MNHN 767 (two syntypes). Verapaz, Guatemala.

Range. — Moderate elevations from central Veracruz, Mexico, to Costa Rica.

Genus *Plectrohyla* Brocchi

Cauphias Brocchi, Bull. Soc. Philom., ser. 7, 1, 1877: 129 (substitute name for *Plectrohyla* Brocchi 1877; generotype, *Plectrohyla guatemalensis*).

Generotype. — *Plectrohyla guatemalensis* Brocchi.

Key to the Guatemalan Species of Plectrohyla

1. Prepollex bifid *guatemalensis*
 Prepollex not bifid 2

2. An inner and outer tarsal fold; outer tarsal fold frequently only poorly developed in peripheral populations *coticicensis*
 No outer tarsal fold 3
3. Rostrum with a strong vertical keel and snout sharply pointed at junction of rostral keel and canthal edges .. 4
 Rostrum without a strong vertical keel .. 5
4. Skin of tympanum smooth; limits of tympanum readily discernible sagorus
 Skin of tympanum pustulose; though position of tympanum evident, its limits not
 distinct ... quecchi
5. Inner tarsal fold strongly developed, generally with a free edge 6
 Inner tarsal fold poorly developed, more of a ridge than a fold avia
6. Skin of dorsum strongly pustulose .. matudai matudai
 Skin of dorsum smooth .. ixil

Plectrohyla avia Stuart

 Type.—UMMZ 102280. Granja Lorena (about 10 km., airline, NW Colomba), Quezaltenango, Guatemala; 1750 meters.
 Range.—Intermediate elevations of the Pacific versant of eastern Chiapas, Mexico, and western Guatemala.

Plectrohyla cotzicensis Stuart

 Type.—UMMZ 95902. Source of Rio Cuilco on the slopes of Cerro Cotzic about 2 km. NW Ixchiguan, San Marcos, Guatemala; about 3500 meters.
 Range.—High elevations of the southwestern and southeastern highlands of Guatemala, and the Sierra de los Cuchumatanes.

Plectrohyla guatemalenisis Brocchi

 Cauphias guatemalenisis, Brocchi, Bull. Soc. Philom., ser. 7, 1, 1877: 130; 1882: 62, pl. 12, figs. 3–3c.
 Type.—MNHN 6332 (two syntypes). Pacicilla [Patzicia, Chimaltenango], Guatemala.
 Range.—Intermediate elevations of eastern Chiapas, Mexico, Guatemala, and El Salvador.

Plectrohyla ixil Stuart

 Type.—UMMZ 89092. Finca San Francisco about 25 km. NE Nebaj, El Quiche, Guatemala; about 1175 meters.
 Range.—Known definitely only from the immediate vicinity of the type locality.
Plectrohyla matudai matudai Hartweg

Type.—UMMZ 88863. Cloud forest on Mt. Ovando, District of Soconusco, Chiapas, Mexico; 1800 meters.

Range.—Intermediate elevations of the Sierra Madre of Chiapas, Mexico, the western Sierra de los Cuchumatanes, and the Pacific slopes of Guatemala.

Plectrohyla quecchi Stuart

Type.—UMMZ 89086. Barranca Las Palmas about 2 km. N Finca Los Alpes, 43 km., airline, E and slightly S Coban, Alta Verapaz, Guatemala; about 1015 meters.

Range.—Moderate and intermediate elevations of Alta Verapaz and the Sierra de los Cuchumatanes and probably of the Mesa Central of Chiapas, Mexico.

Plectrohyla sagorum Hartweg

Type.—UMMZ 88862. Cloud forest on Mt. Ovando, District of Soconusco, Chiapas, Mexico; 1800 meters.

Range.—Intermediate and moderate elevations along the Pacific versant of eastern Chiapas and western Guatemala.

Genus _Ptychohyla_ Taylor

Generotype.—_Ptychohyla adipoventris_ Taylor = _Hyla leonhard–schultzei_ Ahl.

(_Key to Guatemalan Species of Ptychohyla, p. 33_)

Ptychohyla euthysanota Kellogg 7

7 My colleagues, Charles Walker and William Duellman, have both recently examined the types of _Hyla glandulosa_ Boulenge (Ann. Mag. Nat. Hist., ser. 5, 12, 1883: 164; BMNH 1947.2.20.40–41, two syntypes; Guatemala). The specimens are soft and either females or immature males. They may belong to the genus _Ptychohyla_ or they could be _Plectrohyla_ juveniles.
TYPE.—USNM 73296. Los Esesmiles, Chalatenango, El Salvador; 6400 feet.
RANGE.—Moderate and intermediate elevations of the Pacific versant of Chiapas, Mexico, Guatemala, and El Salvador.

Ptychohyla schmidtorum Stuart

RANGE.—Intermediate elevations of the Pacific versant from central Chiapas, Mexico, through central Guatemala.

Ptychohyla spinipollex Schmidt

TYPE.—MCZ 21300. Mountains behind Ceiba, Atlantida, Honduras.
RANGE.—Moderate and intermediate elevations of the Caribbean versant from northern Honduras to at least eastern Chiapas, Mexico.

Genus Smilisca Cope

GENEROTYPE.—Smilisca daulinia Cope = Hyla baudinii Dumeril and Bibron.

(Key to Guatemalan Species of Smilisca, p. 33)

Smilisca baudini Dumeril and Bibron

Hyla baudinii Dumeril and Bibron, Erpet. Gen., 8, 1841: 564; Brocchi, 1881: 29, pl. 14, figs. 4–4b; Gunther, 1901: 270, pl. 71 (spelled baudini in Brocchi and Gunther).
Hyla pansosana Brocchi, Bull. Soc. Philom., ser. 7, 1, 1877: 125 (MNHN 6313; Panzos, Mexico [Guatemala]); Brocchi, 1881: 34, pl. 12, figs. 2–2a.
Smilisca baudinii baudinii, Smith and Taylor, 1948: 75.

TYPE.—MNHN 4798. Mexico.
RANGE.—Low and moderate elevations from Texas and Sonora, Mexico, southward into South America.

8 In 1955 I secured in a small mountain stream in the headwaters of the Rio Grijalva near the village of Jacaltenango, Huehuetenango, Guatemala, tadpoles and juveniles of what I believed to be Hyla spinipollex. William Duellman has recently studied this series and has concluded that they are very probably Ptychohyla macrotympanum Tanner (Hyla macrotympanum Tanner, Gt. Basin Natur., 17, 1957: 52; Brigham Young University 13792; 10 miles E Chiapa de Corzo, Chiapas, Mexico). Though very close to Ptychohyla spinipollex, the dark spotting or peppering on the throat, chest, and flanks which characterize that species, is absent in Ptychohyla macrotympanum.
Smilisca phaeota cyanosticta Smith

Hyla phaeota cyanosticta Smith, Herpetologica, 8, 1953: 150.
Smilisca phaeota, Starrett, Copeia, 1960; 303, fig. 3.

Type.—USNM 111147. Piedras Negras, El Peten, Guatemala.

Range.—Low elevations of the Caribbean versant from southern Vera-
cruz, Mexico, southward through northern Guatemala possibly to Hon-
duras.

Genus Triprian Cope

Triprian Cope, Proc. Acad. Nat. Sci. Phila., 18, 1866: 127 (substitute name for Pharyn-
don Cope, 1865, preoccupied).

Diesing, 1861; Nemathelminthes).

Generotype.—Pharyngodon petasatus Cope.

Triprian petasatus Cope

Triprian petasatus, Cope, Proc. Acad. Nat. Sci. Phila., 18, 1866: 127; Smith and Taylor,
1948: 70.

Type.—USNM 12287. Cenote Pamanche [between Merida and Pro-
greso], near Merida, Yucatan, Mexico.

Range.—Lowlands of the Yucatan Peninsula south to central El Peten,
Guatemala.

Family Microhyidae

Key to Guatemalan Genera of Microhyidae

Very small frogs, adult size rarely exceeding 25 mm. head-body length; toes without even
a vestige of web; tips of toes slightly dilated Gastrophryne (below)

Larger frogs, adult size generally exceeding 30 mm. head-body length; some or all
 toes joined by a definite web; tips of toes never dilated Hypopachus (p. 43)

Genus Gastrophryne Fitzinger

Generotype.—Engystoma rugosum Dumeril and Bibron = Engystoma
 carolinensis Holbrook.

Key to Guatemalan Species of Gastrophryne

Both an inner and an outer metatarsal tubercle ustā gadovī
Only an inner metatarsal tubercle ... elegans
Gastrophyne elegans Boulenger

Microhyla elegans, Smith and Taylor, 1948: 93.

Type.—BMNH 1947.2.11.86. Cordoba, Veracruz, Mexico.

Range.—Low and moderate elevations of the Caribbean versant from southern Veracruz, Mexico, to central El Petén, Guatemala.

Gastrophyne usta gadovi Boulenger

Microhyla usta gadovi, Smith and Taylor, 1948: 94.

Type.—BMNH 1945.12.19.9-11 (three syntypes). San Mateo del Mar, near Tehuantepec, Mexico.

Range.—Lowlands of the Pacific versant from Oaxaca, Mexico, to El Salvador.

Genus _Hypopachus_ Keferstein

Generotype.—_Hypopachus seebachii_ Keferstein = _Engystoma variolosum_ Cope.

KEY TO GUATEMALAN SPECIES OF HYPOPACHUS

1. Inner and outer metatarsal tubercles separated by a distance equal to or almost equal to the width of the outer metatarsal tubercle at its base 3
 Inner and outer metatarsal tubercles very close together; separated by a distance equal to about only one-half the width of the outer metatarsal tubercle at its base .. 2

2. Web between toes II–III and III–IV of males barely visible and in females frequently seen only with aid of lens ... _cuneus nigroreticulatus_
 Web between toes II–III and III–IV of males broad, extending to at least distal end of proximal phalanx; web much less extensive in females but always clearly visible .. _championi_

3. Dorsum and upper surfaces of thighs or only upper surfaces of thighs pustulose 4
 Dorsum and upper surfaces of thighs smooth though often covered with tiny spicules that give skin a shagreen texture .. _inguinalis_

4. Dorsum and upper surfaces of thighs very pustulose; web between toes III–IV of males attached to toe IV about midway up proximal phalanx (somewhat more proximally in females) ... _barberi_
 Dorsum and upper surfaces of thighs less pustulose, pustules frequently restricted to posterior part of dorsum or confined to upper surfaces of thighs; a mere vestige of a web between toes III–IV ... _aquae_
Hypopachus aquae Stuart

Type.—UMMZ 102282. Finca San Rafael at Duenas, Sacatepequez, Guatemala; 1475 meters.

Range.—Known definitely only from the type locality but possibly occurring at intermediate elevations along the Pacific versant of eastern Guatemala and El Salvador.⁹

Hypopachus barberi Schmidt

Type.—CNHM 1812. Tecpan, Solola [lapsus for Chimaltenango], Guatemala.

Range.—Intermediate elevations on the southwestern and southeastern highlands of Guatemala.

Hypopachus championi Stuart

Type.—UMMZ 85533. About 1 km. S San Jeronimo (¼ San Jeronimo), Baja Verapaz, Guatemala.

Range.—Moderate elevations from the Grijalva Valley of Chiapas, Mexico, through central Guatemala to southeastern Guatemala and probably El Salvador.¹⁰

Hypopachus cuneus nigroreticulatus Taylor

Type.—CNHM 100064. Encarnacion, Campeche, Mexico.

Range.—Lowlands of the Yucatan Peninsula and adjacent Mexico to central El Peten, Guatemala.

⁹ Mertens’ record of _Hypopachus aquae_ from El Salvador (Abh. Senckenb. Naturf. Gesell., 487, 1952: 33, pl. 8, fig. 57) would appear from the description not to be _Hypopachus aquae_ but, rather, _Hypopachus championi_, which in eastern Guatemala and apparently also in El Salvador has a darkly reticulate undersurface.

¹⁰ In view of the tremendous variability obtaining in _Hypopachus championi_, it seems not improbable that _Hypopachus maculatus_ Taylor (Univ. Kansas Sci. Bull., 26, 1939: 524, pl. 62, figs. E–F and pl. 63, figs. 2–2a; CNHM 100087; near San Ricardo, Chiapas, Mexico) is a synonym of _Hypopachus championi_. Taylor’s description appeared November 15, 1940; Stuart’s, February 16, 1940.
Hypopachus inguinalis Cope

Hypopachus inguinalis Cope, Proc. Amer. Philos. Soc., 11, 1869: 166; Brocchi, 1882: 91, pl. 10, figs. 3-4 (1881); Gunther, 1900: 211.

Type.—Possibly USNM 6792. Verapaz (near Coban), Guatemala.

Range.—Moderate and intermediate elevations of the Caribbean versant of Chiapas, Mexico, and Guatemala to Alta Verapaz.

Family **Ranidae**

Genus Rana Linnaeus

Generotype. _Rana temporaria_ Linnaeus.

Key to Guatemalan Species of Rana

1. Dorsum with elongate, gland-like ridges or folds between the prominent dorsolateral folds ... *pipiens*
 Dorsum without elongate, gland-like ridges or folds between the prominent dorsolateral folds ... 2

2. Upper surface of tibia with longitudinal, gland-like ridges; tympanum very large, generally at least as broad as distance from anterior border of eye to tip of snout; no conspicuous white streak from nostril to angle of jaws *palmipes*
 Upper surface of tibia smooth or shagreen, without longitudinal, gland-like ridges; tympanum smaller, generally not as broad as distance between anterior border of eye and nostril; a conspicuous white streak from nostril to angle of jaws .. *macroglossa*

*Rana macroglossa_ Brocchi**

Rana macroglossa Brocchi, Bull. Soc. Philom., ser. 7, 1, 1877: 177; Brocchi, 1881: 12, pl. 3, figs. 1-1c.

Rana maculata Brocchi, Bull. Soc. Philom., ser. 7, 1, 1877: 178 (MNHN 6412, three syntypes; Totonacapan, Mexico [Guatemala]); Brocchi, 1881: 13, pl. 3, figs. 2-2c.

Material recently collected from the vicinity of Pueblo Nuevo, Chiapas, Mexico, indicates that for the present Hypopachus simus had best be referred to Hypopachus inguinalis.

**Smith (Herpetologica, 15, 1959: 212-16) claimed privilege of “first reviser” and selected maculata over macroglossa for this species. I reject this claim on the grounds that his article is no more revisionary in character than was the discussion of Schmidt and Stuart eighteen years previously (Field Mus. Nat. Hist., zool. ser. 24, 1941: 239-41). Inasmuch as macroglossa is fairly well entrenched in the literature, a change to the use of maculata could only create confusion. Nor do I recognize at this time Rana maculata kruhoffi Smith (op. cit., paratype material from Finca El Naranjo, Suchitepequez, Guatemala). If a Pacific versant race of the wide-ranging upland macroglossa is to be recognized (on the basis of widely distributed comparative material I would also reject this idea), then *Rana melanosoma* Gunther is available as a name.
Rana melanosoma Gunther, Biol. Cent.-Amer., 1900: 208, pl. 63, fig. B, in part (BMNH 1947.2.2.14-16, three syntypes; Duenas, Guatemala, and Hacienda Rosa de Jerico; 3250 feet).

Type.—MNHN 6321 (three syntypes). Plateau of Guatemala.

Range.—Moderate and intermediate elevations from Chiapas, Mexico, through Guatemala to El Salvador and northern Honduras.

Rana palmipes Spix

Rana palmipes Spix, Animalia Nova Braziliam, 1824: 29, pl. 5, fig. 1; Gunther, 1900: 202; Smith and Taylor, 1948: 98.

Type.—Formerly Zoologische Sammlung des Bayerischen Staates 963/0; since destroyed. Amazon River.

Range.—Low elevations from southern Veracruz and the Isthmus of Tehuantepec, Mexico, to the Amazon Basin of northern Brazil.

Rana piperiens Schreber

Rana piperiens Schreber, Der Naturf. (Halle), 18, 1782: 185, pl. 4; Smith and Taylor, 1948: 98.

Rana lecontei, Brocchi, 1881: 14, pl. 4, figs. 1-1c.

Rana halecina, Brocchi, 1881: 10; Gunther, 1900: 198.

Type.—None designated. New York (*fide* Kauffeld, Herpetologica, 1, 1936: 11).

Range.—From Canada to Costa Rica. Widespread in Guatemala at low, moderate, and intermediate elevations.

Class REPTILIA

Order TESTUDINES

Family Dermatemyidae

Genus Dermatemys Gray

Generotype.—*Dermatemys mawii* Gray.

Dermatemys mawii Gray

13 I have been unable to determine which of these articles appeared first.
Type.—BMNH 1947.3.4.12. South America, in error. Smith and Taylor (loc. cit.) suggest restriction to Alvarado, Veracruz, Mexico.

Range.—Lowlands of the Caribbean versant from Veracruz, Mexico, southeastward through Guatemala, exclusive of the outer end of the Yucatan Peninsula.

Family Chelydridae

Key to Guatemalan Genera of Chelydridae

1. Scutes of plastron and carapace separated by a ligament that crosses bridge

 Scutes of plastron and carapace separated by a series of scutes on bridge 2

2. Length of plastron at least eighty per cent that of carapace *Kinosternon* (p. 48)

 Length of plastron not more than seventy-five per cent that of carapace 3

3. Carapace with three very strong, continuous keels *Staurotypus* (p. 49)

 Carapace without three keels though same sometimes indicated by alignment of low keels on individual scutes .. *Chelydra* (below)

Genus Chelydra Schweigger

Generotype.—*Chelydra lacertina* Schweigger = *Testudo serpentina* Linnaeus.

Chelydra rossignoni Bocourt

Emysaurus rossignonii Bocourt, Ann. Sci. Nat., ser. 5, 10, 1868: 121; Dumeril and Bocourt, 1870: 18, pl. 5, fig. 2.

Type.—MNHN 1230. Panzos, near the Rio Polochic, Guatemala.

Range.—Lowlands of the Caribbean versant probably from southern Mexico southward at least to Costa Rica.

Genus Claudius Cope

Generotype.—*Claudius angustatus* Cope.

Claudius angustatus Cope

Type.—USNM 6518, 6525 (two syntypes). Tabasco, Mexico.

Range.—Caribbean lowlands from Veracruz, Mexico, through northern Guatemala and into British Honduras.
Genus *Kinosternon* Spix

Generotype. — *Kinosternon longicaudum* Spix = *Testudo scorpioides* Linnaeus.

KEY TO GUATEMALAN SPECIES OF *KINOSTERNON*

1. Tenth marginal scute higher than supracaudal scute at suture between them ... *cruentatum cruentatum*
 Tenth marginal and supracaudal scutes of same height ... 2

2. Anterior lobe of plastron at least thirty per cent longer than middle lobe
 Anterior lobe of plastron not, or but very slightly, longer (usually shorter) than middle lobe ... *leucostomum acutum*

Kinosternon acutum Gray

Kinosternon scorpioides acuta Gray, Synop. Rept., 1831: 34, pl. 7, fig. 1.

TYPE.—BMNH 1947.3.4.58. No type locality given. Stejneger (*loc. cit.*) suggests Honduras, which is improbable. More likely the type stemmed from British Honduras (Schmidt, Field Mus. Nat. Hist., zool ser. 22, 1941: 488).

RANGE.—Lowlands of the Caribbean versant from central Veracruz, Mexico, southward through northern Guatemala into British Honduras, but excluding the outer end of the Yucatan Peninsula.

Kinosternon cruentatum cruentatum Dumeril and Bibron

TYPE.—MNHN 1759. North America.

RANGE.—Lowlands from Tamaulipas, Mexico, to northern Guatemala on the Caribbean versant and to Costa Rica along the Pacific.

Kinosternon leucostomum Dumeril and Bibron

Cinosternum cobanum Gunther, Biol. Cent.-Amer., 1885: 18, pl. 18, fig. B (BMNH 1946.1.22.18–19, two syntypes; Coban and Cahabon, Guatemala).

Cinosternum effeliti, Gunther, 1885: 16.

Type.—MNHN 8311, by fiat of restriction of type locality. New Orleans; Mexico; Rio Sumasinta [sic = Usumacinta]; North America; Magdalena Valley, Colombia. Also the unknown source of a specimen living in the zoological garden at the time and from which drawings were made and filed in the Museum Library as No. 28. Restricted to the Rio Usumacinta, El Peten, Guatemala, by Schmidt (Field Mus. Nat. Hist., zool. ser., 22, 1941: 488).

Range.—Low and moderate elevations of the Caribbean versant from southern Veracruz, Mexico, south to Panama, exclusive of the outer end of the Yucatan Peninsula.

Genus Staurotypus Wagler

Generotype.—Terapene triporcata Wiegmann.

Key to Guatemalan Species of Staurotypus

Upper and lower jaws unicolor, olive green; top of head dark and usually unicolor; carapace dark, generally unicolor or obscurely mottled salvini

Upper and lower jaws vertically streaked with yellow and olive green; top of head with strong light and dark reticulations; scutes of carapace brownish yellow with radiating streaks and spots of dark brown triporcatus

Staurotypus salvini Gray

Staurotypus salvini, Gunther, 1885: 11 (in part); Smith and Taylor, 1950: 27 (spelled salvini).

Type.—BMNH 1946.1.22.79. Huamuchal, Guatemala.

Range.—Pacific coastal plain from the Isthmus of Tehuantepec, Mexico, into El Salvador.

14 Miss Grandison states (in litt.) that the "North America" and "Papalco Apoia" specimens are now missing. This is unfortunate since the latter are lectotypes by fiat through restriction of type locality to Cosamaloapam by Smith and Taylor (loc. cit.) Two specimens, 1946.1.22.73–74, also from Cosamaloapam, are labelled as types, but do not fit Gray's description of type material.
Staurotypus triporcatus Wiegmann

Terrapene triporcatana Wiegmann, Isis, 21, 1828: 364.

Staurotypus salvinii (nec Gray), Dumeril and Bocourt, 1870: 22, pl. 5, figs. 3–5a.

Staurotypus salvinii of Dumeril and Bocourt (MNHN 1589; a tributary of the Rio Polochic, Alta Verapaz, Guatemala).

Type.—Zoologisches Museum Berlin 127. Rio Alvarado, Mexico.

Range.—Caribbean lowlands from Veracruz, Mexico, through the Yucatan Peninsula to extreme southeastern Guatemala.

Family Testudinidae

Key to Guatemalan Genera of Testudinidae

Chin and throat immaculate or spotted; toes weakly separated, largely enclosed in flesh
with but a narrow web *Geoemyda* (below)
Chin and throat with longitudinal light and dark stripes; toes, especially those of hind
feet, well separated and connected by a broad web *Pseudemys* (p. 51)

Genus Geoemyda Gray

Generotype.—*Testudo spengleri* Gmelin.

Key to Guatemalan Species of Geoemyda

Bridge between carapace and plastron immaculate yellow *areolata*
Bridge dark brown and generally with lighter mottlings *pulcherrima incisa*

Geoemyda areolata Dumeril and Bibron

Emys areolata Dumeril and Bibron in Dumeril and Dumeril, Catal. Method., 1851: 10;
Dumeril and Bocourt, 1870: 13; Gunther, 1885: 8, pl. 8, fig. B.

Type.—MNHN 8310. El Peten, Guatemala.

Range.—Lowlands of the Caribbean versant from central Veracruz, Mexico, through Guatemala.

Geoemyda pulcherrima incisa Bocourt

HERPETOFAUNA OF GUATEMALA

Type.—MNHN 6217. La Union, El Salvador.

Range.—Lowlands of the Pacific versant from the Isthmus of Tehuantepec, Mexico, through El Salvador.

Genus Pseudemys Gray

Generotype.—Testudo concinna Le Conte.

Key to Guatemalan subspecies of Pseudemys

Snout narrow and pointed; rostrum sloping backwards sharply and overhanging lower jaw; nostrils subterminal .. Pseudemys ornata grayi

Snout broader and rounded; rostrum almost vertical, not overhanging lower jaw; nostrils almost terminal .. Pseudemys ornata ornata

Pseudemys ornata ornata Gray

Emys salvinii Gunther, Biol. Cent.-Amer., 1885: 4, pls. 2–3 (BMNH 1946.1.22.76; Guatemala).
Emys venusta, Dumeril and Bocourt, 1870: 13.

Type.—BMNH 1946.1.22.40–41 (two syntypes), Mazatlan, Mexico.

Range.—Low elevations from Sinaloa, Mexico, southward to the Isthmus of Tehuantepec along the Pacific, thence crossing the Isthmus to the Caribbean versant and southward to Panama.

Pseudemys ornata grayi Bocourt

Range.—Low elevations along the Pacific coastal plain from about the Isthmus of Tehuantepec, Mexico, to eastern Guatemala.

15 I have been unable to determine which of these two appeared first.
Family Cheloniidae

KEY TO GUATEMALAN GENERA OF CHELONIIDAE

1. A single pair of prefrontal scutes .. Chelonia (below)
 Two pairs of prefrontal scutes .. 2

2. Four pairs of lateral (costal) shields Eretmochelys (p. 53)
 Five or more pairs of lateral (costal) shields 3

3. Bridge between plastron and carapace with four well differentiated and enlarged
 inframarginal scutes .. Lepidochelys (p. 53)
 Bridge with but three inframarginal scutes Caretta (below)

Genus Caretta Rafinesque

Generotype.—Caretta nasuta Rafinesque = Testudo caretta Linnaeus.

