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ABSTRACT

Constrained Manipulators and Contact
Force Control of Contour Following Problems

by

Han-Pang Huang

Chairman: N. Harris McClamroch

A contour following problem involves motion of the end effector of a manipulator
from an initial location, which is assumed not to be in contact with the constraint sur-
face S, to a point in S; then the end effector is moved along a specified curve in S with a
specified contact force; finally, the end effector is moved back to the starting point. A
contour following problem consists of both constrained and unconstrained motions. In
order to implement the contour following task, the dynamics of a constrained manipula-

tor are considered as a basis for the study of path and motion planning of a constrained

manipulator, and performance simulation.

The first part of this thesis focuses on the development of a new manipulator
model. Contact forces, which are not taken into account in present manipulator models,
are reflected in the manipulator dynamics in new models. We first develop a model for a
manipulator system with a bilateral constraint; then we extend the model to the case of

a unilateral constraint. In both cases, the equations of motion are derived, and the well-



posedness of the new models are justified. In addition, the inverse dynamics problems
and direct dynamics problems are solved. The bilaterally constrained manipulator sys-
tem is related to a ‘“‘singular” model defined in terms of differential equations and alge-
braic equations; the unilaterally constrained manipulator system is related to a ‘‘non-
linear complementarity” model defined in terms of differential equations and algebraic
inequalities.

In the second part, planning issues for a constrained manipulator system are dis-
cussed. A parameterization approach is used so that the planning problem can be
divided into path planning and motion planning. The path planning problem is to select
a suitable path function so that the constraint is satisfied. The motion planning prob-
lem is to generate the motion sequence and to compute the joint forces/torques. Both a

kinematic approach and a minimum-time approach to motion planning are discussed.

The third part considers simulation methodology for constrained manipulator sys-
tems. Simulation algorithms for both bilaterally constrained and unilaterally constrained
manipulators are addressed. Impact and transition handling are included. Simulation
difficulties are also discussed. Finally, an example contour following task is implemented.

The results of previous chapters are applied and computer simulation is carried out to

validate the responses.
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CHAPTER 1

INTRODUCTION

Industrial robotic manipulators have recently been given increased attention. In
particular, manipulators are indispensable parts of assembly automation plants . There
is no universal definition of a robotic manipulator. In general, a robotic manipulator is a
mechanism, usually consisting of a series of links, joined or sliding relative to one
another, for the purpose of grasping and moving objects in several degrees of freedom. It
can be programmed and controlled to perform some manipulation tasks. The tasks per-
formed by a manipulator are accomplished by the manipulator “end effector.” The end
effector is a gripper, tool, actuator, or other mechanical device attached to the end of the

manipulator by which objects can be grasped or acted upon.

Manipulators have been widely used for pick-and-place operations in industry. But,
they are seldom applied to perform deburring, seam grinding, and seam tracing tasks
due to a lack of development of the manipulator technology in these areas. These appli-
cations of manipulators are examples of ‘“contour following problems.” This thesis is
motivated by these types of contour following problems. The motivating task is dis-

cussed in detail as follows.



1.1. Motivating Task--Contour Following Problems

A contour following problem usually involves a path constraint, which describes a
path or contour to be followed by the end effector of the manipulator, and a desired con-
tact force, which is generated from the interaction between the end effector of the mani-
pulator and the constraint surface. The path and manipulator dynamics of a contour fol-
lowing problem are modeled as stochastic processes by Whitney and Edsall [86]. An
edge-following problem is discussed by Starr [75]. However, they do not explicitly model
the contact force in their apprba.ches; instead, they use force sensors to measure the con-
tact force, and then use the measured force to control the manipulator motion. In addi-
tion, they assume the end effector of the manipulator is initially on the constrained
path; but that is not the usual case. In this sense, they have not treated contour follow-
ing problems in a fundamental way.

More accurately, a specific contour following problem can be stated as follows:
Assume the end effector of the manipulator is not initially in contact with a constraint

surface S (see Fig.1.1), then
(1) move the end effector from its initial position p to point a in surface S;

(2) move the end effector along a curve C in S from point a to point b so that it has a

given contact force with S;
(3) move the end effector from point b back to its initial position p.

For a contour following problem, the motion of the manipulator consists of two
parts: an unconstrained motion, where the end effector is not in contact with the con-
straint surface S (i.e., from point p to point a4 and from point b to point p in Fig.1.1),
and a constrained motion, where the end effector is in contact with the constraint sur-

face S (i.e., from point a to point b in Fig.1.1). When the manipulator performs an



Fig. 1.1 A contour following problem

unconstrained motion, it is referred to as an open kinematic chain manspulator. On the
other hand, when the manipulator performs a constrained motion, where the contact
force must be considered, it is referred to as a closed kinematic chain manipulator. In
typical contour following problems, the open chain manipulator dynamics, the con-
strained path and contact force, and the initial and final positions of the manipulator
are given. However, a question arises: how can the manipulator perform the contour fol-
lowing problem efficiently? In order to answer this question, several issues should be con-

sidered:

(1) Modeling: A suitable model to describe the contour following problem is required.
When the end effector enters the constraint surface, an impulsive impact force may
occur at that instant. It is desirable to characterize this impulsive impact force as a

part of the manipulator dynamics. Moreover, when the manipulator moves on the



(2)

(3)

(4)

-4

constraint surface, its end effector interacts with the constraint surface. The
interaction effect and the contact force due to this interaction should be reflected in

the manipulator model.

Planning: A motion planner should generate the manipulator input to achieve the
desired manipulator motion and the desired contact force, based on the manipula-
tor model developed in (1). Thus, the manipulator follows the prespecified path and
exerts a specified contact force on the constraint surface. It may be desirable to
perform the contour following task according to some optimality criteria, such as in

minimum time.

Feedback control: A feedback controller [40,41,62,77,79,85] should correct for devia-
tions of the manipulator motion due to outside disturbances and uncertainties of
the manipulator dynamics. An appropriate controller should be able to control the
manipulator motion and the contact force simultaneously. The existence of the

contact force presents a challenge to feedback controller design.

Simulation: When each part of the contour following problem has been specified,
simulation may be required to verify the performance of the task. It will be seen
later that the manipulator model of the contour following problem consists of a set
of differential equations and algebraic equations (or algebraic inequalities). This

characteristic presents many difficulties in simulation.
The above four ingredients of a contour following problem are shown in Fig. 1.2.

The contour following problem described above is dealt with in this thesis. The

main focus is on modeling, planning and simulation; feedback controller design is not

studied in this thesis.
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Fig. 1.2 A schematic diagram of contour following problem

1.2. Concept and Significance of Constrained Manipulators

The contour following problem poses an interesting point: the manipulator end
effector can not move arbitrarily; instead, the manipulator motion must satisfy certain
path constraints. In other words, the manipulator is constrained. Suppose the constraint

surface S is defined by an equality
é(p)=0, (1.2.1)

where ¢:R* —R! and p€R" denotes the position vector of the end effector. The equal-
ity Eq.(1.2.1) defines a bilateral constraint. A manipulator constrained by the bilateral
constraint, Eq.(1.2.1), is referred to as a bilaterally constrained manipulator. On the other

hand, if the path constraint is given by an inequality



#(p) 20, (1.2.2)

this path constraint is called a unilateral constraint. It means that when the end effector
is not in contact with the constraint surface, the constraint can be ignored; however,
when the end effector is in contact with the constraint surface, there exists a contact
force and the constraint must be regarded as an intrinsic part of the manipulator
dynamics. A manipulator constrained by the unilateral constraint, Eq.(1.2.2), is called a
unilaterally constrained manspulator. We use constrained manspulators to represent both
bilaterally constrained manipulators and unilaterally constrained manipulators. In con-
trast, an open kinematic chain manipulator is regarded as an unconstrasned manipulator.
In this sense, a manipulator which performs a contour following task can be character-
ized by a unilaterally constrained manipulator. Throughout this thesis bilaterally con-

strained manipulators and closed chained manipulators share the same meaning.

It is clear that the concept of constrained manipulators and contact forces are
major issues for contour following problems. We further discuss why previous approaches
to constrained manipulators are inadequate and discuss the significance of constrained
manipulators and contour following problems. Modeling, planning and simulation are

further elaborated.

'There has been considerable research on the dynamics of unconstrained manipula-
tors. However, much of that research is based on the assumption that the manipulator
does not interact with its environment in any significant way. When there exists contact
between the end effector and the constraint surface, the contact force may be measured
by a force sensor and used to control the manipulator motion [47,56,58,62,77]. This

approach is inadequate for several reasons:



o the contact force is not explicitly expressed as part of the manipulator dynamics;

hence, simultaneous control of motion and force is neither easy nor accurate;

o the force sensor is usually modeled as a spring, with the sensed force proportional
to the difference between desired manipulator displacement and the actual manipu-
lator displacement, i.e., the measured force depends only on the manipulator dis-
placement; such a view is inappropriate for hard contact between the end effector

and a constraint surface which is not compliant;

e it is not always practical to install a sensor at the exact tip of the manipulator to
measure the contact force; most force sensors are located at the wrist of the mani-
pulator [4,77,85] rather than at the very end of the end effector; the wrist is a noisy

place to make measurement; thus, the measured force does not represent the true

contact force.

We argue that the contact force must be modeled as a part of the manipulator dynam-
ics. Since the analysis and control of the contact force are critical, a suitable model for

a constrained manipulator should meet the following requirements:
o explicit consideration of contact constraints,
o explicit consideration of contact forces,
o useful for motion/force planning,
o useful for sensor-based feedback control,
o useful for understanding interaction between the manipulator and task.

Planning for constrained manipulators involves not only specification of desired
manipulator motion (i.e., displacement, velocity, and acceleration time history of the end

effector) but also specification of desired contact force time history. Given such specifica-



tions which satisfy the imposed constraint, the joint torques can be computed so that
the manipulator satisfies these desired specifications. The joint torque computations
require solution of the inverse dynamics problem as well as solution of the direct dynam-
ics problem [45]. If a cost criterion is used to evaluate the planning performance for a
constrained manipulator, an optimal planning problem results. In this case, the manipu-
lator motion is to be determined to satisfy an optimality criterion, and the contact force

may be pre-specified.

Computer simulation can be used to evaluate the dynamic performance of a con-
strained manipulator. However, a bilaterally constrained manipulator consists of a set of
differential equations and an algebraic equation; numerical simulation for this type of
differential algebraic equations (DAE) system is quite difficult. Since a DAE system is
inherently stiff, most ordinary differential equation solvers can not be used. On the other
hand, a unilaterally constrained manipulator consists of a set of differential equations
and an algebraic inequality; numerical simulation is even more difficult than a bilateral
constraint case. Difficulties come from several factors: (i) two types of equations of
motion of the manipulator system— when the manipulator end effector is not in contact
with the constraint surface, the equations of motion of the manipulator are described by
a set of differential equations; when the manipulator is in contact with the constraint
surface, the equations of motion of the manipulator are governed by a DAE system; (ii)
transition time— it is difficult to determine when the manipulator transits from an
unconstrained motion to a constrained motion, and vice versa; (iii) impact issues— when
the manipulator transits from an unconstrained motion to a constrained motion, impact

is possible.

Many other applications of manipulators, such as, cutting, drilling, grinding, scrib-

ing, drawing, and insertion have the same features as the contour following problem.



