ABSTRACT

NUMERICAL STUDIES OF UNSTEADY, TWO-DIMENSIONAL
LIQUID IMPACT PHENOMENA
by
Yen-Chen Huang

Co-chairmen: Frederick G. Hammitt

Wen-Jei Yang

The dynamics of high speed impact between a
compressible water droplet and a rigid solid surface is investigated
analytically. The purpose of the study is to examine the environment lead-
ing to the erosion mechanism of a material due to the liquid impingement.

A Compressible-Cell-and-Marker numerical method
is developed to solve the differential equations governing the un-
steady, two-dimensional liquid -solid impact phenomena. The method
is designed to solve this unsteadiness up until the time reasonably
approaches steady state solution. The validity of the method is con-
firmed by comparing its numerical results with the exact solution
for the classical one-dimensional liquid impact problem. The accu-
racy of the numerical results is found to be superior to the other
existing comparable numerical methods in this type of application.

Viscosity and surface tension are neglected as compared
with the magnitude of impact pressure. Pressure and velocity dis-
tribution are solved as a function of time. The deformation of a drop
is also recorded for three different shapes: cylinder, sphere, and
a combination of both. Two different impact Mach numbers, 0.2and 0.5,
which refer to water, are studied. Two different conditions, free-slip and

non-slip, are investigated.

After the first instant of impact, the pressure build-up and



the lateral flow begin simultaneously. However, the expansion of the
droplet near the contact edge due to the lateral flow is not appreciable
during the early stage of impact. The calculation also indicates that

a zone of negative pressure appears on the upper region of the droplets
where cavitation has been observed, but shows no bursting out of the

top surface, because the compression is continuously released as the
drop surface is free to deform. The occurrence of the negative pressure
may result from either the reflection of a compression wave from the

top surface or the rarefaction from the side of the droplet. The location
of the negative pressure depends upon the initial geometry of the droplet
and the impact Mach number. The maximum pressure in this two-dimen-
sional liquid impact problem is found to be less than the one-dimensional
maximum pressure for all three different droplets in various degrees.

As time elapses, the maximum pressure shifts from the center of the
contact area radially outward, while the pressure at the center attenuates

to the stagnation pressure.
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CHAPTER I
INTRODUCTION

In recent years, there is growing concern on the problem
of erosion as a result of severe local pressures and pressure changes
due to liquid impingement on high speed machinery and aircraft com-

ponents.

(1,2)

The earliest attention for liquid impact erosion arose

in hydraulic (Pelton) and wet steam turbines. When the steam tur-
bine stages operate in the region of vapor-liquid mixture, after the
steam has expanded from the high pressure state, the liquid droplets
are impacted by the rotating blades at about the operating speed of the

(3,4,5)

turbine With the higher velocities in the very large new tur-

bine designs, it is likely that the erosion problem can no longer be
met through improved materials.
Likewise, in the late 1940's when the speeds of aircraft ex-

ceeded Mach 0.5, rapid erosion was experienced by aircraft flying

through rain(é) particularly on propellor blades. The problem has

become increasingly severe with the present much higher speed
aircraft, and also with helicopter blades. Research has been spon-

7
sored in this country( ) and also in many other countries, (8)

with
attention focusing now on radome, window, and structural materials
of fixed-wing aircraft and helicopters, as well as missiles to avoid
degraded performance and possible failure. The phenomena are

similar to the liquid droplet impact erosion of steam turbines and

hydraulic Pelton turbines.

10, . . .
It has been suggested(g’ 0,ete.) that the damaging mechanism

of cavitation may actually be a liquid jet impingement resulting from
the non-symme.trical collapse of a bubble., Cavitation erosion is

important for high speed ship propellers and other components as

(11)

well as many other power plant components such as pumps, etc.

(12, 13) (14, 15)

Erosion is also a problem in turbines and pumps of space



power plants using liquid metals as the working fluid, as well as in

present sodium-cooled fast breeder reactor power plants and in many

(11)

other cases involving many different fluids.
Soil erosion caused by raindrop impact, a rather analogous

(16)

phenomenon, also has received attention in the present tide of
interest in ecology.

A. Background

Liquid droplet or liquid jet impact on a solid surface has been

observed for centuries. The first extensive description of this pheno-

17)

mena was that given by Worthington( around 1894. Considerable

pioneering work in more recent years was conducted by Dr. Olive

18) (19)

Engel( since the early 1950's. Her work includes a chemical

mapping of the radial water flow on the impact plane, the use of high-
speed motion-picutre photography to record the motion of the impacting
water drop, and the use of Schlieren photography to study details in
(20)

reported on fundamental

(21)

the radial flow. Bowden and Brunton
studies of liquid jet impact at supersonic speed. Recently, Fyall
used a turbine-driven Barr and Stroud CP5 rotating mirror camera
(2 x 105 -8 x 106 pps) to record photographically the collision process
of a moving target with a single stationary water drop in order to study
the basic mechanisms of rain erosion. The study of liquid jet impact
is currently under way in this laboratory (Cavitation and Multiphase
Flow Laboratory, Mechanical Engineering Department) using highly
sophisticated photographic apparatus, such as a Beckman-Whitley
camera. The above are merely typical citations from a very numerous
and growing literature in this field.

Photographic studies(lg’ 20, 21) have shown that the maximum
lateral velocity typically considerably exceeds the impact velocity.
The resulting sheet of liquid spreads radially around the periphery of
the contact zone, while the remaining portion of the drop is relatively

undeformed. This suggest that compressibility effects are important



in the liquid-solid impact phenomena.

In the initial stages of the impact, the sudden deceleration of
the liquid will establish a large pressure gradient. The spatial gra-
dients of velocities are negligible compared with the large magnitude
of local acceleration.

For the one-dimensional case, during the early phases of

impact, the integration of the appropriate equation of motion

By __8p (1.1
ot 9z
yields the well-known ''water hammer pressure'
= 1.2
P pOCVO ( )

where o o is the density of the ambient liquid, Vo is the impact velo-

city, and C is the shock wave velocity with respect to the undisturbed

liquid. Tait(zz) in 1888 proposed the following equation of state for
water:
pt+tB ( ..D__)A (1. 3)
p0+ B Po

where B and A are two empirical functions of temperature. The values

of A and B will be considered in the Appendix A. The combination
of Equations(1.2)and(1.3) yields the shock wave Velocity(23) as
Vo A
p +B 1-(1-—)
2 o C
c = (1. 4)
P v v
°© 2 (1 - -9 )A
C C

4
Heymann(2 ) derived a convenient approximation for the shock wave
velocity which is an explicit function of impact velocity only

C=C (1+2V) (1.5)
o o

where C0 is the sonic velocity in the undisturbed liquid. The above

expression is in good agreement with measured shock wave velocity

25, 26,27, 28, .
data for water from various sources( 5,26 28 29). It is recom-

(23)

mended for use only up to Vo/Co =1, 2. In the reference , a



second order approximation for cold water was derived

C Vo Vo 2
= = 1+1.925 < - 0.083 (—C—) (1.6)
(o] (o] (o]

by a least square fit computer program for Vo/co up to 3. Within
this range, prediction for C from Equations (1.4) and (1. 6) agree to
within + 2%.

The present author has now derived another second order
approximation yet more convenient to estimate the shock wave velo-
city in water, for V/Co also up to 3. This is

v \'
C 0 o 2
-(—:—-1+ZC—-- 0.1(—C—) (1. 7)
(o) (o] [¢]

Savic and Boult(so) presented a mathematical analysis of the
low speed impact and spreading of a spherical liquid drop on a rigid
surface but did not take compressibility into acg¢ount.

(19)

Engel performed an approximate analysis of spherical
droplet liquid-solid impact and modified the water hammer equation
as follows, for the plane rigid surface,

- 2
P= - pocovo (1. 8)

where & is a coefficient giving the fraction of impact velocity. It
approaches unity for high impact velocities.

Heymann(31) presented new quantitative results for the maximum
impact pressure generated which is in some cases the order of 3 times
the simple water hammer pressure. His analysis assumes that at the

first instant of contact, the pressures have already built up to pOC Vo.

The present analysis shows that this assumption may not be valid.



B. Review of Solution Technique

To obtain a closed-form solution by analytically solving the
general transport equations with the constitutive relations of the
materials is formidable, and probably impossible, because of the
unsteady, non-linear, non-homogeneous natures of the problems.
The development of high speed computers has made it feasible to
solve a wide variety of complex time-dependent, multi-dimensional
problems by using numerical techniques. Various methods are
available for solving certain classes of problems, but each of the
known methods has certain limitations. A comprehensive survey
of numerical methods, applications, investigators, and represen-
tative programs for transient fluid flow in two or more dimensions
has been presented by Harlow. (56)

Basically, there are two numerical schemes, Eulerian
and Lagrangian. The Eulerian scheme can further be classified
according to choice of primary variables (pressure and velocity)
method and also secondary variables (stream function and velo-
city) method. In all Eulerian methods, the coordinate system is
fixed in the reference frame, while in Lagrangian scheme, the
moving coordinate system is embedded into the configuration to
be studied. The Eulerian schemes cannot easily handle free sur-
faces, moving boundaries or contact discontinuities which separate
two materials. However, Eulerian schemes cause no difficulty for
those single-phase problems in which turbulence or large distor-
tion is encountered. Omn the contrary, in Lagrangian schemes, the
material interfaces can be precisely followed, free surface boundary
conditions canbe applied, and arbitrary shape can be present. How-
ever, when the configuration becomes badly distorted, the calculation
becomes less accurate. A combination of both Eulerian and Lagran-
gian schemes may overcome some of the difficulties of both, while

offering some of the advantages. There are a number of such approaches



(57,58)

such as Marker-and-Cell (MAC) method , Particle-in-Cell

(PIC) method(59' 60)

(61)

, and Implicit Continuous-Fluid Eulerian (ICE)
method Some were developed from those just mentioned above
with modification such as SUMMAC (Stanford University Modified

(62)

MAC) method to studies of finite-amplitude water waves and the
modification of MAC in the Reference 70 to studies of collapsing
bubbles, while others developed independently such as Coupled-
Eulerian- Lagrangian (CEL) method. (63) Both MAC and PIC me-
thods have been applied to the impact of fluid drops. However,
MAC is limited to incompressible fluid, while PIC appears to be
applicable only to the hypervelocity impact.

The numerical method, which is developed in this study,
also is a combination of both Eulerian and Lagrangian schemes.
While the Lagrangian portion of the numerical calculation is used
to mark the phase boundary, the modified two-step, nine-point
Lax and Wendroff explicit Eulerian rnethod(64’ 65,66,67) is de-
veloped to offer the compressibility which is lacking in the MAC

method.

C. Objective

The bulk of prior research on liquid-solid impact has been
limited to high-speed photographic studies, other experimental in-
vestigations, and relatively simple analyses. The main objective
of this thesis is to analytically investigate the problem of liquid-solid
impact: formulate the transient, two-dimensional governing equa-
tions plus equation of state for water and then, by using the numeri-
cal technique, to find the solution for the flow patterns and impact
pressure and velocity distribution developed in a liquid drop or liquid
jet following its collision with a plane rigid surface, using dimension-
less parameters as far as possible to make the results as generally
applicable as possible. Results will provide the information for the

further understanding of the basic mechanism in the liquid impingement.



CHAPTER 1I
THEORETICAL INVESTIGATION

A. Formulation of the Problem

Three phases are involved in the phenomenon of liquid-solid
impact: A liquid droplet which has travelled through a gaseous region
strikes a solid surface. Equations and boundary conditions describing
the situations are coupled. Therefore, it is a formidable task to ob-
tain the analytical solution. However, in order to get a tractable solu-
tion, one may treat the liquid phase as a distributed system, subjected
to the boundary condition at the interfase with solid and gas.

The solid target material may respond to the impact like an
essentially rigid body with negligible deformation, an elastic body,

a plastic body, or even like a fluid, depending upon the velocity of
impact. The problem treated in its most general aspects requir‘es
a detailed investigation of the manner in which the material would
behave rheologically under an impact. Some compromise must be
made between the complexity of the physical problem and the practi-
cal difficulties involved in solving the equations governing the model
selected. In the following analysis, the surface will be assumed to
behave like a rigid body. This model, representing a limiting case,
is of great practical importance, and will provide an insight into the
nature of the impact phenomenon.

The compressibility of the liquid must be taken into account
in any valid and realistic analysis, unless the impact velocity is ex-
tremely small (and of little practical interest). As will be seen later,
compressibility effects are predominant in the liquid response. There-
fore, if they are neglected, an infinitely large pressure will be pro-
duced at the first instant of impact.

However, it is reasonable to neglect the effects of surface

tension and viscosity. This is especially valid for high speed impacts,



particularly when the liquid is water with its low viscosity. Body forces
will also be neglected in the study. Cylindrical coordinates were selec-
ted, simply because they are most suitable to deal with the axisym-
metric phenomena which will be assumed.

Under these assumptions, the equations governing the pheno-
mena when a liquid droplet of spherical or cylindrical shape strikes
a rigid solid surface are written as follows.

The equation of continuity for the liquid phase gives:

0 , Blpw 1 eV (2.1)

at aZ r ar -

The momentum equations for the liquid phase:
2

dlpu) + dlpu ) + 1 olrpvu) - op (2.2)
ot oz T or oz
2
3(pv) + olpve) 1 orpv) _  _9p (2.3)
ot 0z r ar T ar
with the equation of state for water
p+B _ o A 2.4
po+ B ( po) (2.4)

where u and v are the axial and radial velocity components respec-
tively for the cylindrical coordinates z and r. Time t is another inde-
pendent variable, and p and p are the fluid density and pressure.
The values of the two constants in the equation of state for water are

chosen (as discussed in Appendix A)
A= 17.15 B = 3.047 kilobars (2.5)

Strictly speaking, it would require also the energy equation
for the fluid

3 (pE) N o(pukE)
ot dz

1 O(rp VE) 1 _
* T or oz * r or




to complete the formulation, where E = e + 1/2 (u'2 + VZ) is the speci-
fic total energy, and e is the specific internal energy. Since the main
concern here is not the energy transfer, and since the process is
practically isothermal overthe very short duration of impact (order of
1 psec.), the energy balance problem in the stream will not be con-
sidered.

On the other hand, the approximate equation of motion and the

kinematics relations for the marker particles used in the Lagrangian

calculation are:

d(;:U) =% F_ (2.6)
AL F (2.7)
U = _‘% (2. 8)
v o= 8 (2.9)

where mUand mVare the momentums of a marker particle subject to
external forces FZ and Fr in the z- and r- direction respectively.

One defines

t: _ t b _ Zz r“‘l _ T
Tt ’ z2o= T T or
C C C
Sk b3 Sk
o = —2 a = 2 Jo2 Y (2.10)
o] u v
C C C
3 sk B
p = o, B = )
pC pC

where p ,u,v,p,t, z, r are the characteristic parameters
c c ¢ ¢’ ¢’ ¢ ¢

of the problem. The non-dimensional governing equations, after
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sk

dropping the asterisk, , may be expressed in normalized form for

the Eulerian calculation:

dp o 1 o
olp uv) 1 (rov)
St T Al 3z T AZ r Or =0 (2.10)
d(p u) + A o (p uz) ' A 1 o(rpwvu) B Op 2 12
ot 1 Oz 2r or - 771 Og (2.12)
Bow), 4 dlew) , , L dlrpvh) | o 3p .,
ot 1 oz 2 r or T T72 dr (2.13)
P + B _ e A
s (2.14)
o o)
and in the Lagrangian calculation:
d(pU) “ dp
dt - B1 dz (2.15)
d(pV) dp
dt =B ar (2.16)
where a tc q ¢
Al - z ’ AZ S Ty
C c
2,17
Pe tc Pe tc ( !
Bl = s B2 =
o Ve e Pe e ¥e
One may select the characteristic parameters p o’ uc, P,
t , z, r insuch a way that all the coefficients A,, A_, B.,, and B
c c C 1 2 1 2

become unity. However, for convenience in the discrete numerical
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computation, and for the nature of the problem, the characteristic
parameters will be chosen such as the following. Characteristic
density .DC will be the undisturbed density at 1 atm DO. Characteristic
velocity u will be the impact velocity VO. Characteristic pressure P
will be the simple water hammer pressure based on DOCOVO. Z and
r_are the cell size dimensions in z and r directions, respectively.