Caretta caretta Linnaeus

Caretta caretta caretta, Smith and Taylor, 1950: 16.

Type.—Unknown. American Islands.

Range.—Worldwide tropical and midlatitudinal marine waters, but apparently avoiding the tropical coasts of Pacific America.

Genus Chelonia Brongniart

KEY TO GUATEMALAN SUBSPECIES OF CHELONIA

Indentations between marginal scutes of the posterior end of the carapace... mydas mydas
No indentations between marginal scutes of the posterior end of the carapace ... mydas agassizi

26 Of the marine turtles only Chelonia mydas agassizi Bocourt, described from the Pacific coast, is represented in museum collections by Guatemalan specimens. However, Archie Carr of the University of Florida has supplied me with the following data: Dr. Carr has personal sight records of Chelonia and Eretmochelys in the Puerto Barrios region (Caribbean) and word-of-mouth records (presumably from competent individuals) of Dermochelys and Caretta from the same locale. Pacific records in addition to Chelonia include Eretmochelys, Lepidochelys, and Dermochelys (all word-of-mouth). It seems not improbable, therefore, that representatives of all five genera of marine testudines visit the Guatemalan coasts at least locally and sporadically. The species and subspecies arrangement presented herein is purely arbitrary and not too consistent. It was inferred to me, as a vague suggestion, by Dr. Carr.
Chelonia mydas mydas Linnaeus

TYPE.—Zoologiska Institutionen Uppsala 20. The Pelagie Islands and Ascencion Island.

RANGE.—Tropical and subtropical waters of the Atlantic Ocean and its associated seas and gulfs.

Chelonia mydas agassizi Bocourt

RANGE.—Tropical and subtropical portions of the Indo-Pacific seas.

Genus Eretrochelys Fitzinger

Eretrochelys Fitzinger, Syst. Rept., 1843: 30.

GENEROTYPE.—Testudo imbricata Linnaeus.

Eretrochelys imbricata Linnaeus

Eretrochelys imbricata, Fitzinger, Syst. Rept., 1843: 30; Smith and Taylor, 1950: 16.

TYPE.—Unknown. American and Asiatic seas.

RANGE.—World-wide in marine waters in tropical and subtropical latitudes in the Southern Hemisphere but extending into mid-latitudes in the Northern Hemisphere.

Genus Lepidochelys Fitzinger

Lepidochelys Fitzinger, Syst. Rept., 1843: 30.

GENEROTYPE.—Chelonia olivacea Eschscholtz.

Lepidochelys olivacea olivacea Eschscholtz

Lepidochelys olivacea, Smith and Taylor, 1950: 15.

Type.—Possibly originally in Dorpat (Tartu); present location unknown. Manila Bay, Philippine Islands.

Range.—Tropical and subtropical portions of the Indo-Pacific seas.

Family DERMOCHELYIDAE

Genus Dermochelys Blainville

Generotype.—"Tortue a cuir" = *Testudo coriacea* Linnaeus.

Dermochelys coriacea Linnaeus

Type.—Unknown. Mediterranean and Adriatic Seas.

Range.—Tropical, subtropical, and midlatitudinal portions of the Atlantic Ocean and its annexant seas.

Order SAURIA

Family EUBLEPHARIDAE

Genus Coleonyx Gray

Generotype.—*Coleonyx elegans* Gray.

KEY TO GUATEMALAN SPECIES OF COLEONYX

Claws on toes completely hidden in terminal sheath *elegans elegans*

Claws on toes extruding from sheath, readily visible *mitratus*

Coleonyx elegans elegans Gray

Gymnodactylus scapularis A. Dumeril in Dumeril and Dumeril, Catal. Method., 1851: 45 (originally in MNHN, now apparently lost; Peten Province, Guatemala).

Type.—BMNH 1946.8.27.7. Belize [British Honduras].

Range.—Low and moderate elevations from central Veracruz, Mexico, on the eastern versant and from the Isthmus of Tehuantepec on the western versant southward through northern and western Guatemala, respectively.
Coleonyx mitratus Peters

Type.—Zoologisches Museum Berlin 4598, Costa Rica.

Range.—Low and moderate elevations from eastern Guatemala southward on both coasts through Costa Rica.

Family Sphaerodactylidae

Key to Guatemalan Genera of Sphaerodactylidae

| Lamellae beneath toes more or less subequal in size, none greatly enlarged | Gonatodes (below) |
| Terminal lamellae of toes very much larger than other lamellae. Sphaerodactylus (below) |

Genus Gonatodes Fitzinger

Gonatodes Fitzinger, Syst. Rept., 1843: 91.

Generotype.—Gymnodyctylus albogularis Dumeril and Bibron.

Gonatodes fuscus Hallowell

Gonatodes fuscus, Smith and Taylor, 1950: 45.

Type.—Originally in ANSP; now apparently lost, Nicaragua.

Range.—Lowlands of Central America from Chiapas, Mexico, southward into northern South America. Extensively introduced through the West Indies.

Genus Sphaerodactylus Wagler

Generotype.—Lacerta sputator Sparrman.

Key to Guatemalan Species of Sphaerodactylus

| Dorsal scales granular, keeled, and juxtaposed | lineolatus |
| Dorsal scales flat, smooth, and imbricate | glaucus glaucus |

Sphaerodactylus glaucus glaucus Cope

TYPE.—USNM 6572, 62995–96 and MCZ 13570 (four syntypes). Merida, Yucatan, Mexico.

RANGE.—Lowlands of the Caribbean versant from southern Veracruz, Mexico, southward and eastward through the Yucatan Peninsula to eastern Guatemala.

Sphaerodactylus lineolatus Lichtenstein

Sphaerodactylus lineolatus, Bocourt, 1873: 46; Smith and Taylor, 1950: 52.

TYPE.—Originally four syntypes; Zoologisches Museum Berlin 417; lectotype, 417; paratypes, 36297 (3), *fide* H. Wermuth (in litt.). Veragoa [presumably Veragua, Panama].

RANGE.—Low elevations from northern Guatemala and British Honduras south to northern South America. Apparently restricted to the Caribbean versant north of Costa Rica.

Family *Gekkonidae*

KEY TO GUATEMALAN GENERA OF GEKKONIDAE

1. Terminal lamellae beneath toes very much larger than other lamellae
 .. Phyllodactylus (p. 57)
 Lamellae beneath toes more or less subequal in size though broadly expanded laterally .. 2

2. Dorsum covered with small granular scales of about uniform size
 .. Thecadactylus (p. 57)
 Dorsum with some enlarged scales dispersed among smaller granular scales
 .. Hemidactylus (below)

Genera *Hemitrdactylus* Oken

Hemitrdactylus *frenatus* Schlegel

17 Taylor (Herpetologica, 12, 1956: 285) and Alvarez del Toro and Smith (*ibid.*, 1962: 101) are of the opinion that *Sphaerodactylus continentalis* Werner (Verhand. k. k. zool.-bot. Gesell. Wien, 1896: 345) is the proper name for the northern Central American population. Pending complete revision, I prefer to retain *lineolatus* (auct.).
Range.—Endemic to parts of the Old World tropics but now widely dispersed throughout the tropics. In Guatemala the species has been collected only at Champerico.

Genus Phyllodactylus Gray

Genotypic.—*Phyllodactylus pulcher* Gray.

Key to Guatemalan subspecies of Phyllodactylus

Number of scales from rear of head to base of tail averaging 36 or fewer along median line; venter pale yellow ... *tuberculosus tuberculosus*

Number of scales from rear of head to base of tail averaging 37 or more along median line; venter bright ochre ... *tuberculosus magnus*

Phyllodactylus tuberculosus tuberculosus Wiegmann

Range.—Low and moderate elevations along the Pacific versant from eastern Guatemala to Costa Rica; occurring locally in the dry basins and valleys of central Guatemala.

Phyllodactylus tuberculosus magnus Taylor

Type.—CNHM 100005. Tierra Colorada, Guerrero, Mexico.

Range.—Low and moderate elevations along the Pacific versant from Guerrero, Mexico, into western Guatemala.

Genus Thecadactylus Gray

Genotypic.—*Gekko rapicauda* Houttuyn.

Thecadactylus rapicaudus Houttuyn

18 I am indebted to James R. Dixon of the Agricultural and Mechanical College of Texas for advice on the arrangement of Guatemalan *Phyllodactylus*.

HERPETOFAUNA OF GUATEMALA

57
Type.—Originally in personal collection of Houttuyn; present location unknown (fide L. D. Brongersma in litt.). West Indies.

Range.—Low and moderate elevations of the Caribbean versant of Central America from the Yucatan Peninsula into South America and in the Lesser Antilles.

Family XANTUSIIDAE

Genus Lepidophyma A. Dumeril

Generotype.— *Lepidophyma flavimaculatus* A. Dumeril.

KEY TO SUBSPECIES OF GUATEMALAN LEPIDOPHYMA

Femoral pores more than 12 on each side *flavimaculatum flavimaculatum*

Femoral pores fewer than 12 on each side *flavimaculatum smithii*

Lepidophyma flavimaculatum flavimaculatum A. Dumeril

Lepidophyma flavomaculatum, (sic) Bocourt, 1878: 306, pl. 20 F, figs. 2–2g.

Type.—MNHN 782. Peten [Guatemala].

Range.—Low and moderate elevations of the Caribbean versant from Veracruz, Mexico, south possibly to Nicaragua, excluding the outer end of the Yucatan Peninsula.

Lepidophyma flavimaculatum smithii Bocourt19

Lepidophyma smithii Bocourt, Jour. Zool., 5, 1876: 17 (reprint pagination); Bocourt, 1878: 309, pl. 20 F, figs. 3–3a, pl. 20 G, figs. 2–2c.

Lepidophyma smithii smithii, Smith and Taylor, 1950: 152.

Range.—Low elevations of the Pacific versant from eastern Chiapas, Mexico, into El Salvador.

19 My colleague, Charles F. Walker, following considerable study of this genus, informs me that this is the proper combination.
Family IGUANIDAE

KEY TO GUATEMALAN GENERA OF IGUANIDAE

1. Femoral pores present ... 2
 Femoral pores absent .. 5

2. Dorsal and lateral surfaces of tail with whorls of enlarged scales separated by smaller granular scales ... 3
 Scales of tail (except middorsal row) more or less uniform in size, never conspicuous whorls of enlarged scales ... 4

3. A patch of enlarged, strongly keeled scales on outer surface of lower leg .. Enyaliosaurus (p. 68)
 No conspicuous patch of enlarged scales on outer surface of lower leg ... Ctenosaura (p. 67)

4. A well developed longitudinal chin fold ... Iguana (p. 68)
 No longitudinal chin fold .. Sceloporus (p. 69)

5. Head either produced posteriorly to overhang neck or with a dorsal crest (except in juveniles) ... 6
 Head neither produced posteriorly to overhang neck nor with any crest .. Anolis (below)

6. No dorsal crest but head produced posteriorly to overhang neck ... Laemanius (p. 68)
 Head with a dorsal crest which may continue onto body .. Corythophanes (p. 66)
 Ventral scales on body large, numbering fewer than 35 between the levels of axilla and groin .. Basiliscus (p. 66)
 Ventral scales smaller, numbering at least 40 between axilla and groin levels .. Anolis (below)

Genus Anolis Daudin

Generotype.—Anolis bullaris Daudin = Anolis carolinensis Voigt, fide Stejneger and Barbour (Checklist N. Amer. Amphib. Rept., 1917: 44).21

20 Not included herein are Anolis bouvieri Bocourt, Anolis salvinii Boulenger, and Anolis godmani Boulenger. For a discussion of the first two see Stuart (Misc. Pub. Mus. Zool., Univ. Michigan, 91, 1955: 29–30). Since the Guatemalan syntypes of Anolis godmani were reported (Boulenger, Catal. Lizards Brit. Mus., 2, 1885: 85–86), no Anolis resembling that species has been secured north of Honduras. It is possible that the Guatemalan syntypes carried incorrect locality data or that they belong to some other Guatemalan species and are not conspecific with the Costa Rican syntypes of Anolis godmani.

21 I have never understood the reasoning through which Stejneger and Barbour arrived at this conclusion. Daudin allocated eight species and one variety to his genus Anolis. Page priority could dictate Lacerta bimaculata Sparrman as generotype. If bullaris, a Linnaean (ed. 10) and not a Daudin name, is to be considered the generotype, it is inconceivable that carolinensis of 1832 should have priority over bullaris either of Linnaeus 1758 or of Daudin 1801 or 1802. I posed this question to my friend, the late Karl Schmidt. I do not believe that he would have objected to my quoting his pungent reply (in litt. June 9, 1954):

"If you will note p. 114 in the latest Check List [1953] you will see that the author (better, compiler) could not understand why carolinensis 1832 should be the type of Anolis 1803, and that he was careful to shed the responsibility in this case with the note..."
KEY TO GUATEMALAN SPECIES OF *ANOLIS*

1. Tail strongly compressed; middorsal scales of tail strongly keeled and forming a low crest *sagrei sagrei*
 Tail round or ovoid in cross section, never strongly compressed 2

2. Lower leg[22] greatly exceeding in length the distance between the tip of snout and the auricular opening *capito*
 Lower leg not or but only slightly longer than distance between tip of snout and auricular opening ... 3

3. Midventral scales at midbody very weakly keeled, subconical, pearl-like, or smooth and flat, never strongly keeled .. 4
 Midventral scales at midbody distinctly and often strongly keeled 6

4. Lower leg considerably shorter than distance between tip of snout and posterior border of eye .. *pentaprion beckeri*
 Lower leg just short of or longer than distance between tip of snout and posterior border of eye ... 5

5. Lorreal rows above suture between labials four and five, 7-8; chest scales with low, weak keels .. *cobanensis*
 Lorreal rows above suture between labials four and five, 5-6; chest scales smooth *limifrons rodriguezi*

6. Six to twelve rows of enlarged dorsal scales strongly and abruptly differentiated from lateral scales .. 7
 Enlarged dorsal scales, if present, grading into laterals ... 10

7. Lower leg as long as distance from tip of snout to auricular opening *tropidonotus tropidonotus*
 Lower leg shorter than distance from tip of snout to auricular opening 8

8. Dorsal scales about 50 per cent larger than ventrals ... *humilis uniformis*
 Dorsal scales smaller than ventrals .. 9

9. Dorsal scales generally less than 48 between levels of axilla and groin *crassulus crassulus*
 Dorsal scales generally more than 50 between levels of axilla and groin *crassulus haguei*

10. Generally six or more longitudinal rows of enlarged dorsal scales distinctly differentia
ted from laterals ... 11
 Dorsal scales if definitely differentiated from laterals confined to but two to four longitudinal rows .. 12

11. Enlarged supraoculars and scales of frontal depression generally keeled or rugose ... *sericeus*
 Enlarged supraoculars and scales of frontal depression generally smooth *ustus*

12. Lower leg shorter than distance from tip of snout to posterior border of eye *crassulus crassulus*
 Lower leg at least as long as distance from tip of snout to posterior border of eye 14

‘*fide* Stejneger and Barbour, 1917. ’ The problem you raise could make a nice Ph.D. thesis for a nomenclaturist (Nomenclature, divorced from Zoology), especially, if, like Stejneger, he entered zoology from the School of Law.”

[22] The length of the lower leg equals the distance between the angle of the knee formed by the head of the tibia and the angle between ankle and foot formed at the proximal end of metatarsal V. Each of these points is readily visible externally when the tibia is bent at a right angle to the femur and the foot at a right angle to the tibia, respectively.
13. Upper head scales rugose; more than 60 scales along vertebral line between axilla and groin levels ... nannodes
 Upper head scales almost smooth; less than 60 scales along vertebral line between axilla and groin levels .. laeviventris
14. Lower leg just equal to or barely exceeding distance between tip of snout and posterior border of eye ... 15
 Lower leg greatly exceeding distance between tip of snout and posterior border of eye ... 16
15. Ventral scales between axilla and groin levels more than 60 peteri
 Ventral scales between axilla and groin levels less than 60 biporcaturs
16. Lower leg generally shorter than distance from tip of snout to auricular opening; upper head scales, especially in the frontal region, tricarinate in appearance; small species, never exceeding about 40 mm. head-body length dolfusianus
 Lower leg generally at least as long as distance from tip of snout to auricular opening; larger species, adults generally exceeding 40 mm. head-body length 17
17. Supraorbital semicircles generally in contact though occasionally separated by one or even two rows of scales .. lemurinus lemurinus
 Supraorbital semicircles generally separated by at least one and more frequently two rows of scales .. 18
18. Occipital plate generally separated from nearest scale of supraorbital semicircles by two or three scales; adults generally less than 50 mm. head-body length cupreus
 Occipital plate occasionally separated from nearest scale of supraorbital semicircles by three but most frequently by four scales; adults generally more than 50 mm. head-body length .. lemurinus bourgeaei

Anolis biporcatus Wiegmann

Anolis copei Bocourt, Miss. Sci. Mex., Rept., 1873: 77, pl. 15, figs. 10-10a (MNHN 2426; Santa Rosa de Pansos, Guatemala); Gunther, 1885: 47 (spelled coolei).

TYPE.—Zoologisches Museum Berlin 524. Mexico.

RANGE.—Low and moderate elevations of the Caribbean versant from Chiapas, Mexico, southward at least to Panama.

Anolis capito Peters

Anolis capito, Gunther, 1885: 52; Smith and Taylor, 1950: 65.

TYPE.—Zoologisches Museum Berlin 4684; originally two syntypes; lectotype, 4684; paratype, 36298, fide H. Wermuth (in litt.). Costa Rica.

RANGE.—Low and moderate elevations of the Caribbean versant from Tabasco, Mexico, to Panama (possibly on both versants in the south).
Anolis cobanensis Stuart

Anolis schiedii (nec Wiegmann), Bocourt, 1873: 64 (in part).

Type.—UMMZ 90232. Three km. S Finca Samac (6 km. airline W Coban), Alta Verapaz, Guatemala; about 1350 meters.

Range.—Moderate and intermediate elevations in the mountains of Alta Verapaz, Guatemala, to Chiapas, Mexico.

Anolis crassulus crassulus Cope

Type.—Originally probably seven syntypes (two subsequently sent to the British Museum, Natural History); now five lectotypes, ANSP 8023–27 (designated by Stuart, Occ. Papers Mus. Zool., Univ. Michigan, 464, 1942: 2). Central Guatemala and Coban (restricted to Central Guatemala, Stuart, loc. cit.)

Anolis crassulus haguei Stuart

Anolis crassulus, Gunther, 1885: 50, pl. 27, fig. F (in part).

Type.—UMMZ 90226. Two km. S Finca Chichen (about 9 km. airline S Coban), Alta Verapaz, Guatemala; about 1750 meters.

Range.—Though known only from the type locality, this race probably occurs through the mountains of Alta Verapaz at intermediate elevations.

Anolis cupreus Hallowell

Type.—Fourteen syntypes; USNM 12211 (11), MCZ 17631–32, and University of Illinois Museum of Natural History 40733, Nicaragua.

Range.—Low and moderate elevations along the Pacific versant from eastern Guatemala through Costa Rica.
Anolis dollfusianus Bocourt

Anolis dollfusianus Bocourt, Miss. Sci. Mex., Rept., 1873: 84, pl. 16, figs. 19–19a (1874).

Type.—MNHN 2435 (four syntypes). San Agustin on slopes of Volcan Atitlan; about 1200 meters.

Range.—Moderate elevations along the Pacific versant from eastern Chiapas, Mexico, to western Guatemala.

Anolis humilis uniformis Cope

Type.—Twenty-four syntypes; USNM 24859 (Yucatan), and 6774 (6), 24734–48, 24750 (Guatemala), MCZ 10933 (Guatemala). Yucatan and Guatemala.

Range.—Lowlands from Chiapas, Mexico, through the central and southern portions of the Yucatan Peninsula and northern Guatemala to northern Honduras.

Anolis laeviventris Wiegmann

Type.—Zoologisches Museum Berlin 525. Mexico (restricted to Jalapa, Veracruz; Smith and Taylor, loc. cit.: 63).

Range.—Moderate and intermediate elevations from central Veracruz, Mexico, through the uplands of Chiapas, Mexico, into northwestern Guatemala.

Anolis lemurinus lemurinus Cope

Anolis biporcatus, Gunther, 1885: 52 (in part).

Type.—Originally in ANSP; now apparently lost. Veragua, Panama.

Range.—Low and moderate elevations of the Caribbean versant from Honduras south to Panama and along the Pacific versant from eastern Chiapas, Mexico, through El Salvador.
Anolis lemurinus bourgeaei Bocourt

Anolis bourgeaei Bocourt, Miss. Sci. Mex., Rept., 1873: 76, pl. 15, fig. 9; Gunther, 1885: 48, in part (spelled bourgeaui).

Anolis biporatus, Bocourt, 1873: 98, pl. 15, figs. 8–8a.

Type.—Two syntypes; MNHN 2409 (Orizaba, Mexico) and Zoologisches Museum Berlin 6751 (Huatusco, Mexico). Orizaba and Huatusco, Veracruz, Mexico.

Range.—Low and moderate elevations of the Caribbean versant from central Veracruz, Mexico, to northern Honduras.

Anolis limifrons rodriguezi Bocourt

Type.—MNHN 2411. Panzos, Guatemala.

Range.—Low elevations of the Caribbean versant from the Isthmus of Tehuantepec, Mexico, to Honduras.

Anolis nannodes Cope

Anolis intermedius, Gunther, 1885: 49 (in part).

Range.—Moderate and intermediate elevations of the Caribbean versant from possibly Chiapas, Mexico, to the mountains of Alta Verapaz, Guatemala.
Anolis pentaprion beckeri Boulenger

Type.—Institut Royal des Sciences Naturelles de Belgique I. G. 4414, Rg. No. 877 (two syntypes). Yucatan.

Range.—Low elevations of the Caribbean versant from Chiapas, Mexico, to Honduras.

Anolis petersi Bocourt

Anolis petersii Bocourt, Miss. Sci. Mex., Rept., 1873: 79, pl. 13, fig. 2, pl. 15, fig. 11; Smith and Taylor, 1950: 65.

Type.—MNHN 2479 (two syntypes). Guatemala.

Range.—Moderate elevations along the Caribbean versant from San Luis Potosi, Mexico, and on the Pacific from the Isthmus of Tehuantepec, Mexico, south to Honduras.

Anolis sagrei sagrei Dumeril and Bibron

Anolis sagrei Dumeril and Bibron, Erpet. Gen., 4, 1837: 149; Gunther, 1885: 45 (spelled sagrae).

Type.—MNHN 2480 and 6797 (five syntypes). Cuba.

Range.—On the mainland along the immediate coast of the Gulf of Mexico and the Caribbean Sea from Tabasco, Mexico, to South America.

Anolis servaeus Hallowell

Anolis salbaei, Bocourt, 1873: 90, pl. 13, fig. 3 and pl. 16, figs. 21–21b (1874); Gunther, 1885: 49, pl. 27, fig. B.

Type.—Originally in ANSP; now apparently lost. Jalapa, Veracruz, Mexico.

Anolis troidonotus troidonotus Peters

Anolis troidonotus Peters, Monatsb. Akad. Wissen. Berlin, 1863: 135; Bocourt, 1873: 103, pl. 13, figs. 6–6a and pl. 16, fig. 30 (1874); Smith and Taylor, 1950: 60.

Type.—Zoologisches Museum Berlin originally two syntypes; lectotype, 382; paratype, 36299, fide H. Wermuth (in litt.). Huanusco [? = Huatusco], Veracruz, Mexico.

Range.—Lowlands of the Caribbean versant from Veracruz, Mexico, to Honduras.

Anolis ustus Cope

Type.—BMNH 1946.8.5.60–61 (two syntypes). Belize, British Honduras.

Range.—The Yucatan Peninsula of Mexico and northern British Honduras, and El Peten, Guatemala.

Genus Basiliscus Laurenti

Generotype.—Basiliscus americanus Laurenti = Lacerta basiliscus Linnaeus.

Basiliscus vittatus Wiegmann

Basiliscus vittatus Wiegmann, Isis, 21, 1828: 373; Bocourt, 1874: 129, pl. 17, fig. 3; Gunther, 1885: 55, pl. 28; Smith and Taylor, 1950: 71.

Type.—Zoologisches Museum Berlin 549. Mexico.

Range.—Low and moderate elevations from Jalisco and Tamaulipas, Mexico, south to Panama.

Genus Corythophanes Boie

Generotype.—Agama cristata Merrem.

Key to Guatemalan Species of Corythophanes

1. Head crest not continuous with dorsal body crest; broken over shoulders. hernandezi
 Head crest continuous with dorsal body crest .. 2
2. Scales on upper surface of head smooth or no more than very slightly knobby
 Scales on upper surface of head extremely rugose percarinatus

Corythophanes cristatus Merrem

Corythophanes cristatus, Bocourt, 1874: 118; Gunther, 1885: 53; Smith and Taylor, 1950: 69.

TYPE.—Unknown. Possibly Seba, I, Tab. 94, fig. 4. Ceylon (in error). Smith and Taylor (1950: 69) suggest that the type locality be restricted to Orizaba, Veracruz, Mexico.

RANGE.—Low and moderate elevations of the Caribbean versant from central Veracruz, Mexico, to Costa Rica. Apparently occurring locally on the Pacific versant in the south.

Corythophanes hernandezi Wiegmann

Chamaeleopsis hernandesii Wiegmann in Gray in Griffith, Cuvier’s Animal Kingdom, 9, 1831: Synop. 45.