However, at present, manipulators are seldom applied to these operations. Main reasons
are that we know very little about constrained manipulator dynamics nor know how to
control the contact force. Thus, solution to the contour following problem may provide a
solution approach to many other similar operations. Development of the contour follow-
ing problem may also prove useful for study of compliant motion. Compliance character-
izes the ability of a manipulator to react to interaction forces and torques. There are two
types of compliance—~ manipulator compliance and interaction environment compliance.
Manipulator compliance arises from the manipulator itself. Hogan [27], McClamroch
[47], and Kazerooni et al. [33] use the concept of impedance control to model manipula-
tor compliance. Whitney’s RCC (Remote Center Compliance) [84] approach uses an
additional passive device to provide manipulator compliance. On the other hand,
environment compliance arises from environment features. Raibert and Craig [62], Salis-
bury [65], Mason [43], Paul and Shimano [56], and Wu [88] have modeled environment
compliance as a spring. However, they do not model manipulator compliance and
environment compliance simultaneously. In our development for constrained manipula-
tors, manipulator dynamics and environment interaction dynamics are modeled together;
thus, providing an integrated way to consider both manipulator compliance and environ-

ment compliance.
1.3. Related Work

There is a substantial literature on the dynamics of manipulators as open kinematic
chains [4,23,28,34,58,78]. However, the dynamics of manipulators as closed kinematic
chains have seldom been addressed. It is not due to the unimportance of this type of
manipulator, but due to a lack of understanding of the interaction between the manipu-
lator end effector and the constraint surface. Orin and Oh [51], and Draganoiu [16] give

a description of closed chain manipulators through experimental analysis; unfortunately,
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a formal model is not given. Hemani and Wyman [25], Hemani and Weimer [26] give a
model for a biped locomotion system, which takes into account the contact forces. Again
they do not explore the underlying idea for a closed chain manipulator. McClamroch and
Huang [45] derive a model for a closed chain manipulator. There, the well-posedness of
the model was proved and the closed chain manipulator system was related to a so-
called singular system [11]. McClamroch [46] further elaborates this approach and
extends it to a multi-manipulator case. Zheng and Luh [89] explore a seven joint mani-
pulator, where a closed chain is formed through the link designs of the manipulator
(rather than formed through contact between manipulator end effector and the con-
straint surface). West and Asada [83] also consider a contact problem, where the contact
occurs between a manipulator link and the constrained environment rather than the end
effector and the constraint environment. Recently, Kankaanaanta and Koivo [31] have
derived a closed chain manipulator model with consideration of friction. But, they do not
show the well-posedness of their models. Although modeling a bilaterally constrained
manipulator has only recently attracted attention in the robotics area, it has been well-
discussed in mechanics area [22,24,87]. Two well-known closed chain mechanical exam-

ples are: a four bar linkage and a slider crank mechanism.

In contrast to a bilaterally constrained manipulator, the dynamics of a unilaterally
constrained manipulator are even less well developed. In the robotics area, Zheng and
Hemani [90] describes impulsive impact effects when the foot of a biped system hits the
ground. In the mechanics area, several Russian papers [76,91] discuss mechanical systems
with unilateral constraints. They treat unilateral constraints as additional generalized
coordinates; then they investigate the properties of the unilaterally constrained system,
based on the augmented generalized coordinates. A good discussion of a mechanical sys-

tem with unilateral constraints is given by Lotstedt [38]. He relates a unilaterally



constrained system to complementarity problems [14,32]. But he makes some unusual
assumptions about the system when he proves the well-posedness of the system model.
Nevertheless, to our knowledge, a formal system model for a unilaterally constrained sys-

tem has not been derived, nor have such problem been examined from a control point of

view.

Since the dynamics of constrained manipulators are not well understood, the
motion planning issue for constrained manipulators has not been yet explored. As to
simulation issues for constrained manipulators, most work has focused on numerical pro-
cedures for a bilaterally constrained manipulators [2,6,7,50,80], except [63]. There are
still many difficulties in simulation due to the existence of algebraic equations in the sys-
tem. Specially, a bilaterally constrained manipulator system is an index three singular
system (this is shown in Chapter 5), which is a high index system; high index charac-
teristics present a lot of difficulties in simulation. Simulation for a unilaterally con-
strained manipulator is even more difficult than a bilaterally constrained manipulator
due to possible impulsive impact effects. Lotstedt [39] formulates unilaterally con-
strained dynamics as a quadratic programming problem. But impulsive impact is not
handled there; it is not clear if his approach is suitable for a unilaterally constrained

manipulator.

1.4. Objective and Outline of Dissertation

The objective of this thesis is to discuss a typical contour following problem and
associated constrained manipulator problems. Some known results in several fields are
incorporated and related to constrained manipulators. Analysis of contact force and
interaction between the manipulator end effector and the constraint surface are dis-

cussed in detail. Also, an integrated consideration of a complete constrained manipulator



system-- modeling, planning, and simulation-- are presented in this thesis.

The remainder of this thesis is organized as follows: Chapter 2 derives a model for
bilaterally constrained manipulators, and discusses the well-posedness of the model.
Chapter 3 derives a model for unilaterally constrained manipulators, and discusses
impact issues and the well-posedness of the model. Chapter 4 presents an approach to
planning issues for constrained manipulators, and describes associated difficulties.
Chapter 5 gives a detailed discussion of simulation issues for constrained manipulators,
and describes associated difficulties. Chapter 6 applies the results developed in Chapter 2
through Chapter 5 to a contour following example. Chapter 7 concludes this thesis, and

points out some possible extensions of this work.



CHAPTER 2

MODELS OF BILATERALLY
CONSTRAINED MANIPULATORS

In this chapter, we derive a model for a bilaterally constrained manipulator. The
model is complete in the sense that it characterizes not only the manipulator dynamics
but also the contact dynamics. In fact, contact between the end effector and the con-
straint surface is maintained by a contact force. We also show that the model is well-
posed by considering the inverse dynamics problem and the direct dynamics problem.
The development of this chapter is primarily based on our previous paper [45], where

multiple bilateral constraints have been considered.

2.1. Assumptions

In order to derive a mathematical model for a bilaterally constrained manipulator,

several assumptions about the manipulator and the constraints are made.

Manipulator Assumptions:
(A1) The Lagrangian function L: R™® XR ™ —R! is continuously differentiable with the

form
L(q "1) = K(q ,Q) - V(Q) ’ (2'1'1)

where

-13-
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K(q,§) = —21,- §" M(q)q (2.1.2)

is the manipulator kinetic energy with the inertial matrix function M(q) which is
continuously differentiable with a continuously differentiable inverse; and V(q) is

the manipulator potential energy.
(A2) The kinematic transformation for joint coordinates to Cartesian coordinates

H: R®"—R"® has three continuous derivatives and is invertible.

(A3) The Jacobian matrix J( q)é -‘%}l is nonsingular.

(A4) The scalar defined by
A(q)=D(H(q)I(¢)M(q)J"(q) DT(H(q)) (2.1.3)
is nonzero, with a continuously differentiable inverse.
Constraint Assumptions:
(A5) The end effector satisfies ¢(p )=0, and the constraint function ¢ :R"* —R! is twice

continuously differentiable with non-zero gradient, i.e., the constraint surface is a

smooth surface.

(A8) Contact between the end effector and the constraint surface occurs at a point; it is

assumed that the constraint surface is frictionless.

With these assumptions, we use Hamilton’s principle [22,24,87] to derive a model

for the manipulator with a bilateral constraint.

2.2. Lagrangian Formulation for Manipulator Dynamics

The Lagrangian formulation for the bilaterally constrained manipulator model is

based on the Lagrangian function L (q,q). Since we tacitly assume that the manipulator
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system is holonomic and conservative, Hamilton's principle can be directly applied to the

system to derive the equations of motion.

Let pER"™ denote the position vector of the end effector of the manipulator, in

terms of a fixed workspace coordinate system. Suppose that a constraint on the end

effector is given as

é(p)=0. (2.2.1)

A closed kinematic chain is formed through continuous contact of the end effector of the
manipulator with the the constraint surface. Then, the frictionless constraint surface S

is given by
S= { PER™: ¢(p )=0 } . (2.2.2)
If p, is a point on S, then we can define the normal space of S at p as
N(po) ={ p:p = avé(py), a€R’ } (2.2.3)
and the tangent space of S at p, as
T(po) = { p:pTy=0, yEN(p,) } : (2.2.4)

N(p,) and T (p,) are orthogonal subspaces of R" so that

R*=T(po) ® N(p,) - (2.2.5)

We use g€R"™ to denote the position vector of robot joint coordinates; thus, the

relation between robot coordinates and workspace coordinates can be expressed as

p=H(q). (2.2.8)
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In general, it is convenient to define the manipulator equations of motion in terms
of the joint coordinates [34,52,58,78]. We adopt this convention in our derivation. In
order to apply Hamilton's principle to derive the manipulator model, we form the action

integral I of the manipulator system. The action integral is

4
I= [L(q,4)dt . (2.2.7)
to

Since the manipulator is constrained by the holonomic constraint ¢(p )=0, we adjoin
this constraint to the action integral by a Lagrange multiplier A\. The augmented action

integral I becomes

a ‘!
= ‘f [L(q,é) + M(p )] dt . (2.2.8)

Taking the variation of I yields

/
f[_s + 9L 5292 Jp]dt
dp

¢
, (2.2.9)
d 0oL T T
= —_— - — = J t
{{[ 3¢ @t 33 (¢)D (p)k}&l}d ,
where J(q) and D (p) are Jacobian matrices defined by
A 0H(q
J(Q) = aq '
b & 24 (2.2.10)
p ap 4

and ()7 denotes the transpose. Hamilton’s principle gives §1=0. Suppose O—:Q-l F#£0;

n

choose \ so that

oL d OL T, T —
- — J, D A=0
aq“ dt aq” + n (q) (p) ’



where J,(g) is the n-th column of matrix J(gq). The remaining dq;, s =1,...,(n-1) are
free variations such that the constraint is satisfied, and hence the coefficient of each 4gq;

must vanish separately. Consequently, we have the equations of motion as

4 oL _ oL _ T(q)DT
& 95 9q T+J (¢)D"(p)\, (2.2.11)
and the constraint
é(p)=0, (2.2.12)

where T is the input joint torque. Using (2.1.1) and (2.1.2) in (2.2.11), we obtain

M(g)i+Flg,)=T+JT(q)DT(p), (2.2.13)
where F(q,d)=[-:id? M (q)]zj— ul'a%—’gl consists of the Coriolis term, the centrifugal

term, and the gravitational term; the second term of the right hand side represents the

torque required to maintain satisfaction of the constraint &(p )=0; Define the contact

force due to the constraint as
I =DT(p). (2.2.14)

Then, the complete set of equations of motion is obtained as

M(g)i+F(g,9) =T+ J"(q)f, (2:2.15)
f=DT(p), (2.2.16)
p=H(q), (2.2.17)

d(p)=0. (2.2.18)

Since the equations of motion of a constrained manipulator consist of a set of dif-

ferential equations and an algebraic equation, they can also be written in the form
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[é I 8}1 [3]= M“(q)(THT(q)DéT H(q)M-F(g,9)| .  (22.19)
000 | 3 ’

Since the coefficient matrix multiplying the derivatives is singular, these equations have
been referred to as nonlinear singular equations or nonlinear equations in descriptor form
[11,71]).

Note that the contact force vector f is implicitly defined through the algebraic
equation. The contact between the end effector and the constraint surface is maintained
by the contact force. This requires that the velocity vector p lie in the tangent space of
S and the contact force vector f lie in the normal space of S. In other véords, the degree
of freedom of position (velocity) is defined in the tangent space, and the degree of free-
dom of force is defined in the normal space. Since these requirements are due to con-
tact, they are referred to as ‘‘natural constraints” on the velocity of the end effector and

on the contact force.

