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ABSTRACT

There are several sources of mechanical compliance in a multiple degree of
freedom manipulator, e.g., link flexibility, the actuators’' internal characteristics
and transmission mechanisms. In this work, the last case is considered. We
study a two-link manipulator using a dc servo motor on each link to control the
torque transmitted to the links via elastic cables. The effects of actuator
dynamics and cable elasticities on the dynamics of the manipulator are exam-
ined. Based on a displacement control strategy, general conditions of local sta-
bility for the closed loop system are obtained. We also develop a simulation
model for the manipulator. The obtained results should provide a framework for
further study of control of cable driven manipulators.
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1. INTRODUCTION

1.1. Problem Description

In this report, we consider a simple two link mechanical manipulator to
emulate, in part, the human biceps/triceps system for moving the arm. The
manipulator consists of two rigid links, two tendon cables and two springs.
Movement of the links are made possible by two tendon cables: one end of
each tendon cable is attached to the end of each link and the other end is
wound on a DC servo motor shaft. The servo motors with attached cables
simulate the agonists and the elastic springs simulate the antagonist muscles.
By controlling the voltage input of the motors, these two links can be caused
to move in a plane. The detailed description of the manipulator configuration
is given in section 2.1.

Our objective is to carefully analyze the influences of the motor induc-
tances and cable elasticities on the motion of the manipulator. The elastic
cables provide some flexible compliance to the manipulator, which may prove
useful for achieving certain manufacturing tasks and for safety reasons. A
similar cable-driven manipulator was proposed by Riemenschneider et al [1];
Lim [R] also used the same strategy but for a different mechanical system.
However, they didn't handle the cable elasticities and actuator dynamics com-
pletely.

Since the equations of motion of the manipulator are highly nonlinear and
complicated, we focus on developing mathematical models of the open-loop
manipulator under various assumptions. For control purpose we consider sim-
ple displacement feedback of links to regulate the motion.

1.2. Outline of the Report

This report is organized into four chapters: Chapter 1 is the introduction.
Chapter 2 describes the physical mechanical manipulator and develops a
mathematical model. We consider four cases: inelastic cables ignoring motor
inductances effects; inelastic cables including motor inductances effects; elas-
tic cables ignoring motor inductances effects; and elastic cables including
motor inductances effects. The first case corresponds to the usual assump-
tion made in the published literatures; the last case corresponds to the most
comprehensive model. Chapter 3 presents the closed-loop control strategy;
stability considerations and simulation results are also presented. Chapter 4
summarizes the effects of the cable elasticities and motor inductances.
Finally, suggestions for future work are mentioned.

2. MODELLING THE MANIPULATORS

In order to study and develop a control strategy for the tendon arm mani-
pulator, we first develop a mathematical model. In this chapter, the physical
manipulator and the derivations of the equations describing the system dynam-
ics are described. We consider four cases corresponding to four sets of
assumptions.

2.1. Geometry of Manipulator

A schematic illustration of the manipulator configuration is shown in Fig-
ure 2.1; and Figure 2.2 indicates the geometrical relationships. Note that the
first motor is mounted on the base plate; however, the second motor is located
at the end of the first link. Link 1 is controlled by the first motor through ten-
don 1 and spring 1, Link 2 is controlled by the second motor through tendon 2
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and spring 2.

Geometry

The nature of the link geometry is very complicated. Some useful
geometric relations are given in the following equations: (we assume that the

width of the links can be ignored.)

lal = (qf + rf + 2%7'.;003%)

1

lgz = (qf + thz - ZQaraC°S¢l)2
lyy = [d% + rf — 2dr,cos(y¥; — ¥5)]

lye = [d? + rf + 2drycos(y; — Y2)]

sin
sinﬁl - qal 11101

(1]
qqSiny,

laz

sinfp =

dsin(y — ¥g)

Sinﬂs = lb
1

sinfly = o

D

D3 =

2 f

dsin(y, - ¥,)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(R.7)

(2.8)
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Fig 2.1 Configuration of the Tendon Arm System

a=4-4,

Fig 2.2 Geometric Relationship
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Nomenclature
¥ link angle vector
¢ shaft angle vector
L motor inductance matrix
R motor resistance matrix
M(¥) inertia matrix of links
N inertia matrix of motor shafts

cable force vector

K° cable stiffness matrix

A(¥) length constraint

J(F) Jacobian of A(¥)

K. motor constraint matrix

vV input voltages to motor 1 & 2 (volts)

11,12 armature currents of servo motor 1 & 2 (amperes)
9,9, shaft angles of motor 1 & 2 (amperes)