TYPE.—Zoologisches Museum Berlin 545. Mexico.

RANGE.—Low and moderate elevations of the Caribbean versant from central Veracruz, Mexico, through Guatemala.

Corythophanes percarinatus Dumeril

Corythophanes percarinatus Dumeril, Arch. Mus. Hist. Nat., 8, 1856: 518, pl. 20, figs. 3–5a; Bocourt, 1874: 120, pl. 17, fig. 2; Gunther, 1885: 53; Smith and Taylor, 1950: 69.

RANGE.—Low and moderate elevations of both the Caribbean and Pacific versants from the Isthmus of Tehuantepec, Mexico, south through northern Guatemala on the Caribbean and to El Salvador on the Pacific.

Genus Ctenosaura Wiegmann

Ctenosaura Wiegmann, Isis, 21, 1828: 371.

GENEROTYPE.—Ctenosaura cycluroides Wiegmann = Lacerta acanthura Shaw.

Ctenosaura similis similis Gray

Iguana (Ctenosaura) similis Gray in Griffith, Cuvier’s Animal Kingdom, 9, 1831: Synop. 38.

Ctenosaura completa Bocourt, Miss. Sci. Mex., Rept., 1874: 145. According to Bocourt at least one of the four syntypes was collected in Guatemala. Guibe (Catal. Types Lezards, N.D.; 42) states that all syntypes now bear locality data, El Salvador (MNHN 2252, 2256, 6499, 6500); Gunther, 1890: 58, pls. 29–30.

23 According to Bocourt (op. cit.: 121) the type was collected by Morelet at Escuintla, Guatemala. It appears, therefore, that the “30 leagues” is a lapsus for “30 kilometers” which is a reasonable though underestimate of the distance between Guatemala City and Escuintla.

Range.—Low and moderate elevations from the Isthmus of Tehuantepec, Mexico, south to Panama.

Genus Enyaliosaurus Gray

Generotype.—*Cyclura quinquecarinata* Gray

Enyaliosaurus palearis Stejneger

Enyaliosaurus palearis by fiat, Smith and Taylor, 1950: 76 (nominal mention).

Type.—USNM 22703. Gualan, Guatemala.

Range.—Known only from low elevations in the drier portions of the valley of the Rio Motagua in Guatemala and from the Matagalpa region of northwestern Nicaragua.

Genus Iguana Laurenti

Generotype.—*Iguana tuberculata* Laurenti = *Lacerta iguana* Linnaeus.

Iguana iguana rhinolopha Wiegmann

Iguana (Hypsilophus) rhinolophus Wiegmann, Herpet. Mex., 1834: 44.

Iguana rhinolophus, Gunther, 1885: 56.

Iguana tuberculata, Gunther, 1885: 56 (in part).

Type.—Originally two syntypes, Zoologisches Museum Berlin 571; lectotype 571; paratype 36300, *fide* H. Wermuth (*in litt.*). Mexico.

Range.—Low elevations from Sinaloa and Veracruz in Mexico south to Panama.

Genus Laemancus Wiegmann

Generotype.—*Laemancus longipes* Wiegmann.

Laemancus deborrei Boulenger

HERPETOFAUNA OF GUATEMALA

RANGE.—Low and moderate elevations from Tabasco, Mexico, to northwestern Honduras.

Genus Sceloporus Wiegmann

Sceloporus Wiegmann, Isis, 21, 1828: 369.

GENEROTYPE.—Sceloporus torquatus Wiegmann.

KEY TO GUATEMALAN SPECIES OF SCeloPOrus

1. A post-femoral dermal pocket .. 2
 No post-femoral dermal pocket .. 4
2. Dorsal scales (occiput to above posterior margins of thighs) usually less than 48
 Dorsal scales usually more than 48 ... teapensis
3. Femoral pores generally totalling more than 20 variabilis variabilis
 Femoral pores generally totalling less than 20 variabilis ollopurus
4. Dorsal pattern such as to give impression of a dorsolateral light stripe on either side
 Dorsal pattern extremely variable but never giving impression of a dorsolateral light stripe on either side ... 5
5. Femoral pores totalling more than 25 chrysostictus
 Femoral pores totalling less than 25 .. 6
6. Two canthal scales siniferus siniferus
 A single canthal scale ... 7
7. Femoral pores totalling more than 12 carinatus
 Femoral pores totalling fewer than 12 squamosus
8. A dark collar on sides of neck and in some instances complete across shoulders and unbroken middorsally melanorhinus stuarti
 No dark collar; a conspicuous dark nape patch ... 9
9. A single canthal on each side .. 10
 Two canthals on each side .. 11
10. Supraorbitals in two rows malachiticus smaragdinus
 Supraorbitals in a single row acanthinus lunaei
11. More than 35 dorsal scales between interparietal and posterior level of thighs 12
 Fewer than 35 dorsal scales between interparietal and posterior level of thighs 13
12. Supraorbitals in a single row acanthinus acanthinus
 Supraorbitals in two rows malachiticus taenioenemis
13. Parietals and frequently frontoparietals separated from posterior supraorbitals by row of small scales serrifer serrifer
 Parietals in contact with posterior supraorbitals lundelli lundelli
14. Lower row of labiomentalts extending forward to contact the second postmental prezygus
 Lower row of labiomentalts extending forward only to the third postmental serrifer serrifer
Sceloporus acanthinus acanthinus Bocourt

Sceloporus acanthinus (sic) Bocourt, Ann. Sci. Nat., ser. 5, 17, 1873: 24; Bocourt, 1874: 180, pl. 18, figs. 10–10b, pl. 19, figs. 4–4a (spelled *acanthinus*).

TYPE.—MNHN 3602 (two syntypes). San Agustin, on the western [southern] slope of Volcan Atitlan, Guatemala; 610 meters.

RANGE.—Low and moderate elevations of the Pacific versant from eastern Chiapas, Mexico, possibly to El Salvador.

Sceloporus acanthinus lunaei Bocourt

Sceloporus lunaei Bocourt, Ann. Sci. Nat., ser. 5, 17, 1873: 1; Bocourt, 1874: 184, pl. 18 bis, figs. 5–5b.

TYPE.—MNHN 3144–47 (seven syntypes). Plateau of Guatemala; 1500 meters.

RANGE.—Moderate elevations from central through eastern Guatemala, possibly to El Salvador.

Sceloporus carinatus Smith

TYPE.—CNHM 32008. Near Tuxtla Gutierrez, Chiapas, Mexico.

RANGE.—Upper valley and headwater valleys of the Rio Grijalva from Chiapas, Mexico, to the headwater valleys of the Rio Negro, Guatemala.

Sceloporus chrysostictus Cope

TYPE.—USNM 24865–66 (two syntypes). Yucatan, Mexico.

RANGE.—The Yucatan Peninsula south to central El Peten, Guatemala, and northern British Honduras.

Sceloporus lundelli lundelli Smith

TYPE.—UMMZ 80674. Cahune Ridge (20 miles SE Benque Viejo), British Honduras.

RANGE.—Central and southern portions of the Yucatan Peninsula from Campeche, Mexico, south to northern El Peten, Guatemala, and British Honduras.
Sceloporus malachiticus smaragdinus Bocourt

Sceloporus malachiticus smaragdinus Bocourt, Ann. Sci. Nat., ser. 5, 17, 1873: 1; Bocourt, 1874: 186, pl. 18, figs. 6-6b, pl. 19, figs. 1-1b; Gunther, 1890: 68 (in part).

? Sceloporus salvini, Gunther, 1890: 68 (in part).

TYPE.—Thirteen syntypes, MNHN 3148, 3150, 3177 (twelve) and USNM 11000. Solola, Totonicapan, and Quezaltenango, Guatemala; 2000 meters.

RANGE.—Intermediate and high elevations of the plateaus of Guatemala exclusive of Alta Verapaz and the Caribbean versant of the Sierra de los Cuchumatanes.

Sceloporus malachiticus taeniocnemis Cope

Sceloporus formosus var. B, Bocourt, 1874: 182, pl. 18, figs. 3–3c.
Sceloporus lunaei, Gunther, 1890: 67 (in part).
Sceloporus smaragdinus, Gunther, 1890: 68 (in part).

RANGE.—Moderate and high elevations of Alta Verapaz and the Caribbean versant of the Sierra de los Cuchumatanes, Guatemala, the Mesa Central and the Sierra Madre of Chiapas, Mexico, encircling Sceloporus malachiticus smaragdinus on the east, north, and northwest.

Sceloporus melanorhinus stuarti Smith

TYPE.—UMMZ 96759. Finca Canibal, Huehuetenango, Guatemala; about 3000 feet.

RANGE.—Moderate elevations of the valley of the Rio Grijalva in Chiapas, Mexico, and headwater valleys in adjacent Guatemala.

Sceloporus prezygus Smith

TYPE.—USNM 46861. Conjab, Chiapas (between San Bartolome and Comitan), Mexico; 5300 feet.

RANGE.—Moderate and intermediate elevations on the Mesa Central of Chiapas, Mexico, through the drier portions of the headwater valleys of the Rio Grijalva and the upper Rio Negro of Guatemala.
Sceloporus serrifer serrifer Cope

Type.—USNM 24868. Yucatan, Mexico. Smith and Taylor (loc. cit., 1950) suggest restriction to Merida, Yucatan, Mexico.

Range.—The Yucatan Peninsula south to central El Peten, Guatemala.

Sceloporus siniferus siniferus Cope

Type.—Nineteen syntypes; USNM 30453–56 and 30458–71, University of Illinois Museum of Natural History 40730. Pacific side of the Isthmus of Tehuantepec, Mexico.

Range.—Low and moderate elevations of the Pacific versant from Guerrero, Mexico, to western Guatemala. In Guatemala found only at very low elevations along the Pacific coastal plain.

Sceloporus squamosus Bocourt

Sceloporus squamosus Bocourt, Miss. Sci. Mex., Rept., 1874: 212, pl. 18 bis, figs. 7–7c, pl. 19, fig. 3; Smith and Taylor, 1950: 135.

Type.—MNHN 3180–82 (eight syntypes). Guatemala [? City] and Antigua, 1500 meters, and the embayment of the Rio Nagualate [all in Guatemala].

Range.—Low and moderate elevations from eastern Chiapas, Mexico, along the Pacific versant to Costa Rica. In Guatemala and possibly Honduras, in the dry valleys on the Caribbean versant and also on the south-eastern highlands of the former.

Sceloporus teapensis Gunther

Type.—BMNH 1946.8.9.92–98 (seven syntypes). Teapa, Tabasco, Mexico.

24 Specimens of *Sceloporus serrifer plioporus* Smith recorded from La Primavera, Alta Verapaz, Guatemala, and reported upon by Smith (loc. cit., 1889), Stuart (Misc. Pub. Mus. Zool., Univ. Michigan, 69, 1948: 53) and Martin (Occ. Papers Mus. Zool., Univ. Michigan, 545, 1952: 1–7) prove to be *Sceloporus presygyus*. *Sceloporus serrifer plioporus* has not been taken in Guatemala and is hardly to be expected.
RANGE.—Low and moderate elevations along the Caribbean versant from southern Veracruz, Mexico, to eastern Guatemala, exclusive of the outer end of the Yucatan Peninsula.

Sceloporus variabilis variabilis Wiegmann

TYPE.—Zoologisches Museum Berlin, originally two syntypes, 650, 652; lectotype, 650, *fide* H. Wermuth (*in litt.*). Mexico. Smith and Taylor (*loc. cit.,* 1950) suggest restriction to Veracruz, Mexico.

RANGE.—Low, moderate and intermediate elevations from Tamaulipas and Queretaro, Mexico, southward on the plateau and on the Caribbean versant to the Isthmus of Tehuantepec, thence through the valley of the Rio Grijalva in Chiapas, Mexico, through the headwater valleys of the same in Guatemala.

Sceloporus variabilis olloporus Smith

Sceloporus variabilis var. B, Bocourt, 1874: 200, in part (*identification of plates questionable.)*
Sceloporus variabilis, Gunther, 1890: 75 (*in part.)*

TYPE.—UMMZ 80458. San Juanillo, Costa Rica.

RANGE.—Low and moderate elevations from the dry basins of central Guatemala into northern and central Honduras and southward along the Pacific versant to Costa Rica.

Family **Scincidae**

KEY TO THE GUATEMALAN GENERA OF SCINCIDAE

1. Supranasals or internasals (depending on interpretation) absent . . *Leiologisma* (p. 74)
 Supranasals present ... 2

2. Enlarged and well differentiated scales between eye and auricular opening
 Scales of temporal region not enlarged or well differentiated, similar to lateral body scales ... *Eumeces* (below)
 ... *Mabuya* (p. 75)

Genus Eumeces Wiegmann

KEY TO GUATEMALAN SPECIES OF EUMECES
Middorsal scales much broader than those of paravertebral regions schwartzei
Middorsal scales not conspicuously larger than those of paravertebral regions .. sumichrasti

Eumeces schwartzei Fischer

Type.—Zoolgisches Museum Hamburg; originally three syntypes, two since destroyed; remaining type, 810. A small island in Laguna de Terminos, Campeche, Mexico.

Range.—The Yucatan Peninsula south to central El Peten, Guatemala, and adjacent Tabasco, Mexico.

Eumeces sumichrasti Cope

Type.—USNM 6601. Potrero, Veracruz, Mexico; 590 meters. See Smith and Taylor (*loc. cit.*).

Range.—Low elevations of the Caribbean versant from central Veracruz, Mexico, through Guatemala.

Genus Leiolopisma Dumeril and Bibron

Generotype.—Scincus telfairii Desjardins (not seen).

KEY TO GUATEMALAN SPECIES OF LEIOLOPISMA

1. Adpressed fore and hind limbs failing to meet in adults 2
 Adpressed limbs strongly overlapping in adults 3

2. Twenty-eight or more scale rows around midbody; dorsal scales between parietals and level of anus generally more than 65 assaturn assaturn
 Twenty-eight or less (generally 26) scale rows around midbody; dorsal scales generally fewer than 65 incertum

3. Twenty-eight or less scale rows around midbody; generally fewer than 60 dorsal scales between parietals and level of anus cherriei ixbaac
 Thirty or more scale rows around midbody; dorsal scales generally more than 60 .. cherriei cherriei

Leiolopisma assaturn assaturn Cope

Lygosoma (Mocoa) assata, Bocourt 1881: 450, ? pl. 22F, figs. 7-7c (in part).

TYPE.—ANSP 9465. Volcan Izalco, El Salvador.

RANGE.—Low and moderate elevations of the Pacific versant from eastern Chiapas, Mexico, through El Salvador.

Leiolopisma cheriei cheriei Cope

Lygosoma assatum brevis Werner, Abb. Akad. Wissen., 22, 1903: 345 (apparently originally in Zoologische Sammlung des Bayerischen Staates, now lost or destroyed; Coban, Guatemala).
Lygosoma (Mocoa) assata, Bocourt, 1881: 450, ? pl. 22F, figs. 7-7c (in part).
Mocoa assata, Gunther, 1885: 31 (in part).

TYPE.—AMNH 9551. Palmar, Costa Rica.

RANGE.—Low and moderate elevations from Tabasco, Mexico, on the Caribbean versant, and probably Nicaragua on the Pacific versant, south into Panama, exclusive of the outer end of the Yucatan Peninsula.

Leiolopisma cheriei ixbaac Stuart

TYPE.—UMMZ 80820. Chichen Itza, Yucatan, Mexico.

RANGE.—Lowlands of the Yucatan Peninsula south to about central El Peten, Guatemala.

Leiolopisma incertum Stuart

TYPE.—CNHM 20307. Volcan Tajumulco, Guatemala; 5500 feet.

RANGE.—Known only from moderate and intermediate elevations of the Pacific versant of southwestern Guatemala and from the mountains of Alta Verapaz, Guatemala.

Genus Mabuya Fitzinger

Mabuya Fitzinger, Neue Class. Rept., 1826: 23 and 52.

Generotype.—*Mabuya dominicensis* Fitzinger = [*Lacerta*] *mabouya* Lacepede.
Mabuya mabouya Lacepede

Mabuya mabouya by flat, Fitzinger, Neue Class, Rept., 1826: 52.
Mabuya agilis, Bocourt, 1879: 395, pl. 22B, figs. 2-2d.
Mabuya mabouya mabouya, Smith and Taylor, 1950: 156.

TYPE.—Unknown. World-wide materials mentioned in original description. Smith and Taylor (*loc. cit.*) suggest restriction of type locality to St. Vincent, B. W. I.

RANGE.—Low and moderate elevations of the New World tropics from central Mexico to Brazil. Several subspecies have been recognized recently by various authors.

Family Teiidae

KEY TO GUATEMALAN GENERA OF TEIIDAE

1. Body covered with cycloid scales more or less uniform in size *Gymnophthalmus* (p. 79)
 Body with granular scales dorsally and rows of plate-like scales ventrally 2

2. A single row of enlarged scales (brachials) on anterior surface of upper arm *Ameiva* (below)
 Three or more rows of enlarged scales on anterior and dorsal surfaces of upper arm *Cnemidophorus* (p. 78)

Genus Ameiva Meyer

GENEROTYPE.—*Lacerta americana* Gmelin = *Lacerta ameiva* Linnaeus.

KEY TO GUATEMALAN SPECIES OF AMEIVA

1. Scales of lateralmost row of ventrals conspicuously narrower than scales of other ventral rows .. *undulata edwardsi*
 Scales of all rows of ventrals of about equal size .. 2

2. Median gular scales not conspicuously enlarged or if so, grading gradually into smaller gular scales .. 3
 Median gular scales distinctly and abruptly enlarged .. 4

3. Vertical light bars on sides (often reduced to a series of dorsolateral spots) generally 10 or less .. *undulata hartwegi*
 Vertical light bars on sides generally 11 or more .. *undulata gaigeae*

4. Two interparietals .. *undulata chaitzami*
 A single interparietal .. 5

5. Generally two rows of granules between third supraocular and supraciliaries; third supraocular generally separated from frontoparietal over most of its length .. *undulata parva*
 Generally a single row of granules between third supraocular and supraciliaries; third supraocular generally strongly in contact with adjacent frontoparietal .. *undulata thomasi*
IIERPETOFAUNA OF GUATEMALA

Ameiva chaitzami Stuart

Type.—UMMZ 90638 (listed as 90368 in type description). Along Cahabon-Coban trail about 2 km. N Finca Canihor (about 38 km. airline ENE Coban), Alta Verapaz, Guatemala.

Range.—Known only from the vicinity of the type locality.

Ameiva festiva edwardsi Bocourt

Ameiva festivus, Bocourt, 1874: 26, pl. 20, fig. 2 (1878), pl. 20A, figs. 10–10d, pl. 20D, figs. 6–6b.
Ameiva festiva, Gunther, 1885: 24.

Type.—MNHN 5480. Yzabal and Panzos, Guatemala.

Range.—Low and moderate elevations of the Caribbean versant from the Isthmus of Tehuantepec, Mexico, southeastward into northern Honduras, exclusive of the outer end of the Yucatan Peninsula.

Ameiva undulata gaigeae Smith and Laufe

Type.—CNHM 100050. Progreso, Yucatan, Mexico.

Range.—Lowlands of the Yucatan Peninsula southward to northern El Peten, Guatemala.

Ameiva undulata hartwegi Smith

Ameiva undulata var. A, Bocourt, 1874: 258, pl. 20A, fig. 8.
Ameiva undulata, Gunther, 1885: 23 (in part).

Type.—USNM 108600. Chiapas, Mexico, across the Rio Usumacinta from Piedras Negras, Guatemala.

Range.—Low and moderate elevations of the Caribbean versant from extreme southeastern Mexico through northern Guatemala to northern Honduras.

Ameiva undulata parva Barbour and Noble

Ameiva undulata, Bocourt, 1874: 254, pl. 20A, figs. 7–7e, pl. 20, fig. 1 (1878); Gunther, 1885: 23 (in part).

RANGE.—Low and moderate elevations of the Pacific versant from the Isthmus of Tehuantepec, Mexico, to Costa Rica.

Ameiva undulata thomasi Smith and Laufe

TYPE.—CNHM 100006. La Libertad, Chiapas, Mexico, near the Rio Cuilco, where it crosses the Guatemalan border.

RANGE.—Moderate elevations of the upper valley of the Rio Grijalva, Chiapas, Mexico, and its headwater valleys in Guatemala.

Genus _Cnemidophorus_ Wagler

GENEROTYPE.—_Seps murinus_ Laurenti.

KEY TO GUATEMALAN SPECIES OF _Cnemidophorus_

1. Parietals and interparietals totalling five _lemniscatus_ lemniscatus

2. Supraoculars normally 3 .. _deppii_ cozumela

3. Frontoparietals separated from parietals by one or more accessory scutes

 Frontoparietals in contact with parietals _deppii_ _deppii_

4. Body pattern consisting of three dorsolateral stripes on either side, these well marked to above groin .. _angusticeps_

 Body pattern of light spots on a darker background; if dorsolateral stripes present (juveniles), uppermost stripe not extending posteriorly to above groin _motaguae_

Cnemidophorus angusticeps Cope

TYPE.—Probably six syntypes; USNM 24876–77 and probably 12284 (2) and 24879, MCZ 46945. Yucatan, Mexico.

RANGE.—Lowlands of the Yucatan Peninsula south to central El Peten, Guatemala, and British Honduras.

Cnemidophorus deppei deppei Wiegmann

Cnemidophorus deppei Wiegmann, Herpet. Mex., 1834: 28; Bocourt, 1878: 281, pl. 20, fig. 3, pl. 20D, figs. 1–1b, pl. 20C, figs. 5–5d (1874).

Type.—Zoologisches Museum Berlin 882. Mexico. Smith and Taylor (loc. cit.) suggest restriction to Tehuantepec, Oaxaca, Mexico.

Range.—Low and moderate elevations from Guerrero, Mexico, along the Pacific versant to Costa Rica and from Veracruz, Mexico, through the valley of the Rio Grijalva in Chiapas through the dry basins of central Guatemala to Honduras and El Salvador.

Cnemidophorus deppei cozumela Gadow

Type.—BMNH 1951.1.8.24–27 (four syntypes). Cozumel Island, east coast of Yucatan [Peninsula], Mexico.

Range.—Lowlands of the Yucatan Peninsula south to central El Peten, Guatemala (excluding the dry outer end of the peninsula), and some of the coastal islands off Quintana Roo, Mexico.

Cnemidophorus lemniscatus lemniscatus Linnaeus

Type.—Naturhistoriska Riksmuseet, Stockholm 126 (2), 127. Guiana.

Range.—Low elevations from extreme southeastern Guatemala southward to Brazil. A coastal form in northern Central America.

Cnemidophorus motaguensis Sackett

Cnemidophorus sexlineatus mexicanus, Bocourt, 1878: 281, pl. 20C, fig. 7 (1874).

Type.—ANSP 22143. Motagua River Valley, 10 km. NE Zacapa, Dept. Zacapa, Guatemala.

Range.—Low and moderate elevations from Oaxaca, Mexico, through the Grijalva Valley of Chiapas and the dry valleys and basins of central Guatemala, across the southeastern lowlands of Guatemala to El Salvador and Honduras.

Genus Gymnophthalmus Merrem

Generotype.—Lacerta quadrilineata Linnaeus = Lacerta lineata Linnaeus.
KEY TO GUATEMALAN SUBSPECIES OF GYMNOPTHALMUS

Prefrontals separated from loreals ... speciosus birdi
Prefrontals in contact with loreals ... speciosus sumichrasti

Gymnophthalmus speciosus birdi Stuart

TYPE.—UMMZ 84057. Desert flats of the Salama Basin 2 km. S San Geronimo (= San Jeronimo), Baja Verapaz, Guatemala.

RANGE.—Low and moderate elevations in the dry basins and valleys of central Guatemala, across the southeastern highlands of Guatemala to El Salvador.

Gymnophthalmus speciosus sumichrasti Cope

Gymnophthalmus sumichrasti, Bocourt, 1881: 471, pl. 22H, figs. 2–2i; Smith and Taylor, 1950: 192.

RANGE.—Low and moderate elevations along the Pacific versant from the Isthmus of Tehuantepec through western Guatemala.

Family ANGUIDAE

KEY TO GUATEMALAN GENERA OF ANGUIDAE

1. Body covered with finely striated cycloid scales of more or less uniform size
 .. Celestus (p. 81)
 Body covered with plate-like scales ... 2

2. Subocular separated from lower anterior temporal by dorsal extension of a posterior supralabial ... Abronia (below)
 Subocular in contact with lower anterior temporal Gerrhonotus (p. 82)

Genus Abronia Gray

KEY TO GUATEMALAN SPECIES OF ABRONIA

Postmental paired ... aurita
Postmental unpaired ... vasconcelosi
Abronia aurita Cope

Gerrhonotus (Abronia) auritus, Bocourt, 1878: 337, pl. 21, fig. 2 (1879), pl. 21A, figs. 7–7a.

TYPE.—USNM 6769. “Forests of Verapaz [Guatemala], in the neighborhood of the ancient cities of Peten and Coban.”

RANGE.—Known only from moderate elevations in the mountains of Alta Verapaz, Guatemala.

Abronia vasconcelosi Bocourt

RANGE.—Known only from the type locality but very probably occurring at intermediate elevations along the Pacific versant of western Guatemala and possibly eastern Chiapas, Mexico.

Genus Celestus Gray

GENEROTYPE.—Celestus striatus Gray.