2.3. Well-Posedness of the Model

In order to justify the well-posedness of the manipulator model developed in the
previous section, the solution concept of the manipulator system is first discussed. Then,
the inverse dynamics problem and the direct dynamics problem of the constrained mani-

pulator are investigated.

2.3.1. Solution Concept

Since the bilaterally constrained manipulator system is modeled as a nonlinear
singular equation, the solution concept is defined in terms of Eq.(2.2.19). We define the

solution concept of the bilaterally constrained manipulator system in terms of consistent



initial values and solvability of the system.

Definition 2.3.1:

A set of initial values (gqq, go) is said to be consistent for the bilaterally constrained
manipulator system, Eq. (2.2.19), if ¢(H(qo))=0 and D (H(q,))J(q0)3=0; namely,

90€S and J(q0)9ET (H(q0))-

Definition 2.3.2:
The bilaterally constrained system, Eq.(2.2.19), is solvable if for each set of consistent
initial values (g, §o) the system (2.2.19) has a unique solution ¢(¢) for t,<t <t¢,, satis-
fying ¢ (to)=q0 and §(to)="4o.

With this solution concept, we discuss the well-posedness of the bilaterally con-

strained manipulator system in the next two sub-sections.

2.3.2. Inverse Dynamics Problem

As far as the well-posedness of the manipulator model described by Eqns.
(2.2.15)~(2.2.18) is concerned, the inverse dynamics problem should be considered first.
The inverse dynamics problem can be stated as follows: Given the input joint torque
vector and consistent initial values, what is the manipulator motion and the correspond-
ing contact force, which satisfy Eqns. (2.2.15)~(2.2.18) or (2.2.19)? Calculation of the

contact force plays an important role in this problem.

We state an existence and uniqueness theorem for the inverse dynamics problem as

follows.
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Theorem 2.3.1:
Given the torque vector T(t)ER" piecewise continuous on t,<t <t; and consistent
instial values (g, §o), then with assumptions {A1)~(A5) there ezists a unique motion
q(t) (and p(t)) and a unique contact force vector \(t) satisfying (2.2.15)~(2.2.18) for
to<t<t; (assuming there is no finite escape time).
Proof:

Our objective is to obtain an expression for the contact force which guarantees

satisfaction of the path constraint. To this end, suppose ¢(p (¢ ))=0 so that

dolelt) —ppys=o,

dt
. .
d ¢,(,fzt)) =D(p)s + D(p,p)p =0,
where D(P P) = T:ii; D(p). Since M(q) is nonsingular, § is obtained as

i=M?"q)[T-F(q,q) ]+ MY q)IT(q)f .

The velocity and acceleration of the end effector in workspace coordinates are

p=J(q)q,

p=Jg, 99+ J(q)d,

where J(q ,9) 2 -:—t J(g) . These equations, together with (2.2.18), lead to

A(g\=D(H(q))J(¢)M(q)[ F(q,9)- T]
-[D(H(q)J(q,9) + D(H(q),J(q)d)/(q)] ¢ .
This is a linear equation for the scalar multiplier \; since A(q) is non-zero, A can be

uniquely determined as a linear function of ¢,q,T

AN=9(¢,4T), (2.3.1)



where

9(4,4,T) = A (q)D(H(¢)J(¢)MH(q)[ F(g.9) - T]

-1 . : . . (2.3.2)
-Aq)[D(H(q))(q,9) + D(H(q),J(q)2)/(q)]q .

Hence, the resulting contact force is

/ =DT(H(q))9(q,4,T) .

With the explicit expression of the contact force, Eqns. (2.2.15), (2.2.16) reduce to the

following initial value problem:

M(q)i+Flg,9) =T+ JT(q)DT(H(q))9(q,4,T),

. , (2.3.3)
q(to) = qo, q(to)=qo -

From the stated assumptions, this initial value problem has a unique solution ¢(¢)
defined for t,<t <ty + & for some §>0 [13]. Assuming there is no finite escape time,

the solution is defined for ¢,<t <t;.

Next, we show that the constraints are satistied throughout the motion. Since the

contact force \ = g(q,4,T), t,<t<t;, it can be verified that p (¢ )=H(q(t)) satisfies

2
dp(t)) _, o<t <ty .

dt?
But, since H(qo)ES, J(q0)dET(H(g,)) it follows that

soiea) =0, LD g

Thus, we have
#p(t) =0, ,<t<t .

The basic idea of this proof is to develop a nomsingular differential equation,

namely, equation (2.3.3), which characterizes the motion within the constraint surface.



An important part of this development is that the contact force is explicitly given by
Eqns. (2.3.1) and (2.3.2).

In the above, we have shown that under the stated assumptions the inverse dynam-
ics problem is well-posed. The assumptions (A1)~(A5) have been stated in their most

obvious form, but those assumptions can be relaxed in several ways.

2.3.3. Direct Dynamics Problem

In order to complete the justification of the well-posedness of the manipulator
model, the direct dynamics problem is addressed. The direct dynamics problem is stated
as follows: Given a specified motion of the manipulator and a specified contact force
satisfying the imposed constraint, what is the input joint torque vector which would gen-
erate this specified motion? It is a problem of motion synthesis. The following theorem

gives the relationship between the input joint torque and the contact force.

Theorem 2.3.2:

Given the contact force N(t) (f (t)) for t,<t <t; and the motion q(t) which is twice
continuously differentiable and satisfies ¢(H(q(t))) =0 for t,<t <t;, then under
assumptions (A 1)~(A 3) and (A 5) there ezists a unique input joint torque vector T (t)
satisfying (2.2.15) for t,<t <t, .

Proof:

From (2.2.15), (2.2.16), we have
M(q)i+F(q,)=T+J7(q) DT(H(q)\ .

Clearly, given ¢(¢) and X(t), ¢,<t <t;, there is a unique torque vector T(¢) for

ty<t<t; satisfying this equation. [j
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As indicated in the proof, for a specified contact force function, the torque T'(¢) is
uniquely defined. If the contact force A(¢) is not specified, there are many input joint
torque vector functions and contact force functions which generate the same given
motion. The case of an open kinematic chain (unconstrained) manipulator corresponds
to the assumption that the contact force A(¢)=0 for ¢, <t <t; so that the torque T'(t)

is uniquely determined.

2.3.4. Remarks

Although contact between the end effector and the constraint surface is maintained
by the contact force, the contact force can be zero. If the input joint torque vector T

satisfies

D(H(q))J(¢)M"(q)T=D (H(q))J(¢)M'(q)F (¢.9)

o ) . (2.3.4)
-[D(H(q))/(q,9)+D(H(q),J(9)9)J(q) ],

then the contact force is equal to zero. This special case is referred to as the degenerate

case of the contact force.

In the above, we have carefully developed a general model for a bilaterally con-
strained manipulator, and we have shown that the direct and inverse dynamics problems
are well-posed. We believe that the constrained manipulator model is the appropriate
model to use in control design and analysis, where the manipulation task involves con-

tact between the manipulator end effector and a fixed constraint.

2.4. Constraint Elimination ahd Reduction Transformation

It is possible to eliminate the path constraint and the contact force from the

dynamic model of the bilaterally constrained manipulator by a suitable development.
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However, the resulting equations are extremely complicated; moreover, elimination of the
contact force from the model may not be desirable if the contact force represents a vari-
able to be controlled. Although the elimination of the constraint may not always be
desired in control analysis, it does provide certain theoretical and computational advan-
tages in cases where the contact force need not be computed. Two approaches to elim-
inate the constraint are discussed.

The first approach is based on expressing the contact force X\ in terms of the posi-
tion g, the velocity ¢, and the .input‘ joint torque T'; then this expression is substituted in
Eq.(2.2.15) to eliminate the constraint. This approach was used in the proof of the
inverse dynamics problem. As in that development, the nonsingular manipulator dynam-

ics become

M(¢)i+F(g,)) =T+ J"(a)D(p)a(a,4T), (2.4.1)
where g(g,4,T), defined in Eq.(2.3.2), is the contact force required to maintain satisfac-
tion of the constraint.

The second approach is based on use of the implicit function theorem [15] to parti-
tion the joint space coordinates into a set of independent and dependent coordinates;
then the constraint equation can be explicitly solved. Suppose that there exists a func-

tion ¢ such that

g =¥qy) and ¢[ ’1’(;,’1” )]] =0 forall qyER™!,

Differentiating the constraint, we have
D(p)J(g)g=0,

or



Bi(q)qr + Bu(q)gy =0,

where

[g;,‘(;’)] =D(p)(a).

Assume that B;(q) is nonzero, then ¢; can be expressed in terms of §; as
41 = -B;™(9)Bu(q)d -
Similarly, §; can be obtained by differentiating Eq.(2.4.3) as
i1 =-Qla,d)iu - @(@)in ,

where

Aa.d) =4 [-B@)B(0)] , Q@)= [-B(0)Bula)].

Now we decompose Eq.(2.2.15) in the same way as

My(q)i; + My(q)iy + Fi(g,@) = T; + B; T(q)\,

Mo(9)d + Mala)in + Fu(a,9) =Ty + By T (q) .

Since B;(q) is non-zero, we can solve for \ from Eq. (2.4.5) as
A= BI-T(Q)[Mu(q)?il‘*'Mlz(q)?in + Fr(q,9) - TI] :

Using Eqns.(2.4.4), (2.4.7) in Eq.(2.4.6) and re-arranging, we obtain

(Moo Ma0)Q 0B ™ (018,77 ()M M @)@ ()] Y + Pl

By " (0)Br " (2)[Fi(a,8--Mus(a)Q(a )i | -Mar(a) Qe i

= Ty - By T(q)B; T ()T},

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.8)

(2.4.7)

(2.4.8)



d¥aqn) i
]
where ¢ = [ﬂqﬁl ) ], q= qz” . This equation is a second order differential

equation in the n-1 vector g;; only. In general, it is difficult to find a global function
(g ) satisfying ¢[H{¢(q:" )” = 0 for all q;ER™.

In summary, each of the above methods can be used to transform the original
singular equation into a nonsingular differential equation. The first approach was used
primarily in the proof of theorem 2.3.1, but the explicit expression for the contact force
is complicated and the order of the system is not reduced. The second approach is par-
ticularly useful in that the order of the system is reduced. But, a global expression for
the independent coordinates in the this approach may be difficult to obtain. These con-

straint elimination methods will be further discussed in Chapter 5.



CHAPTER 3

MODELS OF UNILATERALLY
CONSTRAINED MANIPULATORS

In the previous chapter, we developed a model for a manipulator with a bilateral
constraint. The modej can be extended to the case of a manipulator with a unilateral
constraint. A unilateral constraint can be used to characterize the manipulator motion
where the end effector may or may not be in contact with a constraint surface. In other
words, the constraint condition, defined as an inequality, can be active or inactive. Since
many manipulation problems in practical application, such as contour following prob-
lems, are of this type, a unilaterally constrained manipulator model is appropriate to

describe these types of manipulations.

In this chapter, we derive a model for a unilaterally constrained manipulator, based
on Hamilton’s principle. Assumptions about the manipulator and the constraint, impact

issues, and the well-posedness of the model are discussed in the subsequent sections.

3.1. Assumptions

In order to derive a mathematical model for a unilaterally constrained manipulator,

several assumptions about the manipulator and the constraints are made.

«27-
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Manipulator Assumptions:
(A1) The Lagrangian function L: R® XR™ —R! is continuously differentiable with the

form
L(q,9) =K(q,9)-V(q), (3.1.1)

where
. 1 .7 .
K(q,9) = 7 4 M(q)q (3.1.2)

is the manipulator kinetic energy with the inertial matrix function M(q) which is
continuously differentiable with a continuously differentiable inverse; and V(q) is

the manipulator potential energy.