It is convenient in many cases that they be chosen to be equal. There
will be a definite relationship between Z s T, and the characteristic
lengths of the problem, e.g., the length and the diameter of a cylin-
drical liquid droplet. Characteristic time 1:C will be zC/C, where C
is the shock wave velocity defined in the Eqgs. (1.4) and (1.6) After
such selection of characteristic parameters, the four parameters in
the governing equations: Al’ AZ’ Bl’ B2 can be reduced to A1:A2=

2
M/(14+2M-0.1M"), and B :BZ:l/(1+2M-0.1M2), where M = VO/CO.

1
The appropriate initial conditions over the domain of calcula-
tion are

= u=1u vV =V
P pO o] (¢]

where P, is the environmental pressure, U and v, are the initial im-

pact velocities in z- and r- direction respectively. In the case of a

normal impact (i.e., perpendicular), v, = 0 of course and Vo =u .
o

The appropriate boundary conditions are:

i) along the axisymmetric axis(z), r = 0, and symmetry

requires o du . op
S or " o9r
ii) along the impacted rigid surfaces, z = 0, _.gl =0, u=0,
z
SS = 0, for full-slip wall condition, which, strictly
speaking, an assumption of zero viscosity would necessitate,
and v =0, u=0, 58-21-)— = 0 for non-slip wall condition.

iii) along the free surface, incompressible continuity condition
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yields ou ov

P=P., = =0
8xn t

where u and v, are the moving velocity components of the

liquid-air interface in the normal x and tangential X, di-
rections of the surface respectively.

iv) along the sides of the finite computational domain, per-
meable boundary conditions will be imposed, in such a

way that the normal space derivative of the variable vanishes

at the boundary,

where I—I1 and H2 are sizes of computational domain in

z- and r- direction respectively.

B. Compressible Cell-and-Marker (ComCAM) Numerical Solution
Method

The method begins with an Eulerian grid as shown in Figure
1. Field variables such as density and velocity are directly associated
with the cells of the grid. In addition to the grid, a series of Marker
particles are assigned to the liquid. These particles are necessary
to mark the free surface movement. Numerical computation will start
with particles located only along the surface. This arrangement is
possible because of the condition that fluid particles initially on the
free boundary always remain on the free boundary. (71)
The cells of the grid system are labeled with the indices i,
j; further the density p , the pressure p, and the velocity components
u and v are defined at the center of each cell as Py pi ., and

U,
s) ) 1,)
v, ., respectively. The superscript n+l indicates that the quantity

H
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The Computing Mesh
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is evaluated at t = (nt+1)At, while n denotes that the evaluation is at
t = nAt. The subscript m is used for particles; the velocity and posi-
tion of a Marker particle and the position of the corresponding Marker
cell are represented by (Um, Vm), (Zm,- Rm), and (Im, Jm), respec-
tively.

For convenience in computation, the explicit form of the
finite-difference approximation is adopted--expressing the sought-for
future physical quantity at m for Marker particles or at node i,j for

cells in terms of the other quantities. For a Marker particle, its

future velocity components Umm-1 and anH satisfy the equation of
motion for particles. Where &« = C at/ar =C at/az
o B
1 1
. TIPS B
ol z"? 2
i, ]
o« B
2
vt ooyR o2 B 1_-pfl.+_1_) (2.19)
m m p? j i,j- 3 1,43

The new location (an+1 s an+l) of the particle is then determined

utilizing the new velocity.

oA
Zn+1 - g0 1 (Un-!-l + Un ) (2. 20)
m m 2
o A
Rn+1 - Rn + 2 (Vn+1 + Vn ) (2. 21)
m m 2 m

It is followed by the relocation of the corresponding Marker cell

1 1
(Il:: ) Jnm+ ) based on the new particle location.

1
P o nteger of (2% 4005 ) (2.22)
m m

Jn+1 = Integer of (Rn-’-1 +0.5 ) (2.23)
m m

The future density o 1‘11+j and pressure p?-l-jl of a Marker cell on the
’ H

free surface are assumed to take the reference values o o and P,
n+l

respectively, On the other hand, its velocity components u, . and
L)
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Vin"'fl are equated to those of the corresponding Marker particle, U;i‘l
)]

and VnH, respectively. For interior cells, their future density

ntl O +1 n+l
Pi,j , k, £
termined using the modified two-step nine-point Lax-Wendroff Eulerian

and momentum components ( pu );: and ( o V) are de-
scheme(64). The scheme is essentially an explicit formulation through
which a differential equation can be solved by finite-difference approxi-
mation without iteration procedure. The forward-and-central-difference
representations are employed for the time and space derivatives, res-
pectively. The first step of the Lax-Wendroff scheme is to compute
the future density and momentum components at a corner of a cell

(k =i+ 1/2, £ =j+1/2) using the finite difference form of the con-
tinuity and momentum equations (2.24)through(2.26) written in terms of
the present values at points (k,g -1/2), (k, ¢+ 1/2), (k - 1/2,/2 ) and

(k +1/2, £ ). The basic structure for the first-step computation of the

Lax Wendroff scheme is depicted in Fig. 2. The new velocity compo-

nents u:‘; and V;H-; are then determined by dividing the new corres-
H ?
ponding momentum components by the new density at the same cell k, £
n+l

Equations(2.27) and(2. 28)the new location pressure P Kk ¢ is evaluated

using the thermodynamic equation of state (2. 29),

ntl ( n L D , 0
Pk, s Pril/2,0+1/2 = Pk-1/2,0+1/2 = Pk+1/2, 1-1/2

n
P 1/2,1-1/2) / 4
n n
WAL W/, W1/ )
n n
+RA, ( (£-1/4) (0¥, 1/2 " (g +1/4 (o¥) 4 41/2) /1

(2.24)



16

( n+l = (¢ n
oWy = Du)k+1/2, 1+1/2 F k Y2,0+1/2 + (pu), k+1/2,2-1/2
n
+lovly /2, 4.1/2) /4
n n n
totA | (ou)k+1/2,;z i1/, " (oY o )

k-1/2,0 “k-1/2, 1

n n
roa, ((4-1/2) (ov), 2 -1/2 %k, g2 " Lot 1/4) (ov)y, k, £+1/2

n
u1<,/z+1/2)/ ¢

n n
tXB (Pri/ag ~Pror/zg ) (2. 25)
n+l . n n n
= | +
Ve =0V /2 * 0V 12, 14172 7 ) k+1/2,0 -1/2)
(pvk 1/2 VAN
+ oA (( u)r1 v - (pu) )
1 PYR+1/2, 0 k+H1/2,2 P k 1/2, k 1/2,1
toca, ((g-1/4) k (-1/2 e /2 - (2 H/4) (ka1+1/2
n
Yk, ¢+ 1/2) /1
o - (2.2
taB, Py gy _1/2 " Pk, 1+ 1/2) 6)
n+l n+l ntl
upp = low / ok, 1 (2.27)
n+l n+l n+l
Vige = Vg / Pk, 1 (2.28)
n+l ntl
pk I = Okf / (pO+B)'B (2-29)



17

t

n+ 1
k,1
k-3\1
/ \\///7 =

k14
/ k,1 /k,1+%

Figure 2

The Basic Structure for the First Step Computation
of Modified Lax-Wendroff Scheme in the ComCAM Method
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The second step of the Lax-Wendroff scheme is to calculate
the new density and momentum components at cell center (i, j) using
the finite-difference form of the continuity and momentum equations
(2. 30)through(2.32) expressed in terms of the new quantities at (i+1/2,j),
(i-1/2,3), (i,j+1/2) and (i, j-1/2) determined in the first step of the
Lax-Wendroff scheme and the old quantities at (i+l, j), (i-1,j), (i, j+1)
and (i, j-1). The basic structure for the second-step computation of
the Lax-Wendroff scheme is illustrated in Figure 3. It is followed by
the determination of the new velocity components and pressure at cell
center (i, j) by the same procedure as employed in the first-step com-

putation. Equations(2.33) through(2.35)

n{l n 4 n+l n+l n4l )/
Pi,i T 1 P15t Pial/e, i TP/, T P, 51/ T p1,J+1/

DR n T‘.+T‘.>/4}/4

tog,5* oiy1, 5 Pia1,j ¥ Py o1 Py, g

n+1 n+4l
MAI{[(Q i11/2,j " (pu)i-l/g,j] [(p )1+1 i

-(pullj] /2}

. n4l
+o(A2 [(3—1/4) (pV)i’j_l/g - (j+1/4) (pV 1/2]

N N NS e WV LS

(2.30)
n+l n n+l n4l n+l
(w5 = § Wy + { (09i,1/0,5 * Wi1/p, 5+ oWy, 1/
n+l
e, ] /4

n

n n n
+pu] |+ [(pu>i+1’j FloWy g+ o0 s+ ow] ] /4 /4
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n+l n+l n+l n+l
b {[“’ DV /e T OYt/e) Yiy/e,; )
n n n n y
+ [(p“)m,j %4, T (pu)i-l,j Y1, ] /2} /2

n4l
A, { G-1/4) Gy i,j- 1/2 i, 1/2 (i+1/4) (pv)l j+V/2

un-|-1
i,j+l/2
. n n
+ [(3-1/2) (pv)i,j_1 41 (G+1/2) (v )1 jal 1,J+1 ]/2 /2;
B ( n+l n4l ) ( n n ) /2 /2
Pivl/e,i = Pi-v/e,i’ * ‘Piyl,j " Piol,j
(2.31)

n+l _ n n+1 n+l n+l
RS I { G55+ [V a5 * OV * Y1/

n+l
+(pv)i,j+1/2 ] /4

n n n n
vy 5 + [(pv>i+1j+<pv)i_lj + oV 5

. <pv>;"j+1 ] /4) /4

n+1 n+1 n+1 n+1
+ . .- . .
p(AI{[(OU' i+1/2,j “itl/2,] (ou);_ 1/2,i Vi-1/2,j ]

n n n n
* [(Du)m,j Viel,j © Wiy, Vi-l,j] /2 } /2
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nl

n+l
+d 2{ [(J /4) (pV -1/2 i,j-1 - (+Y/4) (v} ,J+1/2 1,J+1/2]

n .
fi-v2) (o] i1 V151 - /2 9] v J+1j/z}/aJ

n4l n n
B . . - P. . . .-
+ 5 { (Pl,J_1/2 PI’J+1/2) + (PI,J_I 1 J+1 ) /2 } /

(2.32)
e
e
i+31 - (plilj-j / 0" lo,+B) - B (2. 35)
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i,J+1

Figure 3

The Basic Structure for the Second Step Computation of
Modified Lax-Wendroff Scheme in the ComCAM Method
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The new quantities at the midpoints on the cell boundaries
(i, j-1/2), (i,j+1/2), (i+1/2,j) and (i-1/2,j) are evaluated by taking the
simple average of the new values at two adjacent corners of the cell.

The marker particles, which are regularly spaced initially
along the fluid interface, do not always retain that regular spacing.
After many cycles of calculation, parts of the interface may be crowded
with particles, while in another section of the interface the particles
may be widely separated. Since neither extreme is desired, when
the particle separations are too small, minor fluctuations may cause
one particle to overpass the neighboring particles. When the particle
separations are too large, the interface geometry is not well resolved.
The following modification is adopted for the numerical computation.
If more than one particle resides in the same Marker cell, a new par-
ticle will be created to represent the average of the previous group,
which is then deleted. If two particles are separated by more than
one cell and that cell has no inhabiting particle, a new particle is in-
serted between them, having properties which are the average of
both. The facility of deleting and adding Marker particles has the
desired smoothing effect.

At the end of computations at each time instant, one must
update the values of the flow variables in fictitious cells outside the
Eulerian grid before a new round of computations is started for the in-
terior cells at the next time increment. This can be accomplished
through the use of the appropriate boundary conditions (2. 36) through
(2.39) whichare expressed in finite difference form. The difference
equations include those for the symmetrical boundary cell, permeable
boundary cell, rigid boundary cell and the boundary cell at liquid-gas
interface.

1. Symmetrical Boundary Cell, j =1

The reflective condition at the axis of symmetry gives the

following difference equations
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°i,5 T Py, 541
S R B A B
(2. 36)
V--:0 ’ (pv),_:O
1,) 1,]
Pi1 7 P2

2. Permeable Boundary Cell

The conditions in these fictitious boundary cells are provided
to satisfy the vanishing normal space derivatives of the variables at
the boundary. In finite-difference numerical calculation, this merely
reduces to setting the variables in each fictitious boundary cell equal
to the value in the adjacent interior cell, As an example for right-hand
output permeable boundary, j = jmax which is the largest index in the

r- direction,

pl,J - P i, j-1
Y0 T %,501 ’ (ew) 5 = (ew) .,
(2.37)
Vi,i T Viyjel ’ ( OV)’, - (OV)I,J-I
Pi,i T Py ja

The same is true for upper input permeable boundary, except the
direction is changed and i = imax which is the largest index in the z-

direction.

3. Rigid Boundary Cell, i =1

For this fictitious boundary cell to represent a rigid obstacle,
it is required that the normal flow quantities be zero and that the re-

flective condition be satisfied. Two extreme cases are given as follows:
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free-slip condition non-slip condition

°i,5 T i+,

Pi i T Pigl,;

u, . = 0

l,_]

(Ppw), . =0

1,_]
Yi,i T Vit Vi,j = O
(2.38)

Cevly s = 0evhi; (pv)y 5 =0

4. Atmospheric Boundary Cell

The quantities just outside the fluid region are needed to carry
out the difference computations in the interior cells near the free sur-
face and to move the marker particles. It is a special permeable
boundary condition with the exception of constant atmospheric pres-

sure being imposed.

i,] air
p1,j - Py
(2.39)
57 Yir, ’ tpuy = (P,
vi,j = Vi, J-il H ( p V)i,j = ( p V)i, jil

where + 1 depends upon the relative position of the fictitious boundary
cell with respect to its adjacent Marker cell.

The numerical method represents an approximate solution to
the original differential equations, since derivatives are replaced by
finite differences. Terms of the order of the square of the time in-

crement and spatial step size are neglected. The convergence of the
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finite difference representation, i.e., the degree to which the ap-
proximate solution approaches the exact solution, must be examined
by numerical experiments using different spatial-and-time step sizes.
It is known that although the explicit formulation avoids the
need of iterative or matrix inversion techniques, certain stability
requirements must be satisfied. The only stability criterion to be

(68)

satisfied is the Courant condition , i.e., the distance a wave travels

in the time increment At must be less than the spatial step size Az

or Ar. Or
min. (Az, Ar) (2. 40)

At C

where C is the shock wave velocity in the liquid phase. With the de-

finition of the stability factor

C At
= 2.41
X min, (Az, Ar) ( )

one can satisfy the stability criterion by selecting a value of & less

than unity.



CHAPTER 1II
RESULTS AND DISCUSSION

A. One Dimensional Test Problem

The same computer program as used to solve the two-di-
mensional axisymmetrical droplet impact problems was modified by
imposing rigid tube shell boundary cells to solve classical one-dimen-
sional water-hammer problems and hence to test the accuracy of nu-

merical solution as well as the validity of numerical method.

Fig. 4a* shows the typical pressure profiles by three dif-
ferent methods at the impact Mach number of 0.2. It is significant
that numerical oscillation is practically unnoticed in the ComCAM re-
sults as compared with results obtained by other Eulerian numerical

7,e.g.
(65,67, e.8.) which exhibit substantial fluctuations. Fig. 4b

methods
shows the pressure-time history on the impacted plane surface. Again,
the correct solution of water hammer pressure is obtained by the Com-

CAM method without numerical oscillations.

B. Problem Selection

Numerical computations for thenormal impact of a water drop-
letona rigid solid surface are performedfor three typical geometrical con-
figurations of droplet: cylindrical, spherical and composite forms,
for two typical Mach numbers: 0.2 and 0.5, and for two typical boundary
conditions: free-slip and non-slip. Seven different problems were
solved.