KEY TO GUATEMALAN SPECIES OF CELESTUS

Frontal not in contact with first supraorbital atitlanensis
Frontal in contact with first supraorbital rozellae

Celestus atitlanensis Smith and Taylor

Diploglossus (Celestus) steindachnerii (nee Cope) Bocourt, 1879: 383, pl. 22, figs. 3–3c (in part).

TYPE.—MNHN 5206. Atitlan, Guatemala [probably San Lucas Atitlan].

RANGE.—Known only from the type.

25 I find it difficult to believe that two species of Abronia exist sympatrically in Alta Verapaz. Tihen (Amer. Mus. Novitates, 1687, 1954: 22) also expresses skepticism as to the validity of fimbriata.

26 I am extremely skeptical of this species. I am of the opinion that there was a mixup in Bocourt's data. Until further material may prove otherwise, the occurrence of Celestus on the Pacific versant of Guatemala and Chiapas, Mexico, must be viewed as questionable.
Celestus rozellae Smith

Diploglossus (Celestus) steindacherii, Bocourt, 1879: 383; figs. 3–3c (in part).
Diploglossus steindacheri, Gunther, 1885: 34, pl. 22, fig. A (in part).

Type.—USNM 113526. Vicinity of Palenque, Chiapas, Mexico.

Range.—Low elevations probably from the Tehuantepec isthmian region of southern Mexico through the Peten of Guatemala and into British Honduras.

Genus Gerrhonotus Wiegmann

Gerrhonotus Wiegmann, Isis, 21, 1828: 379.

Generotype.—Gerrhonotus tessellatus Wiegmann = Gerrhonotus liocephalus Wiegmann.

Key to Guatemalan subspecies of Gerrhonotus

1. Upper postnasal separated from lower postnasal by anterior loreal ... moreleti rafaeli

Upper postnasal in contact with lower postnasal .. 2

2. Belly generally with scattered, squarish, dark spots; third infralabial frequently not in contact or just barely in contact with chin shields moreleti fulvus

Belly generally immaculate; third infralabial generally broadly in contact with chin shields .. moreleti moreleti

Gerrhonotus moreleti moreleti Bocourt

Gerrhonotus moreleti Bocourt, Nouv. Arch. Mus., 7, 1872: 102; Bocourt, 1878: 349, pl. 21, fig. 1 (1879), pl. 21B, figs. 5–5a, and Gunther, 1885: 41, pl. 24, fig. C, in part (both spelled moreletii).

Type.—MNHN 1188, 1267–68 (six syntypes). Peten and pine forests of Alta Verapaz, Guatemala; 1440 meters.

Range.—Moderate and intermediate elevations in the mountains of Alta Verapaz, Guatemala. El Peten record undoubtedly in error.

Gerrhonotus moreleti fulvus Bocourt

Gerrhonotus moreleti, Gunther, 1885: 41, pl. 24, fig. C (in part).

Type.—MNHN 2006–07 (six syntypes). Pine forest of Totonicapan on the west [south] slopes of the Cordillera; 2460 meters.
RANGE.—Intermediate and high elevations on the Plateau of Guatemala with the exception of the mountains of Alta Verapaz.

Gerrhonotus moreleti rafaeli Hartweg and Tiñen

TYPE.—UMMZ 88228. Sixteen km. S Siltepec, Chiapas, Mexico; 2300 meters.

RANGE.—Intermediate and high elevations of the Sierra Madre of Chiapas, Mexico, into extreme southwestern Guatemala.

Family Xenosauridae

Genus Xenosaurus Peters

Generotype.—*Xenosaurus fasciatus* Peters = *Cubina grandis* Gray.

Xenosaurus rackhami Stuart

TYPE.—UMMZ 89072. Finca Volcan (49 km. due E Coban), Alta Verapaz, Guatemala; 4000 feet.

RANGE.—Moderate and intermediate elevations of the Caribbean versant from the mountains of Alta Verapaz, Guatemala, into Chiapas, Mexico.

Family Helodermatidae

Genus Heloderma Wiegmann

Heloderma Wiegmann, Isis, 22, 1829: 624 (substitute name for *Trachyderma* Wiegmann 1829; preoccupied).

Generotype.—*Trachyderma horridum* Wiegmann.

Heloderma horridum alvarezi Bogert and Martin del Campo

TYPE.—An unnumbered specimen in the collections of the Instituto de Biología, Universidad Nacional Autónoma, Mexico. Immediate vicinity of Tuxtla Gutiérrez, Chiapas, Mexico.
Range.—Moderate elevations in the valley of the Rio Grijalva, Chiapas, Mexico, and in headwater tributaries in extreme southwestern Guatemala. Known definitely in Guatemala only from the Rio Lagartero Depression.

Order SERPENTES

Family Boidae

Key to Guatemalan Genera of Boidae

1. Dorsal surface of head covered with small subequal scales, no enlarged plates .. Boa (below)
 Dorsal surface of head with two or more enlarged plates .. 2

2. A single large prefrontal plate .. Ungaliophis (p. 85)
 Two prefrontals and two distinct internasals ... Loxocemus (below)

Genus Boa Linnaeus

Generotype.—Boa constrictor Linnaeus.

Boa constrictor imperator Daudin

Boa imperator Daudin, Hist. Nat. Rept., 5, An X [Fr. Rev. = 1801 or 1802]: 105; Bocourt, 1882: 519, pl. 30, figs. 8–8c; Gunther, 1895: 181.

Boa constrictor imperator, Forcart, Herpetologica, 7, 1951: 199.

Type.—In MNHN, but not definitely identifiable, fide J. Guibe (in litt.).

Type locality not definitely stated, but mention made of specimens from Mexico, Cartagena, Colombia, and the Choco of Colombia.

Range.—Low and moderate elevations from Tamaulipas and Sonora in Mexico southward into northern South America.

Genus Loxocemus Cope

Generotype.—Loxocemus bicolor Cope.

Loxocemus bicolor Cope

Type.—Originally USNM 4948; apparently lost. La Union, El Salvador.

Range.—Lowlands of the Pacific versant from central Mexico southward at least through El Salvador.
Genus *Ungaliophis* Muller

Generotype.—*Ungaliophis continentalis* Muller.

Ungaliophis continentalis Muller

Peropodium guatemalensis Bocourt, Miss. Sci. Mex., Rept., 1882: 523, pl. 31, figs. 5–5b (based on Muller's predescription, *loc. cit.*).

Type.—Naturhistorisches Museum Basel 426. Retalhuleu, Guatemala.

Range.—Low elevations from eastern Chiapas, Mexico, to Nicaragua along the Pacific versant.

Family *Leptotyphlopidae*

Genus *Leptotyphlops* Fitzinger

Generotype.—*Typhlops nigricans* Schlegel.

Leptotyphlops phenops phenops Cope

Stenostoma dulce, Bocourt, 1882: 506, pl. 29, figs. 8–8c.

Type.—Nine syntypes, USNM 12444, 30289–95 (Tehuantepec), and 6760 (Coban). Tehuantepec, Mexico, and Coban, Guatemala.

Range.—Low and moderate elevations along the Caribbean versant from Veracruz, Mexico, to Central Guatemala and from the Isthmus of Tehuantepec, Mexico, to El Salvador along the Pacific.

Family *Typhlopidae*

Genus *Typhlops* Schneider

Generotype.—*Anguis lumbricalis* Linnaeus.
86

L. C. STUART

Typhlops tenuis Salvin

Typhlops perditus, Bocourt, 1882: 499, pl. 29, figs. 3–3c, pl. 30, fig. 3.

TYPE.—BMNH 1946.1.11.71. Coban, Guatemala.

RANGE.—Known only from moderate elevations in Alta Verapaz, Guatemala.

Family COLUBRIDAe

KEY TO GUATEMALAN GENERA OF COLUBRIDAe

1. Dorsal scales disposed over body in an even number of rows ... Spilotes (p. 116)
2. Anal plate entire .. 3
 Anal plate divided ... 16
3. Number of dorsal scale rows not reduced between about midbody and level of anus ... 4
 More dorsal scale rows at midbody than at level of anus ... 8
4. Dorsal scales disposed in 15 longitudinal rows ... Sibon (p. 115)
 Dorsal scales disposed in 17 to 19 longitudinal rows ... 5
5. Generally more than 195 abdominal scutes .. Celia (p. 89)
 Generally fewer than 195 abdominal scutes ... 6
6. Dorsal scales disposed in 19 longitudinal rows ... Ninia (p. 106)
 Dorsal scales disposed in 17 longitudinal rows ... 7
7. Body pattern of light and dark annuli, the dark sometimes fused dorsally to give appearance of saddles .. Tropidonodipsas (p. 123)
 Body unicolor dorsally or with pattern of stripes ... 8
 Dorsal scales keeled over all or part of body ... 9
 Dorsal scales all smooth ... 12
8. Maximum number of dorsal scale rows less than 21 ... 10
 Maximum number of dorsal scale rows more than 21 ... 11
9. Dorsal scale row formula 19–17 or 19–17–15 .. Thamnophis (p. 120)
 Dorsal scale row formula 17–15–17 .. 13
10. Dorsal scale row formula generally higher than 19–21–19 ... Lampropeltis (p. 102)
 Dorsal scale row formula 19–17 ... 14
11. Dorsal scales disposed obliquely over anterior part of body; maximum number of dorsal scale rows generally 25 .. Pseustes (p. 111)
 Dorsal scale rows not disposed obliquely over anterior part of body; dorsal scale rows generally 27 or more .. Pituophis (p. 109)
12. Dorsal scale formula 17–15 .. Drymarchon (p. 95)
 Dorsal scale row formula generally greater than 17–15 .. 13
13. Dorsal scale formula generally higher than 19–21–19 .. Lampropeltis (p. 102)
 Dorsal scale formula 19–17 .. 14
14. Abdominals fewer than 150 .. 15
 Abdominals more than 150 ... 16
15. Dorsal body pattern of light and dark annuli .. Oxyrhopus (p. 109)
 Dorsal body pattern unicolor or somewhat spotted ... Celia (p. 89)
16. Number of dorsal scale rows greater at about midbody than at level of anus 17
 Number of dorsal scale rows not reduced between about midbody and level of anus 29
17. Some or all of dorsal scales keeled
 All dorsal body scales smooth .. 18
18. Dorsal scale row formula 15–11 Leptophis (p. 104)
 Dorsal scale row formula greater than 15–11 19
19. Maximum number of dorsal scale rows 17 20
 Maximum number of dorsal scale rows 21 or more 21
20. No loreal, prefrontals in contact with supralabials
 A loreal shield present Drymobius (p. 96)
 Dorsal scale row formula exceeding 21–19–17 22
22. Loreal shield broken into two or more small scales
 A single loreal shield Elaphe (p. 97)
23. Dorsal scale row formula not exceeding 17–15 24
 Dorsal scale row formula exceeding 17–15 27
24. A small subocular below preocular
 No subocular below preocular 25
25. Supralabials 7; abdominals more than 180 Masticophis (p. 105)
 Supralabials 8; abdominals less than 170 Coluber (p. 90)
26. A pair of dark paravertebral stripes
 No dark paravertebral stripes Dryadophis (p. 94)
27. Dorsum of body either unicolor or striped
 Dorsal body pattern of spots, blotches, saddles, or annuli
 Leptodeira (p. 108)
28. A single anterior temporal Coniophanes (p. 90)
 Two or three anterior temporals Conophis (p. 93)
29. Dorsal scales strongly keeled
 Dorsal scales all smooth (occasionally very feebly keeled)
 Storeria (p. 117)
30. Maximum number of dorsal scale rows 15 31
 Maximum number of dorsal scale rows 17 or more 33
31. Both a loreal and preocular shield present
 Scelophis (p. 114)
 Only a single scale (loreal or preocular depending upon interpretation) between
 nasal shield and eye .. 32
32. Abdominals fewer than 120 Tanillita (p. 119)
 Abdominals more than 120 Adelphicos and Tanilla (below)
33. Rostral upturned anteriorly with a sharp, free edge and in contact with frontal
 Ficimia (p. 99)
 Rostral normal and not in contact with frontal 34
34. Dorsum with light and dark bands at least anteriorly on body
 Dorsal pattern of spots, stripes, blotches or saddles, or unicolor 35
35. Bands confined to anterior part of body; posteriorly small spots arranged in
 longitudinal rows Scaphiodontophis (p. 113)
 Bands present throughout entire length of body Pliocercus (p. 109)
36. Head much broader than neck; abdominals generally more than 215, subcaudals
 more than 120 Imantodes (p. 100)
 Head not greatly broadened; abdominals less than 215, subcaudals fewer than 120 37

27 In both Elaphe and Trimorphodon the keeling is very weak and is frequently
 restricted to scales of the middorsal region on the posterior part of the body and on the tail.
37. Tail very short, subcaudals fewer than 50 Stenorrhina (p. 116)
Tail longer, subcaudals more than 50 38

38. Only a single shield (loreal or preocular depending upon interpretation) between
nasal shield and eye .. Eulius (p. 98)
Both a loreal and preocular shield present 39

39. Belly uniformly very dark .. Amastridium (p. 89)
Belly not uniformly very dark, at most only outer ends of ventrals darkened
... Rhadinaea and Trimetopon (p. 112)

Genus Adelphicos Jan

KEY TO GUATEMALAN SPECIES OF ADELPHICOS AND TANTILLA

1. Chin shields bordering lip; no third infralabial Adelphicos quadrivirgatus sargi (below)
 Chin shields separated from border of lip by labials .. 2
2. Third or second and third infralabials reduced in width, very narrow and confined
 to lip border .. Adelphicos quadrivirgatus visoninus (below)
 No infralabials reduced in width, all normal in shape and size 3
3. Dorsal body pattern of longitudinal dark and/or light stripes 4
 Dorsum unicolor though occasionally middorsal scale row may be somewhat
 lightened .. 7
4. Subcaudals more than 60 .. Tantilla taeniata (p. 119)
 Subcaudals fewer than 60 .. 5
5. Abdominals with dark anterior borders, entire ventral surface very dark
 Adelphicos veraepacis veraepacis (below)
 Except sometimes laterally, ventral surface light .. 6
6. A light middorsal stripe, at least anteriorly .. Tantilla jani (p. 118)
 A dark middorsal stripe, at least anteriorly .. Tantilla mexicana (p. 118)
7. Ventral surface very dark .. Tantilla moesta (p. 119)
 Ventral surface light .. 8
8. A light collar on back of head and nape .. 9
 No light collar on back of head or nape .. Tantilla canula (p. 118)
9. Abdominals more than 150 .. Tantilla bairdi (p. 118)
 Abdominals fewer than 150 .. Tantilla schistosa schistosa (p. 119)

Adelphicos quadrivirgatus sargi Fischer

Adelphicos quadrivirgatus sargii, Smith, Proc. Rochester Acad. Sci., 8, 1942: 192, fig. 4;

Type.—Originally three syntypes in the Staatslich Museum fur Natur-kunde, Stuttgart. One subsequently exchanged to the British Museum
 (Natural History) and designated lectotype by Smith and Taylor (loc. cit.).
 It is No. 1946.1.6.28. Guatemala.

Range.—Moderate elevations of the Pacific versant from eastern Chiapas, Mexico, into western Guatemala.
Adelphicos quadriuirgatus visioninus Cope

Adelphicos quadriuirgatus visioninus, Smith, Proc. Rochester Acad. Sci., 8, 1942: 186, fig. 2;

TYPE.—USNM 24899. Belize [British Honduras].

RANGE.—Low and moderate elevations from Tabasco, Mexico, along the Caribbean versant into northern Honduras with the exception of the outer end of the Yucalan Peninsula.

Adelphicos veraeapaicis veraeapaicis Stuart

TYPE.—UMMZ 89073. Cloud forest above Finca Samac, 7 km. W Coban, Alta Verapaz, Guatemala; about 1500 meters.

RANGE.—Intermediate elevations of Alta Verapaz and very probably the Sierra de los Cuchumatanes of Guatemala.

Genus Amastridium Cope

GENOTYPE.—*Amastridium veliferum* Cope.

Amastridium sapperi Werner

TYPE.—Originally in the Zoologische Sammlung des Bayerischen Staates; now either lost or destroyed. Guatemala.

RANGE.—Poorly known. Recorded from the Atlantic versant from Nuevo Leon, Mexico, south to Alta Verapaz, Guatemala, and from several localities on the Pacific versant of Chiapas, Mexico.

Genus Clelia Fitzinger

Clelia Fitzinger, Neu Class. Rept., 1826: 31 and 55.

GENOTYPE.—*Coluber clelia* Daudin on page 31 (op. cit.) and *Clelia daudinii* [= *Coluber clelia* Daudin] on page 55 (loc. cit).

KEY TO GUATEMALAN SPECIES OF CLELIA

Dorsal scales disposed in 17 longitudinal rows ... *scytalina*
Dorsal scale row formula 19-17 ... *clelia clelia*
Clelia clelia clelia Daudin

TYPE.—Originally in MNHN; at present not definitely identifiable, *fide* J. Guibe *(in litt.)*. Surinam.

RANGE.—Low and moderate elevations of the Caribbean versant from northern Guatemala and British Honduras southward into South America.

Clelia scyalina Cope

TYPE.—USNM 6581. Near Tabasco, Mexico.

RANGE.—Poorly understood. Low and moderate elevations from Vera-cruz and Tabasco in Mexico, crossing the Isthmus of Tehuantepec and southward along the Pacific versant into South America, but apparently extremely disjunct.

Genus Coluber Linnaeus

Generotype.—*Coluber constrictor* Linnaeus.

Coluber constrictor stejnegerianus Cope

TYPE.—USNM 17065. Cameron County Texas.

RANGE.—Low elevations from southern Texas southward on the Gulf Coastal Plain of eastern Mexico into northern Guatemala.

Genus Coniophanes Hallowell

Generotype.—*Coronella fissidens* Gunther.

28 Dr. Joseph R. Bailey of Duke University informs me that this is a valid species.
KEY TO GUATEMALAN SPECIES OF CONIOPHANES

1. Dorsal scales disposed in 23 to 25 longitudinal rows .. schmidti
 Dorsal scales in no more than 21 longitudinal rows ... 2

2. A maximum of 19 dorsal scale rows ... imperialis clavatus
 Dorsal scales disposed in 21 longitudinal rows .. 3

3. A large, dark, rounded spot on the outer edge of each abdominal scute 4
 Abdominal scutes immaculate or infringed upon laterally by the dorsal ground color or with very fine, dark punctations; if with lateral spots, these very small . 5

4. Abdominals more than 150 ... quinquevittatus
 Abdominals fewer than 150 ... bipunctatus

5. Generally a very small, dark spot on outer edges of most of the abdominal scutes ... fssidens
 Abdominals without dark spots arranged on outer edges but with fine, dark punctations scattered over abdomen ... fssidens punctigularis

Coniophanes bipunctatus Gunther

TYPE.—BMNH 1946.1.9.58. Type locality unknown. Schmidt (Field Mus. Nat. Hist., zool. ser., 22, 1941: 504) was of the belief that the type probably came from British Honduras, and I concur with this opinion.

RANGE.—Humid lowlands from southern Veracruz, Mexico, eastward through northern El Peten, Guatemala, into British Honduras and northern Spanish Honduras.

Coniophanes fssidens Gunther
Coniophanes fssidens punctigularis, Bocourt, 1886: 652.
Coniophanes proterops, Bocourt, 1886: 654.
Tachymenisc fssidens, Gunther, 1895: 161 (in part).

TYPE.—BMNH 1946.1.8.16–21, 1946.1.9.61, and 1946.1.3.2–3 (nine syntypes). Mexico.

RANGE.—Low elevations of the Caribbean versant from southern Veracruz, Mexico, southward into northern South America.

29 Guatemala is bracketed by Coniophanes piceivittis to the north and south, but the species has never been taken within the country. Inasmuch as the species is restricted to drier environments, it is not to be expected along the fairly humid Pacific versant. It may occur, however, in the subhumid corridor of Stuart (Contrib. Lab. Vert. Biol., Univ. Michigan, 65, 1954: 1–26, pls. 1–6). Essential data on this species is: Coniophanes piceivittis Cope, Proc. Amer. Philos. Soc., 11, 1870: 149 (USNM 30264–65, two syntypes; CHIHUAHUA, TEGUANTEPEC, Mexico). It is related closely to Coniophanes schmidti from which it may be differentiated by its much broader lateral stripe (4–5 scales wide in piceivittis, 1/2–1 1/2 in schmidti).
Coniophanes fissidens punctigularis Cope

Coniophanes fissidens, Bocourt, 1886: 650, pl. 41, figs. 3–3d.

Tachymenis fissidens, Gunther, 1895: 161 (in part).

RANGE.—Low and moderate elevations of the Pacific versant from Tehuantepec, Mexico, to Costa Rica.

Coniophanes imperialis clavatus Peters

Tachymenis fissidens, Gunther, 1895: 161 (in part).

TYPE.—Zoologisches Museum Berlin 5106. Mexico.

RANGE.—Low elevations of the Caribbean versant from Veracruz, Mexico, into northern Honduras.

Coniophanes quinquevittatus Dumeril, Bibron, and Dumeril

Coniophanes quinquevittatus, Bailey, Papers Michigan Acad. Sci., Arts, Letters, 24, 1938: 26, pl. 1, fig. 6; Smith and Taylor, 1945: 42.

Hydrocalamus quinquevittatus, Bocourt, 1895: 811, pl. 55, figs. 6–6f (1893), pl. 60, figs. 5–3a.

TYPE.—MNHN 516. Type locality unknown. Two specimens from El Peten, Guatemala, mentioned in type description.

RANGE.—Caribbean lowlands from southern Veracruz, Mexico, into northern Guatemala.

Coniophanes schmidti Bailey

TYPE.—UMMZ 73043. Chichen Itza, Yucatan, Mexico.

RANGE.—Lowlands of the Yucatan Peninsula southward into central El Peten, Guatemala.
Genus *Conophis* Peters

Generotype.—*Conophis vittatus* Peters.

KEY TO GUATEMALAN SPECIES OF CONOPHIS

Anteriorly on body both the vertebral and paravertebral scale rows without dark markings, either lines or spots .. *lineatus durni*

Anteriorly on the body, of the middorsal scale rows only the vertebral row without dark markings ... *pulcher*

Conophis lineatus durni Smith

Type.—USNM 77963. Managua, Nicaragua.

Range.—Low and moderate elevations from the Cuilco valley in northwestern Guatemala and from El Peten, Guatemala, and British Honduras south into Honduras along the Caribbean versant and to Costa Rica along the Pacific.

Conophis pulcher Cope

Conophis pulcher similis, Bocourt, Miss. Sci. Mex., Rept., 1886: 647 (MNHN 6090; Guatemala by inference); Smith and Taylor, 1945: 43.

Conophis lineatus, Gunther, 1895: 165.

Type.—USNM 6751 (2) and 6803 (three syntypes). "Near Peten, Verapaz" [Guatemala].

Range.—Low and moderate elevations from Chiapas, Mexico, south to the southeastern highlands of Guatemala along the Pacific versant and the dry valleys of eastern and central Guatemala into Honduras along the Caribbean.

Genus *Dendrophidion* Fitzinger

Generotype.—*Herpetodryas dendrophis* Schlegel.

30 I am indebted to John Wellman of the University of Kansas for suggesting this arrangement of Guatemalan *Conophis*.
Dendrophidion vinitor Smith

Dendrophidion dendrophis, Bocourt, 1890: 730, pl. 49, figs. 4–4e (in part).

Drymobius dendrophis, Gunther, 1894: 127 (in part).

Type.—USNM 110662. Piedras Negras, Guatemala.

Range.—Low and moderate elevations of the Caribbean versant from Veracruz, Mexico, south to Panama.

Genus Dryadophis Stuart

Dryadophis Stuart,COPEIA, 1939: 55 (substitute name for Eudryas Fitzinger, 1843, preoccupied).

Eudryas Fitzinger, Syst. Rept., 1843: 26 (preoccupied, Eudryas Boisduval, 1836; Arthropoda, Insecta).

Generotype.—Coluber boddaerti Sentzen.

Key to Guatemalan Species of Dryadophis

1. A narrow, dark middorsal stripe ... dorsalis

No dark middorsal stripe .. 2

2. Each dorsal scale outlined finely with black to give a reticulate appearance to dorsal pattern .. melanolomus melanolomus

Dorsal pattern not reticulate in appearance; a lateral light stripe on either side most conspicuous feature of pattern .. 3

3. Subcaudals generally more than 112 melanolomus laevis

Subcaudals generally fewer than 112 melanolomus tehuanae

Dryadophis dorsalis Bocourt

Drymobius (Eudryas) dorsalis Bocourt, Miss. Sci. Mex., Rept., 1890: 724, pl. 51, figs. 2–2d.

Dryadophis dorsalis, Stuart, Misc. Pub. Mus. Zool., Univ. Michigan, 49, 1941: 95, pl. 1, fig. 6, pl. 4, fig. 5.

Type.—MNHN 7391 and 91–257 (two syntypes). Plateau of Guatemala.

Range.—Moderate and intermediate elevations from the Pacific versant of southeastern Guatemala into Nicaragua.

Dryadophis melanolomus melanolomus Cope

Drymobius boddaertii, Gunther, 1894: 125 (in part).

Type.—USNM 24985. Yucatan, Mexico.