(A2) The kinematic transformation for joint coordinates to Cartesian coordinates

H: R"®"—R" has three continuous derivatives and is invertible.

(A3) The Jacobian matrix J (q)-é: az;qq is nonsingular.
(A4) The scalar defined by
Alg) =D (H(a))J(a)M ()" (¢) DT (H(q)) (3.1.3)

is nonzero, with a continuously differentiable inverse.

Constraint Assumptions:

(A5) The end effector satisfies ¢(p )>0, and the constraint function ¢ :R" —R! is twice
continuously differentiable with non-zero gradient, i.e., the constraint surface is a
smooth surface.

(A8) Any contact between the end effector and the constraint surface occurs at a point;

it is assumed that the constraint surface is frictionless.



(A7) Any impact of the manipulator colliding with the constraint surface is assumed to
be inelastic.

With these assumptions, we use the variational approach to derive a model for the

manipulator with a unilateral constraint.

3.2. Lagrangian Formulation for Manipulator Dynamics

The Lagrangian formulation for the model of a unilaterally constrained manipulator
is based on the Lagrangian function L(q,q). The key point in deriving the manipulator
model is to convert a unilateral constraint into a bilateral constraint by using a slack
variable so that Hamilton’s principle can be directly applied. We give special attention to
those time instants at which the constraint changes from inactive to active or from

active to inactive. The unilaterally constrained manipulator model is derived as follows.
Let pER™ denote the position vector of the end effector of the manipulator, in
terms of a fixed workspace coordinate system. Suppose that the motion of the end effec-

tor of the manipulator is constrained by

¢(p)20. (3.2.1)

A strict inequality holds when the end effector is off the constraint surface, and an
equality holds when the end effector is in contact with the constraint surface. Hence, the

feasible region of the end effector, {2, can be defined as
0= {p: é(p )20, pER"} : (3.2.2)

Every point in ) is called a feasible point. We assume that the end effector can not
violate the constraint, i.e., ¢(p)<O0 is not allowed. We use Hamilton’s principle for a

holonomic system to derive the equations of motion of a unilaterally constrained
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manipulator system. Notations defined in Chapter 2 are also used here.

We assume that there are (n+1) motion segments such that

Hp(t) >0, 15, <t<tyiy,
- 3.2.3
Hp(t) =0, oSt <taing, 1=0,1,., ”21 , (3.2.3)

where ¢,<t,<t,<..<t, <t,.=t; . In short, the manipulator motion is assumed to
consist of two types: unconstrained motion where ¢(p(¢))>0, and constrained motion
where ¢(p (t))=0. We assume that ¢(p(¢,))>0 and é(p(¢; ))>0. Consider the Hamil-

tonian action integral /

¢ n th
I={[L(q,9)dt =Y [L(q,9)dt, (3.2.4)
to |'=0‘|,+

where ;¥ and t;” denote right hand and left hand limits, respectively; ¢, =¢,, and
by 1=tp 11
The inequality constraint (3.2.1) can be converted into an equality constraint by

using a slack variable zER ! as
d(p)-22=0. (3.2.5)

With this transformation of the constraint, we can directly apply Hamilton’s principle to
the action integral I. Since ¢(p)-z2=0 must be satisfied always and the condition

#(p(t;))=0 must be satisfied at each ¢;, they can be adjoined to I. The augmented

action integral I becomes

th

P= S esp() + 3 [ [Lg.)+ Mlp) -2, (3:26)

1=0¢+

where € and X\ are scalar multipliers. Taking the variation of I yields
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N n
61 =Y €D (p(t;)bpi + ¥ f {—q- 5 +%£ 544D (p )6p-2\ 262 }d . (3.2.7)
1 =0 §=0¢+

Using the following relations
"a oL py
,Laf;“' [aq ]“ LT['&'I'J']“'
bq(t; ) = 8q; - a(t; £)bt; ,

in (3.2.7), we obtain

+ ) {%‘5" 59 - %{;’ 't,—‘é(t“)&"} B .2 {%S’ I'qu aL |'+q(t }

+ é{L(q,d) + XM(p) - )‘z2}‘_6t,- - f) {L(q,@) + \(p) - sz}“st‘ ’

T § =0

where J(g) and D (p) are Jacobian matrices defined by

J()_ I;(qq ’

and ()T denotes the transpose. After re-arrangement of terms, we obtain

b
5=y, f{[ﬁ’i -4 i’!;- +JT(q)D T(p)x]aq . 2xzaz}dt
(3.2.8)
+ 2{[3—’; A - 52 I,i-a(t.--)] + [L@il-- Lia,dl, ]



+ [x¢(p)|,|__- )«ﬁ(p*m_] - [XZZL,.-- kz2"i+]}6t5

# - Bh | T+ T (D T (o (8 e

1 =0

The stationarity condition of Hamilton’s principle gives §1=0. Consider the term with

6q. Suppose éaﬂ—’i 5£0; choose \ so that
Pn
aL d oL T, T
- L J \ =0

where J,(g¢) is the n-th column of matrix J(g). The remaining (n-1) components of dq
are free variations such that the constraint is satisfied; hence, the coefficient of each
components of §g must vanish separately. The same argument can be applied to the last
braced term with é¢q;. In addition, each é¢t; is free variation. Consequently, we have the

following conditions:

9L(¢,q) _ 4 OL(0,0) 4 yT(g)DT(p\=-T, (3.2.9)
dq dt aq
Az =0, (3.2.10)

iaLJaz_’él I‘i+«t‘+) - 'aL—Ja%Il l:,."é(tl'_) + L(q réigi-_ L(q yé*g’,+
+ 200, 20+ - 2ed, -2, =0,

_-—aLa?}’q Ic,.+ + _aLag"? Icr +JIT(g(&)D T (p())E =0, (3.2.12)

(3.2.11)

and the constraint
d(p)-22=0; (3.2.13)
here T is the input joint torque.

Using Eqns. (3.1.1) and (3.1.2) in (3.2.9), it becomes
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M(q)i+F(g,))=T+JT(q)DT(q)\, (3.2.14)

where F(q,§)= [Tjt- M(q )} q- aL‘,(;;’é is composed of the Coriolis term, the centrifu-

gal term, and the gravitational term; T is the input joint torque; and X is the contact
force multiplier. Since the second term of the right hand side of (3.2.14) represents the

force required to satisfy the constraint ¢(p ) >0, we define the contact force as
7 =DT(p)\. (3.2.15)
Note that the contact force is always directed toward the feasible region (1, this implies
that
A0 (3.2.16)
always. Multiply Eq.(3.2.13) by X\ to obtain
A(p)-Az2=0.
Using (3.2.10) in this equation yields
N(p)=0. (3.2.17)

This relation states: when the constraint is inactive, i.e., ¢(p)>0 so that contact
between the end effector and the constraint surface is not maintained, then A=0 and
thus f =0.

In view of Eq.(3.2.11), notice that if ¢(p(¢))>0 for ¢t <t; and &(p (¢t ))==0 for t >¢;,
then \(¢;7)=0, z(¢;*)=0, and ¢(p(¢;*))=0. On the other hand, if ¢(p(¢))=0 for ¢t <¢;
and ¢(p(t))>0 for ¢ >t;, then \(¢;1)=0, z(¢;")=0, and ¢(p (¢;”))==0. Using these rela-

tions in (3.2.11), we obtain
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[—M 2.4) 4_ L(q,iz)]'v+= [M i- L(q,é)] - (3.2.18)

aq aq

Recall Eqns. (3.1.1) and (3.1.2), Eq.(3.2.18) reduces to
V(g(t7) = V(g(t™)
so that the manipulator potential energy is continuous at each ¢;.

Eq.(3.2.12) describes the velocity relations before and after impact. Using Eq.(3.1.2)

in (3.2.12) yields
M(q(4)i(t:*) - M(q()a(t7) = I T (¢(&)D T (p ()€, (3-2.19)

where ¢ is assumed to be continuous at ¢;. Since M(q )¢ has a momentum interpreta-
tion, Eq.(3.2.19) can be interpreted as an impulse momentum relation. The change in
momentum is given by J T (q(¢))D T (p(¢;))€. Notice that the multiplier £ is associated
with the discontinuity of the velocity of the end effector at t;. It will be shown later that

¢ is exactly the magnitude of the impact force at ¢;, modeled as a ‘‘delta function.”

Therefore, from Eqns. (3.2.14), (3.2.15), (3.2.1), (3.2.16), (3.2.17), and (3.2.19), we

can write down a complete set of equations of motion for a unilaterally constrained

manipulator as

M(q)j+F(g,d =T+ JT(q)f, (3.2.20)
f=DT(p), (3.2.21)
p=H(q), (3.2.22)

é(p) 20, (3.2.23)

A >0, (3.2.24)

\(p)=0, (3.2.25)

Mgt ) d6%) - d6) 1 =TT (a(6)D T (p(1:))E, (3.2.26)



«3h=

where t; is a transition time at which ¢(p(t))> 0, ¢, ,<t<t;; ¢(p(¢t))=0,
E SESty,.

Eq.(3.2.20) is the dynamic equation of the manipulator. Eq.(3.2.21) gives the con-
tact force. Eq.(3.2.22) denotes the kinematic relation between the end effector position
and the robot joint vector. Eq.(3.2.23) together with (3.2.24) and (3.2.25) are referred to

as complementarity conditions. Eq.(3.2.26) gives the impact relation.

The impact relations not only indicate whether there exists an impulsive impact
force at t; or not but also relate to the well-posedness of the manipulator model. In the
remainder of this chapter, impact issues are discussed in detail in section 3.3, and the

well-posedness of the unilaterally constrained problem is discussed in section 3.4.

3.3. Transition and Impact Issues

The feasible region 1 consists of two parts: (1) an open set where ¢(p )>0 so that
'he constraint is inactive, and (2) a boundary set where ¢(p )=0 so that the constraint is
ictive. A transition of the manipulator motion occurs when the end effector moves from
he open set to the boundary set or from the boundary set to the open set. The time
nstants ¢; at which the transitions of the manipulator motion occur are called transition
imes. Transition times can be characterized by either (1) é(p(t))>0 for ¢, -e<t <¢;
mnd @(p (¢ ))==0, or (2) ¢(p(¢))>0 for t; <t <t;+¢ and ¢(p(¢; ))=0, or (3) é(p(t))>0
or t;—e<t <t;+¢ and ¢(p(¢;))=0. These transition times are termed: entry time, exit
ime, and transient time, respectively. Since a transient time represents a degenerate
ase and is unimportant to contour following problems, it will not be further discussed.
‘or a three-segment manipulator motion example, transition times are indicated in

"ig.3.1. At an entry time, an impulsive impact force may occur; but no impulsive impact
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force occurs at an exit time.

Fig. 3.1. Three-segment manipulator motion, ¢, =entry time, ¢,= exit time.
(a) Impact occurs at ¢,. (b) Impact does not occur at ¢,.

3.3.1. Entry Time and Impact

The entry time is a time at which the inactive constraint on the end effector
becomes active, e.g., ¢, in Fig. 3.1 denotes an entry time. When the manipulator transits
from an unconstrained motion segment to a constrained motion segment at an entry
time, there may or may not exist an impulsive impact force. In this sub-section, we
show that the multiplier §{ in Eq.(3.2.26) can be interpreted as the magnitude of the
impulsive impact force at the entry time. Then, we derive the velocity of the end effec-

tor after impact, an impact occurrence condition, and an impact avoidance condition.
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First, assume there exists an impulsive impact at the entry time ¢,. The relations
between the magnitude of the impulsive impact force and the change in velocity of the

end effector are derived as follows.