V1. Y5 link angles measure from the vertical (radians)

Yo initial tendon winding angles (radians)

a,B1,82.83.04 auxiliary angles (radians)

Ly armature inductance (Henries)

B armature resistances (ohms)

Im moment of inertia of motor shaft (Kg —m?)
Km motor constraint (N — m / ampere)

Tm pulley radius (m)

F$.F$§ forces along the tendon cables (nt)

L A lengths of tendon cables 1 & 2 (m)

Iz lya lengths of springs 1 & 2 (m)



l—ul'l_bl

lazj—bz
Lo

A AP AP AP

ka -kb
kg ks
TaTy

9q.d

Link Dynamics

RSD-MEMO-1-84

lengths of tendon cables 1 & 2 with spring lengths
Loz & lyz (M)

unstretched lengths of spring 1 & 2 (m)
distance from motor 1 to guide (m)

lengths of tendon cables and springs at equilibri-
um (m)

spring stiffness constants (nt/m)
elastic constants of cables 1 & 2 (nt/m)
lengths of links (m)

offset of guides at base of links 1 & 2 (m)

The equations of motion of the two link manipulator can be derived from a
Lagrangian approach. The resultant equations of motion for the two links are

"il.’.x[(lma + Mg )rE + (my + My ) (g —d)?] + ';I;Z(émb + My )(re — d)

4

rycos(¥y = ¥2) + (el (5 + Hh)(re — d)msin(yy = Ya) + [(Sma + Halgre

laz

+[(3ma + HagTa + (mq + Hy)g (ra — d)Isingy + agara(l = 22)siny,

l
~ kydry (1 - i.ﬁ)sm(wl — Yo)= F%

laz

94 7aSINYy e drysin(y;, — ¥z)
CE Iy,

. (R.9)
b2 ('3}

;')0.2(%_7"'07'62 + Mprd) + ;#'1(%"% + My )(rg — d)rycos(y, — ¥p)

+

- @5 my + Hy)(ry - d)rysin(y, - 2)

1 . by |
PHETAC + My gry)sinyp + kydry (1 — E—b—z)sm(% —%Y2)
b2
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- pg drysin(y, — ¥2)
~ e by,

(2.10)

The right hand sides of these equations represent the torques applied to the
links through cable forces F§ and F§. If we denote

¥ = }/’j;} Fo = g
then the equations of motion can be wri.tten as
M(¥)¥ + G(¥,¥) = [J(V)]F (2.11)
where '
o =[oafd) )] wed-py
la, — L,
ol

mu(8) = (gmg + H)rd + (my + My )(rg = d)?
maa(¥) = may(¥) = (my + Hy)(ry = drycoshy —¥)  (2.12)

1
maa(¥) = Zmbrbz + Myrf

91(¥.¥) = (V2 (Zmy + Hy)(re - d)rysin(yy - ¥2)

+[(Gma + Hy)gre + (my + Hy)g (re — 4)]siny,

I I
+ kaqaTa(l — 22)siny, — kpdry (1 — =2
lg2 lys

)sin(y1 = ¥e) (2.13)

92(¥.9) = ~(W) (5 my + Hy)(ra — d)resin(¥: = ¥e)

1 . bya | .
+ (Embgrb + My gry)sinye+ kydry (1 — ﬁ)sm(% - ¥2)
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[J(¥)]T = the transpose of Jacobian of A(¥)

Motor Dynamics

A standard linear model of a DC armature-driven servo motor is used [11].
The armature circuits are described by
dd;

di;
In =& + Ry + Kn—L =V 1 i=1,2 (2.14)

Euler's equations for the motor shafts are
d®y;

—L = Ky~ FF  i=1,2 (2.15)

J
™ dt?

The parameters of both motors are assumed to be identical. Again if we write

_ % _ i1 _ 1
9_[’32' z_[‘iz' v = Vo
then the above two equations become
Lz =-Rz - K, 0 +u (2.16)
Né=sz e (2.17)

where
_m 0 _|Fm 0 _|Kmn 0
L=1g .| 'R‘[o R,,,]' Km"lo Km]
_Wm 0
N‘[o Jm]

Cable Constraints
Force constraints, if the cables are assumed to be elastic, are given by

F° = K[, 0 — A(¥)] (2.18)

Holonomic constraints, if the cables are assumed to be inelastic, are
given by

Tm® = A(¥) =0 (2.19)
where
_Iks 0
L

In the following, mathematical models are developed for four cases indicated.
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2.2. CASE1 Manipulator Model

We start with the simplest case -- where the tendon cables are assumed to
be inelastic and motor inductance effects are ignored. This case has been
widely applied in most robot control designs [1-5].