Range.—Lowlands of the Yucatan Peninsula south into central El Peten, Guatemala.
Dryadophis melanolomus laevis Fischer

Herpetodryas laevis Fischer, Arch. Natur., 47, 1881: 227, pl. 11, figs. 4-6.
Dromicus caeruleus Fischer, Jahrb. Hamburg Wissen. Anst., 2, 1885: 103, pl. 4, fig. 7
(type originally Naturhistorisches Museum Brunswick 5030b; present status unknown; Coban, Guatemala).

Dromicus caeruleus, Bocourt, 1890: 722, pl. 51, figs. 6-6d.
Drymobius (Eudryas) caeruleus, Bocourt, 1890: 727, pl. 51, figs. 4-4d.

TYPE.—Originally Staatslich Museum fur Naturkunde Stuttgart 2032; present status unknown. Guatemala.

RANGE.—Low and moderate elevations in the mountains of Alta Verapaz, Guatemala.

Dryadophis melanolomus tehuanæ Smith

TYPE.—USNM 110917. Cerro Guengola, Oaxaca, Mexico.

RANGE.—Low and moderate elevations from Nayarit, Mexico, along the Pacific versant south to western Guatemala.

Genus Drymarchon Fitzinger

Generotype.—Coluber corais Boie.

KEY TO GUATEMALAN SUBSPECIES OF DRYMARCHON

1. Entire dorsum black as is posterior portion of belly and underside of tail corais rubidus
Dorsum light brown anteriorly, posteriorly light brown to black 2
2. Entire dorsum light brown, not darker posteriorly than anteriorly corais unicolor
Dorsum light brown anteriorly becoming darker posteriorly and end of tail black corais melanurus

Drymarchon corais melanurus Dumeril, Bibron, and Dumeril

Spilotes corais melanurus, Bocourt, 1888: 687, pl. 44, figs. 1–le (in part).
Spilotes corais, var. 1, Gunther, 1894: 116 (in part).

TYPE.—MNHN 63–335. Mexico.
Range.—Low and moderate elevations from Veracruz, Mexico, on the Caribbean versant and from Nicaragua on the Pacific versant south into northwestern Colombia.

Drymarchon corais rubidus Smith

Type.—USNM 46430. Rosario, Sinaloa, Mexico.

Range.—Low and moderate elevations from Sinaloa, Mexico, south to the Isthmus of Tehuantepec and apparently through the valley of the Rio Grijalva of Chiapas, Mexico, into extreme southwestern Guatemala.

Drymarchon corais unicolor Smith

Spilotes corais, var. 1, Gunther, 1894: 116 (in part).

Type.—USNM 110865. Finca La Esperanza, near Escuintla, Chiapas, Mexico.

Range.—Low and moderate elevations from Chiapas, Mexico, along the Pacific versant into Nicaragua.

Genus Drymobius Fitzinger

Generotype.—*Herpetodryas margaritiferus* Schlegel.

KEY TO GUATEMALAN SPECIES OF DRYMOBIUS

1. Dorsal ground color green without lighter markings *chloroticus*
 Dorsal ground color green but each scale with a light (yellow) streak to produce a speckled pattern .. 2

2. All or great majority of abdominal scutes with a dark posterior border
 Except occasionally on their outer ends, abdominal scutes without dark posterior borders .. *margaritiferus occidentalis*

Drymobius chloroticus Cope

Type.—USNM 6755. Guatemala. Cope indicated later (*loc. cit.*, 1887) that the type was collected at Coban, Alta Verapaz.
Range.—Imperfectly known. Literature records indicate that it inhabits moderate elevations from San Luis Potosi, Mexico, along the Caribbean versant south to Honduras and from the Isthmus of Tehuantepec, Mexico, south to Costa Rica along the Pacific.

Drymobius margaritiferus margaritiferus Schlegel

Drymobius margaritiferus [margaritiferus], Bocourt, 1890: 716, pl. 49, figs. 2–2d.

Drymobius margaritiferus margaritiferus, Smith and Taylor, 1945: 57.

Range.—Low and moderate elevations from Texas southward along the Caribbean versant possibly to northern South America. Said to occur also in the region of Tonala, Chiapas, Mexico, on the Pacific side (Smith and Taylor, loc. cit.).

Drymobius margaritiferus occidentalis Bocourt

Type.—MNHN 7395. Western [southern] versant of Guatemala near Volcan Atitlan.

Range.—Low and moderate elevations of the Pacific versant of eastern Chiapas, Mexico, eastward into El Salvador.

Genus *Elaphe* Fitzinger

Generotype. *Elaphe parreysii* Fitzinger = *Coluber quatuorlineata* Lacepede.

Key to Guatemalan Species of Elaphe

1. Supralabials generally 9 ... *flavirufa* pardalina
 Supralabials generally 8 ... 2

2. Median frontoparietal band with a small, rounded opening at about middle of suture between parietals; band not opening anteriorly *triaspis* triaspis
 Median frontoparietal band with an elongate opening along suture between parietals; band generally opening anteriorly, thus forming a bident *triaspis* mutabilis
Elaphe flavirufa pardalina Peters

Elaphe rodriguezi Bocourt, Le Natur., ser. 2, 14, 1887: 168, fig. (MNHN 88–154; Panzos, Guatemala); Bocourt, 1888: 683, pl. 46, figs. 1–1e.

Type.—Zoologisches Museum Berlin 3790. Type locality unknown.

Range.—Caribbean lowlands from eastern Guatemala to Nicaragua (Corn Island).

Elaphe triaspis triaspis Cope

Type.—USNM 24903. Belize [British Honduras].

Range.—Lowlands of the Yucatan Peninsula south to central El Peten, Guatemala.

Elaphe triaspis mutabilis Cope

Scotophis mutabilis, Bocourt, 1888: 680, pl. 46, figs. 2–2f.
Coluber triaspis, Gunther, 1894: 115 (in part).

Type.—USNM 6745. Verapaz, Guatemala.

Range.—Moderate elevations from northern Guatemala south to Costa Rica.

Genus Enulius Cope

Generotype.—*Enulius murrinus* Cope = *Liophis flavitorques* Cope.

Enulius flavitorques Cope

31 Dowling ([Zoológica, 45, 1960: 66–67, 75]) considers the Pacific versant population of this species in Guatemala to be *mutabilis-intermedia* intergrades. To include *intermedia* herein would be a senseless multiplication of the Guatemalan snake fauna. On the other hand, *Elaphe flavirufa matudai* Smith (Copelia, 1941: 132; USNM 110308; Salto de Agua, 1200 ft., Mt. Ovando, 10 km. NW Escuintla, Chiapas [Mexico]) is to be expected along the Pacific versant of western Guatemala. In this subspecies the dorsal blotches at midbody extend laterally down to the second or third scale row, whereas in *Elaphe flavirufa pardalina* Peters the blotches do not extend beyond the fifth row.
TYPE.—ANSP 3695. Magdalena River, Colombia.
RANGE.—Low and moderate elevations of the Pacific versant from western Guatemala to Colombia.

Genus *Ficinia* Gray
Generotype.—Ficinia olivacea Gray.

Ficinia publia publia Cope

Type.—USNM 16427–28 (two syntypes). Yucatan, Mexico.
**Range.—Low elevations from Tabasco, Mexico, to Honduras along the Caribbean versant and from Guerrero, Mexico, to eastern Guatemala along the Pacific.

Genus *Geophis* Wagler
Geophis Wagler, Natur. Syst. Amphib., 1830: 342 (substitute name for *Catostoma* Wagler, 1830, to avoid confusion with *Catostomus* Lesueur, 1817; Chordata, Osteichthyes).

Generotype.—Catostoma chalybeum Wagler.

KEY TO GUATEMALAN SPECIES OF *GEOPHIS*

1. Some or all dorsal scales keeled .. 2
 Dorsal scales all smooth .. 3

2. Subcaudals more than 40; abdominal scutes with very dark posterior margins *carinosus*
 Subcaudals fewer than 40; abdominal scutes immaculate or with but faintly darkened posterior margins .. nasalis

3. A small supraocular present .. 2 dubius
 No supraocular ... rhodogaster

Geophis carinosus Stuart

Type.—UMMZ 89082. Finca San Francisco, 27 km. NE Nebaj, El Quiche, Guatemala; about 1175 meters.
Range.—Moderate elevations along the Caribbean versant of Chiapas, Mexico, and the Sierra de los Cuchumatanes of Guatemala.

Geophis dubius Peters
Geophis dubius, Bocourt, 1883: 532, pl. 31, figs. 9–9c; Smith and Taylor, 1945: 67.
TYPE.—Zoologisches Museum Berlin 4064. Type locality unknown. According to Bocourt (op. cit.: 533) the type series (two individuals) was collected at Tehuantepec, Mexico.

RANGE.—Poorly known. Recorded from moderate elevations in Veracruz, Mexico, and from intermediate elevations on the Pacific versant of Guatemala in addition to the questionable Tehuantepec individuals.

Geophis nasalis Cope

Geophis chalybaeus, Bocourt, 1883: 530, pl. 31, figs. 11–11c.
Geophis chalybaea, Gunther, 1893: 87 (in part).

TYPE.—ANSP 3319–21 (three syntypes). Near Guatemala City, Guatemala.

RANGE.—Moderate elevations along the Pacific versant from eastern Chiapas, Mexico, through western Guatemala.

Geophis rhodogaster Cope

Geophis rhodogaster, Bocourt, 1883: 531, pl. 31, figs. 12–12d.
Geophis chalybaea, Gunther, 1893: 87 (in part).

TYPE.—Two and possibly three syntypes, ANSP 3316–17 and possibly USNM 12425. Neighborhood of Guatemala City, Guatemala.

RANGE.—Intermediate elevations on the plateau of southwestern Guatemala.

Genus Imantodes Duméril

GENERATYPE.—Coluber cenchoa Linnaeus.

KEY TO GUATEMALAN SPECIES OF IMANTODES

1. Subcaudals more than 140 ... cenchoa leucomelas
 Subcaudals fewer than 140 .. 2

2. Blotches on dorsum of body generally fewer than 45, fifty per cent complete laterally .. gemmistratus gemmistratus
 Blotches on dorsum of body more than 45, less than fifty per cent complete laterally .. gemmistratus oliveri

32 The varieties of Imantodes described as Dipsas cenchoa v. rhombeata and v. reticulata by Müller (Verhand. Natur. Gesell. Basel, 7, 1882: 151), because of their very poor descriptions, cannot be allocated properly at this time. The types are Naturhistorisches Museum Basel 1830–31 and 1852–37, respectively; type locality of both, “Guatemala.” Collected by Bernoulli, the bulk of whose material stemmed from the south coast of Guatemala, either or both could conceivably be earlier names for Imantodes gemmistratus oliveri Smith or synonyms of Imantodes gemmistratus gemmistratus Cope as conceived herein.
HERPETOFAUNA OF GUATEMALA

Imantodes cenchoa leucomelas Cope

Smith and Taylor, 1945: 75.

Dipsas cenchoa, Gunther, 1895: 175 (in part).

Himantodes cenchoa, Mocquard, 1908: 914.

TYPE.—USNM 25035–36 (two syntypes). Mirador, Veracruz, Mexico.

RANGE.—Low and moderate elevations from Veracruz, Mexico, to northern Honduras on the Caribbean versant and from eastern Chiapas, Mexico, into southern Guatemala along the Pacific.

Imantodes gemmistratus gemmistratus Cope

Dipsas gemmistratus, Gunther, 1895: 175 (in part).

Imantodes gemmistratus, Smith and Taylor, 1945: 75.

RANGE.—Low and moderate elevations of the Pacific versant from eastern Guatemala southward but southern limits unknown. The race occurs also in the Motagua Valley on the Caribbean versant of Guatemala and may extend across the southeastern highlands.

Imantodes gemmistratus oliveri Smith

TYPE.—MCZ 27800. Tapanatepec, Oaxaca, Mexico.

RANGE.—Low and moderate elevations from Oaxaca, Mexico, into western Guatemala.

Imantodes gemmistratus gemmistratus Cope and as a result have considered the Chiapas, Mexico, population of the species as typical. With the typical race at hand there can be no question that the populations from the Tehuantepec region and Chiapas, Mexico, as well as from western Guatemala, are definitely *Imantodes gemmistratus oliveri* Smith, which is very different from the typical populations known from eastern Guatemala and El Salvador.

33 Previous investigators have apparently been unaware of the true character of *Imantodes gemmistratus gemmistratus* Cope and as a result have considered the Chiapas, Mexico, population of the species as typical. With the typical race at hand there can be no question that the populations from the Tehuantepec region and Chiapas, Mexico, as well as from western Guatemala, are definitely **Imantodes gemmistratus oliveri** Smith, which is very different from the typical populations known from eastern Guatemala and El Salvador.
Genus *Lampropeltis* Fitzinger

Generotype.—*Coluber getulus* Linnaeus.

Key to Guatemalan Subspecies of Lampropeltis

1. Black annuli expanded middorsally to pinch out intervening light (yellow) annuli

 Black annuli not expanded middorsally; light annuli complete middorsally 2

2. Light (yellow) annuli numbering more than 18 on body; scales of red annuli with darker tips in adults .. *doliata polyzona*

 Light annuli on body numbering 17 or less; scales of red annuli without darker tips .. *doliata oligozona*

Lampropeltis doliata abnorma Bocourt

Coronella formosa abnorma Bocourt, Miss. Sci. Mex., Rept., 1886: pl. 39, figs. 4–4c (substitute name for *Coronella formosa anomala* Bocourt, 1886; preoccupied, *Coronella anomala* Gunther, 1858).

Type.—MNHN 88–129. Alta Verapaz, Guatemala.

Range.—Low and moderate elevations in central Guatemala.

Lampropeltis doliata oligozona Bocourt

Coronella formosa oligozona Bocourt, Miss. Sci. Mex., Rept., 1886: 614, pl. 39, figs. 8–8d.

Lampropeltis triangulum oligozona, Smith and Taylor, 1945: 84.

Type.—MNHN 88–126–128, 4428, 6083 (five syntypes). Western [southern] slope of Guatemala and Isthmus of Tehuantepec.

Range.—Low and moderate elevations of the Pacific versant from the Isthmus of Tehuantepec, Mexico, southward at least through El Salvador.

Lampropeltis doliata polyzona Cope

Type.—ANSP 9770. Quatupe [= Cuatupe], near Jalapa, Mexico.

Range.—Low and moderate elevations of the Caribbean versant from Veracruz, Mexico, through Nicaragua with the exception of the outer end of the Yucatan Peninsula and the mountains of central Guatemala.
Genus *Leptodeira* Fitzinger

Leptodeira Fitzinger, Syst. Rept., 1843: 27.

Generotype. *Coluber annulata* Linnaeus.

Key to Guatemalan Species of Leptodeira

1. Dark body blotches generally fewer than 20 .. *nigrofasciata*

2. Abdominals generally more than 190 .. *septentrionalis polysticta*

3. A distinct postorbital dark stripe which contacts the first dark body blotch............................ *frenata malleisi*

4. No distinct postorbital dark stripe or, if such is present, not contacting first dark body blotch .. *annulata rhombifera*

Leptodeira annulata rhombifera Gunther

Type. BMNH 1946.1.9.92. Rio Chisoy [= Chixoy or Negro], near the town of Cubulco [Baja Verapaz], Guatemala.

Range. Low and moderate elevations from central Guatemala south into Panama.

Leptodeira frenata malleisi Dunn and Stuart

Type. UMMZ 73230. Tuxpena, Campeche, Mexico.

Range. Central portion of the Yucatan Peninsula from Campeche and Chiapas in Mexico through northern Guatemala into British Honduras.

Leptodeira nigrofasciata Gunther

Type. BMNH 1946.1.8.37. Nicaragua.

Range. Low and moderate elevations from Guerrero, Mexico, south along the Pacific versant and apparently through the dry basins and valleys of Chiapas, Mexico, central Guatemala and Honduras, and south along the Pacific versant of Central America to Costa Rica.
Leptodeira septentrionalis polysticta Gunther

Leptodeira polysticta Gunther, Biol. Cent.-Amer., 1895: 172, pl. 55, fig. A.
Leptodeira personata, Mocquard, 1908: 903, pl. 73, figs. 1–1b.

TYPE.—Originally seven syntypes; lectotype by fiat (see below) BMNH 1946.1.8.45. Mexico: Jalapa, Oaxaca, Yucatan; British Honduras: Belize; Honduras; Panama. Restricted to Belize, British Honduras, by Smith and Taylor (loc. cit.).

RANGE.—Low and moderate elevations (occasionally higher) from Nayarit, Mexico, on the Pacific side and from Veracruz, Mexico, on the east southward through Central America to Costa Rica.

Genus Leptodyrus do Amaral

GENEROTYPE.—Leptodyrus clarki do Amaral = Masticophis pulcherrimus Cope.

Leptodyrus pulcherrimus Cope

Leptodyrus pulcherrimus, Dunn, Copeia, 1931: 163.

TYPE.—ANSP 5199 and 14688 (two syntypes). Western side of Central America.

RANGE.—Low elevations of the Pacific versant from Guatemala to Nicaragua and along the Caribbean from Honduras to Costa Rica.

Genus Leptophis Bell

GENEROTYPE.—Coluber ahaetulla Linnaeus.

KEY TO GUATEMALAN SPECIES OF LEPTOPHIS

Loreal present .. mexicanus mexicanus
Loreal absent .. ahaetulla praestans
Leptophis ahaetulla praestans Cope

Thrasops (Ahaetulla) sargii Fischer, Arch. Natur., 47, 1881: 229, pl. 11, figs. 7–9 (originally Staatlich Museum fur Naturkunde Stuttgart, present status unknown; Coban, Guatemala).
Leptophis occidentalis praestans, Smith and Taylor, 1945: 91.

Type.—USNM 6754 (two syntypes). “Near El Peten, Guatemala.”
Range.—Low and moderate elevations from central Veracruz, Mexico, southward on the Caribbean versant into northern Honduras.

Leptophis mexicanus mexicanus Dumeril, Bibron, and Dumeril

Leptophis mexicanus Dumeril, Bibron, and Dumeril, Erpet. Gen., 7, 1854: 536; Gunther, 1894: 129 (in part); Bocourt, 1897: 831, pl. 64, figs. 4–4g.
Leptophis modestus, Gunther, 1894: 129, pl. 48; Bocourt, 1897: 833, pl. 65, figs. 1–1g.

Type.—MNHN 3453 and 3455 (two syntypes). Mexico.
Range.—Low and moderate elevations from Tamaulipas, Mexico, into Costa Rica (with the exception of the outer end of the Yucatan Peninsula) on the Caribbean versant and from the Isthmus of Tehuantepec, Mexico, into Guatemala along the Pacific.

Genus Masticophis Baird and Girard

Generotype.—Masticophis ornatus Baird and Girard.

Masticophis mentovarius mentovarius Dumeril, Bibron, and Dumeril

Masticophis mentovarius mentovarius, Smith, Copeia, 1942: 87; Smith and Taylor, 1945: 96.
Zamenis flavigularis, Gunther, 1894: 120 (in part).

Type.—MNHN 3199 and 3351 (two syntypes). Mexico.
Range.—Low and moderate elevations from San Luis Potosi, Mexico, to Honduras on the Caribbean versant and from Guerrero, Mexico, to Costa Rica along the Pacific.
Genus *Ninia* Baird and Girard\(^\text{34}\)

Generotype. *Ninia diademata* Baird and Girard.

Key to Guatemalan Species of Ninia

1. Belly immaculate or with dark fleckings or peppering .. 2
 Belly with bold, dark checks or spots ... 4
2. Dorsum immaculate without dark spotting or crossbanding or almost so
 Dorsum with dark crossbands or heavily spotted with black *sebae morleyi*
3. Dorsum generally with dark crossbands .. *sebae sebae*
 Dorsum generally with irregularly arranged dark spots *sebae punctulata*
4. Supralabials 7; belly with irregular dark checks *maculata pavimentata*
 Supralabials 6; belly with rounded or crescent-shaped spots generally regularly arranged .. 5
5. Dark midbelly spots rounded; abdominals 132–145 in males, 138–150 in females
 Dark midbelly spots crescent-shaped; abdominals 127–131 in males, 130–137 in females .. *diademata labiosa*

Ninia diademata labiosa Bocourt

Streptophorus labiosus Bocourt, Miss. Sci. Mex., Rept., 1883: 550, pl. 32, figs. 6–6f.

Type. MNHN 5944. Guatemala.

Range.—Moderate elevations of the Pacific versant from Oaxaca, Mexico, into Guatemala.

Ninia diademata nietoi Burger and Werler

Type.—University of Illinois Museum of Natural History 2851. San Andres Tuxtla, Veracruz, Mexico.

\(^{34}\)The arrangement of *Ninia* presented herein differs in several details from those of authors who have dealt recently with the genus, notably Burger and Werler (Univ. Kansas Sci. Bull., 36, 1954: 643–72) and Schmidt and Rand (Fieldiana, Zool., 39, 1957: 73–84). Such characters as have been utilized to distinguish between the several races of *Ninia sebae* especially are subject to wide variation. The nature of the dorsal markings and the amount of reduction of the same are particularly so. It has been my experience to note that dry-land populations of *Ninia sebae* in Honduras, Guatemala, and El Salvador approach in loss of dorsal markings the condition noted in *Ninia sebae immaculata* Schmidt and Rand, and which those authors do not extend north of Nicaragua. Dark dorsal crossbanding as opposed to dark dorsal spotting, which has been used to separate *Ninia sebae sebae* from *Ninia sebae punctulata*, is, furthermore, only an average condition at best. Rather than make any drastic changes in the arrangement of *Ninia sebae*, which could well produce greater confusion than that which now exists, I have followed a moderate course.
RANGE.—Low and moderate elevations of the Caribbean versant from southern Veracruz, Mexico, into Honduras, avoiding the outer end of the Yucatan Peninsula.

Ninia maculata pavimentata Bocourt

Streptophorus maculatus pavimentatus Bocourt, *Miss. Sci. Mex.*, Rept., 1883: 549, pl. 32, figs. 8–8d, pl. 33, fig. 2.

TYPE.—MNHN 1192. Alta Verapaz, Guatemala.

RANGE.—Known only from moderate elevations in the mountains of Alta Verapaz, Guatemala.

Ninia sebae sebae Dumeril, Bibron, and Dumeril

Smith and Taylor, 1945: 100 (in part).

Streptophorus sebae collaris, Bocourt, 1883: 547.

Streptophorus atratus sebae, fasciatus, drozii, collaris, Gunther, 1893: 101–02 (all in part).

TYPE.—MNHN 7303. Mexico. Restricted to Veracruz, Mexico, by Schmidt and Andrews (*op. cit.*: 170).

RANGE.—Low and moderate elevations of the Caribbean versant from Veracruz, Mexico, south through Honduras, avoiding the outer end of the Yucatan Peninsula.

Ninia sebae morleyi Schmidt and Andrews

Smith and Taylor, 1945: 100.

TYPE.—CNHM 20619. Chichen Itza, Yucatan, Mexico.

RANGE.—Lowlands of the Yucatan Peninsula, south into British Honduras and northern El Peten, Guatemala.

Ninia sebae punctulata Bocourt

Streptophorus atratus punctulatus, Gunther, 1893: 102.

Ninia sebae sebae, Smith and Taylor, 1945: 100 (in part).

TYPE.—MNHN 1894–95–96 (two syntypes). Guatemala. Schmidt and Rand (*op. cit.*: 79) suggest restriction to “vicinity of Quezaltenango on the Pacific slope of southern Guatemala.”

RANGE.—Low and moderate elevations of the Pacific versant from Oaxaca, Mexico, into El Salvador.
Genus *Oxybelis* Wagler

Generotype.—*Dryinus aeneus* Wagler.

Key to Guatemalan Species of Oxybelis

1. Dorsal ground color green ... *fulgidus*
 Dorsal ground color gray or pinkish gray 2

2. Diameter of eye greater than internasal length *aeneus aeneus*
 Diameter of eye less than internasal length *aeneus auratus*

Oxybelis aeneus aeneus Wagler

Dryinus aeneus Wagler in Spix, Serp. Brasil., 1824: 12, pl. 3.
Oxybelis acuminatus, Bocourt, 1897: 838, pl. 65, figs. 4–4f; Smith and Taylor, 1945: 102 (in part).
Dryiophis acuminata, Gunther, 1895: 177 (in part).

Type.—Zoologisches Museum Berlin, apparently an individual in a series numbered 2376–2384, *fide* H. Wermuth (*in litt.*). Near Ega [Brazil]. According to Bogert and Oliver (*loc. cit.*), Teffe is the modern name of Ega and is "on the south bank of the Amazon River near the junction of the Rio Teffe, almost in the center of the state of Amazonas."

Range.—Low and moderate elevations of northern, eastern, and southern Guatemala southward to Brazil and Bolivia.

Oxybelis aeneus auratus Bell

Type.—Unknown. Mexico.

Range.—Low and moderate elevations from extreme southwestern United States southward through Mexico to the Isthmus of Tehuantepec, into the Grijalva Valley of Chiapas, and into northwestern Guatemala.

Oxybelis fulgidus Daudin

Coluber fulgidus Daudin, Hist. Nat. Rept., 6, An XI [Fr. Rev. = 1803 or 1804]: 352, pl. 80.

Range.—Generally distributed at low and moderate elevations from the Isthmus of Tehuantepec, Mexico, to Argentina.

Genus Oxyrhopus Wagler

Generotype.—Coluber petola Linnaeus.