1. Initially cylindrical droplet with I/D =1 at Mach number
0.2 for free-slip boundary condition.

2. Initially spherical droplet at Mach number of 0. 2 for
free-slip boundary condition.

3. Initially cylindrical-spherical composite droplet at Mach

number of 0.2 for free-slip boundary condition.

'FSince there are too many figures to insert on quite a few occasions in
this Chapter, they are placed in order at the end of the Chapter.

26
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4. Initially cylindrical droplet with L/D =1 at Mach number
= 0.2 for non slip boundary condition.

5. Initially cylindrical droplet with I,/D = 1 at Mach number
= 0.5 for non-slip boundary condition.

0.2 for non-

6. Initially spherical droplet at Mach number

slip boundary condition.

7. Initially spherical droplet at Mach number = 0.5 for non-
slip boundary condition.

The first problem was selected to study the effect of two
dimensionality with axisymmetry. The second problem wés selected
to compare with the experimental results in the photographic investi-
gation(zo). The third problem was to see the impact of cylindrical-
spherical composite drop. This shape is especially interesting, be-
cause it simulated the shape of an initially spherical drop which has de-
formed due to the resistance of air stream before the normal impact on
a rigid solid surface. The last four problems were chosen to investigate
the effect of Mach number and boundary condition using the cylinder
and spherical geometries. M = 0.2 and 0.5 are selected because they
represented typical impact velocities of water drops in steam turbines
and future supersonic transports, respectively.

Solutions of the problems were obtained by using the new

ComCAM method. Numerical experiments were carried out to deter-
mine the stability factor and cell numbers until the convergence of
solution was reasonably assured, in regard to magnitudes, timing, and
wave shapes. It is very encouraging to mention here that unlike the
reports(és’ 67) which experience the occurrence of negative densities,
there is no single occurrence of negative density in the present study,
even though the stabilgty factor has exceeded the theoretical limit 0.408,

5)

according to Burtein( As an example, when & = 0.5 was used for
a relatively coarse mesh (10 x 20), the minimum density was found to be
0.777. In the present study stability factor o = 0.1 and 20 x 40 mesh
were used in the calculation of cylindrical and spherical droplets, while

& = 0.1 and 25 x 40 mesh were employed for the calculation of a
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cylindrical-spherical composite droplet.

C. Two-Dimensional Axisymmetrical Problems

In examining the following results, one must keep in mind
those boundary conditions at the interfaces of the axisymmetrical liquid
droplets. Constant atmospheric pressure at the water-air free surface
is imposed. The impact plane which is perfectly rigid and smooth has
no movement. The properties of water are inviscid, no surface tension,
but compressible as well as elastic. The tensile strength of water is
taken to be -270 atm. of negative pressure, an experimental result mea-
sured by Briggs(54). Of course, water will rupture in many circum-
stances at much smaller tensions, but perhaps not for the very short

duration of tension involved. The two constants in the Tait's equa-

tion of state for water are A = 7.15 and B = 3008 atm.

1. Initially Cylindrical Droplet with L/D =1 for Impact
Mach Number of 0.2 and for Free-Slip Boundary Condi-
tion '

Fig. 6 shows how the shape of the droplet deforms as a
function of time. The top of the droplet retains its original flat shape
up to the nondimensional time ¢ = CAt/D = 1 (about equivalent to 1 usec
for an impact Mach no. = 0.2 of a 2 mm droplet) beyond which moment
it begins concave downward. It is interesting to point out that the
liquid in the droplet dashes out radially over the surface without contac-
ting it.

Fig. 7a through 7e depict the isobar distribution in the drop-
let at various instants, 0.125, 0.25, 0.5, 1, and 2.5, respectively. The
figures illustrate how the pressure waves propagate with time from the
impacted surface toward the air-water free surface. Due to constant
atmospheric pressure at this free surface, all the isobaric surfaces at
small times appear in a glass-cup shape resting upside down but co-
‘axially upon the impacted surface as shown in Fig. 7a. As time pro-
gresses and the droplet shrinks in height accompained by radial-expan-

sion, Fig. 76 shows each cup-shaped isobaric surface growing in size
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both depthand width. Fig. 7c corresponds tothe situationat t°=0.5. While
the isobaric surfaces for small values of Po = p/pocoVo still retain the
glass-cup shape in the outer region of the droplet, those for medium
pressure in the inner region form the egg-shape surfaces which are
coaxially arranged with the protruding edges pointing toward the im-
pacted surface. In the center region of the droplet, however, the iso-
baric surfaces for larger pressure appear like the round -edged discs
which are arranged concentrically with the major axes parallel to
the impacted surface. The above-mentioned pressure pattern in the
droplet is due to the interaction of the rarefaction waves from the air-
water free surface at the impacted edge. The pressure at the stagnation
point (T =0, z = 0) is released not from the top of the droplet but from
the contact edge of the solid liquid interface. The mechanism is ex-
plained in the following.

Let us assume that the compression wave travels along the

symmetrical axis at wave speed of C<24)

C=C_ +KV (3.1
o o

where CO is sonic velocity in the undisturbed liquid,

V0 is the impact velocity, and

K is some constant (about 2 for water). Further assume the
rarefaction wave velocity is Co' The minimum diameter Dmin of the
cylindrical droplet of length L for the wave pattern at the axis of sym-

metry (r = 0) remains in the one-dimensional sense for a finite time is

2 + KM
Prin =2 U TR0 (3.2)
and
D . =4L ifM<<l1 (3.3)
min

where Mach number M = Vo/co°
The Eq. (3.3) means that for a very weak impact, the geo-
metry of a cylindrical droplet is L/D = 1/4, when rarefaction waves

reach the stagnation point from the top of the drop and from the edge of
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the drop at the same time. The maximum pressure at the stagnation
point will be one-dimensional water-hammer pressure, if the diameter
D of a cylindrical droplet is greater than 2 L (2 + KM/ 1 + KM).

The above Eqgs. (3.2) and (3. 3) are only approximations
without correction for the change of geometry. The deviation is simply

the manipulation of the following equations:

R=Ct-= D (3.4)
2

L=Ct1 (3.5)

L:COtz (3.6)

t =t1+t2 (3.7

Substitution of Eqs. (3.4), (3.5) and (3.6) into (3.7) will yield Eq. (3.2).

Fig. 7d for t° = 1.0 shows the possibilityof cavitation in the
region of negative pressure enclosed by the zero isobaric surface as a
result of rarefaction of a pressure wave from the top of the cylindrical
drop. Thereis no bursting out of the top surface because the compression
is continually released. The isobaric surface of pO = 0.05 forms a
half-sliced doughnut shape surface which houses the region of high com-
pressive pressure.

Fig. 7e for t® = 2.5 illustrates that the droplet resembles
a military helmet. The isobaric surfaces around the z-axis region
changes from concave downward to upward as the value of p0 increases.
At a certain value of po, however, part of the isobaric surface around
the z-axis region coincides with the solid surface. The higher pO is
confined in the half-sliced doughnut shape region over the solid surface
near r° = r/R of unity.

Better illustration of the pressure distribution on the im-
pacted surface and along the axis of symmetry are given in Figs. 8
and 9 respectively. Fig. 8 shows that the the first few moments fol-
lowing impact the pressures build up rather uniformly over the entire

impacted surface except near the vicinity of contact edge where the
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boundary condition of atmospheric pressure has been satisfied. Fig.

9 depicts how the pressure waves propagate along the symmetrical axis
starting from the impacted surface. These waves reach the top of the
droplet at about t° = 0.5 and then rebound resulting in creating a huge
region of negative pressure behind. It is interesting to observe the dis-
tribution of negative pressure along the z axis at t° =1.0. The pressure
at the stagnation point (0, 0) is positive or compressive until the rare-
faction waves reach that point along the axis of symmetry (r=0) or along
the impact surface (z=0). Its magnitude increases continually until the
time t° of about 0.25 at a much greater rate than the pressures over

the rest of the impacted surface. At the same time, the rarefaction wave
starts to affect the pressure within the contact line between the droplet
and the impacted surface as can be seen in Fig. 8 as well as Fig. 9.

The pressure at the stagnation point then decreases and actually becomes

negative at time about 1. 25 as shown in Fig. 10, It then rebounds and oscil-

lates about the normalized steady- state stagnation pressure Whichis Po'o /
2

pOCOVO=M/2=0.1 for M = 0.2. Thenumerical computation was
terminated at t° = 2. 5, since the steady state has been reasonably app-
roached and also most of the important features regarding the liquid-
solid impact have been disclosed up to that instant. Fig. 10 also shows
the pressure-time history at two other locations (0, 0.5) and (0. 75, 0).
The pressure at point"a'(0,0.5) has exceeded the rupture pressure during
the time t° between 1 and 1. 5. This indicates the occurrence of cavitation
at the location. The cavity thus created may not stay long since it will
be subject to compression after t® = 1.5. Since the pressure gradient on
the impacted surface is the greatest near the contact edge as shown in
Fig. 8, the instantaneous radial velocity increment at the location must
be correspondingly the largest as demonstrated in Fig. 11,

Fig. 11 shows the radial velocity distribution on the impacted
surface. The dotted portion of the curves indicate regions where the
jetting liquid does not remain in contact with the impacted

surface. The jetting velocity exceeds the impact velocity at
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the time about 0.2, then the net effect of rarefaction wave starts toward

the center line of symmetry along the liquid-solid contact surface, redu-

cing the pressure. Actually, the wave patternistwo-dimensional, and itde-
pends very mwuchupon the geometry of a drop. Suppose a cylinder of length L.and dia
meter D is impacted by a rigid plane. If the diameter of cylinder D is
infinitely large, the problem becomes one-dimensional, provided the

end effect could be neglected. The maximum pressure under this con-

dition is the one-dimensional water hammer pressure corrected for

24)

the shock wave velocity as Heymann suggested( , and the release
wave will come from the top. On the other hand, if the diameter of
cylinder D is infinitesimal, the pressure at the stagnation point will
also be stagnation pressure since the compression will be instan-
taneously released. However, most cases lie in between these two
extremes. The release waves, which will come from the sides first
for the cases of large L/D and will come from the top first for the cases
of small LD will interact with the compression waves two-dimensionally.
The positive pressure gradient in the radial direction (dp/dr)
results in a positive time-rate change in the radial velocity, Therefore,
as pressure gradients on the impacted surface change from a positive
value to a negative one as shown in Fig. 8, the radial velocities on the
impacted surface change correspondingly from an increasing to a
decreasing mode as illustrated in Fig. 11. The maximum pressure gradient and
its corresponding location on the impacted surface are given in Fig. 12.
The pressure gradient is calculated by taking the pressure difference
between two adjacent cells at their common cell boundary. These cal-
culations were systematically carried out by the computer. Maximum
pressure gradients on the impacted surface may occur at the same radial
location over a certain period of time. The curve for the locus of the
maximum pressure gradient shown in Fig. 12 was obtained by drawing

a line through these data points. It is seen in Fig. 12 that the maximum
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pressure gradient reaches its peak at the time of about 0.2, and

at the location just inside the initial contact edge. It then decreases

to its steady-state value as the location of the maximum pressure
gradient moves outward. It is conjectured that the erosion mechanism
may be caused by the maximum pressure gradients on the impacted

surface.

2. Initially Spherical Droplet for Impact Mach Number of
0.2 and for Free-Slip Boundary Condition

Fig. 13 shows the deformation of an initially spherical
droplet at various time instants following an impact on a rigid plane
with Mach number = 0. 2 for free-slip boundary condition. The upper

half of the droplet remains relatively undeformed up to the time of

t° = 1, while the deformation near the contact edge is not apparent for

at least up to t° = 0. 25.

Fig. 14a through 14e show the isobar distribution at various
instants. The major pressure release comes mostly from the radial
flow along the impacted surface and less from the rebound on the top of
the drop. While the liquid-solid interface acts like a pressure source
the liquid-air free surface serves as a pressure sink. These two ef-
fects interfuse with each other. The exact consequence depends upon
both location and time.

Fig. 15 shows the pressure distribution on the impacted
surface (z=0) at various time instants. From these curves, one can
see that the time-rate change of pressure as well as the spatial pressure
gradient are greater near the contact edge than those at the center (0, 0)
of the contact area during the period dominated by compression.

Fig. 16 shows the pressure distribution on the symmetri-
cal axis (r=0) at several time instants. It is the compression that pre-
dominates over the entire portion of symmetrical axis during the early
stage of impact up to the time of about 0.25., By comparing the two
curves at times of 0.25 and 0.5, one can see that while the pressures

on upper portion continue to increase, the pressures near the solid
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plane (z=0) start to fall, As the effect of rarefaction propagates from

the stagnation point toward the top of the droplet, the pressures dimi-

nish everywhere toward the stagnation pressure along the symmetrical
axis,

Fig. 17 shows the pressure at three given locations as a
function of time. The pressure at the stagnation point b reaches its
peak value at time (Ct/D) = 0.2, and then subsides to about the final
steady-state stagnation pressure(0.1). The pressure at the locationon a
symmetrical axis, (r=0, z=.45R) behaves in a similar manner except
with phase lag. Since this location lies between the stagnation point
and the top of the droplet, it is conceivable for this pressure-time
curve to lie within the pressure-time curve for the stagnation point.
The pressure at the''c' onthe impacted surface (z=0,r=0.4R) remains un-
affected until contact ring reaches that point''c''. The time-rate change in
pressure for the rising portion of the curve'c'is about the same as that
of the curve''b''for the stagnation point. The pressureat''c''rises and
eventually the pressure of the stagnationpoint''b''before it starts to fall
in parallel with the latter.

Fig. 18 shows the radial velocity distribution on the impac-
ted surface (z=0). Again, the dotted lines signify the portion of the
liquid which is very close to but not actually in contact with the impacted
plane (z=0). The overhanging liquid can be either the incoming liquid
outside of contact line whichis just about to impinge the aolid or the re
bounding liquid from the impacted surface. The velocity and the loca-
tion indicated by the end of a dotted line are those photographic
observations of the impacted droplet would indicate. However, the
maximum radial velocity at any given instant occurs at a location be-
tween the tip of jetting and the center line (r=0), as illustrated in the
figure. For the Mach number of 0. 2, the maximum radial velocity
ever attained is 2.65 (at 2.5 psec) times the impacting velocity
V0 in the case of free-slip boundary condition a‘nd is 2.86 (at 2 psec)

times V0 in the case of non-slip boundary condition. These calculations
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are in good agreement with the following experimental results. Fyall
(21) used the techniques of high speed photography and observed that

the wash velocity during the first three microseconds was 3056 ft/
sec for an impact speed of 990 ft/sec with 2 mm waterdrop. Perspex

was used as a target material in his case.

There are two opinions about lateral flow. One proposed

7
by Engel(lg’ 3) assumes that lateral outflow begins immediately follow-

ingan impact. The other shared by Heymann(3l), Bowden and Field(74)
and others considers that the flow cannot begin before the impact pres-
sure wave moves ahead of the circle or line of contact between drop and
solid. The present study indicates that the lateral flow begins simul-
taneously as the pressure proceeds to build-up, but the jetting is not
appreciable during the early stage of impact, as depicted in Fig. 13 and
14. For the convenience of discussion and comparison, we shall provide
the following example with some physical guantities. For a spherical
droplet of 2.077 mm in diamter and with the impact Mach number of
0.2.(Vo = 980 ft/sec, Co = 4900 ft/sec, C =1.396 CO), the time to reach
the critical angle, according to the analysis by Bowden and Field(74)
is 0.035237 x 10-6 sec. However, before the critical angle is reached,

at the time of 0,025 x 10—6 sec, the pressure distribution is such that

it is highest at the center of the contact area and decreases to atmos-

pheric pressure at the edge where it is just about to be contacted by

the rigid plane. Due to the presence of this radial pressure gradient,

the liquid flows radially to expand the contact area by 0.04% at this in-

stant the normalized instantaneous maximum particle radial velocity

V/V0 within the contact area is 0.03 already, according to the calcu-

lation. The radial velocity at the contact edge is often slowed down by the liquid
rushing to contact the rigid plane. However, the protrusioninthe contact peri-
phery is so slightthatitis almostimpossible todetect or measure byexperiments
or photographical means. The fact that compression and rarefaction take

place simultaneously from the very beginning of impact is strictly in

accordance with the governing equations. It is only an approximation
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that assumes no gross flow or splashing at the very beginning of impact.
Since the boundary condition of atmospheric pressure on the contact
edge should be satisfied at all times, the pressure is released by the
lateral flow from the first instant of contact, and hence, the impact
pressure becomes less than the theoretical one-dimensional maximum
pressure, as depicted in Figs. 15, 16 and 17.