>From the holonomic constraints (2.19) we have

8= - A¥)
8= T—;-J(‘I')‘i' (2.20)
8= -a0)¥ + = S

Usually motor inductances are quite small; if they are ignored, (2.18) reduces
to

=-RIK,0 + Rlu (2.21)

Substituting (2.20) and (2.21) into (2.17), we obtain
Fe = :ziNJ(‘I’);I; - ‘lg“iNi[J(‘I’)] + Kn R IKn (0¥ + KR lu (2.22)
Tm e dl Tm

Thus the equations of motion are

() + O] S IO + G + (0] F LEON (220
) R K gy = gy SR,

where M(¥) and G(\Ir,\if) are defined in (2.12) and (2.13). Note that the effective
inertia matrix is symmetric and positive definite for all ¥ .

2.3. CASE Il Manipulator Model

The assumptions are the same as for CASE I except that the motor induc-
tances are included in the analysis. Using (2.20) and (2.17) in (2.18), (2.11) , we
obtain

(M(E) + (D] 3 IO + (G 9) (2.24)
F 0T B L = L) 2
Lz = -Rz - Tﬁ[J(\I’)]wi' ru (2.25)

10
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Eqgs. (R.24), (2.25) describe the arm system driven by inelastic cables.
Obviously, in this case four variables (¥, ¥z, 1, 12) are required instead of two,
as in CASE I, to describe the manipulator. The additional two variables are due
to the effects of motor dynamics. Clearly, if L = 0 the model developed in this
case reduces to the model given for CASE L.

2.4. CASE III Manipulator Model

Next we extend our development to a more general case. The cables are
assumed to be elastic with stiffness constants k§ and k§ respectively.

Hence the equations of motion can be obtained

[MSI:) { (%) = 7 [J(D)]TKO + [J(¥)]TKCA(E)

R-IK,,,e £ r2K°8 — 1, K° A(Y) (2.26)

0
= [K,nR_l U
where the force constraint (2.18) and (2.21) are used in eqs (2.11) and (2.17).

2.5. CASE IV Manipulator Model

Finally, we examine the most general case -- the cables are elastic and
the motor inductances are included. This case is more complicated than the
other cases although it can fully describe the tendon manipulator.

>From eqs (2.11), (2.18), (2.17), (2.18) the equations of motion are
obtained as follows:

[MSP) 0 G, ¥) - [J()]TK [, 8 — A(¥)]
N r2K°0 - 1, K°A(¥)
= k. |2 (2.27)

Lz = -Rz —K,,0 +u

>From the above formulations of the equations of motion, we infer that
even for higher degree of freedom cable driven systems the equations of
motion will have the same forms as described in this chapter.

3. FINAL-POSITION CONTROL

3.1. The Control Law

Since one joint of the link system is attached to the base guide and the
other joint is attached to the first link, positive steady-state tensions in the
tendon cables are required to maintain the link at any specified final position.
The required control voltages can be calculated by examination of the equili-
brium conditions. Our control objective is to bring the joint angle vector ¥ to

11
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the desired final setting ¥* and to maintain them there, that is,
¥(t)-¥" as tox

A linear feedback controller based on feedback of the angular velocities @ of
the motor shafts is suggested. The detailed control structure is shown in Fig.
3.1, and the control law is given by

u=u’-HO (3.1)

where u * is a constant value determined to maintain the manipulator in equili-
brium, and

h, 0

H=1g &,

is a feedback gain matrix.

This simple feedback control law is commonly employed in conventional
manipulator control design [4,5], because it is easily implemented as well as
easily tuned to stabilize the closed loop.

In the following four cases, corresponding to the assumptions indicated
previously, we show how to determine v’ in terms of ¥*. Both nonlinear and
linearized closed loop equations are developed, and simple conditions for local
stability of the closed loop system are obtained.

Motor 1 Link |— ¥

\P'* D-th

Table

| Metor 2 > Djn&mcs — ‘yl

Fig 3.1 Control Structure

12
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3.2. CASEI Closed Loop Model

Suppose that it is desired that the mampulator be in equilibrium when
¥ = ¥°. Then from eq. (2.23) it follows that w = u* must satisfy

6(e",0) = (37 R (3.2)

m

The calculation of «’ in terms of ¥ defines a so-called data table or feedfor-
ward control.