Oxyrhopus petola aequifasciatus Werner

Type.—Originally in the Zoologisches Museum Hamburg; since apparently destroyed. Coban, Guatemala.

Range.—Low and moderate elevations of the Caribbean versant probably from extreme southern Mexico through Guatemala.

Genus Pituophis Holbrook

Generotype.—Coluber melanoleucus Daudin.

Pituophis lineaticollis gibsoni Stuart

Type.—UMMZ 107060. Vicinity of Yepocapa, Dpto. Chimaltenango, Guatemala; 1430 meters.

Range.—Imperfectly known but recorded from moderate and intermediate elevations of the Pacific versant of western Guatemala and from the Caribbean versant of the Sierra de los Cuchumatanes.

Genus Pliocercus Cope

Generotype.—Pliocercus elapoides Cope.
KEY TO GUATEMALAN SPECIES OF PLIOERCUS

1. Annuli on body alternating red and black only *euryzonus aequalis*
 Annuli on body of red, black, and yellow, the black most frequently arranged in triads .. 2

2. Primary black annuli on body fewer than 12 *elapoides diastemus*
 Primary black annuli on body more than 12 *elapoides salvini*

Pliocercus elapoides diastemus Bocourt

Liophis elapoides diastema Bocourt, Miss. Sci. Mex., Rept., 1886: 636, pl. 41, fig. 8.
Elapochrus deppii, Gunther, 1895: 106.

RANGE.—Low and moderate elevations of the Pacific versant from Chiapas, Mexico, into El Salvador.

Pliocercus elapoides salvini Muller35

Liophis elapoides aequalis, Bocourt, 1886: 637, pl. 41, figs. 7–7e (possibly in part).
Pliocercus elapoides laticollaris, Smith and Taylor, 1945: 111.

RANGE.—Low and moderate elevations of central and northern Guatemala.

Pliocercus euryzonus aequalis Salvin

Pliocercus sargii Fischer, Arch. Natur., 47, 1881: 225, pl. 11, figs. 1–3 (originally Staatsliches Museum fur Naturkunde Stuttgart 2012, present status unknown; Coban, Guatemala).
Liophis elapoides aequalis, Bocourt, 1886: 637, pl. 41, figs. 7–7e (in part).

35. Several races of *Pliocercus elapoides* have been named from the Caribbean versant of northern Central America and southern Mexico. The basis for these names of various populations has been pretty largely the number of black annuli on the body, width of the various annuli, and whether or not the annuli are complete ventrally. There appears to be considerable variation in these characters, though there is a definite cline in the number of black annuli between Veracruz, Mexico, and central Guatemala. I am inclined to recognize only the two end populations nomenclatorially for the present.
RANGE.—Known only from low and moderate elevations of the Caribbean versant of central Guatemala, but possibly extending into Mexico.

Genus *Pseustes* Fitzinger

Pseustes Fitzinger, Syst. Rept., 1843: 27.

Generotype.—*Dipsas dieperinkii* Schlegel = *Natrix sulphurea* Wagler.

KEY TO GUATEMALAN SUBSPECIES OF PSEUSTES

A pair of paravertebral stripes on body *poeclalonotus poecilonotus*

No paravertebral stripes; body markings of scattered dark spots and oblique lines ... *poeclalonotus argus*

Pseustes poecilonotus poecilonotus Gunther

Spilotes lunulatus, Bocourt, 1888: 694, pl. 42, figs. 1–1e.

Type.—BMNH 1946.1.7.41. Honduras; Mexico. Apparently restricted to Honduras.36

Range.—The Yucatan Peninsula south through eastern El Peten and British Honduras into northern Honduras.

Pseustes poecilonotus argus Bocourt

Type.—Institut Royal des Sciences Naturelles de Belgique, I. G. No. 9.422, Reg. No. 510, Reg. types No. 2.060. Mexico.

Range.—Low and moderate elevations from San Luis Potosi, Mexico, southward on the Gulf of Mexico side into northwestern El Peten, Guatemala, and occurring locally on the Pacific versant in the neighborhood of the Isthmus of Tehuantepec.

36 *Spilotes poecilonotus* was actually based upon two specimens, one from Honduras and the other from Mexico. Boulenger (Catal. Snakes Brit. Mus., 2, 1894: 20) recognized the Honduran specimen as the type of the species and placed the Mexican specimen under *Phrynonax lunulatus* Cope, since considered a synonym of *poecilonotus*. In so doing Boulenger apparently selected a lectotype and restricted the type locality. Schmidt (Field Mus. Nat. Hist., zool. ser. 22, 1941: 499) suggested that the "Honduranian" specimens may actually have been collected in British Honduras.
Genus *Rhadinnea* Cope

Generotype.— *Taeniophis vermiculaticeps* Cope.

Key to Guatemalan Species of *Rhadinnea* and *Trimetopon*

1. Dorsal scales disposed in 17 longitudinal rows .. 2
 Dorsal scales disposed in more than 17 rows .. 7
2. Supralabials 7 ... 3
 Supralabials 8 ... 4
3. Two postoculars ... 6
 A single postocular ... 7
4. More than 150 abdominal scutes ... *Rhadinnea lachrymans* (below)
 Fewer than 150 abdominal scutes ... 5
5. More than 135 abdominals, fewer than 85 subcaudals *Trimetopon versaepacis* (p. 122)
 Fewer than 135 abdominals, more than 85 subcaudals *Rhadinnea decorata* (below)
6. More than 160 abdominal scutes ... *Trimetopon pilonaorum* (p. 122)
 Fewer than 160 abdominal scutes ... 7
7. Dorsal scutes in 21 longitudinal rows ... *Rhadinnea godmani* (below)
 Dorsal scutes in 19 longitudinal rows ... 8
8. Fewer than 175 abdominals, more than 85 subcaudals
 More than 175 abdominals, fewer than 85 subcaudals *Rhadinnea stadelmani* (below)

Rhadinnea decorata Gunther

Type.—BMNH 1946.1.9.3-4 (two syntypes). Mexico.

Range.—Low and moderate elevations from Veracruz, Mexico, into Panama on the Caribbean versant and locally on the Pacific side in western Chiapas, Mexico.

Rhadinnea godmani Gunther

Henicognathus godmani, Bocourt, 1886: 631, pl. 40, figs. 5–5d.
Coronella godmani, Gunther, 1899: 110, pl. 39, fig. B.

For the past several years there has been a movement afoot to bring *Rhadinnea* into the synonymy of *Urotlena*. The matter has been considered by Dunn (Caldasia, 2, 1944: 65; Copeia, 1957: 77) and Rose (Breviora, 88, 1958: 4–5). Although, in general, I believe the evidence in support of this move to be sound, I hesitate to further confuse the issue until such a time as a complete consideration of the interrelationships of the species involved has been presented.
Type.—BMNH 1946.1.9.14–17 (four syntypes). Duenas, Guatemala.

Range.—Intermediate elevations on the southwestern highlands of Guatemala into El Salvador.

Rhadinaea hampsteadae Stuart and Bailey

Rhadinaea hampsteadae Stuart and Bailey, Occ. Papers Mus. Zool., Univ. Michigan, 442, 1941: 2, fig. 1.

Type.—UMMZ 89080. Cloud forest zone (ca. 5700 feet) above Finca Chichen, Alta Verapaz, Guatemala.

Range.—Intermediate elevations in the mountains of Alta Verapaz, Guatemala.

Rhadinaea lachrymans Cope

Range.—Moderate and intermediate elevations of the Pacific versant of Chiapas, Mexico, and Guatemala.

Rhadinaea stadelmani Stuart and Bailey

Type.—UMMZ 89078. Todos Santos, Huehuetenango, Guatemala; 8000 feet.

Range.—Intermediate elevations on both the eastern and western flanks of the Sierra de los Cuchumatanes of Guatemala.

Genus _Scaphiodontophis_ Taylor and Smith

Generotype.—_Enicognathus annulatus_ Dumeril, Bibron, and Dumeril.

Key to Guatemalan Species of _Scaphiodontophis_

1. No more than three sets of black-yellow-black rings on anterior part of body .. _carpicinctus_

Five or more sets of black-yellow-black rings on anterior part of body 2

2. A single black band on nape intervening between black head cap and first black-yellow-black series .. _zeteki nothus_

No dark band on nape between first black-yellow-black series and black head cap ... _annulatus annulatus_
Scaphiodontophis annulatus annulatus Dumeril, Bibron, and Dumeril

Henicognathus annulatus, Bocourt, 1886: 626 (in part); Gunther, 1895: 107 (in part).

Type.—MNHN 7283. Coban, Alta Verapaz, Guatemala.

Range.—Low and moderate elevations from central El Peten, Guatemala, and British Honduras southward into Alta Verapaz, Guatemala.

Scaphiodontophis carpicinctus Taylor and Smith

Type.—USNM 110411. Piedras Negras, Guatemala.

Range.—Known only from the type locality and Tikal, El Peten, Guatemala, and probably restricted to the forests of the base of the Yucatan Peninsula.

Scaphiodontophis seteki notthus Taylor and Smith

Scaphiodontophis notthus Taylor and Smith, Univ. Kansas Sci. Bull., 29, 1943: 320, fig. 8, pl. 23, fig. 2.

Henicognathus annulatus, Bocourt, 1886: 626, pl. 40, figs. 6–6e (in part).

Type.—USNM 110412. Potrero Viejo, Veracruz [Mexico].

Range.—Low and moderate elevations from the Isthmus of Tehuantepec, Mexico, probably to about Nicaragua along the Pacific versant and from Veracruz, Mexico, into Tabasco on the Gulf of Mexico side.

Genus Scolecophis Fitzinger

Scolecophis Fitzinger, Syst. Rept., 1843: 25.

Generotype.—Calamaria atrocincta Schlegel.

Scolecophis atrocinctus Schlegel

Scolecophis atrocinctus, Fitzinger, Syst. Rept., 1843: 25; Bocourt, 1883: 577, pl. 37, figs. 2–2e (1886); Gunther, 1895: 156.

For a comment concerning the probable annulatus-carpicinctus relationships see Alvarez del Toro and Smith (Herpetologica, 14, 1958: 17).
I am long entertained some doubts as to whether this name is properly applied to a Central American rather than a South American species. It seems inconceivable that specimens of so rare a species should have reached European museums before 1837, some 15 years prior to the appearance of even the commonest species of northern Central America in those same museums.
RANGE.—Low and moderate elevations of the Pacific versant of western Guatemala.

Sibon nebulata nebulata Linnaeus

Petalognathus nebulatus, Mocquard, 1908: 881, pl. 72, figs. 3–3b.

Sibon nebulatus, Smith and Taylor, 1945: 126.

RANGE.—Widespread at low and moderate elevations from Jalisco and Veracruz, Mexico, southward through Central America into South America.

Genus Spilotes Wagler

GENTOTYPE.—*Coluber pullatus* Linnaeus.

Spilotes pullatus mexicanus Laurenti

Spilotes salvini Günther, Ann. Mag. Nat. Hist., ser. 3, 9, 1862: 125, pl. 9, fig. 5 (BMNH 1946.1.12.92; Yzabal, Guatemala); Günther, 1894: 116, pl. 42.

Spilotes auribundus, Bocourt, 1888: 689, pl. 44, figs. 5–5f.

TYPE.—Probably based on Seba plate (II, 20, 1), *fide* J. Eiselt (*in litt.*). No type locality given but name implies Mexico.

RANGE.—Generally distributed at low and moderate elevations from Tamaulipas and Oaxaca, Mexico, to Honduras.

Genus Stenorrhina Dumeril

KEY TO GUATEMALAN SPECIES OF Stenorrhina

Abdominals more than 160; dorsal body pattern of stripes or unicolor *freminvilliei*

Abdominals fewer than 160; dorsal body pattern mottled or spotted *degenhardtii*
Stenorrhina degenhartii Berthold

Stenorrhina degenhartii kenneicottiana, Bocourt, 1886: 595, pl. 37, figs. 9–9b.

Stenorrhina degenhartii, degenhartii and ocellata, Gunther, 1895: 158.

TYPE.—Zoologisches Institut and Museum Gottingen 44/256. Popayan Province, Colombia.

RANGE.—Low and moderate elevations from southern Veracruz, Mexico, southward into South America. In northern Middle America the species appears to be restricted to the Caribbean drainage.

Stenorrhina freminvillii Dumeril, Bibron, and Dumeril

Stenorrhina freminvillii Dumeril, Bibron, and Dumeril, Erpet. Gen., 7, 1854: 868, pl. 70, figs. 1–2; Bocourt, 1886: 596, pl. 37, figs. 8–8a (spelled freminvillii).

Stenorrhina quinquelina, Bocourt, 1886: 597, pl. 37, figs. 11–11c.

Stenorrhina freminvillii apiata and lactea, Smith and Taylor, 1945: 133.

TYPE.—MNHN 816. Mexico.

RANGE.—Low and moderate elevations from Guerrero, Mexico, on the Pacific and from the Isthmus of Tehuantepec on the Caribbean southward at least to Panama. In northern Middle America this species appears to be restricted to less humid environments.

Genus Storeria Baird and Girard

GENTOTYPE.—*Tropidonotus dekayi* Holbrook.

Storeria tropica tropica Cope

Storeria dekayi, Bocourt, 1893: 742, pl. 53, figs. 1–2.

TYPE.—USNM 6759. El Peten, Guatemala.

I suggest that those individuals who insist on recognizing geographic races of this species in northern Middle America examine the series, Nos. 74859–68, from La Libertad, El Peten, Guatemala, in the Museum of Zoology, University of Michigan. They will find therein representatives of all described races as well as several pattern and color phases which have not been described.
Range.—Low and moderate elevations of the Caribbean versant of northern and central Guatemala into northern Honduras.

Genus *Tantilla* Baird and Girard

Generotype.—*Tantilla coronata* Baird and Girard.

(Key to Guatemalan Species of *Tantilla*, p. 88)

Tantilla bairdi Stuart

Type.—UMMZ 89223. Two km. NE Finca Chichen (10 km. S Coban, airline) on Chemelco trail, Alta Verapaz, Guatemala; about 1550 meters.

Range.—Known only from the type locality.

Tantilla canula Cope

Type.—USNM 24881–82 (two syntypes). Yucatan, Mexico.

Range.—Lowlands of the Yucatan Peninsula south to northern El Peten, Guatemala, and possibly British Honduras.

Tantilla jani Gunther

Type.—Originally two syntypes, BMNH 1946.1.8.68 (Guatemala), 1946.1.8.71 (Nicaragua); lectotype 1946.1.8.68, by fiat of type locality restriction. Guatemala and Nicaragua (Matagalpa, 3200 ft.); restricted to Guatemala (Smith, *op. cit.*: 37).

Range.—Low and moderate elevations of the Pacific versant from the Isthmus of Tehuantepec, Mexico, into Guatemala.

Tantilla mexicana Gunther

41 In the *melanocephala* group of *Tantilla* there appears to be a clinal reduction in the number of abdominals from south to north along the Pacific versant of Central America. It is not improbable that the Guatemalan population will eventually be shown to represent intergrades between *Tantilla armillata* to the south and *Tantilla mexicana* in the north. For the time being, however, I prefer not to recognize subspecies in this most difficult group.
Tantilla mexicana, Smith, Zoologica, 27, 1942: 37; Smith and Taylor, 1945: 139.
Homalocranium armillatum, Gunther, 1895: 149, pl. 52, fig. C (in part).

Type.—BMNH 1946.1.8.58, Mexico.

Range.—Moderate elevations along the Pacific versant from Chiapas, Mexico, into Guatemala.

Tantilla moesta Gunther

Type.—BMNH 1946.1.9.74. El Petén, Guatemala.

Range.—Lowlands of the Yucatan Peninsula south into central El Petén, Guatemala.

Tantilla schistosa schistosa Bocourt

Homalocranium schistosum Bocourt, Miss. Sci. Mex., Rept., 1883: 584, pl. 36, figs. 10–10c (1886).
Tantilla phrenitica Smith, Zoologica, 27, 1942: 39, in part (paratype, USNM 88134; Semacock [=Scmacoch], Guatemala); Smith and Taylor, 1945: 140 (in part).

Type.—MNHN 83–506 by fiat through restriction of type locality (Smith, 1942:39). Alta Verapaz, Guatemala.

Range.—Moderate elevations from southern Veracruz, Mexico, to Panama.

Tantilla taeniata Bocourt

Homalocranium taeniatum Bocourt, Miss. Sci. Mex., Rept., 1883: 587, pl. 37, figs. 3–3e (1886).

Type.—MNHN 1666. Guatemala.

Range.—Improperly known. Recorded only from Guatemala and Bonaca Isd., Honduras. The Museum of Zoology, University of Michigan, has a specimen from Progreso, Honduras, which may represent this species.

Genus Tantillita Smith

Generotype.—*Tantilla lintoni* Smith.
Tantillita lintoni Smith

TYPE.—USNM 108603. Piedras Negras, El Peten, Guatemala.

RANGE.—Known only from the type locality.

Genus *Thamnophis* Fitzinger

GENEROTYPE.—*Coluber sauritus* Linnaeus.

KEY TO GUATEMALAN SPECIES OF *THAMNOPHIS*

1. Subcaudals more than 85 ... 2
 Subcaudals fewer than 85 ... cyrtopsis sumichrasti
2. Abdominals more than 152 ... sauritus rutiloris
 Abdominals fewer than 152 ... cyrtopsis salvini

Thamnophis cyrtopsis salvini Smith, Nixon, and Smith

TYPE.—BMNH 1946.1.23.62. “Rio Chixoy below the town of Cubules (? Cubilguitz), Guatemala.” “Cubules” is obviously Cubulco in Baja Verapaz, a locale that is cited several times in the *Biologia Centrali-Americana*. Lying in the dry, interior basin country, it is ecologically very different from Cubilguitz in the very wet foothill region of Alta Verapaz.

RANGE.—Known only from the type locality.

Thamnophis cyrtopsis sumichrasti Cope

Thamnophis sumichrasti cerebrus Smith, Zoologica, 27, 1942: 111 (USNM 12734; Escuintla, Guatemala).
Eutaenia cyrtopsis sumichrasti, Bocourt, 1895: 775, pl. 57, figs. 3–3d.

42 I am indebted to Douglas Rossman of the University of North Carolina for advice on the arrangement of *Thamnophis* adopted herein. He suggests that, in view of the systematic chaos now obtaining in the Central American garter snakes, a conservative treatment be retained at this time.

43 The resurrection of the name *dorsalis* of Baird and Girard for this species (Fitch and Milstead, Copeia, 1961: 112) is held invalid by the 1961 International Code of Zoological Nomenclature, Article 25 (b). Smith (Herpetologica, 18, 1962: 11–13) has discussed this matter. I accept the race *salvini* as valid only tentatively.
HERPETOFAUNA OF GUATEMALA

Tropidonotus ordinatus, Gunther, 1894: 131 (in part).
Thamnophis sumichrasti sumichrasti and fulvus, Smith and Taylor, 1945: 168.

Type.—USNM 26501–02 (two syntypes). Orizaba, Veracruz, Mexico (probably in error, *fide* Smith, *op. cit.*: 110).
Range.—Moderate, intermediate, and high elevations from Guerrero, Mexico, south to eastern Guatemala.

Thamnophis sauritus rutilorusc Cope

Thamnophis saurita faireyi, Bocourt, 1893: 758, pl. 56, figs. 3–3b.

Type.—USNM 13906. Cozumel Island, Quintana Roo, Mexico.
Range.—Poorly understood. Known from the lowlands and highlands (except in Guatemala where it is strictly lowland) from southern Mexico to Costa Rica on the Caribbean versant and from the Isthmus of Tehuantepec to Guerrero, Mexico, along the Pacific.

Genus Tretanorhinus Dumeril, Bibron, and Duméril

Generotype.—*Tretanorhinus variabilis* Dumeril, Bibron, and Duméril.

Key to Guatemalan subspecies of Tretanorhinus

Scale rows 1–2 light in color; generally two loreals on each side... *nigroluteus nigroluteus*
Scale rows 1–2 dark in color; only a single loreal on each side *nigroluteus lateralis*

Tretanorhinus nigroluteus nigroluteus Cope

Tretanorhinus nigroluteus nigroluteus, Dunn, Copeia, 1939: 216.

Type.—USNM 5568. Greytown, Nicaragua (in error, “probably Aspinwall, Panama,” Dunn, *loc. cit.)*
Range.—Low elevations of the Caribbean versant from Panama to extreme eastern Guatemala.

Tretanorhinus nigroluteus lateralis Bocourt

Type.—MNHN 91–280–281 (two syntypes). Belize, British Honduras.

44 William Duellman who has collected recently in the vicinity of Puerto Barrios, Guatemala, informs me that he secured a specimen of this race in the vicinity of the port. I have not examined the individual.
Range.—Lowlands from Tabasco, Mexico, through northern Guatemala into British Honduras.

Genus *Trimetopon* Cope

Generotype.—*Ablabes gracilis* Gunther.

(Key to Guatemalan Species of *Trimetopon*, p. 112)

Trimetopon hannsteini Stuart

Type.—UMMZ 98756. Finca La Páez (18 km., airline, N Coatepeque), Department of San Marcos, Guatemala; 1450 meters.

Range.—Moderate elevations of western Guatemala along the Pacific versant.

Trimetopon pilonaorum Stuart

Type.—UMMZ 102635. Finca La Gloria (about 12 km., airline, NE Chiquimulilla), Dpto. Santa Rosa, Guatemala; about 950 meters.

Range.—Known only from the type locality.

Trimetopon posadasi Slevin

Type.—California Academy of Sciences 66964. Southern slope of Volcan Zunil, Suchitepequez, Guatemala.

Range.—Known only from immediate vicinity of the type locality.

Trimetopon veraepacis Stuart and Bailey

Type.—UMMZ 89077. Pine zone at Finca Chichen, Alta Verapaz, Guatemala; 5100 feet.

Range.—Known only from the type locality.

Genus *Trimorphodon* Cope

Generotype.—*Lycodon lyrophanes* Cope.
Trimorphodon biscutatus quadruplex Smith

Type.—USNM 89476. Esteli, Nicaragua.

Range.—Low and moderate elevations of the Pacific versant from Guatemala into Costa Rica.

Genus Tropidodipsas Gunther

Generotype.—*Tropidodipsas fasciata* Gunther.

KEY TO GUATEMALAN SPECIES OF TROPIDODIPSAS

1. Infralabials normally 8 or more ... 2
 Infralabials normally 7 .. kidderi
2. Dark annuli on body fewer than 25 ... 3
 Dark annuli on body more than 25 .. fischeri
3. Light annuli red in life and at least several (frequently all) incomplete ventrally ... sartori sartori
 Light annuli yellow in life and generally all complete ventrally sartori annulatus

Tropidodipsas fischeri Boulennger

Tropidoclonium annulatum, Bocourt, Le Natural., 1892: 132 (MNHN 94–97; Godinez, NE Volcan Atitlan, Guatemala; 2151 meters); Bocourt, 1893: 738, pl. 54, figs. 3–3e.

Type.—Staatslich Museum fur Naturkunde Stuttgart 2454 (originally two syntypes); one exchanged to British Museum (Natural History), now 1916.1.1.81; status of Stuttgart syntype unknown. Guatemala.

Range.—Intermediate elevations on the plateau of southwestern Guatemala, the Sierra de los Cuchumatanes, and probably adjacent Chiapas, Mexico.

Tropidodipsas kidderi Stuart

Type.—UMMZ 91065. Finca Samac, Alta Verapaz, Guatemala; about 1500 meters.

Range.—Known only from the type locality.

45 I find it difficult to accept a record of this form from Lanquin, Alta Verapaz, Guatemala, collected by Salvin and cited by both Gunther (loc. cit.) and Boulennger (Catal. Snakes Brit. Mus., 3, 1896: 55). There are, however, several faunal peculiarities about this general region which lies nestled in a relatively dry valley among the wet mountains of Alta Verapaz.
Tropidodipsas sartori sartori Cope

Tropidodipsas dumerilii, Gunther, 1894: 140, pl. 50, fig. A (in part).
Tropidodipsas semicincta, Mocquard, 1908: 874, pl. 71, fig. 1–1e.

Type.—Originally in USNM, now lost. Mirador, Veracruz, Mexico.
Range.—Low and moderate elevations of the Caribbean versant from San Luis Potosi, Mexico, southward through Guatemala.

Tropidodipsas sartori annulatus Peters

Tropidodipsas sartori, Mocquard, 1908: 873, pl. 70, figs. 4–5 (in part).

Type.—Zoologisches Museum Berlin 6947. “Probably South America”; in error.
Range.—Low and moderate elevations of the Pacific versant of Chiapas, Mexico, and Guatemala.

Genus Xenodon Boie

Xenodon Boie in Schlegel, Isis, 1827: 293 (complete description, Boie, op. cit.: 520 and 540).

Generotype.—Coluber severus Linnaeus.

Xenodon rabdocephalus mexicanus Smith

Xenodon severus angustirostris, Bocourt, 1886, 638, pl. 38, figs. 3–3e.
Xenodon rhabdocephalus, Gunther, 1894: 114 (in part).

Type.—USNM 108596. Piedras Negras, Guatemala.
Range.—Low and moderate elevations from Guerrero, Mexico, on the Pacific and Veracruz, Mexico, on the Caribbean side south through Guatemala.