Let the contact force be
At) = N(¢t) + €(t-t,), (3.3.1)
where X-(t )ER! is continuous, and £€R! is the magnitude of the impulsive impact force;
and §(t) is the ‘‘delta function.” Assume that ¢(t) is right continuous. If the impact is
assumed to occur in the interval [t;—e,t,], where ¢>0 is sufficiently small, then
Eq.(3.2.20) can be re-written as

S Mj(q)d; + Fi(a,)=T; + 3 (% + E8(t-4)D; (p )i (q)
=1 =1 (3.3.2)
(¢+=1,.,n),

where M;;(q), D;(p), and J;;(q) are components of matrices M(q), D(p), and J(q),
respectively. Integrating the above equation over [¢,~¢,¢,] and letting e—0 yields
£ ¢

lim [ Z)M.,(q)cu dt—-hmf T; - Fi(q,9) + ‘E Nt)D; (p)J; (q)]dt

€=0¢ —ej =1
‘1

+ lim S ED;(p )i ()t )dt, (i=1,..n).

t—q-—l

Since the position and the velocity of the end effector, and the input joint torque of the
manipulator remain finite during the interval [t,-¢,t,], the first term of the right hand

side is equal to zero. Thus,

5 M (0l (437~ 64 = DB (e ), (3

=1

or equivalently in matrix form
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M(g(t))at) - de)] = IT(a(t))D T (p(t1))E, (3.3.4)
lim

wnere qv, ) = ¢(¢,), ¢(¢;) = e—0¢(¢,—¢). Note that this equation is exactly the same
€>0

as Eq. (3.2.26); thus £ in Eq.(3.2.26) can be interpreted physically as the magnitude of

the impulsive impact force.

Next, we derive an expression for the the velocity of the end effector after impact.
Since M(q) is invertible, we can solve for the velocity after impact, ¢(¢,;"), in terms of

¢(t;) and §&. We have
a(t) = q(¢7) + M a () T (q(t))D T(p(£1))E - (3.3.5)

From the constraint satisfaction, we have the following relations:

Theorem 3.3.1

p(t,") lies in the tangent space of the constraint surface at the entry time t,, i.e.,
D(p(t,))i(t")=0. (3.8.6)
or equsvalently

D(p(t))J(q(t))glt") =0. (3.3.7)

Using (3.3.5), (3.3.7), and assumption (A4), we obtain the magnitude of the impulsive

impact force

§=-A"Yq(t))D (p(t,))J(a(t)al¢r)

) /(a (33.8)
=-A"(q(t))D (p(t))B(¢1) -

Substitution of (3.3.8) in (3.3.5) yields

(4 = (1M @D TP () (@) imiyilt), (339



or equivalently as

%) = [1- @)D T ()4 @)D (p)] s e flt) (33.10)
where Q(q) = J(q)M(g)J T (q). The velocity p(t;") can also be expressed in terms of
€ as

pe) = p(e0) + Q(a(e1))D T (p(t1))E - (3.3.11)
Hence, the contact force A\(¢) can be written as

At) = Nt) - A (q(¢))D (p(t )W (g (£t )o(E-t1) ,

(3.3.12)
‘05‘ Stf ’

where \(t) is continuous, except possibly at instants where T(t) is discontinuous.
Eqns.(3.3.8) and (3.3.9) characterize the impulse momentum relation at the entry time
.

An impulsive impact force is often undesirable in practical applications. Thus, it is
important to know conditions for impact avoidance. Several conditions are given in the

following theorems.

Lemma 3.3.2

The end effector velocity is continuous at an entry time ¢y, i.c., p(t{)=p(t;"), if and
only if p(¢{)ET (py), where py=p(t,).
Proof:

Sufficiency: Suppose p(t; )ET (p,) holds. This implies D (p(¢,))p(¢; )=0. Using this
relation in Eq.(3.3.10), we have p(t; )=p(¢ ;).

Necessity: Suppose p(t{)=p(t,") holds. We multiply both sides of this equation by

D(p(t,)) to obtain
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D (p(t 1))t )=D (p(t1))i(t1") ,

but D (p(¢,))p(t,")=0 due to the constraint satisfaction. Thus,
D(p(t,))p(t)=0,

and hence p(¢t;)ET (p,).

Theorem 3.3.3

There ezists no smpulsive impact force, s.c., §=0, at the entry time t, if and only if
p(ty) lies in the tangent space of S at p(t,), i.c., p(t{)ET (p,)-
roof:
Sufficiency: If p(t{)ET (p,), then from Eq.(3.3.8), we have {=0.

Necesssty: If €=0, then from Eq.3.3.11), we have p(t;)=p(¢t;"). Thus,

p(t;)ET(p,) by Lemma 3.3.2.

Corollary 3.3.4

If the velocity of the end effector is continuous at an entry time t,, i.c., p(t{)=p(t,"),

then there ezists no impulsive smpact force, s.e., £=0.

Corollary 3.3.5

If the end effector velocity at an entry time t, is zero, i.e., p(t;)=0, then there is no

smpulsive impact force, i.c., £=0.

Physically, the above theorem and corollaries suggest that an impulsive impact can
be avoided if the velocity vector of the end effector is tangent to the constraint surface
at an entry time. In particular, this is true if the velocity is zero. This can be seen in Fig.

3.1.(b).



The following theorem describes the relation between the change in velocity and

the contact force at an entry time.

Theorem 3.3.8

Assume that the joint torque T i1s continuous at an entry time. The velocity of the end
effector 15 continuous at an entry time sf and only if the contact force 1s continuous at the

entry time; namely, the contact force i3 zero.

Proof:
Sufficiency: The continuity of the comtact force at ¢,, i.e., At )=\(t;")=0,

implies £=0. From the necessity of Theorem 3.3.3 and Lemma 3.3.2, this also implies the

velocity is continuous at the entry time ¢,.

Necessity. Assume p(t,")=p(¢;). From the sufficiency of Theorem 3.3.3 and
Lemma 3.3.2, this implies £=0. Since M(t) is continuous, A(¢;")=X\(¢;)=0. Thus,
MeP)=Mer)=0. @

One question arises: under what condition does an impulsive impact force occur?

The impact occurrence condition is given by the following theorem.

Theorem 3.3.7
An impulsive smpact occurs at the entry time t,, ie., £>0, if and only if

f—*o-;i- ¢(p (¢,-€))<0.
e>0 dt

roof:
Sufficiency: The assumption implies D (p (¢,))p(¢t,)<0, or
D(p(t))plt;) + 22 =0, 2€R'.

But, D(p(t,))p(t;")=0 due to the constraint satisfaction after the entry time ¢,.



Clearly, p(t{)5%p(t,"); i.e., the velocity of the end effector is discontinuous at ¢,. Then,
from Theorem 3.3.3 and Lemma 3.3.2, we know that there exists an impulsive impact at
t, with £>0.
Necessity: If there exists an impulse impact at ¢,, recall Eq.(3.3.11)
At) = 8(t7)+ @(a(t))D T (p (t1))E,
with £>0. Multiply both sides by D (p(¢,)), we have
D(p(¢1))8l¢1") =D (p(¢1)) 5(t7) +D (p(t1) Q(a(t))D T (p (£1))E .
But, D (p(¢,))p(t;") =0, we obtain
D(p(ty) 5(t7) =-D(p(t,)) @(a(t))D T (p(t1))E .

Since ¢(p) has a non-zero gradient and Q(g) is a positive definite matrix,

D(p(ty) @(q(t))D T(p(t,)) is a positive scalar. With £>0 we obtain

D(p(t,)) 8(¢1) <O,

or equivalently the stated result. [J

3.3.2. Exit Time

The ezit time is a time at which the active constraint on the end effector becomes

inactive, e.g., ¢, in Fig. 3.1 denotes an exit time. During a constrained motion segment,

#(p(t))=0 and -;;- #(p (t))=0 must be satisfied. An impulsive contact force can not

occur throughout the constrained motion so that at the exit time, the velocity of the end

effector must lie in the tangent space. We have the following theorem:
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Theorem 3.3.8

The velocity of the end effector ts continuous at the ezst time t,.

The condition
D(p(t))p(t;) =0 (3.3.13)

is called the ‘“tangency condition.” The following theorem gives the relation between the

contact force and the input joint torque at the exit time:

Theorem 3.3.9

If the joint torque is continuous at the ezt time, then the contact force is continuous at

the ezit time; i.e., \(¢,)=0.

3.4. Well-Posedness of the Model

In order to justify the well-posedness of the manipulator model developed in the
previous section, the solution concept of the manipulator system will first be discussed.
Then, the inverse dynamics problem and the direct dynamics problem of the constrained

manipulator are investigated.

3.4.1. Solution Concept

The solution concept of a unilaterally constrained manipulator is explained through
the definitions of consistent initial values and solvability of the manipulator system.

They are given as follows:

Definition 3.4.1;

A set of initial values (gq, §o) is said to be consistent for the unilaterally constrained
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manipulator system Eqns. (3.2.20)~(3.2.28) if ¢(H (g,))=0 and D (H(q))J(q¢)2,=>0; or

if ¢(H(g))>0.

Definition 3.4.2:

The unilaterally constrained system Eqns.(3.2.20)~(3.2.28) is solvable if for each set of
consistent initial values (q,, ¢o) the system (3.2.20)~(3.2.26) has a unique solution g¢(¢)
for t<t <t; , satisfying q(¢o)=q, and ¢(¢o)=qo.

With this concept in mind, we are able to discuss the well-posedness of the manipu-

lator model. The inverse dynamics problem are discussed in the next sub-section.

3.4.2. Inverse Dynamics Problem

The inverse dynamics problem can be stated as follows: Given the input joint
torque vector T (¢) and consistent initial values (g,g,) finds the motion ¢(¢) and ¢(¢),
and the contact force \(t ), satisfying Eqns. (3.2.20)~(3.2.26). Calculation of the contact
force, including possible impact, plays an important role in this problem. The existence
and uniqueness of the manipulator motion and joint torques are given in the following

proposition:

Suppose the joint torque vector T(t)ER" is piecewise continuous on t,<t <t; . Given
T (t) and consistent initial values q(t,), 4(t,), then with assumptions (A1)~ (A5) there
ezists a unique solution q(t) for Eqna.(3.2.20)~(3.2.26), for all t,<t <t;, with {(t)
piecewise continuously differentiable, and \(t) piecewise continuous with finite number of

impulses for almost all t, <t <t .
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We state the above as a proposition since a formal mathematical proof is not avail-
able. But we can give a heuristic justification that the model is well-posed by suggesting
an algorithmic procedure for construction of the solution. To justify the above proposi-
tion, we show that the motion of the manipulator exists and is uniquely defined on each
unconstrained motion segment, on each constrained motion segment, and at each transi-
tion time. In section 3.3, we have shown that the manipulator motion at each entry
time and at each exit time is well defined in the sense that the magnitude of the impul-
sive impact force £ and the velocity after impact p(¢;*) are uniquely determined. Furth-
ermore, if the transition times can be determined, then each motion segment is uniquely
defined. We provide two procedures to justify the proposition so that the determination
of the transition times is part of these procedures. The procedure MSU deals with an
unconstrained motion segment, and the procedure MSC deals with a constrained motion

segment. It will be seen that these two procedures are recursive in nature.