Now the closed-loop equations, based on eq. (2.23) and (3.1), can be writ-
ten as

M(E) + [JO]T IO + (6D + O] 5 Z 0N (89)

m

rKnR7

u

Tﬁj(\p)@+ [J(¥ )]TK"‘R_ Li)¥) = [3(9)]

Tm m m

+ [I(¥)]
If we define
¥ =v"+45¥

then the linear perturbational equations can be obtained as

(M) + I 5 I(8)}6¥ + a7 o K

m Tm

(¥

KmR"H

m

+ [J(ED]T J(¥*)6¥ + G (¥°,0)6¥ = 0 (3.4)

where G’ (¥°,0) is the Jacobian of G(¥,¥) with ¥ = ¥*, ¥ = 0. Note that
Jacobian of G(¥.¥)|gyr 4o0 = [G(¥F) | G (E9)],_gr 4.0 = [G/(¥°0) | O]

since G''(¥°,0) =0

Hence the closed loop system is locally stable if G’(¥*0) is positive definite
and h,>=kp,, ho>—ky,.

3.3. CASE II Closed Loop Model

Suppose that the manipulator is in equ111br1um when ¥ = ¥°. Then from
eqs. (2.24) and (2.25) it follows that © = u" must satisfy

G(¥".0) = [I(¥))T 2" (3.5)

m

0=-Rz" +u’

13
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for some 2z °.

The relation of ©° in terms of ¥* define the data table or feedforward control.
Now the closed-loop equations, based on egs. (2.24), (2.25) and (3.1), are

() + (3] T O + (GO) + [I0)7 T S0 = )7 2
Lz = =Rz - [K, +H]%ﬂ@+u’ (3.6)

If we define
¥ =¥ +6¥

z=2"+0z

Then the linear perturbational equations can be obtained as

IM(¥*) + [J(‘P')]T;Nz—J(\Ir’)gd:I; + G/ (¥°,0)6¥ = [J(¥ )]TK’" (3.7)

m
L6z = —Réz — [K, + H]ﬂ}-ld\if
m
Hence the closed-loop system can be shown to be locally stable if G"(\I",D) is

positive definite and h;>—k,,, ho>—Kp,.

3.4. CASE Il Closed Loop Model

Suppose it is desired that the mampulator be in equilibrium when ¥ = ¥°,
Then from eq. (2.28) it follows that © =« " must satisfy

G(¥°.0) — 7, [J(ENTK O + [J(F)TKAF)=0 (3.8)
K0’ - r,, KA(¥") = K, R lu

for some ©°.

Again the relations of «” in terms of ¥*,8" define the data table in the closed-
. loop control.

According to eqs. (2.26) and ( 3.1), the closed-loop equations can be
obtained as

MP)Y + GF¥) — 7, [J(9)]TK O + [J(¥)]TKA(E) = 0 (3.9)

N® + [K,R'K, + K,R'H]® + 72K 0 — 7 K°A(¥) = K, R 'u*

If we define

14
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V=V +6¥

8=0"+60

Then the linear perturbational equations can be obtained as
M(¥")6¥ + [GI(¥°,0) + D(¥*)]6¥ — 7, [J(¥*)]TK°60 = 0 (3.10)

N6® + [K,R'K, + K, R'H]60 + r2K° 60 — r,, K°J(¥")6¥ = 0

where D(¥*) = the Jacobian of {[J(¥)]TK°A(¥)];.

Hence the closed-loop system is locally stable if the matrix
G/ (¥°,0) + D(¥") ~Tm[I(¥]TK
T K J(E7) 2K
is positive definite and h,>—K,; ,h>—K,, .

3.5. CASE IV Closed Loop Model

Suppose that the manipulator is in equilibrium when ¥ = ¥*. Then from
eq. (2.27) it follows that w = » "’ must satisfy

G(¥°,0) - [J(¥)])'K [rr @ - A(¥")] =0
2K’ - r, KA¥") =K, 2° (3.11)

0=-Rz’'+u’

for some ®° and z°.

The relations of ©° in terms of ¥*,8° and z° define the data table or feedfor-
ward control.