Fig. 19 shows the magnitude and location of the maximum
radial pressure gradient on the impacted surface. Although the maxi-
mum pressure in the case of a spherical drop is less than that of a
cylindrical drop, the peak of the curve for the maximum radial pressure
gradient as well as the area under the curve are greater than those of

the cylindrical droplet case.

3. Initially Cylindrical-Spherical Composite Droplet for
Mach Number of 0.2 and for Free-Slip Boundary Condition

It is quite conceivable that not a single rain droplet re-
sembles exactly a perfect sphere. However, a cylindrical-spherical
composite shape shown in Fig. 20 seems to be closer to the actual
shape of a droplet just before impact. It is very interesting to learn
that the results for this cylindrical-spherical composite droplet lie
in-between those for a cylindrical droplet and a spherical droplet.

Fig. 20 shows the deformation history of the composite
droplet. Fig. 2la through 2le illustrate the isobar distributions at
various time instants. By comparing the results presented in Figs.

7, 14, and 21, one can see that the wave propagates faster in the com-
posite droplet than in the spherical droplet but slower than in the cylin-
drical droplet. This is because the effect of radial flow on immediate
release of compressive pressure is greater in the composite droplet
than in the spherical one, but smaller than in the cylindrical one.

Fig. 21d for t°=15 depicts a very interesting phenomenon.
There are two cavity regions coexistant in the upper half portion of the
droplet. The middle cavity region is created by the reflection of com-
pression waves from the top of the droplet. While the region is in the

process of shrinking it induces the formation of the additional cavity
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region in a form at annular ring.

Fig. 2le shows the isobar distribution at t° = 2.5. The
maximum pressure on the impacted surface has shifted from the stag-
nation point to the point where a vertical line which is tangent to the
initial shape of the drop intersects with the rigid surface line. This
shifting of the maximum pressure on the impacted surface is caused by
the convergency of impacting liquid and radial flow.

Fig. 22 and 23 show the pressure distribution on the im-
pacted surface (z=0) and on the symmetrical axis (r=0) respectively.
Again, one can see that both the greater radial pressure gradient and
the greater time-rate change in pressure occur near the contact line.
The negative pressure (at Ct/D = 1.5) in the shaded area results from
the reflection of compression wave from the top of the droplet.

Fig. 24 shows the pressure variations at points a,b, and
c as a function of time. The maximum pressure po at the stagnation
point is about 0.9 in magnitude which is between 0,69 for spherical
drop and 1.16 for cylindrical drop.

Fig. 25 shows the radial velocity distribution. Again, the
maximum radial velocity at any given time is located inside the con-
tact line. The radial velocity will increase for the positive pressure
gradient and will decrease for the negative pressure gradient. There-
fore, as the maximum pressure shifts outward radially to the right of
where the maximum pressure is, the radial velocities continue to in-
crease, and to the left, the radial velocities start to decrease.

Fig., 26 shows the maximum radial pressure gradients and
its corresponding location. Among the three different configurations
investigated here this composite cylindrical-spherical droplet has

the highest peak value of the maximum radial pressure gradients.
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D. The Effect of Impact Mach Number

Figs. 27 and 34 show the deformation of a cylindrical and
a spherical droplet respectively, following an impact on a rigid plane for
M =0.2 and 0.5. Itis seen in the figures that the higher the impact Mach
number, the greater the compressibility effects, as evidenced by greater
shape deformation.

The isobar distributions at various times to = 0.125, 0,25,

1.0 and 2.5 are shown in Figs. 28a through 28d respectively for a cylin-
drical drop and in Figs. 35a through 35d respectively for a spherical
drop. One finds that the higher the impact Mach number, the steeper
the compression wave and the greater the impact pressure. Negative
pressures are seen to occur in the upper region of the drop and near
the tip of the jetting liquid in the case of cylindrical drop with Mach =
0.2 but not with Mach = 0.5. The negative pressure regions are also
indicated by the shaded areas in Figs. 29 and 30.

Figs. 31 and 38 show the effect of Mach number on the im-
pact pressure. It is seen that the greater the Mach number, the greater
the normalized pressure at the given corresponding point,i.e., the actual
pressure increases more than in proportion to the impact velocity.

It is revealed by Figs. 32 and 39 that the lower Mach
number has the higher ratio of radial velocity to the impact velocity.
Therefore, it is conceivable that cavitation may occur in the spherical
drop also, but for smaller impact Mach numbers (which results are
not available in this thesis) when the radial velocity becomes much
greater than the velocity of incoming liquid normal to the impacted
surface, so that the liquid is in tension and cavitation becomes possible.

The effect of Mach number on the maximum pressure gra-
dient on the impacted surface is insignificant for a cylindrical drop but
becomes important for a spherical drop because of curvature effects, as

seen in Figs. 33 and 40,
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E. The Effect of Non-Slip Boundary Condition

As was expected, the non-slip boundary condition retards
the flow. However, it also  contributes to a build-up in pressure in-
side the droplet. Accordingly, the instantaneous peak radial velocity
is higher than the free-slip case discussed previously. For example,
for a spherical drop the peak pressure at the stagnation point under the
non-slip boundary condition is 0.8 as compared to 0. 7 under the free-
slip boundary condition. The corresponding value is 1.2 as compared
to 1.16 for a cylindrical water drop. Otherwise, the patterns of pres-
sure and velocity responses for the non-slip and free-slip cases are

essentially analogous.
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Fig. 5a. Photographs of the Deformation Stages for a Water Droplet
(19)

Following an Impact on a Solid Plane (Engel ™ )

Fig. 5b. Photographs of the Cavitation for a Water Droplet
(75)

Following an Impact on a Solid Plane (Brunton )
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Isobar Distribution in an Initially Spherical

Droplet at Time (Ct/D) = 0.25, for Impact
Mach Number of 0.2 and for Free-Slip Boundary

Condition.
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Fig. 14d. Isobar Distribution in an Initially Spherical
Droplet at Time (Ct/D) = 1, for Impact Mach
Number of 0.2 and for Free~Slip Boundary
Condition.
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z =0.5L), b (r =0, 2=0), and ¢ (r = 0.75R,
z = 0), in an Initially Spherical Droplet for
Impact Mach Number of 0.2 and for Free-Slip
Boundary Condition.
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Isobar Distribution in an Initially Cylindrical-
Spherical Composite Droplet with R1/R = 0.25
and L/D = 1, at Time (Ct/D) = 0.125, for Impact
Mach Number of 0.2 and for Free-Slip Boundary
Condition.
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Isobar Distribution in an Initially Cylindrical-
Spherical Composite Droplet with R1/R = 0.25
and L/D = 1, at Time (Ct/D) = 0.25, for Impact
Mach Number of 0.2 and for Free-Slip Boundary

Condition.
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b (r=0, z=20), and ¢ (r = 0.75R, 2z = 0), in

an Initially Cylindrical-Spherical Composite
Droplet with Rl/R = 0.25 and L/D = 1, for Impact
Mach Number of 0.2 and for Free-Slip Boundary
Condition.
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Fig. 25. Radial Velocity-Time History at Liquid-Solid
Interface (r = 0) of an Initially Cylindrical-
Spherical Composite Droplet with R,/R = 0.25
and L/D = 1, for Impact Mach Number of 0.2 and
for Free-Slip Boundary Condition.
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Fig. 28a. Isobar Distribution in an Initially Cylindrical
Droplet with L/D = 1, at Time (Ct/D) = 0.125,
for Impact Mach Numbers of 0.2 and 0.5.
Non-Slip Boundary Condition.
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Isobar Distribution in an Initially Cylindrical
Droplet with L/D = 1, at Time (Ct/D) = 0.25,
for Impact Mach Numbers of 0.2 and 0.5.
Non-Slip Boundary Condition.
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Fig. 28c. Isobar Distribution in an Initially Cylindrical
Droplet with L/D = 1, at Time (Ct/D) = 1, for
Impact Mach Numbers of 0.2 and 0.5. Non-Slip
Boundary Condition.
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Isobar Distribution in an Initially Cylindrical
Droplet with L/D = 1, at Time (Ct/D) = 2.5, for
Impact Mach Numbers of 0.2 and 0.5. Non-Slip
Boundary Condition.
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(z = 0) of an Initially Cylindrical Droplet
with L/D = 1, for Impact Mach Numbers of 0.2
and 0.5. Non-Slip Boundary Condition.
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Pressure~Time History along the Symmetrical
Axis (r = O) of an Initially Cylindrical Droplet
with L/D = 1, for Impact Mach Numbers of 0.2

and 0.5. Non-Slip Boundary Condition.
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Droplet with L/D = 1, for Impact Mach Numbers
of 0.2 and 0.5. Non-Slip Boundary Condition.
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Isobar Distribution in an Initially Spherical
Droplet at Time (Ct/D) = 1, for Impact Mach
Numbers of 0.2 and 0.5. Non-Slip Boundary
Condition.
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36.

Pressure-Time History at Liquid-Solid Interface
(z = 0) of an Initially Spherical Droplet for
Impact Mach Numbers of 0.2 and 0.5. Non-Slip
Boundary Condition.
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Fig. 38. Local Pressure-Time History at a (r = 0, z = 0.5L),
b (r=0, 2=0), and ¢ (r = 0.75R, 2 = 0), in
an Initially Spherical Droplet for Impact Mach
Numbers of 0.2 and 0.5. Non-Slip Boundary Condition.
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CHAPTER IV
CONCLUSIONS

The objective of this study was to investigate numerically
the rigorous solution of liquid-solid impact. Effort was directed to
seek the pressure and velocity distribution as a function of time. A
Compressible-Cell-and-Marker solution method was successfully de-
veloped without the problem of numerical oscillation. The effects of
drop shape, impact Mach number and non-slip or free-slip boundaries
are investigated. Based on the numerical results, the following con-
clusions in studying the mechanism of liquid impingement on a rigid
solid plane can be drawn.

1. One dimensional water hammer pressure corrected with
the shock wave velocity represents the theoretical limit for the maxi-
mum pressure generated by normal impact of a water droplet on a
rigid plane surface.

2. For the impact of a two-dimensional liquid drop bounded
by free surface, the lateral flow begins immediately and the pressure
build-upis therefore affected from the first instant of contact.

3. For the impact on the end of the cylindrical droplet,the
larger the diameter, the closer the impact pressure to the one-dimen-
sional maximum pressure. The critical diameter roughly is four
times the cylinder length.

4. A spherical drop has a lower maximum impact pressure
than a cylindrical drop does for the same impact velocity.

5. For a given shape of water drop and a given boundary
condition, the lower the impact Mach number, the higher the sideway
jetting velocity V relative to the impact velocity VO.

6. The non-slip boundary condition retards the flow, but
contributes to a higher pressure build-up and hence an instantaneous
peak radial velocity than free-slip boundary condition does.

(21)

7. Suggestion by Engel that cavitation may occur as a
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result of reflection of the impact wave from the rear surface of the
drop is confirmed by Brunton(75) as well as by this study.

8. The central cavitation bubble on the liquid-solid inter-
face will also occur, when sideway jetting velocity exceeds impinging
velocity, such that the liquid locally becomes subject to sufficient ten-
sion.

9. For a typical spherical water droplet of 2 mm in
diameter at an impact Mach number of 0.2, the pressure reaches its
peakat 0.25 p sec. The duration of the first and the most severe pres-
sure pulse is about 1.5 p sec. This result also agrees with Fyall's
photographic observation.(zh

10. The radial pressure gradients on the impacted sur-
face are more severe near the contact edge than in the center. The
strong radial pressure gradient remains attached to the edge of the

drop. The radial pressure gradients have the peak value at the con-

tact angle of about 12°.
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APPENDIX A
THE MECHANICAL PROPERTIES OF WATER

1. Compression and Tension

Extensive data on the pressure-volume-temperature relation-

ships of fresh water and/or sea water have been collected. To mention

(34)

some of the more important works, these are: Amagas( ), Ekman ,

Bridgman(35' 36), Kennedy(37), Newton and Kennedy(38)

((39,40,41,42,43, 44, eg.)

, and many
other The appropriate constant in the

Tait's state for water can then be determined. Their values depend
(45)

upon which experimental data are analyzed. Gibson and Loeffler

first found that the constants in Tait's equation are, for the tempera-

ture range of 25°C < t « 850C,

A = 17.31 (A1)
B = 2996.0 + 7.5554 (t-25) - 0.17814 ('c-.2.5)2 + 600}:10—6(‘c--25)3
bars.
: . ., (46,26) .
Kirkwood and some of his associates using pressure-volume-
temperature data of Bridgman for pure water and another slightly dif-
ferent expression of B given by Gibson(26) (through their private
communication)
- -4 2
B=2.99 + 7.585 x 10 3 (t-25) -1.790 x 10 = (t-25) (A2)
+6.13 x 10-7 (1:-25)3 kilobars
finds that A = 7.15 gives less than 4% deviation to fit the Bridgman's
47
data between 20°C and 60°C up to pressures of 25 kilobars. (32) Li( ),

by exhaustive examination of the published experimental data, concluded
that the Tait equation represents the pressure-volume-temperature
relationship of water very well,

2. Tensile Rupture

Numerous theoretical calculations and experimental mea-
surements of the tensile strength have been made. The simples esti-

mate is the equation of bubble dynamics that the tensile strength, TS,
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is equal to the surface tension, S, with the correction of radius R.