Procedure MSU

The motion of the end effector during an unconstrained motion segment is defined

by
M(q)§+ F(q,q)=T, for ¢, ,<t<¢; . (3.4.1)

Given q(¢-;) and a(t; 1) satisfying o(H (q(¢;_4)))>0 and
D (H(q(t;-1))J(g(t;-1))q(t;_1)>0, there exists a solution to the initial value problem
Eq.(3.4.1), denoted by q(t) and ¢(t), satisfying ¢(H(g(t)))>0 for ¢;_; <t <t;; where
t; >t;_, is the first time (the entry time) at which one of the following conditions is

satisfied:



-46-

(1) #(H(q()))=0 and D(H(q(%)))J(q(t))q(t;)<O0 so that the constraint ¢(p)

becomes active at time ¢; .

a) If D(H(q(¢;))J(q(¢;))4(t; )=0, then there is no impact. Thus, ¢(¢) is continuous

at ¢;,
f6") = du),
and the impact contact force is
J(t)=0.
b) If D(H(q(t;))J(q(¢t;))d(t;)<O, then there is an impact. Thus, ¢(¢) is discontinu-
ous at ¢; and the velocity after impact is
i) = [1- M@ T (@)D T (H(G AP H @I (0)]e=i i)
and the impact contact force is
f () =DT(H(q(t;))EHt-t;),

where §=-A"(q(;))D (H(q (t: ) (a(; )il(t;)-
c) Set §-1+1, go to procedure MSC.

(2) t;=t;, stop.

E rocedg:g M§Q

The motion of the end effector during a constrained motion segmei

M(q)i+F(q,) =T+ J"(q)DT(H(q))9(q,4T),

(3.4.2)
for ‘i-lS‘St.‘ ’

where



9(¢,4,T)=A"(q)D(H(q))J(e)M(q)[F(g,4) - T]
- A7q)[D (H(q))(g,4)+ D(H(q),J(¢)a)/ (¢)]d -
Given q(t-1) and q(t;-1) satisfying ¢(H (¢ (¢;-1)))=0 and
D (H(q(t;_))J(q(t;_1))d(¢t;_1)=0, there exists a solution to the initial value problem
Eq.(3.4.2), denoted by ¢(¢) and ¢(t), satisfying ¢(H (g (t)))=0 for ¢;_; <t <t;; where
t; >t;_; is the first time (the exit time) at which one of the following conditions is satis-

fied:

(1) lim ¢(H(q(t;,€))>0 and D(H(q(4))J(g(4))g(t;)>0, where ¢>0, and

2
q(t; € )=q(t; )'*'f‘j(ti)"‘% g(t;).
a) The velocity ¢(t) is continuous at ¢;, and the contact force is

f(t)=DT(H(¢)a(q,4T), t;,<t<t; .

b) Set §-1+1, go to procedure MSU.

(2) t;=t; , stop.

3.4.3. Direct Dynamics Problem

In order to complete the justification of the well-posedness of the manipulator
model, the direct dynamics problem is addressed. The direct dynamics problem is stated
as follows: Given a specified motion of the manipulator ¢(¢) and a specified contact
force \(¢) satisfying the imposed constraint, compute the input joint torque vector T (¢)
which would generate the specified motion. For a unilaterally constrained manipulator, it
is difficult to construct a meaningful manipulator specification because we have to sup-
ply information about numbers of motion segments, transition times (the entry time and

the exit time), and the magnitude of the impulsive impact in a consistent way.
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The following proposition characterizes the direct dynamics problem:

Proposition 3.4.2:

Given the contact force N(t) for t,<t <t; and the motion q(t) which is twice continu-
ously differentiable, ezcept possibly at times t; at which ¢(H (q(t))>0 for t;_; <t <t
and ¢(H(q(t)))=0 for t; <t <t,,,, and satisfies $(H(q(t)))20 for t,<t <t,, then
under assumptions (A1)~(AS5) there ezists a unique input joint torque vector T (t) satss-

fying Eq.(3.2.20) for t <t <t .

In order to justify this proposition, consider the construction of a manipulator motion
with three motion segments: an unconstrained motion segment for t,<t <t,, a con-
strained motion segment for t;<t <t,, and an unconstrained motion segment for
t,<t <t;; where the entry time ¢, and the exit time ¢, are given. Note that an uncon-

strained motion segment is governed by
M(q)j+ F(q,9) =T, fort,<t<t,andt,<t<t, , (3.4.3)
and a constrained motion segment is governed by
M(q)i+F(q, ) =T+ JT(¢)DT(H(qg)\, for t;<t<ty.  (34.4)
Suppose the contact force X is specified as
At) = A(t)u(t), for t,<t<t, , (3.4.5)
where A(t) is a given function, and

1, tlst ..<..t2 ’

—_— 3.4.6
u(t)= {0, otherwise, ( )

then the joint torque T'(¢) can be uniquely determined for ¢,<t <t .
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If ¢(t) is discontinuous at the entry time ¢,, we must use Eqns. (3.3.8) and (3.3.9)
to compute the impact relations £ and ¢{¢,"), then these values are used as values for
initiating the constrained motion segment, i.e., Eq.(3.4.4). Again, the input joint torque

can be uniquely determined.



CHAPTER 4

PLANNING FOR CONSTRAINED MANIPULATORS

So far we have discussed the modeling of a constrained manipulator. However, in
order to perform a useful task, a manipuiator motion has to be planned and executed.
Although there may exist many possible motions between the two given end-points,
some of them may be inadmissible due to constraints on the manipulator. Even for
admissible motions, it is difficult to select a specific, efficient, and meaningful motion,

especially if constraints on the manipulator model are considered.

Planning for constrained manipulators involves not only specification of desired
manipulator motion, i.e., displacement, velocity, and acceleration time history of the end
effector, but also specification of desired contact force time history. Given such specifica-
tions which satisfy the imposed constraints, we have shown in the previous chapter that
the joint torques can be computed so that the manipulator satisfies these desired specifi-

cations.

For planning of an unconstrained manipulator, the joint-interpolation approach is
the most commonly used approach [4,36,57,58]. The parameterization approach [3,48,68]
is another approach. However, these approaches are not directly applicable to planning
of a constrained manipulator in that they do not take into account the contact force. In

general, the contact force and an associated algebraic equality (or inequality) constraint
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present difficulties in the planning problem.

In section 4.1, we define a planning problem for a constrained manipulator and dis-
cuss associated difficulties. The general idea of the parameterized planning problem is
also discussed. In sections 4.2 and 4.3, we extend the parameterization approach for

unconstrained manipulators to the case of constrained manipulators.

4.1. Definition of a Planning Problem

A planning problem for a constrained manipulator is one that given the desired con-
tact force, determines the joint input torques of the manipulator such that the manipu-
lator is driven from a given initial configuration to a given final configuration, subject
to: (i) constraints on the end effector motion, (ii) impact avoidance, and (iii) input torque
constraints. If a cost criterion is imposed, then this problem becomes a minimum-cost
planning problem or a so-called optimal planning problem. In general, an optimal plan-
ning problem can be formulated as an optimal control problem with constraints on state

and control variables. This can be seen in the following.

For a bilaterally constrained manipulator, the optimal planning problem can be for-

mulated as:
4
minimize = f Z(T,X,p ,p)dt

to
subject to
M(q)§+ F(g, ) =T+ JT(¢)DT(p)\,
p=1H(q),
¢(p)=0, toSt<t; , (4.1.1)
Ten,

p(to) =po, Hto)=0, p(t;)=p;, p(t;)=0,

where (1 is the control set. Clearly, there are constraints on state and control variables.
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Notice that the equality constraint ¢(p )==0 is an intrinsic part of the constrained mani-

pulator dynamics; additional constraints on state variables could also be imposed.

For a unilaterally constrained manipulator, the optimal planning problem can be

formulated as:
¢
minimize = f Z(T,X,p ,p)dt
o

subject to

M(q)i+F(q,)=T+JT(q)DT(p)\,

p=H(q),

A0,

¢(P)20, toS‘S‘f ’

A\(p)=0,

TEQ,

M(g(t )it - )] = IT (e (5D T(p(8))€, i=1,...,n,
p(to) = po, #to) =0, p(t;)=p; #(t;)=0,

(4.1.2)

where ¢;, { =1,...,n are entry times at which ¢(p(¢))>0 for ¢;_; <t <t; and ¢(p(t))=0
for t; <t<t;.,. In this case, there are equality and inequality constraints on state and
control variables. Note that these constraints, except for control constraints T €f), are

intrinsic parts of the manipulator model.

Notice that the final time ¢; in (4.1.1)~(4.1.2) can be either fixed or free. If ¢, is

free and L(T ,\,p,p)=1, then problems (4.1.1)~(4.1.2) become minimum time problems.

Optimization problems with equality and/or inequality state variable constraints,
such as problems (4.1.1) and (4.1.2), have been extensively studied by Makowski and
Neustadt [44], Warga [81], Bryson et al. [8], Bryson and Ho [9], Dreyfus [17], Sethi et al.
[86], and Jacobson et al. [29]. In those approaches, necessary conditions for optimality
are applied to the problems to obtain a set of nonlinear two-point-boundary-value prob-

lems. Usually, these types of optimization problems are quite difficult to solve because
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the state variable constraints are infinite dimensional; it is difficult to determine transi-

tion times at which constraints change between active and inactive.

Bobrow et al. [3] and Shin and McKay [68] used a scalar parameterization method
to solve a minimum time planning problem for an unconstrained manipulator. The scalar
parameterization, has a physical interpretation as the selection of an a priori path which.
guarantees satisfication of the state comstraints. The parameterization method also
reduces the dimensionality of the optimization problem from 2n to two. Since the scalar
parameterization method has advantages of reducing dimensionality and ‘“‘eliminating”
the state constraints, we extend Bobrow and McKay’s approach to the problems

described by Eqns. (4.1.1) and (4.1.2).

In using the parameterization approach, the planning problem can be stated as:
Given configuration constraints and initial and final manipulator velocities, select a
specific path, and then determine the joint torques so that the manipulator is driven
along the specified path. Thus, a parameterized planning problem consists of three parts:
(1) path planning--select a parameterization function P (s ) so that p =P (s ) satisfies the
state constraints for 0<s <1; (2) motion planning--find a function s =s(¢) so that
p(t)=P(s(t)) for t,<t <t;; (3) joint torque computation--compute the required joint
térques from the manipulator dynamic equations.

The path planning problem is discussed in section 4.2, and the motion planning and
the joint torque computation are discussed in section 4.3. Since the planning problem of
a bilaterally constrained manipulator is similar to the planning problem of a unilaterally
constrained manipulator, only the planning problem of a unilaterally constrained mani-
pulator is discussed. Furthermore, we assume that the manipulator only has three

sequential path segments; that is, an unconstrained path segment, a constrained path
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segment, and an unconstrained path segment.

4.2. Path Planning

The first level of parameterized planning problem is called the path planning prob-
lem. This is a problem of selecting a suitable geometric path in the workspace of the
manipulator to satisfy the constraints and other imposed requirements. We may regard
path planning as one kind of spatial planning in the sense that the manipulator path is

planned in the configuration space and the manipulator dynamics are not involved.

In section 4.2.1, we discuss the properties of parameterization functions. In section
4.2.2, we discuss the selection of a parameterization function for unconstrained path seg-
ments. A heuristic kinematic approach is proposed to solve path planning problem. The
avoidance of impact may be crucial to the selection of unconstrained paths. Since the
constrained path is specified a priori in contour following problems, the parameterization

function must be appropriately chosen during a constrained path segment.

4.2.1. Properties of Parameterization Functions

Since a unilaterally constrained manipulator involves an inequality constraint,
#(p)>0, a parameterization function should be chosen in the following way for the
specific case where the manipulator has only three sequential path segments: an uncon-

strained path segment, a constrained path segment, and an unconstrained path segment.