Family Elapidae

Key to Guatemalan Genera of Elapidae

Tail strongly flattened laterally ... Pelamis (below)
Tail round ... Micrurus (below)

Genus Pelamis Daudin

Generotype.—Pelamis bicolor Daudin = Anguis platura Linnaeus.

Pelamis platura Linnaeus

Type.—Apparently lost. Type locality unknown.

Range.—Pacific Ocean and associated seas. In the Americas spottily distributed from the Gulf of California to Ecuador.

Genus Micrurus Wagler

Generotype.—Micrurus spixii Wagler.

Key to Guatemalan Species of Micrurus

1. Black body bands in triads ... elegans veraepacis
 Black bands not in triads, occurring singly 2
2. Dorsal body pattern of black, yellow, and red bands, the black narrowly bordered by the yellow ... 3
 Dorsal body pattern of black and red bands only afinis apiatus
3. Fewer than 10 black bands on body latifasciatus
 More than 10 black bands on body ... 4
4. Scales of red bands never distinctly black tipped though frequently diffused with dark .. nigrocinctus zunilensis
 Scales of red bands distinctly black tipped and red bands generally with dark blotches or spots ... 5
5. Snout generally with light markings; black bands on body generally more than 17 .. afinis alienus
 Snout without light markings; black bands on body generally fewer than 17... wagneri
Micrurus affinis alienus Werner

Type.—Institut Royal des Sciences Naturelles de Belgique, I.G. 9422, Reg. No. 737. “Probably Ecuador or Venezuela” (in error).

Range.—Caribbean lowlands from extreme southern Mexico south to southeastern Guatemala exclusive of the outer end of the Yucatan Peninsula.

Micrurus affinis apiatus Jan

Elaps apiatus Jan, Rev. Mag. Zool., 1858-59: 522, pl. A.

Type.—MNHN 3920. “Veracruz.” Apparently a *lapsus* for “Verapaz” [Guatemala].

Range.—Moderate elevations of the Caribbean versant from Chiapas, Mexico, through central Guatemala.

Micrurus elegans veraepacis Schmidt

Type.—Zoologische Sammlung des Bayerischen Staates 2247a. Campur, Alta Verapaz, Guatemala.

Range.—Moderate elevations of the Caribbean versant of Alta Verapaz and the Sierra de los Cuchumatanes. Intergrading with *Micrurus elegans elegans* Jan in the region of the Mexican border.

46 I recognize this race only tentatively. Study of material of this species convinces me that between Mexico and Honduras there is a clinal increase in the number of black rings on the body and a clinal decrease in the dark spotting in the red bands. When all materials have been assembled and studied intensively, I believe that *Micrurus affinis* Jan will be applicable to the northern populations and *Micrurus affinis* *aglaeope* Cope (and its probable synonym *Micrurus affinis* *hippocrepis* Peters) for the southern. Northern Guatemalan material will probably prove to be intergrades. *Micrurus affinis* *mayensis* Schmidt and *Micrurus affinis apiatus* Jan of the outer end of the Yucatan Peninsula and of Alta Verapaz, respectively, of course, do not enter into this problem. Essential data relating to *hippocrepis* are: *Elaps* *hippocrepis* Peters, Monatsb. Akad. Wissen. Berlin, 1861: 925 (Zoologisches Museum Berlin 4065; Santo Tomas [Puerto Matías de Galvez], Guatemala).
Micrurus latifasciatus Schmidt

TYPE.—MCZ 22135. Finca El Cipres, Suchitepequez, Guatemala.

RANGE.—Moderate elevations of the Pacific versant from Chiapas, Mexico, into western Guatemala.

Micrurus nigrocinctus zunilensis Schmidt

Elastus fulvius, Gunther, 1895: 182 (in part).

TYPE.—California Academy of Sciences 66001. Finca El Cipres, lower slopes of Volcan Zunil (near Samayas, near Mazatenango), Suchitepequez, Guatemala.

RANGE.—Low, moderate, and intermediate elevations of the Pacific versant from Chiapas, Mexico, into El Salvador.

Micrurus wagneri Mertens

Micrurus nigrocinctus wagneri Mertens, Senckenh., 23, 1941: 216, fig. 1.

TYPE.—Senckenbergischen Natursorschenden Gesellschaft Frankfurt 34198. Finca Germania, in the Sierra Madre, Chiapas, Mexico; 400–1300 meters.

RANGE.—Moderate elevations of the Pacific versant of eastern Chiapas, Mexico, and western Guatemala.

Family Viperidae

KEY TO GUATEMALAN GENERA OF VIPERIDAЕ

1. Tail terminating in a rattle ... 2
 Tail not terminating in a rattle ... 2
2. Upper surface of head covered with nine regularly arranged plates, typically colubrid in form ... *Akhistrodon* (below)
 Upper surface of head with fewer than nine large plates; posterior head surface covered with small scales ... *Bothrops* (p. 128)

47 The relationships of this species remain confused. One fact is certain, it is not a subspecies of *Micrurus nigrocinctus*. I have collected both it and *Micrurus nigrocinctus zunilensis* Schmidt within a few feet of each other at Finca La Paz, San Marcos, Guatemala. I suggest that it is related to *Micrurus nuchalis nuchalis* Schmidt to the north with which it appears to have much in common.
Genus *Agkistrodon* Beauvois

Generotype.—*Agkistrodon mokasen* = *Boa contortrix* Linnaeus.

Agtkistrodon bilineatus bilineatus Gunther

Range.—From southern Mexico to British Honduras (probably largely coastal in Yucatan and British Honduras) along the Caribbean versant and from Sonora, Mexico, to Nicaragua along the Pacific lowlands.

Genus *Bothrops* Wagler

Generotype.—*Coluber megaera* Shaw = *Coluber atrox* Linnaeus.

Key to Guatemalan Species of Bothrops

1. Two or three small, pointed, accessory, supraocular scales with free edges overhanging eye to give "horned" appearance .. *schlegeli*
 No such small supraocular scales ... 2
2. Ground color of dorsum green; tail prehensile ... 3
 Ground color of dorsum not green; tail not prehensile 4
3. Scales on upper surface of snout keeled ... *bicolar*
 Scales on upper surface of snout not keeled *nigroviridis aurifer*
4. Tip of snout with a free "flap" which is produced dorsally to give appearance of an upturned snout ... *nasutus*
 Snout without free "flap," not or only slightly upturned 5
5. Supraocular long and narrow or undifferentiated 6
 Supraocular large and broad; well differentiated 7
6. Lateral spots vertically elongate and many fused with dorsal blotches ...
 Lateral spots rounded and very few fused with dorsal blotches *nummifer affinis*
7. Abdominal scutes more than 200 ... *atrox asper*
 Abdominal scutes fewer than 200 ... 8
8. Maximum number of longitudinal dorsal scale rows 23 or more *ophryomegas*
 Maximum number of longitudinal dorsal scale rows 21 or less *godmani*
Bothrops atrox asper Garman

TYPE.—MCZ 2718. Obispo, Panama.

RANGE.—Low and moderate elevations from Tamaulipas and Oaxaca, Mexico, southward to South America.

Bothrops bicolor Bocourt

Trimeresurus bicolor, Mocquard, 1909: 948, pl. 76, figs. 1–la.

TYPE.—MNHN 1362, 6137 (two syntypes). Mocquard (*loc. cit.*) states that there were four syntypes. San Agustin on the west [south] slope of the cordillera, Solola [Department], Guatemala.

RANGE.—Moderate and intermediate elevations of the Pacific versant of eastern Chiapas, Mexico, and western Guatemala.

Bothrops godmani Gunther

Bothriechis godmani Gunther, Ann. Mag. Nat. Hist., ser. 5, 12, 1863: 364, pl. 6, fig. G; Gunther, 1895: 190, pl. 57, fig. A (spelled *godmani*).

Bothriechis scutigera Fischer, Arch. Natur., 1880: 218, pl. 8, figs. 8–9 (Staatslich Museum fur Naturkunde Stuttgart 1943, present status unknown; Guatemala).

TYPE.—BMNH 1946.1.18.80. “Duenas and other parts of the tableland of Guatemala.”

RANGE.—Moderate, intermediate, and high elevations from Chiapas, Mexico, to Panama.
Bothrops nasutus Bocourt

Bothrops lanseigii, Gunther, 1895: 190 (in part).

Trimeresurus brachystoma, Mocquard, 1909: 945, pl. 75, figs. 4-4a (in part).

Type.—MNHN 1592. Panzos, on the banks of the Rio Polochic, Guatemala.

Range.—Low elevations of the Caribbean versant from southern Mexico to Ecuador.

Bothrops nigroviridis aurifer Salvin

Trimeresurus aurifer, Mocquard, 1909: 950.

Type.—BMNH 1946.1.17.71. Coban, Alta Verapaz, Guatemala.

Range.—Moderate and intermediate elevations of the Caribbean versant from Chiapas, Mexico, through Guatemala.

Bothrops nummifer nummifer Ruppel

Atropos nummifer Ruppel, Verz. Sencken. Mus., 1845: 313 (not seen; *fide* Burger, v. i.).

Atropus mexicanus Duméril, Bibron, and Duméril, Erpet. Gen., 7, 1854: 1521, pl. 83 bis, figs. 1–2 (MNHN 6712; Coban, [Alta] Verapaz, Guatemala).

Bothriechis nummifera notata Fischer, Arch. Natur., 46, 1880: 222, pl. 8, figs. 10–12 (Staatlich Museum fur Naturkunde Stuttgart 1967, present status unknown; Coban, Alta Verapaz, Guatemala).

Bothriechis nummifera, Gunther, 1895: 191 (in part).

Bothrops mexicanus, Smith and Taylor, 1945: 182.

Type.—Senckenbergischen Naturforschenden Gesellschaft Frankfurt 21196. Type locality unknown. Burger (*loc. cit.*) suggests restriction to Teapa, Tabasco, Mexico.

Range.—Low, moderate, and intermediate elevations from extreme southern Mexico to Panama along the Caribbean versant.

Bothrops nummifer affinis Bocourt

Trimeresurus nummifer, Mocquard, 1909: 941.

Bothrops nummifer affinis Bocourt

Trimeresurus nummifer, Mocquard, 1909: 941.

Bothrops nummifer affinis Bocourt has not yet been demonstrated but may be anticipated.
TYPE.—MNHN 1194–96 (three syntypes). San Agustin, on the west [south] slope of the mountains, Guatemala; 610 meters.

RANGE.—Moderate and intermediate elevations along the Pacific versant possibly from eastern Chiapas, Mexico, into El Salvador.

Bothrops ophryomegas Bocourt

Trimeresurus ophryomegas, Mocquard, 1909: 944, pl. 75, figs. 3–3a.

RANGE.—Low and moderate elevations of the Pacific versant of Central America from western Guatemala to Panama. The species also occurs in some of the dry valleys of Guatemala and Honduras on the Caribbean side.

Bothrops schlegeli Berthold

Bothrops schlegeli, Jan, Elenco Sist. Degli Ofidi, 1863: 127; Smith and Taylor, 1945: 183 (spelled *schlegelii*).
Bothriechis schlegeli, Gunther, 1895: 189.

TYPE.—Zoologisches Institut and Museum Gottingen 121/261. Popayan Province, Colombia.

RANGE.—Low elevations of Central America and northern South America from British Honduras and northern Guatemala southward; apparently restricted to the Caribbean versant in the north.

Genus *Crotalus* Linnaeus

GENEROTYPE.—*Crotalus horridus* Linnaeus.

KEY TO GUATEMALAN SUBSPECIES OF *CROTALUS*

Abdominals usually fewer than 179 in males and 185 in females; first supralabial usually not divided transversely ... *durissus durissus*

Abdominals generally more than 180 in males and 186 in females; first supralabial normally divided transversely ... *durissus tzabean*

49 Owing to the uncertainty of the relationships between *Bothrops schlegeli* Berthold and *Bothrops schlegeli supraciliaris* Taylor from Costa Rica, it seems best to accord the two specific status for the moment.
Crotalus durissus durissus Linnæus

Type.—Unknown. America.

Range.—Low and moderate elevations of Middle America from Michoacan and Veracruz in Mexico southward to Costa Rica.

Crotalus durissus tzabcan Klauber

Crotalus durissus durissus, Smith and Taylor, 1945: 190 (in part).

Type.—CNHM 36168. Kantunil, Yucatan, Mexico.

Range.—Yucatan Peninsula south into northern El Peten, Guatemala, and British Honduras.

Order CROCODYLIA

Family ALLIGATORIDAE

Genus Caiman Spix

Generotype.—*Caiman fuscus* Spix = *Crocodilus latirostris* Daudin.

Caiman crocodilus fuscus Cope

Type.—ANSP 9720. Magdalena River, Colombia.

Range.—Lowlands from southern Mexico southward to Colombia but restricted to the Pacific versant north of Nicaragua.

Family CROCODYLIDAE

Genus Crocodylus Laurenti

Generotype.—*Crocodylus niloticus* Laurenti.
KEY TO GUATEMALAN SPECIES OF *Crocodylus*

Breadth of snout at level of tenth maxillary tooth equal to at least three quarters of the distance from base of tenth maxillary tooth to tip of snout *moreleti*

Breadth of snout at level of tenth maxillary tooth equal to not more than seventy per cent of the distance from base of tenth maxillary tooth to tip of snout *acutus*

Crocodylus acutus Cuvier

Crocodilus pacificus Duméril and Bocourt, Miss. Sci. Mex., Rept., 1870: 31, pl. 9, figs. 5–5b (MNHN 7816; Nagualate embayment, western Guatemala).

Crocodilus americanus acutus, Gunther, 1885: 19.

Type.—Originally in MNHN, now lost. Santo Domingo [i.e. Hispaniola].

Range.—On the mainland from Tamaulipas and Sinaloa in Mexico southward on both coasts into South America; also on some of the Caribbean Islands and southern Florida. The species is essentially coastal in northern Central America.

Crocodylus moreleti Duméril and Bocourt

Crocodilus moreletii Duméril and Bocourt in Duméril and Dumeril, Catal. Method., 1851: 28; Duméril and Bocourt, 1873: 37, pl. 9, figs. 2–3 (1870); Smith and Taylor, 1950: 211 (spelled *Crocodylus*).

Type.—MNHN 7520. Lake Peten, Guatemala.

Range.—Lowlands from Tamaulipas, Mexico, southward on the Caribbean versant to British Honduras and southeastern Guatemala. This species is both coastal and inland.

Accepted for publication August 14, 1962
ADDENDUM

Eleutherodactylus greggi Bumzahem

Eleutherodactylus greggi Bumzahem, Copeia, 1955: 118.

TYPE.—CNHM 20876. Volcan Tajumulco, near San Marcos, Guatemala.

RANGE.—Moderate and intermediate elevations along the Pacific versant of eastern Chiapas, Mexico and western Guatemala.

Though I would hesitate even to infer relationship, this species keys out to Eleutherodactylus anzueoi Stuart (p. 28). The two species are readily separable on the basis of leg length. In anzueoi the distance from tip of coccyx to heel is equal to or barely exceeds the distance from tip of coccyx to tip of snout. In greggi the distance from tip of coccyx to heel is at least 25 per cent greater than the distance from tip of coccyx to tip of snout. In the final analysis it appears that Eleutherodactylus greggi is nothing more than a very long-legged population of the Eleutherodactylus mexicanus complex.
INDEX

Except in rare instances subspecies are listed without specific designation under genera. Furthermore, subspecies are not cross indexed by species. Under species and subspecies names some generic combinations included in the synonymsies have been omitted wherever possible, and only currently recognized generic designations are included.

A
Ablabes gracilis, 122
abnorma, 102
Abronia aurita, 81
vasconcelosi, 81
acanthinlus, 70
acanthura, 67
Acrocytes modesta, 87
spiloma, 37
acuminata, 108
acutus (-a, -um), Crocodylus, 133
Kinosternon, 48
Adelphicos quadirigatum, 88, 89
sargi, 88
visoninus, 89
veraeapis, 89
adipoventris, 40
aeneus, 108
aequalis, 110
aequifasciatus, 109
affinis, Bothrops, 130
Micrurus, 126
Agalychnis callidryas, 38
moreleti, 38
Agama cristata, 66
agassiz, 52, 53
agilis, Mabuya, 76
Agkistrodon (Ancistrodon), 128
bilineatus, 128
mokasen, 128
aglaeope, 126
Ahaetulla modesta, 105
shaetulla, 104
Akleistops guatemalensis, 58
albogularis, 55
albonuchalis, 114
alienus, 126
Alligator punctulatus, 132
Alligatoridae, 132
alvarezi, 83
Amastridium sapperi, 89
veliferum, 89
Ameiva chaitzami, 77
edwardsi, 77
festiva, 77
gaigeae, 77
hartwegi, 77
parva, 77
thomasi, 78
undulata, 77
ameiva, 76
americanus (-a), Basiliscus, 66
Lacerta, 76
Amphibia (key to, 13), 16
Ancistrodon, see Agkistrodon
Anguidae, 80
Anguis lumbricalis, 85
platura, 125
angustatus, 47
angusticeps, 78
angustirostris, 124
annulata (-um, -us), Coluber, 103
Coronella, 102
Scaphiodontophis, 113, 114
Tropidoclonium, 123
Tropidodipsas, 124
Anolis aureolus, 64
beckeri, 65
biporcatus, 61, 63, 64
bivittata, 65
bourgeaei, 64
bouvieri, 59
bularis, 59
capito, 61
carneus, 61
carolinensis, 59
cobanensis, 62
copei, 61
cortezi, 64
crassulus, 62
cupreus, 62
dollfusianus, 63
godmani, 59
haguei, 62
humilis, 63
intermedius, 64
laeviventris, 63
lemurinus, 63
macrophallus, 62
mayensis, 65
nannodes, 64
pentaprion, 65
petersi, 65
rodriguezi, 64
ruthveni, 63
sagei, 65
sallaei, 65
salvini, 59
schiedii, 62
sericeus, 65
stuarti, 64
tropidonotus, 66
uniformis, 63
ustus, 66
veraepacis, 64
anomala, 102
anzuetoi, 28, 134
apiata (-us), Micrurus, 126
Stenorrhina, 117
aquaes, 44
arborae, 35
areolata, 50
argus, 111
armillata, 118, 119
asper, 129
assaturn, 74, 75
atlikanensis, Celestus, 81
Spelerpes, 19
atrocinctus, 114
Atrops mexicanus, 130
nummifer, 130
atrox, 128 129
auratus, 108
aureolus, 64
auribundus, 116
aurifer (-fera), 128, 130
aurita, 81
avia, 59

B

bairdi, 118
barberi, 44
Barisia (Barissia) fimbriata, 81
rafaeli, 83
Bascanion suboculare, 105

Basiliscus americanus, 66
vittatus, 66
basiliscus, 66
baudini, 41
beckeri, 65
bernoullii, Bothrops, 129
Leptognathus, 124
bicolor, Bothrops, 129
Loxocemus, 84
Pelamis, 125
Rana, 38
bilineatus, 128
bimaculata, 59
biporcutus, 61, 63, 64
bipunctatus, 91
birdi, 80
biscutatus, 123
bitaenius, 104
bivittata, 65
Boa constrictor, 84
contortrix, 128
imperator, 84
bocourti, Bufo, 25
Cnemidophorus, 79
Eleutherodactylus, 28
Hyla, 35
Spelerpes, 21
boddaerti 94, 95
Boidae, 84
Bolitoglossa dolefini, 17
mexicana, 17, 18
moreleti, 17, 18
mulleri, 18
nigrofemavecens, 19
ocidentalis, 18
platydactyla, 18
rufescens, 18
salvini, 19
Bothriechis aurifera, 130
godmani, 129
notata, 130
nummifer, 130
schlegeli, 131
scutigera, 129
trianguligera, 129
Bothrops affinis, 130
asper, 129
atrox, 129
aurifer, 130
bernoullii, 129
bicdor, 129
brammianus, 129
godmani, 129
lansbergii, 130
mexicanus, 130
nasutus, 130
nummifer, 130
ophryomegas, 131
schlegeli, 131
septentrionalis, 129
supraciliaris, 131
bourgeaei, 64
bouvieri, 59
Brachydactylus mitratus, 55
brachystoma, 130
brammianus, 129
brevir, 75
brocchi, 28, 30
bromeliacea (-ia), Chiropterotriton, 19
Bufo bocourti, 25
canaliferus, 25, 26
coccifer, 25
horribilis, 26
ibarrai, 25
luetkeni, 26
marinus, 26
tacanensis, 26
valliceps, 26
vulgaris, 24
wilsoni, 27
bufo, 24
Bufonidae, 24
bullaris, 59
carinosus, 99
carneus, 61
carolinensis, Anolis, 59
Engystoma, 42
carpicinctus, 114
Catosoma chalybeum, 99
nasale, 100
Caudata, 16
Cauphias guatemalensis, 38, 39
Celestus atitlanensis, 81
rozellae, 82
striatus, 81
cenchoa, 100, 101
Centronenella fleischmanni, 33
granulosa, 33
viridissima, 33
Centronenidae, 33
Cerastes mexicanus, 116
cerebrorus, 120
chaitzami, 77
chalybeum, 99, 100
chalceus, 121
Chamaeleopsis hernandesii, 67
championi, 44
Chelonia agassizii, 52, 53
mydas, 53
olivacea, 53
Cheloniidae, 52
Chelydra lacertina, 47
rossignoni, 47
Chelydridae, 47
cherriei, 75
Chiropterotriton bromeliacia, 19
chitalonensis, 92
chloroticus, 96
chrysostrictus, 70
Cinosternon (-um), see Kinosternon
clarki, 104
Claudius angustatus, 47
pictus, 50
clavatus, 92
Clelia clelia, 90
daudinii, 89
scytalina, 90
clelia, 89, 90
Cnemidophorus angusticeps, 78
bocourti, 79
cozumela, 79
deppei, 78
lemniscatus, 79
L. C. STUART

motaguae, 79
motaguae, 79
cobanensis, 62
cobanum, 49
coccifer, 25
Cochranella viridissima, 33
coeuleus, 95
Coleonyx elegans, 54
mitratus, 55
collaris, 107
Colophys rhodogaster, 99, 100
Coluber ahauctulla, 104
annulata, 103
trox, 128
bodaertii, 94
cenchoa, 100
celia, 89, 90
constrictor, 90
corais, 95
fulgidus, 108
getulus, 102
megaera, 128
melanoleucus, 109
mutabilis, 98
nebulatus, 115, 116
tonkenuergeri, 90
petola, 109
pullatus, 116
quatuorlineata, 97
saurita, 120
severus, 124
stejnegerianus, 90
triapsis, 98
Colubridae, 86
completa, 67
concinna, 51
concolor, 93
Conophanes bipunctatus, 91
clavatus, 92
fissidens, 92
piceivittis, 91
proterops, 91
punctigularis, 91, 92
quinquevittatus, 92
schmidtii, 91, 92
Conophis concolor, 93
dunni, 93
lineatus, 93
pulcher, 93
similis, 93
vittatus, 93
conspicuus, 29
Constrictor constrictor imperator, 84
constrictor, Boa, 84
Coluber, 90
continentalis, Sphaerodactylus, 56
Ungaliophis, 85
contortrix, 128
cepi, 61
corais, 95, 96
coriacea, 64
coronata, 118
Coronella abnorma, 102
annulata, 103
anomala, 102
bipunctata, 91
decorata, 112
fissidens, 90, 91
godmani, 112
oligozona, 102
cortesi, 64
Coryphodon mentovarius, 105
Corythophanes cristatus, 66, 67
hernandezii, 67
percarinatus, 67
cotizensis, 39
cozumela, 79
crasnulus, 62
cristata (-us), Agama, 66
Corythophanes, 66, 67
Crocodylidae, 132
Crocodylus (Crocodilus), 132
acutus, 133
latirostris, 132
moreleti, 133
niloticus, 132
pacificus, 133
Crotalus durissus, 132
horridus, 131
tzabcan, 132
cruentatum, 48
Ctenosaura completa, 67
cyclurozois, 67
palearis, 68
similis, 67, 68
Cubina grandis, 83
cuchumatana, 20
cuculiceps, 124
cupreus, 62
HERPETOFAUNA OF GUATEMALA

cyanosticta, 42
Cyclura quinquecarinata, 68
cycluroides, 67
Cystignathus echinatus, 31
labialis, 31
melanotus, 31

cyclura, 42

Dactyloa biporcata, 61
laeviventris, 63
daudinia, 89
daulinia, 41
deborrei, 68
decorata, 112
degenhardtii, 116, 117
dekayi, 117
Dendrophidion (-ium), 93
chloroticum, 96
dendrophis, 94
vinitor, 94
dendrophis, 93, 94
deppei (-ii), Cnemidophorus, 78
Gerrhonotus, 89
Dermatemyidae, 46
Dermatemys mawei, 46
salvini, 46
Dermochelyidae, 54
Dermochelys, 52, 54
coriacea, 54
Dermophis mexicanus, 16
diademata, 106
diastemus, 110
dieperinkii, 111
dimiadiata, 115
Diploglossus steindachneri, 81, 82
Dipsas cenchos, 101
dieperinkii, 111
dimiadiata, 115
gemmistratus, 101
grandoculis, 115
reticulata, 100
rhomboarea, 100
doleini, 17
dolllusianus, 63
dominicensis, 75
dorsalis, Drymobius, 94
Rhinophrynus, 24
Thamnophis, 120
dorsococoncolor, 27
Dromicus chitalonensis, 92
clavatus, 92
cocerules, 95
godmani, 112
drozii, 107
Dryadopsis dorsalis, 94
laevis, 95
melanolomus, 94
tehuanec, 95
Dryinus aeneus, 108
auratus, 108
Dryiophis acuminata, 108
Drymarchon melanurus, 95
rubidus, 96
unicolor, 96
Drymobius boddartii, 94, 95
caeureus, 95
chloroticus, 96
dendrophis, 94
dorsalis, 94
laevis, 95
margaritiferus, 97
modesta, 95
occidentalis, 97
dubius, 99
dulce, 85
dumerilii, 124
dunni, 93
durissus, 132
ebraccata, 35
echinatus, 51, 52
edwardsi, 77
effeldtii, 49
Elaphne (Elaphis), 97
flavirufa, 98
intermedia, 98
matudaia, 98
mutabilis, 98
pardalina, 98
parreyii, 97
rodriguezi, 98
triapsis, 98
Elapidae, 125
Elapochirus aequalis, 110
deppii, 110
elapes, 109, 110
Elapomorphus mexicana, 118
Elaps aglaeope, 126
alienus, 126
apidius, 126
elegans, 126
fulvius, 126, 127
guatemalensis, 126
hippoprepis, 126
sapperi, 126
elegans, Coleonyx, 54
Elaps, 126
Gastrophryne, 43
Eleutherodactylus anzueto, 28, 134
bocourti, 28
brocchi, 28
conspicuosus, 29
dorsococoncolor, 27
gollmeri, 30
greggi, 28, 134
hobartsmithi, 32
lineatus, 29
matudai, 29
mexicanus, 134
pygmaeus, 32
rhodopus, 27, 29, 30
rostralis, 30
rugulosus, 30
stantonii, 30
venustus, 27
xucanehii, 30
elongata, 22
Emys areolata, 50
grayi, 51
incisa, 50
ornata, 51
salvini, 51
umbra, 51
venusta, 51
Emysaurus rossignonii, 47
engelhardtii, 20
Engystoma carolinensis, 42
elegans, 43
rugosum, 42
variolosum, 43
Engystomops petersi, 31
pustulosus, 31
Enicognathus, see Henicognathus
Enulius flavitorques, 98
murinus, 98
Enyaliosaurus pales, 68
Epaphelus sumichristi, 80
Erethmochelys, 52, 53
imbricata, 53
Erythrolamprus longicaudus, 112
Eublepharidae, 54
Eudryas, 94
Eumeeces schwartzei, 74
sumichristi, 74
Eupemphix gadovii, 43
Euprepes, 73
Eutania fulvus, 120
rutilorus, 121
sumichristi, 120
cuthysanota, 40
exspectata, 23