TS = 28/R (A3)

Thus, for pure water, the equation(A3)giveS a tensile strength of ap-
proximately 14000 atmospheres corresponding to the situation where

the radius would be approximately one-half of the mean intermolecular
spacing. (48) More sophisticated approaches give smaller values of
tensile strength: 4000 atm by Furth(49) and Doring(so) and about 1300
atm by Fisher. (51) However, at the presence of bubbles of air, 1000A
in diameter, a column of water will break at a tension of about 30 atm.,
no matter how much greater the true tensile strength of water might

be.(sz)

Many measurements of tension in water have been made by
using static or dynamic techniques. Tensile strength was observed at

3 atm. low by Reynolds(53) employing the static method to 250-280 atm,

. . (54
high by Briggs ), employing a centrifugal method. A review of the

(70)

literature on the tensile strength of liquids was given by Brake,
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&6& JJJAAA 11-0-11 6611868 JJJAAA

CxxkkHEAD DEPARTMENT OF ENTIRE PREGRAM ecstosiciosoidonkinsft o nons
COMMON DEN (2
COMMON (2,1
COMMON /BLRZ

COMMON

COMMON /AXIS

COMMON

COMMON /BRTOP

COMMON

CNMMON /RTOP
COMMON /BLO/
COMMON /BLB/
COMMON /BLD/
COMMON /BLD/
COMMON /BLP/
COMMON /S/ C
COMMON /BLAB
COMMON /BMAS
COMMON /JUR/

COMMON /BT/

COMMON

COMMON /BCRI
COMMON /CV/
COMMON /NNP/
COMMON /HAB/
COMMON /BFL/
COMMON /BFL/
COMMON /BFL/
DIMENSIODN CHAR{44)

+100,100),DENU(24100,100)4DENV(2,4100,100)
00,100),V(2,100,100),4P(2,100,100)
/ ITT(24200),RTT(2,200),27(2,200)4RT(2,200)

/BLHR/ H(2,200),R(24200),1(2,200),J(2,200)

/ RXIS(200)yHXISM(2,200)yHXISP(2,200)

/BLKB/ KBM(2,200),KRP(2,200)

/ HMAX(500),RMAX(500) 4HJET(500),RJET(500)

/BTOP/ HMIN(500),RMIN(500),HTOP(500),2A(500),2B(500)

/ IC(500)42D(500),ZE(500),ZF(500)4+2G(500),ZH(500)
DEND, DENUO,DENVOD,UO,VO,PO4DENP,PP

KENDyLENDy LRAD,RDROP y KCORE ; LCOREyKSOLID,HSOLID
DT4NZ,DR,STAFAC,TDZ,TDR,TDP
DINF,UINF,PINF,CINF,UTMACH,PHAMER

NPT yNMAX yNJET yNMINy LMAX yLJEToLMIN,LTIPyNTIP,KTOP
YCLEyNSTAGE,NPRINT, TIME, TIMEND,CHLEN

/ A4B,CT,CS

/ MASS(500),MASSO,4PI

JS{100),RS(100)
TOUCH{200)

/BEND/ KEND2,LEND2,KEND3,LEND3,KLDyNKTT

T/ PCRIT,DECRIT,CONST
C0,CP4C1yC2,4C3,COEF,ALPHA,COEG

NyNP

HAWHB ¢ GA4GByGCyFA4FByFC4yDENBDMAX,DMINyNSM,DA,DB
JAYJByJCyJDyJEZ JF 4Gy JHy JT 9 JJ e Ky JLs JMy IN
JUeJV e W JIXedY,JZ

JALyJA2y JA3,JAL, JAS,JA6,JATyJAB+JAG,JAD

DIMENSION IMAGE(1500)
DIMENSION W(500)

DATA CHAR/ YY1 121,130,140, 158,140, 1781,181,191,10¢

g VAV QIR ICH DY RS EFE 1 IGH  THY QTR 1V FMEIND

G 10 g IPI QU PRI IS ITU BT 0y i I Y 171

T Y S IR S N I L I DU DY I R P
INTEGER CYCLE,PT,PTM,PTP

REAL MASS,MASSD
PI=3,1415927
PINF=14,70%144,0

INPUT CONSTANTS=mmmmm e e e e e e
CONTINUE
READ (5,52) KEND,LEND,LCHARA
KEND2=K END~1
LEND2=LEND-1
KEND3=KEND-2
LEND3=LFND-2

READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

(5,52)
{5452)
(5452)
{5452)
(5,52)
(5,52)
(5,452)
{5,52)
(5452)
(5452)
(5,52)
(5458)
(5,58)

KCORE,LCORE

LRAD

KSOLID

K1sK3

L1,L3

KLD o NKTT

JAZJIB4JC,JD

JEyJF 4 JGyJHy JIy JJy JKyJL
JMy UNGgNSMyNSMA,NSMB

JUs IV Wy IXy JY, 7

JAL G JA2 4 JA3 4 ALy JAS, A6, JAT 4 JARYJAS, JAU
CSERyCHMS

DENR

M 016750



READ (5,58)

READ (5,58)
READ (5,50)
READ (5,50)

READ (5,57)
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FByFC

FAsALPHA
GA,GR,GC
HA,HB,DA,DB
AsB

57 FORMAT (F5,2,E20.6)
READ (5,450) UMAK, VMAK
READ (5,50) COLDINF
UO=UMAK:CO
VO=VMAK:*CO
UINF=SORT(UOXUO+VD*xVD)
READ (5,50) C1,C2,C3
READ (5,50) PCRIT
READ (5,50) PENG,PENH
READ (5,59) TSTEP,DT
59 FORMAT (F5.0,E10.2)
READ (5452) NHL,NSRHyNVL,NSBV
READ (5,58) YMAX,YMIN,XMAX,XMIN
READ (5452) MHL,MSRH,MVL,MSBV
READ (5,58) YA,YRyXA,XB
READ (5,452) IHL,ISRH,IVL,ISRV
READ (5,58) YC4YDyXCyXD
READ (5452) JHL,JSBH,JVL,JSBV
READ (5458) YEZYFoXEoXFeYGyYHyXGyXH
READ (5,58) AMX,AMY
PREF=DINFxCD*UINF
PREF=PREF/PINF
NENND=1,
Uo=uU0/UINF
VO=VO/UINF
DENUD=UO
DENVO=VQO
PO=1,
PO=PD/PREF
UT=1.
CINF=SORT((BR+PINF)/DINF)
COEF=CINF/UINF
COEG=DINFX*UINF*UINF/PINF
COEG=COEG/PREF
CP=CO/VUINF
B=B/PINF
B=B/PREF
CT=FW({UT)
CS=CT-UT
UTMACH=UT/CT
COMACH=CP/CT
DENP=DENO=CT/CS
PHAMER=COEG=DENDCTUT
PP=PN+PHAMER
DZ=DTxC TRUINF
NR=NZ
WMACH=UINF/CO
SUPSON=CT/CP
TIMEO=LCHARAXDZ/UINF
CHLEN=LCHARADZ%304,8
WRITE(A4915) CHLENG,TIMED,SUPSONLPD,PREFDENP,PP
15 FORMAT(/ 4 '"CHARACTERISTICS'45FE15,642F10.5)
WRITE(6462) UDyWVOUINFGCSyCToCPyUMAK  VMAK 4 UTMACHCUMACH
62 FORMAT(/4'VELDCITYS!'y10F10.4)
PCRIT=PCRIT/PREF
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DECRIT=( (PCRIT+B)/(PO+B) )% (1,/A)
CONST=PCRIT/ (DENO-DECRIT)
WRITE (6,73) PCRIT,DECRIT,CONST

73 FORMAT(/,'NEGATIVE PRESSURE THRESHOLD',3E15.6)

500 CONTINUE
READ (5,50) STAFAC
IF (STAFAC .GT. 1.0) GO TO 500
IF (STAFAC .LT. 0.) GO TO 999
ACDT=S TAFACKTSTEP*NT
TDZ=S TAFAC*UTMACH
TDR= TDZ
1DP=S TAFACC OMACH
WRITE(6,60) STAFAC,DT,DZ,DR,TDZ,TDR,TDP

60 FORMAT(/,'STARILITY FACTOR',F10.446E15.5)
DAVE=GA%DENO+GR* (4, *DEND) +GC* (4, *DENO)
PO=FP (DAVE)
NSTAGE=1
CYCLE=NSTAGE-1
TIME=0.
N=1
NP=2

----- REOUEST INITIAL CONDITION FOR LAGRANGIAN AND EULERIAN GRID

CALL SHAPE(ACDT)
CALL FIRST(DENB)
CALL CONSER(N)
WRITE (6,64)
CALL PLOT1(0,NHL,NSBH,NVL,NSBV)
CALL PLOT2(IMAGE yXMAXyXMIN,YMAX,YMIN)
DN 10 PT=1,NPT
CALL PLOT3('0V,R(1,PT)yH(1,PT),1,4)

10 CONTINUE
CALL PLOT4(1,'H?)
READ (5,52) NPRINT,MX,MY
IF (CYCLE .GT. MY) GO TO 21
IF (CYCLE .LT. MX) GO TO 21
CALL PRIN(N)

21 CONTINUE

501 CONTINUE
NSTAGE=NSTAGE+1
CYCLE=NSTAGE-1
TIME=TIME+ACDT
TIMEND=TIME/TIMED

----- CALL LAGRANGIAN AND EULERIAN CALCULATION=-========= %

CALL BOUND(N,NP,TSTEP)
IF(JN JLE. 0) GO TO 999
JA=2%NS TAGE+JC
JB=JS (1) +JA
KTOPP=K T0P+1
LTIPP=LTIP+]
JA=MINO (JA,KTOPP,KEND3)
JB=MINO(JB,LTIPP,LEND3)
TF(MOD(JA,2) LEQ, 0) JA=JA+1
IF(JA «GT. KEND3) JA=JA=2
CALL FIELD(NGNP,MX4MY4NSMA,NSMB)

41 CONTINUE
CALL CONSER(NP)
IF (CSER EN. 0.) GO TO 42
RATIN=MASS(NSTAGF)/MASS (1)
CHANGE=RATIO - 1.
WRITE (6,45) CYCLE.MASS(NSTAGE),RATIO
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45 FORMAT(/ 4 'CYCLE=1'13410Xy'MASS='F10.64]10Xy'RATIO='F106,4/)
IF (ABS{CHANGE) .LT. CHMS) GO TO 42
LB=LTIP-1
NN 43 L=1,L8
KB=KBP (NP,yL)-1
IF (TOUCH(L)) 46,464,447

4h KA=1
GO TO 4R

47 KA=KBM(NP,L)+1

48 IF (KB JLT. KA) GO TO 43
DO 44 K=KA,KR
IF (L JGE. JS(K)) GO TO 44
DEN(NP4K oL )=DEN(NP,KyL )=RATIO
DENU(NP 3K o L) =DENU{NP 4K 4L )*RATIO
DEMV(NP4KyL)=DENV(NPyK,LI%®RATIOD
P(NPyKyL)Y=P(NP,K,L)*RATID

44 CONTINUE

43 CONTINUE
GO TO 41

42 CONTINUE
IF (LTIP .GE, LEND2) GO TO 99
IF (CYCLE LLT. NPRINT) GO TO 510

99 CONTINUE

————— PLOTTING THE SHAPE OF IMPACTING LIQHID==-—=eee—— x
WRITE(6456) CYCLE,TIME,NMAXyNMIN,NJET,NTIP
£ KTOP, TIMENDyLMAXyLMINZLJETLLTIP
CALL PLOTL1(04NHLyNSBHyNVLyNSBV)
CALL PLOT2(IMAGE ¢ XMAX XMIN, YMAXyYMIN)
PO 20 PT=1,NPT
CALL PLOT3( "5t yRINP,PT)yHINPPT)y1ly4)

20 CONTINUE
DO 30 bL=L1,JR
XK=RXIS(L)

DO 40 K=K1,JA
KBC=(P(NP,K,L)=PENG)/PENH
IF (KBC JEQ. JAl) GO TO 40
KBC=KBRC+1

RCD=CHAR(KRC)

YK=K-0,5

CALL PLOT3(BCDosXKyYKylye4)

40 CDONTINUE

30 COMTINUE
CALL PLOT&4(1,'H?)

WRITE (6,80)
80 FORMAT(50X, 'R AXIS!)
————— R VS PRESSURE({Z4R)ADL —==—m—mmm e 3%
WRITE (6,64)
CALL PLOT1(0,MHL ¢MSBH,MVL 4MSBV)
CALL PLOT2(IMAGE,XAyXB,YA,YB)
KRC=0
K=JA
170 CONTINUE

K=K~K3
KRC=KRC+1
RCD=CHAR (KRC)
NO 70 L=L1,JB,L3
XL=L-1.
Y=K+P (NP Kyl ) AMY
CALL PLOT3(BCNeYyXLyly4&)

70 CONTINUE
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IF(K «GT. K1) GO TO 170
CALL PLOT4(6,'R AXIS?)

WRITE (6,81)
FORMAT (50X, 'PRESSURE(Z,R)DZ')

----- 7 VS PRESSURE(ZyR)AR =mmmmmmmm————mmae %

17

22

510

502

503

27

26

24

- FINAL RESULTS ==--mm—mmmmmm o mm e *

WRITE (h,64)
CALL PLOT1(O,IHL,ISBH,IVL,ISBV)
CALL PLOT2(IMAGE XC4XDyYC,YD)

LBC=0
PO 72 L=L1,JR,L3
LBC=LBC+1

RCD=CHAR(LBC)

DO 72 K=K1lyJA4K3

YK=K-1,
X=.+P (NP 4K,y L )EAMX

CALL PLOT3(BCDyXyYKy1l44)

> CONTINUE

CALL PLOT&L4(6,'Z AXISY)
WRITE (6,82)
FORMAT (50X, 'PRESSURE(Z,R)AR")

- CALCULATION CONTROL ========mmmm—mm—ee— *

IF (LTIP .GE. JN) GO TO 77
IF (CYCLE .GT. MY) GO TO 22
IF (CYCLE LT. MX) GO TO 22
COMTINUE

CALL PRIN(NP)

IF (LTIP .GE. JN) GO TO 500
CONTINUE

READ (5552) NPRINT,MX,MY

IF (NPRINT FQ. 0 ) GO TO 500
IF (NPRINT .EQ. =1) GO TO 999
CONTINUE

IF (N .E0. 1) GO TO 502

N=1

NP=2

G0 TO 503

CONTINUE

N=2

NP=1

CONTINUE

G0N TO 501

CONTINUE

DO 27 M=1,CYCLE

W{M)=M

WRITE(6426) MyMASS{M) yHTOP(M)4RIET(M)
E9ZA(M)yZRIM)ZZC (MY ZD(M) g ZE(M) 4 ZF (M) 4 ZG (M)
FORMAT(ISyF10e442F15.,4,7F10.4)

WRITE (6y64)

CALL PLOTYL(O¢NHL yNSBH,NVL 4NSBV)
XM=CYCLE

CALL PLOT2(IMAGE ¢XMy40Dq 9 YMAX 40, )

DO 24 NMCY=JU,CYCLE,JV

STE=NCY

CALL PLOT3('T'ySTEL,HTOP{NCY)y1l,4)
CALL PLOT3( 'S STEWHJET(NCY)41,4)
CALL PLOT3('R',STELRJIET(NCY)y4y1,44)
CONTINUE

CALLL PLOT4 (4, 'PATH?)

WRITE (6464)
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CALL PLOTL(0yJHLyJSBHyJVLyJSBY)
CALL PLOT2(IMAGE 4 XE o XFyYE,YI )
DO 25 NCY=JUyCYCLE,JV
STE=NCY
CALL PLOT3('A',STE,ZA(NCY),144)
CALL PLOT3('B',STE,ZB(NCY)y1,4)
CALL PLOT3('C'ySTE,ZCINCY)y1,4)
CALL PLOT3('D'ySTE,ZD(NCY)y144)
CALL PLOT3('E',STE,ZE(NCY)y144)
25 CONTINUE
CALL PLDT4(16, 'PRESSURE HISTORY!)
WRITE (6,64)
CALL STPLT2(IMAGEW,ZAsNCY 4y 'A1,5,'P QA ')
WRITE (6,64)
CALL STPLT2(IMAGE,W,ZFyNCYy4y'F'y5,'DP/DT")
WRITE(6464)
CALL STPLT2(IMAGE,WyZGyNCYs4y1G'y54'DP/DR!)
WRITE (6,64)
CALL STPLT2(IMAGE,W,ZHyNCY 4,y 'H1 474 'DP/DTAR")
64 FORMAT (1H1)
50 FORMAT(8F10.4)
53 FORMAT(8110)
52 FORMAT (14I5)
56 FORMAT(LH1,'CYCLE=113,5X, 'TIME='E14.4,10Xy "NMAX=113,5X,
& 'NMIN=113,5X, tNJET=1,13,5X, 'NTIP=113,5X, 'KTOP="13,
& /412Xy 'ND TIME='E14.4,10X,
& VLMAX=1T3,5X, 'LMIN=',13,5X, 'LJET=1,13,5X,'LTIP=",13)
55 FORMAT (7E10.3)
58 FORMAT(12F5.1)
GO TO 1
END
(C 3e ale age e s sie sfe sle sle sk s s ik aie ik sk e 3je sfe sk ofe sl sl 3l sde ole ik ok i 3 3 3¢ sl sl ik s o o 3je 3k sie vk ol afe sk o sle e 3 sl 3k 36 3R R R
SUBROUTINE FIRST(DENB)
COMMON DEN(2,1004100),DENU{2,100,100)4DENV(2,100,100)
COMMON U(2,100,100)4V(2-100,100)4P(2,100,100)
COMMON /BLKB/ KBM(2,200)+KBP(2,200)
COMMON /BEND/ KEND2yLE-N2,KEND3,LEND34KLDyNKTT
COMMON /BL0O/ DENO,DENL .. DENVO,UD4VO,PO,DENP,PP
COMMON /BLB/ KENDsLEND,LRADyRDROP,KCORE,LCORE,KSOLID,HSOLID
COMMON /BLP/ NPT yNMAX 4NJEToNMINyLMAX yLJETLMIN,LTIP,NTIP,KTOP
COMMON /BFL/ JAsJByJCyJDsJEyJFeJGyJHyJTyJds Ky Jly iy IN
DIMENSION DENZ(20000),DENUZ(20000) yDENVZ (20000)
DIMENSION UZ(20000),VZ(22300),PZ(20000)
EQUIVALENCE (DEN,DENZ),(DENU,DENUZ) 4 (DENV,DENVZ)
EOUIVALENCE (UyUZ)y(V4VZ)y(PyPZ)
N=1
DO 30 L=1,LMAX
KLO=KBM (N, L)
KHI=KRP (N, L)
KBMM=KLO-1
KBPP=KHI+1
IF(KBMM ,LT. KSOLID) GO TO 50
DN 60 K=KSOLID,KBMM
NKL=N+(K=1)%2+(L=1)%NKTT
DENZ (NKL ) =DENB
DENUZ (NKL ) =DENUD
DENVZ (NKL)=DENVD
UZ (NKL)=U0
VZ (NKL)=VD
PZ{NKL)=PO