Let P: [0,1]=R" be a parameterization function satisfying
¢(p)20, 0<s <1, (4.2.1)

and P(0)=p,, P(1)=p; , with the following properties:



=55

(i) For0<s,<8,<1

#(P(s))>0, 0<s<s, and s,<s<1,
#(P(s))=0, 8,;<8<s,,

(i) P(s)is continuous on [0,1];
(iii) P(s)is twice continuously differentiable except possibly at s, and s,.
Let a mapping @ : [0,1]>R ™ satisfy
P(s)=H(Q(s)), 0<s<1. (4.2.2)

If the transformation H is three times continuously differentiable, Q (s ) possesses the

same smoothness properties as P (s ). Thus, we have the parametric representations

p=P(s),

= Q0). (4.2.3)

The variable s defined above is referred to as a path variable. If the manipulator path is
parameterized by the arc length, then the path speed and path acceleration reflect the

true speed and acceleration of the end effector. Consider the definition of arc length:

Definition 4.2.1 (Sokolnikoff [74])

Consider a parametric representation of vector function P: [0,1]—-R"
p=P(s), 0%s<l.

Suppose W(P, P )>0, unless P ' =0, and for every positive number &
W(P,kP')=kW(P,P ).

The integral

{ W(P (o), P’ (0))do, (4.2.4)
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is called the arc length of P(s); and the space R™ is said to be metrized by formula

(4.2.4).

Different choices of function W(P, P’ ) lead to different metric geometries. In
Riemannian space, the arc length is given by

' P /
[P Tompene o) i, (425)

where M(P) is a symmetric and positive definite matrix function. Note that in

Euclidean space M (P )=I.

From Eq.(4.2.5), if the normality condition of a parametric representation,
P T(s)M(P(s)P (s)=1, foralls, (4.2.6)

where P’ (s )=-‘-9%£1’-l , is satisfied, then p =P (s) is parametrized by the arc length s.

4.2.2. Selection of Path Function

A kinematic approach is proposed to choose parameterization functions for the
path. The kinematic approach is based on the satisfaction of the constraint, and/or an
impact avoidance condition, and the boundary conditions. Recall that there are two

unconstrained path segments: one is defined on 0<s <s,, the other on s,<s <l1.

For the first unconstrained path segment, the end effector of the manipulator

makes contact with the constraint surface when s =s,. In order to avoid an impact at

the entry time, it is required that —8—1-;1"—1 I s, lie in the tangent space of the constraint
s
surface at 8. It will be shown that this impact avoidance condition can be written as

D(P(s,))P' (s,) =0, (4.2.7)
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where P’ (s )=-8—F-,--(i-l .
ds
During the constraint motion, the constraint ¢(P(s))=0 must be satisfied for
8,<8<s,. Thus, a kinematic approach to selection of a parameterization function
P(s), 0<s<1, should satisfy the following conditions:
P(0) = p,, P(s;)=p,,

#(P(s))>0, 0<s<s,, (4.2.8)
D(P(sy))P' (s,)=0,

#P(s))=0, 8,<s<s,, (4.2.9)
P(s3)=p,, PQ1)=1p; ,
#(P(s))>0, 8,<s <1, (4.2.10)

D(P(s))P' (s2)=0.

A kinematic approach for path planning is always possible and is simple. Other

approaches, such as minimization of the arc length, may be used for path planning [69].

4.3. Motion Planning

The second level of a parameterized manipulator planning problem is the motion
planning problem. It can be stated as: Given a path and the manipulator dynamics,
determine the motion sequence of the manipulator so that the manipulator moves along
the prescribed path from the initial position to the final position. The main purpose of
the motion planning problem is to determine a function s =s(¢) so that the required
motion sequence of the manipulator is generated. If a function s: [to,t; |—[0,1] is twice
continuously differentiable and satisfies s (¢,)=0, s (¢; }=1, then s(t) is referred to as a

path history.
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In this section, we first derive the equations of motion for a constrained manipula-
tor along a parameterized curve. In section 4.3.1, conditions for the avoidance of impapt
are discussed in detail. In section 4.3.2, a kinematic approach to motion planning is pro-
posed. The development is based on curve fitting using cubic polynomials. In section
4.3.3, a minimum-time planning problem is discussed. We formulate the motion planning
problem for a constrained manipulator in two different ways according to the impact

avoidance condition; in each case a phase plane technique can be applied.

Suppose that the path of a manipulator is given by p=P(s), 0<s <1. We would

like to derive the equations of motion of the manipulator along the prescribed path.
For a given path history s(¢), the position vectors in work space and joint space
are defined by

p(t)="P(s(t)), t,=<t<ty,

(4.3.1)
g(t)=Q(s(t)),  t,<t<ty,

where P(s) and Q(s) satisfy the conditions developed in the previous section. The
velocity and acceleration in joint space can be written as

g(t) = B(a(t))i(t),

.. .. = : (4.3.2)
g(t) = B(a(t))s(t) + Bla (+))i(t)

where B(s (t))=-‘2u§;aﬂ)- and B(s(t ))=6_3%53‘;(_t£ are n-dimensional vectors. We

assume B (s (t )70 for ¢t,<t <t, .

Assume the contact force \(¢) is given so that

Mt)=A(s(t)u(s(t)), t, <t <t , (4.3.3)

where A: [s,,8,J=R" is a known scalar function, and
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1, 8158 =9,

u(s)= {0, otherwise, (43.4)

is an indicator function. Substitution of Eqns.(4.3.1)~(4.3.3) in Eq.(3.2.20) yiclds the
equations of motion along the specified path as

M(Q(s))B(2)i + M(Q(2))B(e)i* + F(Q(2),B(s)i)

= T+ IT(Q()DT(H(Q()A(s u(s)). (435)

In view of Eq.(4.3.5), the joint torques T can be expressed as function of s, 4, and 3, i.e.,

T=M(Q(¢))B(s)5 + M(Q(s))B(s)#*

N . (4.3.6)
+F(Q(s),B(2)s)+J " (Q())D " (H(Q (s ))A(s)u(s),

or equivalently as

T(t) = T(s(t),s(t),5(t)) . (4.3.7)

As long as s(t), §(t), and 5(t) are known, the input joint torque T (¢) can be uniquely
determined from Eq.(4.3.7).

Thus, in order to compute the joint input torques we must first find the path his-
tory s (¢). Two methodologies can be used: an approach based on curve fitting to obtain
maximization of the smoothness of the path speed and an approach based on the
avoidance of impact. The former is a kinematic approach; it does not depend on the
manipulator dynamics. The latter approach results in an optimization problem taking
into account the manipulator dynamics. Before we get to this issue, we first discuss con-
ditions for avoidance of impact, which are used in both the path planning and the

motion planning problems.
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4.3.1. Conditions for Avoidance of Impact

The impact avoidance condition was discussed in section 3.3.1. It is possible to
choose a path such that no impulse occurs when the end effector makes contact with the
constraint surface. Based on Theorem 3.3.3, and Corollaries 3.3.4 and 3.3.5, the impact

avoidance condition can be expressed in parametric form as follows:

Theorem 4.3.1

Suppose t, is an entry time with

¢(P(s(¢))>0, t<t,,
¢(P(s(t)))=0, t>t, .

There 18 no smpulse at t, if and only if
D(P(s,1))J(Q(s1))B(s1)s(t}) =0, (4.3.8)
where 8 (t,)=2,.

Corollary 4.3.2

If 3(t,)=0, then there is no impulse at the entry time ¢,.

Corollary 4.3.3

If the path satisfies
D(P(s,))J(Q(s))B(s,) =0,
then there is no smpulse at the entry time t .
In the case described in Corollary 4.3.2, the manipulator comes to rest as it con-

tacts the constraint surface and no additional assumptions about the path are required.

In the case described in Corollary 4.3.3, the path speed i(¢,) can be arbitrary, but the



path must be tangent to the constraint surface at s,; i.e., the parameterization function
P(s) must be differentiable at s,. The above two corollaries also imply that the
avoidance of impact can be achieved either in path planning level, i.e., Corollary 4.3.3, or

in motion planning level, i.e., Corollary 4.3.2.

The end effector must exit the constraint surface with a velocity in the tangent

plane. Thus, at the exit time ¢,, we require
D(P(s2))J(Q(22))B(s5)i(t;) =0. (4.3.9)

Note that condition (4.3.9) is a tangency condition; no impact can occur at such an exit

time.

4.3.2. Kinematic Approach to Motion Planning

We now consider a curve fitting approach for which the path history s(t) is gen-
erated without consideration of the manipulator dynamics; hence it is referred to as a
kinematic approach. Although this approach to motion planning is simple, it may not
necessarily be efficient since manipulator dynamics are ignored. In a contour following
problem, it is desirable that the end effector moves as smoothly as possible on the con-
straint surface in order to avoid bouncing and jerking. Consequently, two kinematic
approaches are considered below. Kinematic approaches to unconstrained motion plan-

ning are well known [4,36,58,78].

CASE 1
One way to achieve smooth motion on a constrained motion segment is to move the
end effector with zero acceleration along the constrained path. Note that the path

acceleration 3(t) reflects the true acceleration of the end effector if the path variable s



has been chosen as the arc length of the parameterization function.

Assume the path has been selected to satisfy the required constraints and
D(P(s1))J(Q(s1))B(sy) =0, (4.3.10)
and
D(P(s2))J(Q(s5))B(s5) =0. (4.3.11)

Suppose that s (t), ¢,<t <t;, is chosen so that

(a) (¢) is a linear function of t, for t,<t <t,, with

’(t0)=0’ "(tl)=‘l}
- 4.3.12
i(tg) =0, i) =221 (#3.12)
t-t,

(b) 3(¢)=0, for t, <t <t,;

(c) ¥(t) is a linear function of t, for t,<t <t,, with

8(ty) =y, s(t;)=1,
8281 . (4.3.13)
=52, i) =0,

where t(<t,<t,<t; and 0<s,<s,<1 are given. The path history s (¢) is given by

eyt -t +ey(t-t P+o(t-t e, t,<t<t,
s(t) =1v(t-t)+e,, t,<t<t,, (4.3.14)
es(t—t,) e (t—t,) 2 +v(t-ty)+s,, t:<t<t;

where

88,
t-ty

; (4.3.15)

and



-83-

¢, = 201 + v ] o = —331 2” .
1 - M 2 - - ] .
(to-ty)® (to-t,)? (t-tF  (to-ty)
(4.3.16)
2(s,-1) v _ =3(s5-1) 2v
€3 = ey =

(-t (-t (t-tf  (t-ts)

In this choice, the path speed i(¢) is not zero at either the entry time or the exit
time. The end effector moves on the constraint surface with constant speed, this feature

of constant speed may be useful for certain applications.

CASE 2

In this case, the path acceleration on the constrained path segment is chosen as a
linear function of time, assuming that the manipulator stops at the entry time and exit
time. This assumption prevents an impact at the entry time. Again, we assume the path
has been selected to satisfy the required constraints. Suppose that s(t), t,<t <t¢;, is
chosen so that

(a) ¥(t) is a linear function of t, for ¢, <t <t,, with

s(ty) =0, s(ty) =44,
() (h) =5 (4.3.17)
8(‘0)=09 "(tl)-—_‘o;
(b) (¢ ) is a linear function of t, for ¢, <t <t,, with
s(ty))=1+2,, a{ty) =s,,
.( 1) =12, .( 2) = 82 (43.18)
at))=0, 8(t) =0;
(c) ¥(¢) is a linear function of t, for t,<t <t;, with
s(ty)=2¢,, sty )=1,
(t) = o, () w10
ity,)=0, t;)=0,

where t,<t;<t,<t; and 0<s,<s,<1 are given. Note that s(¢,) and s(¢,) need not

satisfy conditions (4.3.10) and (4.3.11), respectively. The path history s(¢) is given by
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ci(t-t )P e t-t ) +ay, t,<t<t,,
s(t)={cs(t-t P +e (t-t,)+s,, 1,<t<t,, (4.3.20)
cs(t-to) +eg(t—to)f+s,, t2<t<t ,

where
201 —301 2(61—8 2)
= ——3 > Co = =g ) €3 = ————
(to-ty)? (to—t1) ’ (to-ty)® (4.3.21)
_ -3(a4-05) _ 2ep-1) _ —3(s5-1) o

Cg

0= ————m ; Cp e =
(¢2-ty)? (ty -t,)° (t) -t,)

In this approach, the path history s(¢) can be shown to have the property that it

minimizes the integral f ¥2dt; thus s (¢) is a smooth function in this optimal sense.