F
faireyi, 121
fasciata (-us), Streptophorus, 107
Tropidodipsas, 123
Xenosaurus, 83
festiva, 77
Ficinia olivacea, 99
publia, 99
fimbriata, 81
fischeri, 123
fissidens, 90, 91, 92
fissipes, 132
flavigularis, 105
flavimaculatum, 58
flavimembris, 20
flavirufa, 98
flavitorques, 98
fleischmanni, 33
formosus, 71
franklini, 21
freminvillei, 117
frenatus, 56
fulgidus, 108
fulvius, 126, 127
fulvus, Gerrhonotus, 82
Thamnophis, 121
fuscus, Caiman crocodilus, 132
Gonatodes, 55
Homalocranion, 118

gadovii, 43
gaegea, 77
Gastrophryne elegans, 43
gadovii, 43
Gekko (Gecko) mabouia, 56
rapicauda, 57
HERPETOFAUNA OF GUATEMALA

...tuberculatus, 56
Gekkonidae, 56
Geoemyda areolata, 50
incisa, 50
Geophidium dubium, 99
Geophis annulatus, 124
carinus, 99
chalybaea, 100
dubius, 99
nasalis, 100
rhodogaster, 100
gemmistratus, 100, 101
Gerrhonotus auritus, 81
deppi, 80
fulvus, 82
locephalus, 82
moreleti, 82
rafaeli, 83
tessellatus, 82
vasconcelosii, 81
getulus, 102
ibsoni, 109
glandulosa, 40
glaucus, 55
godmani, Anolis, 59
Bothrops, 129
Rhadinidae, 112
goebeli, 23
gollmeri, 30
Gonatodes fuscus, 55
grandis, 83
grandoculis, 115
granulosa, 33
grayi, 51
greggi, 28, 134
guatemalensis, Akleistops, 58
Elaps, 126
Electrophyla, 38, 39
Gymnodactylus albogularis, 55
scapularis, 54
Gymnophiona, 16
Gymnophthalmus birdi, 80
sumichrasti, 80
Gymnopis mexicana, 16
multiplicata, 16
oligozona, 16
hannsteini, 122
hartwegi, 77
helmrichi, 21
Heloderma alvarezi, 83
Helodermatidae, 83
Hemidactylus frenatus, 56
hempsteadae, 113
Henicognathus anulatus, 113, 114
godmani, 112
hernandez, 67
Herpedryas dendrophis, 93
laevis, 95
margaritiferus, 96, 97
Himantodes, see Imantodes
hippocrepis, 126
hobartsmithi, 32
holochlora, 38
Homalocranium (-ion) armillatum, 119
fuscum, 118
jani, 118
moestum, 119
schistosum, 119
taeniatum, 119
trivittatum, 119
Homalopsis quinquevittatus, 92
horribilis, 26
horridum (-us), Trachyderma, 83
Crotalus, 131
humilis, 63
Hydrocalamus quinquevittatus, 92
Hyla (key to, 33), 35
baudini, 41
bocourti, 35
bromeliacea, 35
cyanosticta, 42
ebraccata, 35
euthysanota, 40
glandulosa, 40
holochlora, 38
leonhardschultzei, 40
lichenosa, 37
loquax, 36
macrotympanum, 41
martini, 36
moreleti, 38
paenulata, 37
pansosana, 41
phaeota, 42
picta, 36
regilla, 35

...
L. C. STUART

robertmertensi, 36
spilomma, 37
spinipollex, 41
staufferi, 36
underwoodi, 36
viridus, 35
walkeri, 37
zonata, 37
Hylella picta, 36
Hylidae, 33
Hyliola bocourtii, 35
Hyloides bocourtii, 28
brocchi, 28, 30
lineatus, 29
martinicencis, 27
rostralis, 30
sallaei, 30
Hypopachus aquae, 44
barberi, 44
championi, 44
inguinalis, 45
maculatus, 44
nigroreticulatus, 44
seebachii, 43
simus, 45

I

ibarrai, 25
ignea, 22
Iguana rhinolopha, 68
tuberculata, 68
similis, 67
iguana, 68
Iguanidae, 59
Imantodes cenchoa, 101
gemmistratus, 100, 101
leucomelas, 101
oliveri, 100, 101
imbricata, 53
immaculata, 106
imperator, 84
incertum, 75
incisa, 50
inguinalis, 45
intermedia (-us), Anolis, 64
Elaphe triaspis, 98
Ischcognathus dekayi, 117
ixbaec, 75
ixil, 39

J

jani, 118

K

kennicottiana, 117
kidleri, 123
Kinosternon (Cinosternon), 48
acatum, 48
cobanum, 49
cruentatum, 48
effekitii, 49
leucostomum, 48
longicaudum, 48
kruckoffi, 45

L

labialis, 31
labiosa, 106
Lacerta acanthura, 67
ameiva, 76
americana, 76
basiliscus, 66
bimaculata, 59
iguana, 68
lemniscata, 79
lineata, 79
mabouya, 75, 76
quadrilineata, 79
sputator, 55
lacertina, 47
lachrymans, 113
lactea, 117
Lampropeltis abnorma, 102
oligozona, 102
polyzona, 102
Lampropholis asatus, 74
lansbergii, 130
lateralis, 121
latifasciatus, 127
latirostris, 132
Laemancus deborrei, 68
longipes, 68
laevis, 95
laeviventris, 63
laticollaris, 110
lecontei, 46
Leiolopisma assatum, 74
cherriei, 75
incertum, 75
ixbaec, 75
lemnisatus, 79
lemurinus, 63
leonhardschultzei, 40
Lepidochelys, 52, 53
olivacea, 53, 54
Lepidophaena flavimaculatum, 58
smithi, 58
leprosus, 23
leprus, 27
Leptodactylidae, 27
Leptodactylus caliginosus, 31
echinatus, 32
labialis, 31
melanotus, 31, 32
Leptodeira (Leptodira), 103
malleisi, 103
nigrofasciata, 103
personata, 104
polysticta, 104
rhombifera, 103
Leptodrymus clarki, 104
pulcherrimus, 104
Leptognathus bernoullii, 124
cuculiceps, 124
dimidiatus, 115
grandoculis, 115
semicinctus, 124
sexscutatus, 124
Leptophis mexicanus, 105
modesta, 105
praestans, 105
Leptotyphlopidae, 85
Leptotyphlops phenops, 85
leucomelas, 101
leucostomum, 48
lichenosa, 37
lincolnii, 21
lineata (-us), Conophis, 93
Eleutherodactylus, 29
Lacerta, 79
lineaticollis, 109
lineolatus, 56
lintonii, 119, 120
lioccephalus, 82
Liohylia rugulosa, 30
Liophis aequalis, 110
diastema, 110
flavorques, 98
Lithodytes rhodopis, 29
Liyla rugulosa, 30
longicaudum (-us), Erythrolamprus, 112
kinosternon, 48
longipes, 68
loquax, 36
Loxocemus bicolor, 84
luetkeni, 26
lumbricaulis, 85
lunaei, 70, 71
lundelli, 70
lunulatus, 111
Lycodon lyrophanes, 122
Lygophis lachrymans, 113
Lygosoma assimata, 75
brevis, 75
incertum, 75
ixbaac, 75
lyrophanes, 122
M
Mabuya agilis, 76
dominicensis, 75
mabouya, 76
mabouya, Gecko, 56
Mabuya, 75, 76
macroglossa, 45
macrophallus, 62
macrotyphampanum, 41
maculata (-us), Hypopachus, 44
Rana, 45
Swanka, 49
Magnadigita cuchumatana, 20
genelhardtii, 20
flavimembris, 20
franklini, 21
helmarchi, 21
lincolni, 21
morio, 21
omniumsanctorum, 22
rostrata, 22
magnus, 57
malleisi, 103
margaritiferus, 96, 97
marinus, 26
marnockii, 32
martini, 36
martinicensis, 27
Masticophis melanolomus, 94
mentovarius, 105
ornatus, 105
pulcherrimus, 104
matudai, Elaphe flavirufa, 98
Eleutherodactylus, 29
Electrohyla, 40
mawe, 46
mayensis, Anolis, 65
Micrurus, 126
megazaera, 128
melanocephala, 118
melanoleucus, 109
melanolomus, 94
melanonotus, 31, 32
melanosoma, 46
melanurus, 95
mentovarius, 105
Mecaspis, 82
mexicana (-us), Bolitoglossa, 17, 18
Bothrops, 130
Cnemidophorus, 79
Eleutherodactylus, 134
Gymnophis, 16
Leptophis, 105
Spilotes, 116
Stenorrhina, 117
Tantilla, 118, 119
Xenodon, 124
Microbattrachylus pygmaeus, 82
Microhyla elegans, 43
gadovii, 43
Microhylidae, 42
microlepis, 116
Micrurus affinis, 126
aglaeope, 126
alienus, 126
apliatus, 126
elegans, 126
hippocephis, 126
latifasciatus, 127
mayensis, 126
nigrocinclus, 127
nuchalis, 127
spixii, 125
veraepacis, 126
wagneri, 127
zunilensis, 127
Minomometopon sapperi, 89
mitratus, 55
Mocoa assata, 75
cherriei, 75
modesta, Ahaetulla, 105
Drymobius, 95
Phrynohyas, 37
moesta, 119
mokasen, 128
moreleti, Bolitoglossa, 17, 18
Crocodileus, 133
Gerrhonotus, 82
Phylomedusa, 38
morio, 21
morleyi, 107
motaguae, 79
muelleri, 17, 18
multidentata, 19
multifasciatus, 115
multiplicata, 16
murinus, Enulius, 98
Seps, 78
mutabilis, 98
mydas, 53
nannodes, 64
nasalis, 100
nasuta (-us), Bothrops, 130
Caretta, 52
Natrix sulphurea, 111
nebulata, 116
nebulosus, 32
nietoi, 106
nigriceps, 85
nigrocinclus, 127
nigrofasciata, 103
nigrofasciata, 19
nigroluteus, 121
nigroreticulatus, 44
niloticus, 132
Ninia diademata, 106
immaculata, 106
labiosa, 106
morleyi, 107
nietoi, 106
pavimentata, 107
punctulata, 106, 107
sebae, 106, 107
notata, 130
nothus, 114
nuchalis, 127
nummifer (-era), 130
occidentalis, Bolitoglossa, 18
Drymobius, 97
MEKETOFAUNA OF GUATEMALA

ocellata, 117
odonelli, 18
Oedipina elongata, 22
ignea, 22
taylori, 22
uniformis, 22
Oedipus bromeliacia, 19
cuchumatanus, 20
clongatus, 22
engelhardtii, 20
flavinembris, 20
franklinii, 21
goebeli, 23
helmrichi, 21
lincolni, 21
morio, 21
multidentata, 19
odonelli, 18
rex, 23
rufescens, 18
salvinii, 19
oligozona, Gymnopus, 16
Lampropeltis, 102
olivacea, Ficinia, 99
Lepidochelys, 54
oliveri, 100, 101
oloporus, 73
omniumsanctorum, 22
ophryomegas, 131
ordinatus, 120, 121
ornata, Masticophis, 105
Pseudemys, 51
ortenburgeri, 90
Oxybelis acuminatus, 108
acneus, 108
auratus, 108
fulgidus, 108
Oxyrhophus (Oxyrhophus), 109
aequifasciata, 109
petolarius, 109
plumbeus, 90
proximus, 90
pardoalina, 98
parreysii, 97
parva, 77
pavimentata (-us), Ninia, 107
Scincus, 73
Pelamis bicolor, 125
platurus, 125
pentaprinus, 65
percarinatus, 67
perditus, 86
Peropodum guatemalensis, 85
Perochous fuscus, 132
personata, 104
Petalognathus multifasciatus, 115
nebulatus, 116
ptetasatus, 42
peteri, Anolis, 65
Engystomops, 31
ptola (-arius), 109
phaeota, 42
Pharyngodon ptetasatus, 42
phenops, 85
phrenitica, 119
Phrynohyas modesta, 37
spilomma, 37
Phrynonax lunulatus, 111
Phylodactylus magnus, 57
pulcher, 57
tuberculatus, 57
Phylomedusa moreleti, 38
taylori, 38
piceivittis, 91
picta (-us), Hyla, 36
Claudius, 50
pilonaorum, 122
pipiens, 46
Pituophis gibsoni, 109
lineaticollis, 109
platurus, 125
platydyctyla, 17, 18
Plectrohyla avia, 39
cotzicensis, 39
guatemalensis, 38, 39
ixil, 39
matudai, 40
quecchi, 40
sagorum, 40
Plethodontidae, 16
Pliocercus acqualis, 110
diastemus, 110
clapoides, 109
laticollaris, 110
salvini, 110
sargii, 110
plioporus, 72
Plistodon sumichrasti, 74
plumbeus, 90
poeleonotus, 111
polysticta, 104
polyzona, 102
posadasi, 122
praeastans, 105
prezygus, 71
proterops, 91
proximus, 90
Pseudemys grayi, 51
ornata, 51
Pseudoeurycea exspectata, 23
goebeli, 23
rex, 23
Pseudestes argus, 111
poeleonotus, 111
Psychophyla (key to, 33), 40
adipoventris, 40
euthysanota, 40
macrotylpanum, 41
schmidtorum, 41
spinipollex, 41
publia, 99
pulcher, Conophis, 93
Phylodactylus, 57
pulcherrimus, 104
pullatus, 116
punctigularis, 91, 92
punctulata (-us), Alligator, 132
Ninia, 106, 107
pustulosus, 31
pygmaeus, 32

Q
quadrilineata, 79
quadrivirgatum, 88, 89
quadriplex, 123
quatuorlineata, 97
quecchi, 40
quinquecarinata, 68
quinquelineata, 117
quinquevittatus, 92

R
rackhami, 83
rafaeli, 83
Rana arborea, 35
bicolor, 38
bufo, 24
halecina, 46
rukovofi, 45
lecontei, 46
macroglossa, 45
maculata, 45
marina, 26
melanosoma, 46
palmipes, 46
pipiens, 46
sibilatrix, 31
temporaria, 45
typhonia, 31
Ranidae, 45
rapicaudus, 57
regilla, 35
Reptilia (key to, 13), 46
reticularata, 100
rex, 23
rhabdocephalus, 124
Rhadinacellata, 112
godmani, 112
hempeadace, 113
lachrymans, 113
stadelmani, 113
veraeacapis, 122
Rhegnops sargii, 88
visoninus, 89
rhinolophia, 68
Rhinophrynidae, 24
Rhinophrynus dorsalis, 24
rhodogaster, 99, 100
rhodopis, 27, 29, 30
rhombeata, 100
rhombifera, 103
robertmertensi, 36
rodriguezi, Anolis, 64
Elaphis, 98
rossignoni, 47
rostralis, 30
rostrata, 22
rozellik, 82
rubidus, 96
rufescens, 18
rugosum, 42
rugulosus, 30
ruthveni, 63
rutilorus, 121

S
sagorum, 40
sagrei, 65
Salamandra platydaecylus, 17
Salientia, 24
salaci, Anolis, 65
Hylodes, 30
salvini, Anolis, 59
Bolitoglossa, 19
Dermatemys, 46
Emys, 51
Pliocercus, 110
Sceloporus, 71
Spilotes, 116
Staurotypus, 49, 50
Thamnophis, 120
sapperi, Amastridium, 89
Elaps, 126
sargi, Adelphicos quadrirvatus, 88
Pliocercus, 110
Thrasops, 105
sartori, 124
Sauria, 54
saurita, 120
Scaphiodontophis albonucalis, 114
annulatus, 114
carpicinctus, 114
nothus, 114
zeteki, 114
scapularis, 54
Sceloporus acanthinus, 70
carinatus, 70
chrysocticus, 70
formosus, 71
lunacl, 70, 71
lundelli, 70
olopeorus, 73
plioporus, 72
prezygus, 71
salvini, 71
serrifer, 72
siniferus, 72
smaragdinus, 71
squamosus, 72
stuarti, 71
tacenochlensis, 71
teapensis, 72
torquatus, 69
variabilis, 72, 73
schiedii, 62
schistosa, 119
schlegeli, 131
schmidtii, 91, 92
schmidtorum, 41
schwartzei, 74
Scincella assata assata, 75
cherrii, 75
ixbaec, 75
Scincidae, 73
Scincus pavementatus, 73
telfairii, 74
Scolecohis atrocinctus, 114
scytaulinus, 90
scorpioeides, 48
Scotophis mutabilis, 98
scutigera, 129
scytaulina, 90
sebae, 106, 107
seebachii, 43
semiicinctus, 124
Seplis murinus, 78
septentrionalis, 129
sericetus, 65
Serpentes, 84
serpentina, 47
serrifer, 72
severus, 124
sexscutatus, 124
sibilatrix, 51
Sibon dimidiata, 115
grandoculis, 115
nebulata, 116
similis, Conophis lineatus, 93
Conophis pulcher, 93
Ctenosaura, 67, 68
simus, 45
siniferus, 72
Siphonops mexicanus, 16
oligozonus, 16
smaragdinus, 71
Smilisca (key to, 33), 41
baudini, 41
cyanostica, 42
daulinia, 41
phaeota, 42
smithi, 58
Spelerpes attitanensis, 19
bocourtii, 21
dofleini, 17
leprosus, 23
mexicanus, 18
morio, 21
mulleri, 17, 18
rostratum, 22
variegatus, 19
spengleri, 50
Sphaerodactylidae, 55
Sphaerodactylus continentalis, 56
glaucus, 55
lineolatus, 56
spilomma, 37
Spilotes argus, 111
auribundus, 116
corais, 95, 96
lunulatus, 111
melanurus, 95
mexicanus, 116
microlepis, 116
poecilonotus, 111
salvini, 116
spinipolllex, 41
spixii, 125
sputator, 55
squamosus, 72
stadelmani, 113
stantonii, 30
staufferi, 56
Stauremys, 49
Staurotypus salvini, 49, 50
triporcatas, 50
steindachneri, 81, 82
steguegerianus, 90
Stenodactylus fuscus, 55
Stenorhina (Stenorhina), 116
apiata, 117
degenhardtii, 117
freminvillei, 117
kennicottiana, 117
lactea, 117
mexicana, 117
ocellata, 117
ventralis, 116, 117
Stenostoma dulce, 85
phenops, 85
Storeria dekayi, 117
tropica, 117
Streptophorus atratus collaris, 107
droii, 107
fasciatus, 107
labiosus, 106
pavimentatius, 107
punctulatus, 107
sebae, 107
striatus, 81
stuartii, Anolis, 64
Sceloporus, 71
subcuculare, 105
sulphurea, 111
sumichrasti, Eumeces, 74
Eutaenia, 120, 121
Gymnophthalmus, 80
supraciliaris, 151
Swanka maculata, 49
Syrhiophus leprus, 32
marnockii, 32
nebulosus, 32
Tacanensis, 26
Tachymenis fissidens, 91, 92
taeniata, 119
taeniocephalus, 71
Taeniophas vermiculaticeps, 112
Tantilla (key to, 88), 118
armillata, 118
bairdi, 118
canula, 118
coronata, 118
jani, 118
lintoni, 119, 120
melanocephala, 118
mexicana, 118, 119
moesta, 119
phrenitica, 119
schistosa, 119
taeniata, 119
Tantillita lintoni, 120
taylori, Oedipina, 22
Phyllomedusa, 38
teapensis, 72
tehuanac, 95
Tieidae, 76
telfairii, 74
temporaria, 45
tenuis, 86
HERPETOFAUNA OF GUATEMALA

Terrapene triporcata, 49, 50
tessellatus, 82
Testudines, 46
Testudinidae, 50
Testudo caretta, 52
concina, 51
coriacea, 54
imbricata, 53
mydas, 52
scorpioides, 48
serpentina, 47
spengleri, 50
Thamnophis aurifer, 128, 130
Thamnophis cerebrosus, 120
chalceus, 121
dorsalis, 120
fairyi, 121
fulvus, 121
rutilorus, 121
salvini, 120
sumichrasti, 120
Thecadactylus rapicaudus, 57
thomasi, 78
Thrasops praestans, 105
sargii, 105
torquatus, 69
Trachyderma horridum, 83
Tretanorhinus lateralis, 121
nigroteus, 121
variabilis, 121
trianguligera, 129
triaspis, 98
Trigonocephalus asper, 129
schlegelii, 131
Trimetopon (key to, 112), 129
aurifer, 129
bicolor, 129
brachystoma, 130
godmani, 129
nummifer, 130
ophryomegas, 131
Trimetopon, 122
hannsteini, 122
pilonaorum, 122
posadasi, 122
veraepacis, 122
Trinchorhinus lateralis, 121
triporcatus, 49, 50
Triprion petasatus, 42
trivittatum, 119
tropica, 117
Tropidoclonium annulatum, 123
Tropidodipsas annulatum, 124
dumerilii, 124
fasciata, 123
fischeri, 123
kidderi, 123
sartorii, 124
semicincta, 124
Tropidonotus dekayi, 117
ordinatus, 120, 121
tropidonotus, 66
tuberculata, 68
tuberculosus, 56, 57
Typhlopidae, 85
Typhlops nigricans, 85
perditus, 86
tenuis, 86
typhonia, 31
tzabcan, 132
U
umbra, 51
underwoodi, 36
undulata, 77
Ungaliophis continentalis, 85
unicolor, 96
uniformis, Anolis, 63
Oedipina, 22
Urotheca, 112
ustus, 66
V
valiceps, 26
variabilis, Sceloporus, 72, 73
Tretanorhinus, 121
variegatus, 19
varellosus, 45
vasconcelosi, 81
veliferum, 89
ventralis, 116, 117
venusta (-us), Eleutherodactylus, 27
Emys, 51
veraepacis, Adelphicos, 89
Anolis, 64
Micrurus, 126
Trimetopon, 122
vermiculaticeps, 112
vinitor, 94
Viperidae, 127
Virginia fasciata, 123
viridissima, 33
viridus, 35
visoninus, 89
vittatus, Basiliscus, 66
 Conophis, 93
vulgaris, 24

wagneri, 127
walkeri, 37
wilsoni, 27
No. 101. A biogeography of reptiles and amphibians in the Gómez Farías Region, Tamaulipas, México. By Paul S. Martin. (1958) 102 pp., 7 pls., 7 figs., 4 maps .. $1.50
No. 110. Descriptions of tadpoles of Middle American frogs. By Priscilla Starrett. (1960) 38 pp., 1 pl., 33 figs. ... $1.10
No. 111. A systematic study of the lizards of the deppei group (Genus Cnemidophorus) in México and Guatemala. By William E. Duellman and John Wellman. (1960) 80 pp., 1 pl., 16 figs. .. $1.75
No. 112. A Revision of the Ecuadorian Snakes of the Colubrid Genus Atractus. By Jay M. Savage. (1960) 86 pp., 11 figs. .. $2.00
No. 122. A checklist of the herpetofauna of Guatemala. By L. C. Stuart (1965) 150 pp., frontis., 1 map ... $2.75