), sl ale sl o wle alo wle e wls sl slo wly
3¢ 36 318 38 3NE A8 38 AR SR AR AR ALK S AR K

"
kg
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60 CONTINUE
50 CONTINUE

IF (KBPP GT, KEND) GO TO 55
DO 70 K=KBPP,KEND
NKL=N+(K=1)%2+{(L-1)*NKTT
DENZ (NKL )=DENR
DENUZ (NKL )=DENUD
DENVZ (NKL)=DENVO
UZ (NKL)=UD
VZ(NKL)=VD
PZ(NKL)=PO

70 CONTINUE

55 CONTINUE
DO 80 K=KLO,KHI
NKL=N+({K=1)%2+(L-1)*NKTT
DENZ (NKL)=DEND
DENUZ (NKL)=DENUD
DENVZ (NKL)=DENVO
UZ (NKL)=U0
VZ (NKL)=VO
PZ(NKL)=PO

80 CONTINUE

30 CONTINUE
LMAXP=LMAX+1
DD 90 L=LMAXP,LEND
DO 90 K=2,KEND
NKL=N+(K=1)%*2+(L-1) &KTT
DENZ (NKL)=DENB
DENUZ (NKL)=DENUD
DENVZ (NKL )=DENVD

UZ({NKL)=UO

VZ (NKL)=VD

PZ(NKL)=PD
90 CONTINUE

K=1

KP=K+1

DO 20 L=1,LEND
NKL=N+(K=1)%2+(L=1)%NKTT
NKPL=NKL+2
DENZ (NKL)=DEND
DENUZ (NKL)=DENUZ {}4KPL)
DENVZ (NKL)=DENVZ (NKPL)
UZ (NKL)=UZ{NKPL)
VZ (NKL)=VZ (NKPL)
PZ(NKL)=PZ{NKPL)

20 CONTINUE
NP=2
DO 75 L=1,LEND
DO 75 K=1,KEND
NKL=N+(K=1)#2+(L=1)*NKTT
NPKL=NP+{K-1)}#2+(L-1)*NKTT
DENZ (NPKL)=DENZ (NKL)
DENUZ (NPKL )=DENUZ (NKL)
DENVZ (NPKL)=DENVZ (NKL)
UZ (NPKL)=UZ (NKL)
VZ (NPKL)=VZ(NKL)
PZ (NPKL)=PO

75 CONTINUE
RETURN
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END
38 3% 3 35k e s sl A 3 i e vie e sie Sl die ik sie st e 3 3ie i 3 aie e 318 3ie i 3¢ 3k 346 3K she die A sle ik 3 ade e 3l 3k ok e afe afe e 34¢ 316 3k 336 3k i i e aie Sk 3ie i 3R e ol AR 3l K SR K N KR sk

SUBROUTINE SHAPE(ACDT)

COMMON DEN(2,100,100),DENU(2,100,100),DENV(2,100,100)
COMMON U(2,100,100)4V(2+4100,100)4P(2,100,100)

COMMON /BLRZ/ ZTT(2,200)4RTT(24200)427T(2+200)4RT(2,200)
COMMON /BLHR/ H(2,4200)9R(24200)41(2,200),J(2,200)
COMMON /AXIS/ RXIS(200),HXISM(24200) 4HXISP(2,200)
COMMON /BLKB/ KBM(2,200)+KBP(2,200)

COMMON /BTOP/ HMAX(500) 4RMAX(500)4yHJET(500),RJET(500)
COMMON /BTOP/ HMIN(500)4RMIN(500),HTOP(500)

COMMON /BL0O/ DENO.DENUOLDENVO,UO,VO,PO,DENP,PP

COMMON /BLB/ KEND.LENDyLRAD,RDROP,KCOREsLCORE,KSOLIDyHSOLID
COMMON /BLD/ DT.DZ+DRySTAFAC,TDZ4TDR,TDP

COMMON /BLD/ DINFyUINF4PINF,CINF,UTMACH,PHAMER

COMMON /BLP/ NPT yNMAXyNJETyNMIN,LMAX yLJETZLMINGLTIPy¢NTIP,KTOP
COMMON /BLAB/ A4B4CT,4CS

COMMON /BT/ TOUCH(200)

COMMON /BMAS/ MASS(500),MASSO,PI

COMMON /JR/ JS(100),RS(100)

INTEGER PT4yPTMyPTP,PTU

REAL MASS,MASSOD

PT=0

N=1

RDROP=LRAD-0.5

DDROP=2,%RDROP

HSOLID=KSOLID-0.5

LMAX=LCORE+LRAD

LMIN=LMAX

LTIP=LMAX

LJET=LCORE

LCOREP=LCORE+1

BK=HSOLID+RDROP

HCENTR=RK+KCNRE

KCENTR=HCENTR+1,

RRMAX=RDROP*RDROP

HHCNTR=2 ,*HCENTR

KTOP=HHCNTR

RTIP=LTIP~-0.5

HCORE=KCORE

RCORE=LCORE

MASSO=0,

MASSO=MASSO+PI*RCORE*RCORE*RDROP
MASSO=MASSO+PI*RTIP*RTIP*HCORE

MASSO=MASSO+2 ,%P ¥ (RDROP*RDROP*RNDROP /3, +PI*RNDROP*RDROP*LCORE/ 4, )
MASSO=2,%MASSO

WRTITE(6421) KSOLIDGKTOPGLTIPyHSOLIDyHHCNTR,RTIP,RCORE,HCORE
&y RDROP,MASSO

21 FORMAT(/,'GEOMETRY'"4314,6F10.44E15,5)

NMAX=1

DD 20 L=1,LEND

TOUCH(L)=0,

RXIS{L)Y=L-0,.5

20 CONTIMNUE

IF{LCORE LEQ., 0) GO TO 14

NO 12 L=1,LCORE

PI=PT+1]

R{N¢PT)=L-0.5

H(NyPT)=HSOLID
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14

17

11k

I(NyPT)=KSOLID
JINGPT) =L

HXISM(N,L)=HSOLID
HXTSP(N,L)=HHCNTR-HXISM(N,L)
KBM(N,L)=KSOLID

KBP({N,L)= HXISP(N,L)+1.0
CONTINUE

NMAX=P 1

CONTINUE

IF (RDROP .LE. 0.) GO TO 77
DO 1 L=LCOREP,LMAX

PT1=PT+1

PTM=PT~1

R(1,P7)=L-0,5
DRI=R(N,PT)-LCORE
IF(DRI-RDROP) 4,5,5

RZ=0.0

GO TO 7
RZ=SORT(RRMAX-DRI*DRI)
CONTINUE

H(NyPT)=RK=RZ
HXISM(14L)=H(1,PT)
I{1yPT)=H(1,PT)+1.0
J(1,PT)=L

KBM{1,L)=I(1,PT)

IF (PT .EQ, 1) GD TO 1
IDF=T1(14PT)-1(1,PTM)

IF (PT .EQ, 1) GO TO 2

IF (IDF .LE. 1) 60O TO 2

PTP=P TM+IDF
R(14PTP)=R(1,PT)

H(l,pTP)zH(lva)
I(1,PTP)= I(1,PT)
JIL,PTP)= J(1,PT)

NR=PT

NS=PTP-1

DO 3 PT1=NR,NS

I(14PT)=1(1,PTM)+PT-PTM

H(l4PT)=T(1,PT)-0.5

RZ=RK=H(N,PT)

R{N4PT)=SORT(RRMAX-RZ*RZ)+LCORE

JOLyPT)=R(1,4PT)+1,0

CONTINUE

HXTSM(NyL)=H(NyNR)

KBM{N,L)=HXISM(N,L)+1,0

PT=P TP

IF (NMAX .LT. PT) NMAX=PT

CONTINUE

HXTSP (NyL)=HHCNTR=HXISM{N,L)

KBP(1,4L)=HXISP(1lsL)+1,.0

CONTINUE

NMAX=PT

CONTINUE

IF(KCORE LEQ. 0) GO TO 6

NCO=NMAX

INCO=T(N,NCD)

IK=INCO+1

DO 22 K=1K,KCENTR

P1=PT+1



KD=K=INCO
R{N4PT)=R{N4,NCO)
H{NyPTY=H(NyNCO)+KD
I(NyPT)=H(N,PT)+1,
JINyPT)=R(N,PT)+1,

22 CONTINUE
NMAX=PT

6 CONTIMUE
NMIN=NMAX
NJET=LCDRE
NTIP=NMAX
NP T=2%NMAX~1
NMAXM=NMAX~1
ZT{1,NMAX)=UD
RT(1,NMAX)=VO

C 10

DO 10 PT=1,NMAXM
PTU=NPI-PT+1
H({N, PTU)=HHCNTR=-H(N,PT)
R{14PTU)=R(1,PT)
I(14PTUI=H(1,PTU}+1.0
JO1,PTU)=J(1,PT)
ZT(1,PT)=UD
RT({1,PT)=VD
ZT(1,PTUY=U0
RT(1,PTUI=VOD

10 CONTINUE

115

ZCRIT=UTMACH*UTMACH=*DDROP

RCRI T=SORT((DNDROP-ZCRIT)*ZCRIT)I+LCORE
TOUR=RDROP*DR/UINF*(14~SORT(1s~UTMACH*UTMACH) )

CYDUR=TDUR/ACDT

WRITE(6,50) UTMACH,RDROP,ZCRIT4RCRIT,CYDUR,TDUR
50 FORMAT(/4'COMPRESSIBLE AREA'y5F10444E15454/)

JS(1})=1

RS(1)=0.5

DD 92 K=KSOLID,KEND
JS{K)=1

RS{K})=0,

DO 92 PT=1,NPT

IF (I(N,PT) NE. K) GO TO 92

IF (R{N,PT) «LEe. RS(K))
JS{K)=J(N,PT)
RS(K)=R(N,PT)

92 CNONTINUE
RE TURN
FND

C**********************$**********************************%

SURROUTINE FIELD(NyNP,MXyMY,NSMA,NSMR)

GO TO 92

COMMON DEN(2,100,100).DENU(2,100,100),DENV(2,100,100)

COMMON U(24+100,100),V(2,100,100),P(2,100,100)
COMMON /0/ QU(2,1004100),0V(2,100,100)

sle st sls sle sle o,
AR AN

COMMON /BLRZ/ ZTT(24200)4RTT(24200)42T(2+200)4RT(2,200)

COMMON /BLHR/ H(2,200)4yR(2,200)+1(2,200}9J(2,200)
COMMON /AXIS/ RXIS(200)4HXISM(2,200) HXISP(2,200)
COMMON /BLKB/ KRM(2,200),KRP(2,200)

COMMON /JR/ JS(100),RS{100)
COMMON /RTOP/ HMAX(500),RMAX(500) +HJET(500),RJIET(500)
COMMON /BRTOP/ HMIN(500),RMIN(500),HTOP(500),7A(500)4+ZR(500)
COMMON /BTOP/ ZC{500),2D(500)+ZE(500),ZF(500),2G(500),ZH(500)

COMMON /RLO/ DENOGZDENUDZDENVO,UD VO ,POGDENP PP

3

FRUROROY
< 31 ol ik sle
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16

18

COMMON
COMMDN
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMDN
COMMON
COMMON
COMMON
COMMON

COMMON
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/BLB/ KENDyLENDyLRADyRDROPyKCOREyLCOREyKSOLIDyHSOLID
/BLD/ DT4DZ4DRySTAFAC,TDZ,TDR,TDP

/BLD/ DINF,UINF,PINF,CINF,UTMACH,PHAMER

/BLP/ NPT yNMAX NJET4NMINyLMAX LJEToLMIN,LTIPyNTIP,KTOP
/S/ CYCLENSTAGE,NPRINT, TIME

/BLAB/ A4B,CT,4CS

/BT/ TOUCH(200)

/BMAS/ MASS(500)},MASSO,.PI1

/BEND/ KEND2,LEND2,KEND3,LEND34KLDyNKTT

/BCRIT/ PCRIT, DECRIT,CONST

/CV/ CDyCPyC14C24C34COEF,ALPHA,COEG

/HAB/ HA,HB,GA,GRyGCyFA,FB,FC,yDENB,DMAX,DMINyNSM,DA,DB
/BFL/ JAWJByJCsIDyJEyJFy UGy JHyJIvJJdeJKedLy UMy JN

/BFL/ JUeJVeJWeJIXeJdY,yJZ

DIMENSION DENZ(20000),DENUZ(20000),DENVZ{(20000)
DIMENSION UZ{20000),VZ{(20000),PZ(20000)
EQUIVALENCE (DEN,DEMZ),{DENU,DENUZ),(DENV,DENVZ)
EQUIVALENCE (UsUZ) 4 (V4VZ)4(P4PZ)

DIMENSION QUZ (20000),0VZ(20000)

EQUIVALENCE {(QU,0UZ),(0OV,0VZ)

REAL MASS,MASSO

INTEGER CYCLE

INTEGER PT,PTM,PTP

FORMAT

(2134F10.4,7E15.4)

DMAX=PCRIT

DMIN=1.,

DPT=0.
DPR=0,
KDPT=1
LDPT=1
KDPR=1
LDPR=1

DO 15 PT=1,NPT

K=1(NP,
L=J (NP,

PT)
PT)

NPKL=NP+{K=1)%2+(L-1)%NKTT

IF (K +EQ, KSOLID JAND. L «LE. JS(1)) GO TO 16
DENZ (NPKL }=DEND

PZ(NPKL)=PO

UZ(NPKL)=ZT(NP,PT)

VZ(NPKL)=RT(NP,PT)

DENUZ (NPKL ) =DENZ (NPKL )*UZ (NPKL)

DENVZ (NPKL )=DENZ (NPKL )*VZ (NPKL)

GO TO 15

CONTINUE

KP=K+1
KM=K=1
LP=L+1
LM=L-1

IF(L NE, 1) GO TO 18

LP=1
LM=1

CONTINUE

KR=(K=1)%2

LR=(L~1)%NKTT

NKL=N+KR+LR

NKPL=NKL+2

NKML=NKL-2
NKLP=M+(K=1)%2+{LP=1)%NKTT
NKLM=N+{K=1)%2+(LM=1)=NKTT
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RO=L

RI=L-1

RDR=(RO+RI)/2.

TRDR=TDR/RDR

DAVE=GA*DENZ { NKL)
E+GB*(DENZ {NKML }+DENZ (NKPL ) +DENZ (NKLM)}+DENZ (NKLP))
E+GC* (DEN(NyKPyLM)+DEN(NyKMyLM)+DEN{NyKPyLP)+DEN{(NyKM,LP))
IF(ALPHA ,EQ. 0,) GO TO 2

DU=UZ (NKPL)=UZ (NKML)

DV=VZ (NKLM)=VZ (NKLP)

QUZ (NPKL)=FQ{DAVE,DU)

QVZ (NPKL)=FQ(DAVE,DV)

GO TO 4

QUZ (NPKL)=0.