>From eqs. (2.27) and (3.1) the closed-loop equations can be obtained as
M(¥)¥ + G(¥.¥) - [J(¥)]TK° [r, @ — A(¥)] = 0

NO + 72K 0 — 7, K°A(¥) = K, 2 (3.12)

Lz = —Rz - (K, + H)® + u"

If we define
¥=v"+ ¥

@=0"+ 060

15
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z=2"+0z

then the linear perturbational equations can be obtained as
M(¥°)o¥ + [G/(¥°,0) + D(¥*)]6¥ — 7, [J(¥)]TK° 68 = 0

NGO + #2K°60 — r, K J(¥*)6¥ = K, 62 (3.13)

L6z = -Réz — (K, + H)50

Hence the closed-loop system can be shown to be locally stable if the matrix

G’ (¥°.0) + D(¥") —Tm [J(¥)]TK
—r KEI(¥) r2K°

is positive definite and h,>=K,,, h>—Kp, .

The previous discussion reveals that local stability of the closed loop system is
achieved by nonnegative feedback gains. Because of the complicated non-
linearity, the global stability conditions for the nonlinear closed-loop system,
generally, can't be obtained.

3.6. Simulation Results

The open loop system has been programmed in Fortran by using the IMSL
subrouting DGEAR and simulated on the Amdahl 5860. The parameter values
used in the simulation are listed in Appendix. Two final positions are con-
sidered, one is (¢, ¥2) = (60° 30°), the other is (¥, ¥2) = (30°, 20°). Their
corresponding arm configurations can be found as

16
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The former final position is used for each case; however, the latter final posi-
tion is only used in the elastic cables case. Corresponding to the four assumed
cases, the time responses for the link angles in each case are plotted in the
following.

Some features of the system are also observed from the simulation
results:
1) The motor inductance effects are not important.

2) If the cables are inelastic the system is open loop stable. The region of
local stability is large.

3) Provided the cables are elastic, the system is very sensitive. The region
of local stability is essentially small. For example, in Fig 3.6 and Fig 3.7,
the responses tend very slowly toward the equilibrium, the stable region
is about 2° in contrast to about 45° for inelastic cables cases.

4) In order to properly control an elastic cable-drive system, another more
complicated control strategy should be used instead of using simple dis-
placement control.

17
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Fig 3.2 CASE I Inelastic Cables Without Motor Inductances (h;=h,=0)
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Fig 3.3 CASE II Inelastic Cables With Motor Inductances (h,=h,=0)
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Fig 3.4 CASE III Elastic Cables Without Motor Inductances (h,=hz=0)
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Fig 3.5 CASE IV Elastic Cables With Motor Inductances (h,=h;=0)
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Fig 3.7 CASE IV Elastic Cables With Motor Inductances (h;=h,=0)
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4. CONCLUSIONS

4.1. Summary

In this work, a mathematical model describing the dynamics of a tendon
cable manipulator has been developed. >From this we investigated four dif-
ferent cases corresponding to various assumptions about the effects of cable
elasticities and motor inductances. Since the objective is final position con-
trol, the inverse kinematic problem is not considered. Open loop performance
of the system is simulated on computer. The simulation results show that
motion of the manipulator is not satisfactory when the cables are elastic.
Table 4.1 is a list of state variables required for the four different cases. Gen-
erally, the time constant of electrical system is much smaller than that in
mechanical system (by a factor about 50). That is why most people don't
model the motor inductance effects, our conclusions also validate the insignifi-
cance of the motor inductance effects. However, the elasticity of cables intro-
duces some flexibility to the tendon cable system, which seems to have a des-
tabilizing effect.

Motor
State Ignore Motor Inductances Include Motor
Tendon Variables Inductances
Cables
Y1.¥1.%2.9; V¥ ¥2.9%;
Inelastic (4** order) 140
(6! order)
V¥ ¥a ¥ 91 YY1 Y292, 019,
Elastic B, Vg,95,01,%3
(8 order) (10% order)
Table 4.1

4.2. Fature Work
There are a few directions that could be pursued:

(1) Implement a controller by using more elegant strategy, such as adaptive
control [15], resolved motion control [16,17] or minimum time control
(2]

(2) Use two antagonistic actuators per link [1,2,12]. This will increase the
geometric complexity, however, it is more powerful, in some sense, than
the configurations considered.

(3) Extend this system to higher degree of freedom manipulator, and com-
pare the motion capability with other typical robot structures.

24
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Values of the Parameters Used in the Simulations

Link Parameters

qz.=0.04m [;;=0.3m
d=0.04m  [;,;=0.3m
r.=0.3m 1;2=0.28m

=0.3m l,2=0.28m
My=1Ky ko =350.252nt / m.
M,=1Kg k, =3502.52nt/ m
m,=0.5Kg k{=3502.52nt/m
m,=0.5Kg g=9.8m/sec?

Motor Parameters

0.015m I =4.64x107*Kg —m?

7'
K 0394Nm/A L =5x1073H
R 2.5
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