4.3.3. Minimum-Time Approach to Motion Planning

In the previous section, two kinematic approaches to motion planning have been
discussed. They are conceptually simple; however, they may not be efficient since the
manipulator dynamics are not taken into account. In practice, the planning goal may be
to reduce the cost of performing a certain task. This can be accomplished if the manipu-
lator is moved as fast as possible. Kahn and Roth [30] have studied a minimum-time
motion planning and tracking problem. Bobrow et al. [3] and Shin and McKay [68] have
studied a minimum time motion planning problem for an unconstrained manipulator.
We also use the minimum time criterion for the optimal motion planning of a con-
strained manipulator. In the remainder of this section, we formulate a minimum time
motion planning problem; then we extend Bobrow and McKay's phase plane method to

the case of a constrained manipulator problem.
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4.3.3.1. Limits on Path Acceleration

In a time optimal problem, minimizing traversal time is equivalent to maximizing
traversal speed. In fact, the minimum time solution consists of an accelerating part and
a decelerating part; hence, limits on the path acceleration must be considered. These
limits are assumed to be imposed by the input joint torques T. For simplicity, the argu-

ment ¢ is omitted from expressions throughout this sub-section.

Let us consider constraints on the input joint torques of the form
T‘min(q’q-)s Ti STim“(q 7Q) ’ ’.=1’"-7n- (4‘3°22)

Since ¢ is function of s and ¢ is function of s and 3, the torque constraints along the

specified curve can be expressed in terms of s and § as
T; ™%y ,5)< T; < T;™*s ,3), i=l1,..,n. (4.3.23)

To evaluate the limits on the path acceleration s, Eq.(4.3.8) can be substituted into
Eq.(4.3.23) so that
n n -
T;™s,5)< ¥ M;;(Q(8))Bj(s)d + Y M;;(Q(s))B;(s)3* + Fi(Q(2),B(2)3)

. = = (4.3.24)
- ZIJ;,'(Q (e)D;(H(Q(s))A(s)u(s)<T;™(s,8), i=L,...,n.
2

Assume that B(s)720 and M(Q(s)) is nonsingular for all 0<s <1. Suppose

n
Y M;;(Q(s))B;(s)540, for i =1,...,n, then manipulation of inequalities (4.3.24) gives

=1

Eli(”j) E2|’("’5)

_ Sagn (3] Mii(Q(e))B; (s )i < —
Y M;(QU)B;(s) Y, M; (@ (5))B;(s)

j=1 =1

(4.3.25)

where ¢ =1,...,n, and



-60-

Eyi(s,3)=T;™(s i) - z":lM.-,-(Q(a))E,-(a )i2-F;(Q(s),B(s)i)

n (4.3.28)
+ .‘él".’j (@ (s ))D; (H(Q(s))A(s)u(s),
Eyi(s,8)=T;"*s ,3) - i M;;(Q(2))B;(2)3*-F;(Q(s),B(s)3)
" (4.3.27)
+ 3 Jij(Q(2))D; (H(Q(s))A(s)u(s) .
j=1
Eq.(4.3.25) can be re-written as
hi(2,8)<5<~;(s,8), (4.3.28)
where
: Ei(s,4) it f_})\'f;j(Q(s))B,-(a)>0,
| ¥ (@B () ™
e =1 g (s (4.3.29)
» Fult ) , if Z i (@(2))B;(s)<0,
l _glMij(Q(" )B;(s)]
| . Failt) , if Z”: M;;(Q(s))B;(s)>0,
| _ZIM.','(Q(J))B,'(J)I =
v =1 Lo (4.3.30)
: E,;(s,3) ,xfz (@ (s))B;j(s)<0
| _EM;,'(Q(J )B;(s) | =

Eq.(4.3.28) gives limits on 3. Since all joints have to satisfy these limits, we have
h(s,5)<5<As,8), (4.3.31)
where

h(s,3) = max h;(s,3),
NP (4.3.32)
A4,8) =min ~;(s,8), i=l1,.,n
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Eq.(4.3.31) defines the lower limit and the upper limit of the path acceleration. In other
words, the admissible acceleration is defined by (4.3.31).

Using information about the limits on the path acceleration, we are able to formu-
late a minimum time motion planning problem in terms of s and 4. This is discussed in

the next section.

4.3.2.2. Minimum Time Problem Formulation

In this section, we formulate a minimum-time problem for the constrained manipu-
lator incorporating the impact avoidance condition in two different ways. A phase plane
technique, developed for an unconstrained manipulator problem in [3,48], is applied to

our problems.
We now obtain a single differential equation expressing & in terms of s, s and 7.
From Eq.(4.3.5) we obtain

BT(s)B(s)i + BT(4)B(2)s* + BT (s )M(Q(s))F(Q(s),B(s)i)

4.3.33
= BTOMAQE[THT QI TEHQ@E )] .

Since the scalar BT (s)B(s)#0, dividing both sides of the above equation by

BT(s)B(s) and re-arranging it, we obtain a single differential equation for 5 as

d=-n(s )BT (2)B(s )i*+n(2)BT (s )M(Q (2 )IT-F(Q (),B(s )3)]
AN , r (4.3.34)
+1(2)B " (s )M(Q(4))J " (Q(s))D " (H(Q (s ))A(s )u(s),

where n(s )=[B T (s)B (s )]™".
Now Eq.(4.3.34) gives the desired equation of the manipulator along the specified

path. Clearly, the dimensionality of the optimization problem has been reduced from 2n

to 2. With this information, the traversal time of the path, ¢, , can be written in terms

of & and s as
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t = fldt=f—?- : (4.3.35)
0 0

Thus, the cost function for the three-motion-segment problem becomes
Td rds  pd
/] /] s
0o ¢ e ’ a9, ’

In order to guarantee the continuity of the velocity of the end effector at both the
entry time and the exit time, additional conditions must be satisfied. Recall the impact

avoidance condition and the tangency condition as

D(P(s,))J(Q(s1))B(s)i(t)) =0, (4.3.37)

D(P(22))J(Q(s2))B(s5)i(t2) =0, (4.3.38)

Given the state equation Eq.(4.3.34), the cost function Eq.(4.3.36), and constraints
Eqns. (4.3.37) and (4.3.38), we can formulate the minimum time motion planning prob-

lem as follows.

Problem 1
Given the path p=P(s) and ¢ =@ (s ) satisfying Eqns. (4.2.1)~(4.2.3), find s (¢),
to<t<t;, the transition times ¢, and t,, the final time ¢; , and the joint torque
T;(t), §=1,..,n which minimize ¢; given by Eq. (4.3.38), subject to the equation
Eq. (4.3.34), the joint torque constraints Eq.(4.3.23), the impact avoidance condition
(4.3.37), the tangency condition (4.3.38), and the boundary conditions s(0)=0,

8(0)=0, s (t; )=1, i(t; )=0, a(t,)=2,, and s (t;)=1..

This formulation guarantees that no impact occurs at the entry time, and that the end

effector leaves the constraint surface tangentially at the exit time. As mentioned earlier,



there are two ways to satisfy the impact avoidance condition and the tangency condi-

tion; they are,

i(t,)=0, (4.3.39)
i(t))=0, (4.3.40)
D(P(s,))J(Q(s4))B(s;) =0, (4.3.41)
D(P(s,))J(Q(s2))B(s5) =0. (4.3.42)

where s ;=4 (t,) and s,=4(t;). Therefore, the minimum time motion planning problem

can be re-formulated in two different ways in terms of these two cases.

CASE 1:

Suppose it is required that the end effector stop at the entry time and the exit time
so that §(¢,)=0, §(¢,)=0. The impact avoidance condition and the tangency condition

are automatically satisfied. The minimum time planning problem becomes

Problem 2
Given the path p =P (s) and ¢=0Q (s ) satisfying Eqns. (4.2.1)~(4.2.3), find s(¢),
to<t <t;, the transition times ¢, and ¢,, the final time ¢; , and the joint torque
T;(t), §=1,..,n which minimize ¢; given by Eq. (4.3.36), subject to the equation
Eq. (4.3.34), the joint torque constraints Eq.(4.3.23), and the boundary conditions

‘(0)=0’ 3(0)=0’ s (tl )=1r é(tl )=0r ’(tl)=" 1 é(tl)=01 s (t2)="2’ and ‘;(t2)=0'

Since the time optimal trajectory must satisfy #(¢,)=0 and §(¢,)=0 at the entry time

and the exit time, respectively, we have the following theorem:
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The time optimal trajectory of problem 2 can be accomplished by minimszing each motion

segment independently.

The minimum-time motion planning problem of each motion segment in problem 2 are

defined as follows:

0_<_8 <3 1

8,8<s,

82<J Sl,

L3
min r, = [ -‘-i:"-
0 0
subject to
Egns.(4.3.34), (4.3.23),
2(0)=0, 80) =0,
s(t)) =14y, 8(t;) =0.

L4
. ds
min 7, = | -
L 31
subject to

Eqns.(4.3.34), (4.3.23),

a(t)) =14y, i(t;) =0,
s(ty) =22, a(ty) = 0.
1
. ds
min r; = [—
lz s

subject to

Eqns.(4.3.34), (4.3.23),
3(ty) =2y, 5(ty) =0,

8(‘/)=1, a(t,)=0

(4.3.43)

(4.3.44)

(4.3.45)

Theorem 4.3.4 says that the total minimum traversal time of problem 2 is equal to

tf =n+n+n,
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where 7, 75, and 735, are the minimum times of corresponding motion segment, respec-

tively.

CASE 2:

Suppose that the path function is differentiable and tangent to the constraint sur-
face at the entry time and the exit time; then the impact avoidance condition and the
tangency condition are automatically satisfied. The minimum time motion planning

problem in this case becomes

Problem 3
Suppose that s, and s, satisfy D(P(s,)J(Q(s,))B(s,)=0 and
D(P(s,))J(Q(22))B(85)=0. Given the path p=P(s) and ¢=@Q(s) satisfying
Eqns. (4.2.1)~(4.2.3), find s(t), t,<t <t;, the transition times ¢, and ¢,, the
final time ¢;, and the joint torque T;(t), #=1,...,n which minimize ¢; given by
Eq. (4.3.38), subject to the equation Eq. (4.3.34), the joint torque constraints
Eq.(4.3.23), and the boundary conditions (0)=0, 5(0)=0, s(t; )=1, i(t; )=0,

s (tl)"—"J 1 a.nd 3 (t2)=0 20

In this case, the end effector need not stop at the entry time and the exit time since the
path speed is not constrained at these two instants. However, the path must be chosen
so that s, and s, meet the requirements of Eqns.(4.3.41) and (4.3.42); The resulting
minimum time planning problem for a constrained manipulator is a tractable minimum

time planning problem without explicit state constraints.



4.3.3.3. Phase plane Technique for Minimum Time Problem

In the previous sub-section, we have shown that the minimum time motion plan-
ning problem for a constrained manipulator can be re-formulated as an equivalent
minimum time motion planning problem without state variable constraint<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>