QOVZ (NPKL)=0,

CONTINUE

DENZ (NPKL)=DAVE
E+(DENUZ (NKPL)=DENUZ (NKML ) )*TDZ
&E+{DENVZ (NKLM)*RI-DENVZ (NKLP)*R0O)*TRDR

DE=DENZ (NPKL)

IF (DE .LE. DMAX) GO TO 7

DMAX=DE

KDMAX=K

LDMAX =L

CONTINUE

IF (DE .GE. DMIN) GO TO 9

DMIN=DE

KDMIN=K

LDMIN=L

CONTINUE

DENUZ (NPKL)=GA*DENUZ (NKL)
&+GR*(DENUZ (NKPL)+DENUZ (NKML ) +DENUZ (NKLM)Y+DENUZ (NKLP))
E+GCH(DENU(NyKPyLM)+DENU(Ny KMy LM)+DENUINsKPyLP)+DENU(NyKMyLP))
6+ (DENUZ (NKPL)*UZ (NKPL)Y-DENUZ (NKML)*UZ (NKML ) }*TDZ
&+ (DENVZ (NKLM)*UZ (NKLM)*RI=DENVZ (NKLP)=®*UZ (NKLP}*RO)*TRDR
GE+FAx(PZ(NKPL)=PZ (NKML))=*TDP
E=OUZ (NPKL)*TDP

DENVZ (NPKL)Y=GA®DENVZ (NKL)
E+GB* (DENVZ (NKPL)Y+DENVZ (NKML)+DENVZ (NKLM)+DENVZ (NKLP) )
E+GC* (DENV(NyKP 4y LM)+DENV(NyKMyLM)+DENV(N,KP o LP)+DENV(N,KMyLP})
E+ (DENUZ (NKPL)*VZ (NKPL)=DENUZ (NKML ) *VZ (NKML ) }*TDZ
E+(DENVZ (NKLM)*VZ (NKLM)*RI-DENVZ{NKLP)*VZ (NKLP}*RO)*TRDR
E+FAX(PZ(NKLM)=PZ(NKLP))*TDP

E~OVZ (NPKL)#*TDP

IF (DE JLT. DECRIT) DE=DECRIT

UZ (NPKL)=DENUZ (NPKL) /DE

VZ (NPKL)Y=DENVZ (NPKL)/DE

PZ(NPKL)=FP(DENZ (NPKL))

IF (L LT, JS(1)) GO TO 17

NENZ (NPKL)=DEND

PZ{NPKL)=PD

CONTINUE

CONTINUE

,m————— GET SURROUTINES

69

CALL PARTA(N,NP,KDMAX,LDMAX ¢ KDMINy LDMIN)
IF(KLD EQs 1) GO TO 69

CALL PARTR(NyNPyKDMAXyLDMAX y KDMIN, LDMIN)
CALL PARTC (N NP yKDOMAX LDMAX yKDMIN, LDOMIN)
CONTINUE

IF(DMIN ,GE. 0.) GO TO 79
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79

65
17
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WRITE(6,78) CYCLE,DMAXyKDMAXy LDMAXyDMIN,KDMIN, LDMIN
FORMAT( /4 ' 5xxNEGATIVE DENSTITYX%%1,1542(F10.44214))
GO TO 77

CONTINUE

WRITE (6465) CYCLE,DMAX,KDMAXyLDMAXyDMINyKDMINyLDMIN
FORMAT(I5,2(F10s44214))

CONTINUE

CHx&x3ck:DOMATIN BROUNDARY CELLS CONDITIONS

39

36

37
35

38

20

C skt

71

72

70
AT

CALL DOMAIN(NyNP,DENOyNSMA,NSMB)
TF(NSMA ,NE. 1) GO TO 39

KLD=1

CALL PRIN(NP)

KLD=2

CONTINUE

CALL AVE(N,NP)

K=2

DD 35 L=1,JB,4KLD

LP=L+1

LM=L~1

DP=P(NPKyL)=P(NyKyL)

IF(ABS(DP) .LE. DPT) GO TO 36

DPT=DP

KDP T=K

LDPT=L

CONTINUE

DP=P(NP,K7L)'P(NP,KQLP)

IF(ABS(DP) JLE. DPR} GO TO 37

DPR=DP

KDPR=K

LDPR=L

CONTINUE

CONTINUE

WRITE(6,438) CYCLE.KDPT4LDPT,DPT,KDPRyLDPRyDPR
FORMAT(IS," DP/DT 1,213,E15.54' DP/DR ',2134E15.5)
DPT=P{NP 4Ky JX)=P(NyKyJdX)
DPR=P(NP,KyJY)=P(NP,KyJZ)
DPRT=P(NP4KyJY)=P{NyKyJY)

CONTINUE

IF (NSMR .EOQ. 1) GO TO 67

PHASE ROUNDARY CELLS CONDITIONS
CONTINUE

DO 70 PT=2,4,NPT

PTM=pT-1

IF (I(NP,PTM) EO, T(NP,PT)) GO TO 70
TF (JINP4PTMI=J(NP,PT)) 71,72,73
DENV(NPyT{NPyPTM) ¢ JINP4PT))=DENV(NP,I(NP4yPTM) 4 JINP,PTM))

VINPyT(NP4PTM) 4 JINP,PT) )= VNP4 T(NPyPTM) s JINP,PTM))

GO 10O 70

DENV (NP3 T(NPyPTM)y (J(NPyPTM)+1))=DENV(NP, I (NPyPTM)yJ(NP,PTM))
VINPyIT{NP,PTM} 4 (J(NP4PTM)+1) )= VINPsT(NP4PTM) yJ(NP,PTM})

DENVINPy TINP4PT )y (JINPyPT Y+1))=DENMVINPyI(NPyPT )yJ(NP,PT ))
VINP,T(NP,PT )y (J(NP,PT )+1))= VINPIT(NP4PT )3J{(NP,PT ))

GNn TN 70

DENVINP 3 TINP4yPT)yJ(NPyPTM))=DENV(NP,I(NP4PT )yJ(NP4PT })
VINP, T(NPyPT)yJINPyPTM) )= VINP4IT(NP4PT )9 JINPyPT ))

CONTINUE

CONTINUE

NH=CYCLE

ZA(NH)=P({NP,1,1)
7BINH)=P(NP,JE,JF)
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ZC(NH)}=P (NP, JGyJH)
ID(NH)=P(NP,JI,JJ)
ZE(NH)=P (NP4 JKyJL)
ZF(NH)=DPT
ZG(NH)=DPR
ZH{NH)=DPRT
WRITE(H421) NHyZA(NH)yZB(NH)yZC(NHY<ZD(NH)4ZE(NH)
21 FORMAT(I5,8E15.4)
RE TURN
END
CxkacsckHISTORY OF LIQUOD BOUNDARY siesiostsicseotesiook ok dede sk sk e e s st oo et sl s seoe e s e i e e e s
SUBROUTINE BOUND(N4NP,TSTEP)
COMMON DEN(2,100,100),DENU(2,100,100),DENV(2,100,100)
COMMON U(2,100,100),V(2,100,100)4P(2,100,100)
COMMON /BLRZ/ ZTT{(24200)4RTT(24200)42T(2,200)4RT(2,200)
COMMON /RLHR/ H(2,200)4R(2,200),1(2,200)4J(2,200)
COMMON /AXIS/ RXIS(200)¢HXISM(2,200)4HXISP(2,200)
COMMON /BLKB/ KBM(2,200),KBP(2,200)
COMMON /JR/ JS(100),RS(100)
COMMON /BTOP/ HMAX(500)4RMAX(500)+HJET(500),RJET(500)
COMMON /BTOP/ HMIN(500),RMIN(500)},HTOP(500)
COMMON /BLO/ DENO,DENUO,DENVO,UD,VO,PO,DENP,PP
COMMON /BLB/ KEND,LEND,LRADyRDROP,KCORELCORE,KSOLIDyHSOLID
COMMON /BEND/ KEND2,LEND2,KEND3,LEND3,KLD
COMMON /BLD/ DT4DZ4DR4STAFAC,TDZ,TDR, TDP
COMMON /BLD/ DINF UINF4PINF,CINF,UTMACH,PHAMER
COMMON /BLP/ NPTyNMAXy, NJETyNMINyLMAXyLJEToLMINyLTIPyNTIP,KTOP
COMMON /S/ CYCLE NSTAGE,NPRINT,TIME
COMMON /HAB/ HAyHByGA,GB4GCyFA4sFByFCyDENB,DMAXsDMINyNSMyDA,DB
COMMON /BFL/ JA3JB9JCyJIDyJEWJIF UGy JHsJT 9 JJsJKeJLydMyIN
COMMON /BFL/ JUyJdVeJdW,JXsJdY,yJZ
COMMON /BLAB/ A4B4CT,CS
COMMON /BT/ TOUCH(200)
COMMON /BMAS/ MASS(500) 4MASSO,PI
REAL MASS,MASSO
INTEGER CYCLE
INTEGER PT,PTM,PTP

M=0
DO 1 P1=1,NPT
PTM=PT-1
K=I(N'PT)
KM=K=-1
KP=K+1
L=J(N,PT)
LM=L~1
LP=L+1
DE=DEN(NyK,L)
IF (L .NE, 1) GO TO 11
RTT(N,PT)=0,
RTT(NP,PT)=0.
RT(NP,PT)=0.
RINPLPT)=0.5
GD TO 12
11 CONTINUE
RTTINGPTI=(P(NyKyLMY=P(N,K,yLP))
RTT(NyPT)=RTT(N,PT)/DE
RT{NP4PT)=RT(NyPT)I+RTT(N,PT)*TNP
R(NPyPT)=R(NyPT)+(RT{(NP,PT)+RT(N,PT))*TDR*TSTEP/2.
IF (R(NP,PT) .GT. 0.5) GO TO 12
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17

18

10
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R(NP4PT)=0.,5

RT(NP,PT)=0,

CONTINUE

ZTT(NGPT)=ZTT(N,PT)/DE
ZTINPGPT)=ZT(NGPTI+ZTT (4, PTIXTDP

H(NPyPT)=H(NyPT)=(ZT(NPyPT)Y+ZT(NyPT))*TDZ*TSTEP/2,

IF{(H{NP,PT) ,GT, HSOLID) GO TO 2
IF(H(NP,PT) +EOQO., HIN,PT)) GO TO 3
PCT=(HSOLID=H(NP4PT))/(HI(NyPT)=H{(NP,PT))
GO TO 4

PCT=1,0

CONTINUE

M=M+1

H(NP,PT)=HSOLID

ZT(NPLPT)=0.0
ZTTINPyPT)=(~ZTT{NyPT)=ZT(N,PT)/TDP)*PCT
DENU(N,KM,L)=0,
DENU(NP,KM,L)=0.
DENU(NK,L)=DAXDENU(NyK,L)
U(NyKM,L)=0.

U(NP,KM,L)=O¢
U(NyKyL)=DENU(N,K,L)/DE
CONTINUE

IT(NPyPT)=H(NP,PT)+1,0
JINP,PT)=R(NP,PT)+1,0
CNONTINUE

PT1=0

CONTINUE

P1=PT+1

MH=PT

IF (PT JGE. M) GO TO 9

MM=1

CONTINUE

P T=MH+MM

IF (PT .GT, M) GO TO 17

IF (R(NP4PT) GTe RI(NPy,MH)) GO TO 17
MM=MM+1

GO TO 8

IF (MM LEQ., 1) GO TO 7
DRR=R({NP4PT)=R(NP,MH)
DRT=RT(NP4MH)~RT(NP,PT)

IF (DRT .EQ. 0.) GO TO 7

TME T=DRR/DRT
RMET=R(NP,PT)+RT(NPyPT)*xTMET
IF (RMET LT. 0.5) RMET=0.5
RTMET=(RT(NP,PT)+RT(NP,MH)) /2,
DO 18 MJ=MH,PT

R{NPyMJ)=RMET

RT(NPyMJ)=RTMET

CONTINUE

IF(PT LT, M) GO TD 7
CONTINUE

HTOP(CYCLE)=H{NPNPT)

HMAX (CYCLE)=H{NP,NMAX)
RMAX(CYCLE)=R{NP4NMAX)
HJET(CYCLE)=H(NP,NJET)
RJET(CYCLE)=R(NP4NJET)

pPT=1

CONTINUE
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PT=PT+1
IF(PT 4GE. NPT) GO TO 35
PTM=PT-1
IDF=IABS(I(NP4PT)=I(NP,PTM})
JOF=TABS(J(NPyPT)~=J(NP,PTM))
IF(IDF .LE. 1 .AND. JDF LLE. 1) GO TO 10
KDF=IDF
IF(JDF .GT. KDF) KDF=JDF
KDFM=KDF-1
IF(KDFM LT. JW) GO TO 36
WRITE(A93T7) PToI(NPsPTYyJINPoPT)yI(NP4yPTM)yJ(NPyPTM)
37 FORMAT(/ 4 V4%CHECKX®%¥,615)
JN=0
36 CONTIMUE
M=NP T
15 CONTINUE
MP=M+KDFM
T(NPyMP)=T(NP.M)
JINPyMP)=J (NP,M)
H{NPyMP)Y=H{NP,yM)
R{NPyMP)=R(NPyM)
ZTINP4MP)=ZT(NP,M)
RT(NPyMP)=RT(NPyM)

M=M-1

IF(M .GE. PT) GO TO 15
MPM=MP-1

DO 16 MB=PT,MPM
KDG=MB-PTM

RINPyMB)=R{NP,yPTM)+(R(NPyMP)=R(NP,PTM))%*KDG/KDF
HINP,MB)=H(NPyPTM)+(H(NP4MP)=H(NP,PTM) )*KDG/KDF
I(NPyMB)=H(NP,MB)+1.0
JINPyMB)=R(NPyMB)+1.0
RT(NP,MB)=RT (NP, PTM)+(RT(NP,MP)=RT(NP,PTM))%*KDG/KDF
ZTINP,MB)=ZT(NPyPTM)+(ZT(NP,MP)~ZT (NP,PTM))*KDG/KDF
WRITE(6452) MByI(NPyMB)yJ(NPyMB)HINP,MB)R(NP,MB)
& oZTINP,MB) RT(NP,MB)
52 FORMAT ('NEW POINT!', I13,5X,213,4F10.4)
16 CONTINUE
IF(KDFM (LE. JW) GO TO 39
CALL PRIN(NP)
60 TO 71
39 CONTINUE
IF(NMAX oGT. PTM) NMAX=NMAX+KDFM
IF(NJET .GT. PTM) NJET=NJET+KDFM
1F(NMIN .GT. PTM) NMIN=NMIN+KDFM
IF(NTIP .GT. PTM) NTIP=NTIP+KDFM
NP T=NP T+KDFM
P T=P T+KDFM
GO TO 10
35 CONTINUE
PT=0
80 CONTINUE
PT=P T+1
IF (PT .GE. NPT) GN TO 90
M=1
R? CONTINUE
MP T=P T+M
IF (MPT1 .GT. NPT) GO TO 84
IF (I(NP,MPT) .NE. I{(NP,PT)) GO TO 84
IF (JINP,MPT) .NE. J(NP,PT)) GO TO B4
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M=M+]

GO TO 82

IF (M ,EOQ, 1) GO TO 80

MM=M~1]

DO 86 MG=1,4MM

MGP T=P T+MG
R{NP,PT)=R(NPyPT)+R(NPyMGPT)
H(NPyPT)=H(NP,PT)+H(NP,MGPT)
RT(NPyPT)=RT(NP4yPT)+RT(NP,MGPT)
ZTINPPT)=ZT(NP,PT)+ZT (NP 4yMGPT)
CONTINUE

R{(NPyPT)=R({NP,PT)/M
HI(NP4yPT)=H(NP,PT)/M
I(NP4PT)=H(NP,PT)+1.
JINPPT)=R(NP,PT)+1.
RT(NPLPT)=RT(NP,PT)/M
ZTINP4PT)I=ZT(NP,PT) /M

WRITE (6487) MyT(NPyPT) oy J(NPWPT)yHINP4PT)4yRINP4PT)
& yZT(NP4PT)4RT(NP,LPT)
FORMAT('GROUPINGY 4y 14,4,5X4213,4F10.4)
CONTINUE

NR=MP T—-MM

T(NPyNB)=T(NP,MPT)

JINPyNBR)=J(NP,MPT)

H{(NP4NB)=H(NP,MPT)

R(NPyNB)Y=R(NP,MPT)
ZTINPyNR}Y=ZT(NP,MPT)

RT(NP ¢NR)=RT (NP,MPT)

MP T=MP T+1

IF (MPT ,LE. NPT) GO TO 88

NP T=NP T-MM

IF {NMAX .GT. PT) NMAX=NMAX-MM

IF (NJET .GT, PT) NJET=NJET-MM

IF (NMIN GT. PT) NMIN=NMIN-MM

IF (NTIP GT., PT) NTIP=NTIP-MM

GO TO 80

CONTINUE

DO 6 PT=2,NMAX

PTM=PT~1

IF (RINP4PT) .GE. R{NP,PTM)) GO TO 6
IF (R(NP,PTM) +GTs R{NPyNJET)) NJIET=PTM
IF(R(NP,PT) LT, R{(NP,NMIN)) NMIN=PT
CONTINUE

IF(R(NP,NMAX) GTe R{NPGNTIP)) NTIP=NMAX
IF(RINPyNJET) +GTs R(NP4NTIP)) NTIP=NJET
LMAX=R{NP4NMAX)+1,0
LJET=R(NP,NJET)+1.0
LMIN=R (MNP 4NMIN)+1,0
LTIP=R(NP4,NTIP)+1.0

NTIPM=NTIP-1

NJETM=NJET-1

NMAXM=NMAX~1

NP TM=NP T=1

NMINM=NMIN-1

HXISM(NP,1)=H(NP,y1)

TF(HXISM(NP41) JLEs 1.5) TOUCH(1)=1,0
HXISP{NP,1)=H(NP,NPT)

TF(HXISP{NP,1) LLE., 1.5) TOUCH(1)=2.0
KBM({NP,1)=I(NP,y1)

KBP{NP,1)=T(NP,NPT)
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LF=LTIP
IF(R{NP4NTIP) LTe RXIS(LTIP)) LF=LTIP=-1
DO 20 L=2,LF
DO 22 PT=1,NTIPM
PTP=PT+1
TF(RXIS(L) «GTse R{(NP4PT) AND. RXIS(L) oLEe R(NPLPTP)) GO TO 24
GD TO 22
24 HXISMINP,L)=H(NP4PT)+{RXIS(L)I=R(NPPT) )X (H(NPyPTP)-H(NP,PT)}/
& (R{(NP,PTP)=R(NP,PT})
KRM(NP,L)=HXISM(NP,L)+1.
TF(HXISM(NP,L) oJLE. 145) TOUCH(L)=140
22 CONTINUE
54 FORMAT(21I3,F10.4)
20 CONTINUE
DO 26 L=2,LF
DO 28 PT=NTIP,NPTM
PTP=PT+1
IF(RXIS(L) «GTs R{(NPyPTP) JAND. RXIS(L) oLEe R{(NP4PT)) GO TO 30
GN T0O 28
30 HXISP(NP4L)=H(NP,PT)+
& (RXIS(L)=R(NPyPT))*(H(NP4PTP)=H(NP+PT))/(R(NP4PTP)=R(NP,PT))
KBP(NP,L)=HXISP(NP,L}+1.
IF(HXISP(NP,L) oLEs 1.5) TOUCH(L)=2.,0
28 CONTINUE
IF(TOUCH(L) +GT. 0.) JS{1)=L
26 CONTINUE
RS{1)=JS(1)
L=LTIP
M=0
KIOP=HTOP(CYCLE)}+1.0
DD 70 PT=1,NPT
IF (I(NP4PT) oGT. KTOP) KTOP=I(NP,PT)
IF (J(NP,PT) .NE. L) GO TO 70
M=M+1]
IF (M .GTa 1) GO TO 72
HXISM(NP,L)=H(NP,PT)
KBM(NPLL)=I{(NP,PT)
HXTISP(NP,L)=H(NP,PT)
KBP{NP4L)=I(NP,PT)
GN TO 70
72 CONTINUE
HXTISP(NP,L)=H(NP,PT)
KBRP(NP,L)=I{(NP,PT)
70 CONTINUE
NN 91 K=KSOLID,KEND2
JS(KY=1
RS(K)=0.
DO 92 PI=1,NPT
IF (I{NP4PT) «NEs. K) GO TO 92
IF (R(NP,PT) LLE. RS(K)) GO TO 92
JS(K)=J(NP,PT)
RS(K)=R(NP,PT)
92 CONTINUE
91 CONTINUE
WRITE(Ay493) CYCLESNPT,KTOP,LTIP
93 FNRMAT(/+415)
76 FORMAT(313,2F10.4)
71 CONTINUE
RETURN
FND
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SUBROUTINE PRIN(NP)
COMMON DEN(2,100,100),DENU(24100,100)4DENV(24100,100)
COMMON U(2,100,100),V(24100,100),4P(2,100,100)

COMMON /Q/ QU(2,100,100),0V(24100,100)

COMMON /BLRZ/ ZTT(24200)4RTT(24200),2T(24200),RT(2,200)
COMMON /BLHR/ H{24200),R(2,200),1(2,200),J(2,200)
COMMON /AXIS/ RXIS(200) 4HXISM(2,200) HXISP(24200)
COMMON /BLKB/ KBM(2,200),KBP(2,200)

COMMON /BTOP/ HMAX(500) 4RMAX(500) ¢HJET(500) 4RJIET(500)
COMMON /BTOP/ HMIN(500),RMIN(500),HTOP(500)

COMMON /JR/ JS(100),RS(100)

COMMON /BLO/ DENO,DENUO,DENVO,U0,VO,P0,DENP,PP

COMMON /BLB/ KEND4LENDyLRAD,RDROP,KCORE,LCORE,KSOLIDyHSOLID
COMMON /BEND/ KEND2,LEND2,KEND3,LEND3,KLD

COMMON /BLD/ DT,DZ4DRySTAFAC,TDZ,TDR,TDP

COMMON /BLD/ DINF,UINF,PINF,CINF,UTMACH,PHAMER

COMMON /BLP/ NPT NMAXoNJET¢NMIN,LMAXyLJEToLMINSLTIP,NTIP
COMMON /S/ CYCLE NSTAGE,NPRINTyTIME, TIMEND,CHLEN
COMMON /BLAB/ A4B4CT,CS

COMMON /BT/ TOUCH(200)

COMMON /BMAS/ MASS(500),MASSO,PI

COMMON /CV/ CO4CP,C14C2,C3,COEF,ALPHA,COEG

COMMON /BFL/ JAgJByJC s JDyJEsJFJGeJH Il 9 JJeJKyJLlydMeIN
COMMON /BFL/ JUyJVyJWeJXyJY,J2Z

REAL MASS,MASSD

INTEGER CYCLE

INTEGER PT

P1=P0*1,01

P2=P0*0.,99

LTIPP=LTIP+1

WRITE (6464) CYCLE,TIME,TIMENDyMASS(NSTAGE)

WRITE (6,62)

DO 14 PT=1,NPT

WRITE(6470) PToI(NPyPT)yJ(NPyPT)yHINP,PT)4R(NP,PT)
& +ZT(NP,PT)yRT(NP,PT)

14 CONTINUE

WRITE(6,72)

WRITE(6570) (LyKRM(NP,L)yKBPINPyL) HXISM(NPyL)yHXISP{NP,L),
& RXIS(L),TOUCH(L)yL=1,LTIP)

WRITE(6,74)

WRITE(6,76) (KyJSIK)yRSIK)yK=14KEND2)

T4 FORMAT(// 44X, tK JS RSY/)
76 FORMAT(2I5,F10.3)
K=KSOLID
WRITE(6,22) K
22 FORMAT(//4'K=1',13,/4' L DENSITY DENxU?,

& LOXe 'DENVY 310X PUY 3 15Xe V1 ,15X,PY,/)
DO 32 L=1,LTIPP,LKLD

WRITE (6454) LyDEN(NPyKyL)¢DENUINP 4K L) 9DENVINPyKyL),
& UINPyKyL) g VINPyKoL )9y P(NPyKyL)

32 CONTINUE

NN 20 L=1,LTIPP,KLD

I11=MOND(L,2)

WRITE (6466) L

KRPP=KBP(NP,I.)+1

IF (L «EO. LTIPP) KRPP=T(NP,NPT)+1}
K2=JA

IF{K2 GT, KRPP) K2=KRPP

NO 12 K=1,K2,KLD
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IF (ALPHA JEO. 0,) GO TO 16
12=MOD(K,2)
IF (I1 JEOQ, I2) GO TO 21
16 CONTINUE
WRITE (6454) KyDEN(NP4KyL)yDENU(NPoKyL)sDENVINPyKyL},y
& UINP KoL) yVINP Ky )y P{NP4KyL)
GO 710 12
21 CONTIMNUE
IF (QUINPyKyL) oLT. 0. «ORs OVI(NP4K,L) oLT. 0.) GO TOD 16
WRITE (6454) KyDEN(NPyKyL)DENU(NP KoL) yDENV(NPyKyL)
EqUINPyKyL) 3 VINPyKyL)yP(NPyKyL)sQUINPyKoL)9sQOVENP4K,yL)
12 CONTINUE
20 CONTINUE
54 FORMAT (14,F10.4,7E15.6)
58 FORMAT (1I3)
60 FORMAT(315,2F15.6,2F10.4)
62 FORMAT(3X,'PT I JVeT20, 'H'"y T30y 'Ry T40y"2T'yT50,'RT!)
64 FORMAT(L1HL,/ 4 *CYCLE="13,5Xy'TIME="E12,.5,10Xy,
& 'TIME ND ='4E12,5,10X, 'MASS=1,F9,6)

66 FORMAT(//4'L=4,13,/,4' K DENSITY DEN*U?',
& LOXy 'DENAEVI 10X, tUT 15X, 'V, 15X, 1PV, /)
T2 FORMAT(// 44X, 'L KBM KBP'4T20,y *HXISM HXISP RXIS?Y,

& 66Xy 'TOUCHY, /)
70 FORMAT(3I5,4F10.4)
RE TURN
END
Caxsolok CONSERVATION OF TOTAL MASS oo acsisioteosot sl et sk e e e sotese s sesiese sk solesk

SUBROUTINE CONSER(NP)

COMMON DEN(2,100,100),DENU(2,100,100) 4DENV(2,100,100)
COMMON U(2,100,100),V(2,100,100),P(2,100,100)

COMMON /BLKB/ KBM(2,200),KBP(2,200)

COMMON /JR/ JS(100),RS(100)

COMMDN /BLHR/ H(2,200),R(2,200),1(2,200),J(2,200)
COMMON /AXIS/ RXIS(200),HXISM(2,200) 4HXISP(2,200)
COMMON /BL0O/ DEND,DENUO,DENVO,UD,V0,PO,DENP,PP

COMMON /BLB/ KENDyLENDyLRAD,RDROP+KCORE4LCORE,KSOLID,HSOLID
COMMON /BLP/ NPTyNMAXsNJET¢NMINyLMAXy LJETyLMINSZLTIP,NTIP
COMMON /S/ CYCLE,NSTAGE,NPRINT,TIME

COMMON /BMAS/ MASS(500),MASSO,PI

REAL MASS,MASSD

INTEGER CYCLE,PT,PTM,PTP

LIMIT=LCORE+LRAD

LIMI TM=L IMIT-1

AMASS=0,

L2=LIMITM

DO 20 L=1,L2

RO=L

RI=L-1

RDR=(RO+RI) /2.

K1=KBM({NP,L)+1

K2=KBP{NP,L)-1

K=KBM (NP, L)

AMASS=AMASS+DEN(NP 4K,y L )%24%P I*RDR*
& (K1-1-HXISM(NP,L))

DO 22 K=K1.K2 ’

IF (L .GT. JSI(KY)Y GO TO 22
AMASS=AMASS+DEN(NP,K,L)%*2,%PIxRDR

27 CONTIMUE
K=KRP({NP,L)
AMASS=AMASS+DEN(NP KoL )%*2,%P I*RDRx*
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& (HXISP(NP,L)~-K2)
20 CONTINUE
RTEP=LIMIT-0.5
IF (L2 .GE. LTIP) GO TO 50
L3=L2+1
L=l TIP-1
IF(L4 «LTe L3) GO TO 50
DO 30 L=L3,L4
RDR=RTEPX*L/LTIP
K1=KBM(NP,L)+1
K2=KBP (NP, L)=1
K=KBM(NP,L)
AMASS=AMASS+DEN(NP K,y L) %2, %P I*RDR
& (Kl=1-HXISM(NP,L))
DO 32 K=K1,K2
IF (L .GT, JS(K)) GO TO 32
AMASS=AMASS+DEN({NP,K,yL ) %2,%PIRDR
32 CONTINUE
K=KBP(NP,L)
AMASS=AMASS+DEN(NP 3K oL )*2,%P I#RDR*
& (HXISP(NP,L)=K2)
30 CONTINUE
50 CONTINUE
XL=LIMITM
RTEP=(RTEP+XL)/2.
L=LTIP
LG=0
DO 40 PT=1,NPT
IF(J(NP,PT) LT. LTIP) GO TO 40
pPIM=PT~1
PTP=PT+1
LG=LG+1
K=I(NP,PT)
RDR=R TEP _
IF{LG +GT. 1) GO TO 42
RDR=RDR#(K-H(NP,PT))
GO TO 44
42 CONTINUE A
IF(I(NP,PT) LEO., I{(NP,PTM)) GO TO 40
IF(J(NP4PTP) .LTe LTIP) RDR=RDR¥(H(NP,PT)+1-K)
44 CONTINUE
AMASS=AMASS+DEN{NP,K,L)%2,%PI%RDR
& #{R(NP,PT)+1e=J(NP,PT})
40 CONTINUE
100 CONTINUE
MASS(NSTAGE)=AMASS/MASSD
WRITE(6424) CYCLE,AMASS,MASSO,MASS(NSTAGF)
24 FNRMAT(1543E2045)
RE TURN
END
CHoaedeskse SURFUNC TION TO EVALUATE SHOCK WAVE VELOCITY stk i oo dolkokoks
FUNCTION FW(V)
COMMON /BLAR/ A4R4CT,CS
COMMON /CV/ C0O,CP4C1,C2,C3,COEF,ALPHALCDEG
COMMON /NNP/ N,NP
VCP=V /(P
CE=(CL+C2%VCP+(3#VCP*YCP)CP
VC=V/CE
IF (1e=VC) 141,42
1 WRITE (643) V,CPyWCP,CE,VC
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3 FORMAT('*FW CHECK'45E15.6)

CALL PRIN(N)
CALL PRIN(NP)
2 CONTINUE
T3=(1,-VC)*kA
11=1,-13
T2=VC*T3
FW=COEF%SORT(T1/T72)
RE TURN
END
CaxdskSUBFUNCTION TO EVALUATE ARTIFICIAL VISCOSITY -sesesiolsksesiok skl ok
FUNCTION FQ{DEN,M)
COMMON /BLAB/ A4B4CT,CS
COMMON /CV/ CO4CP,C1,C2,C3,COEF,ALPHA,COEG
IF (ALPHA)} 1l,1,4
4 IF (W) 141,42
1 FOZOO
GO 10 3
2 FQ=COEG#DENFW({W)%W
FO=ALPHA*FQ
3 CONTINUE
RETURN
END
Coakdkx SUBRFUNCTION ¢ EQUATION OF STATE OF WATER skodesksdesodoskoiodskssiokdkoik
FUNCTIDN FP(DEN)
COMMON /BLO/ DENOL,DENUODENVO,UD,VO,POyDENP,PP
COMMON /BLAB/ A4B,CT,CS
COMMON /BCRIT/ PCRIT,DECRIT,CONST
IF (DEN .GT. DECRIT) GO TO 9
FP=PCRIT
GO TO 5
9 CONTINUE
FP=DEN=#*xA% (B+P0N)-R
5 CONTINUE
RE TURN
END
CxxsxxSURFUNCTION TO CALCULATE DENSITY BY KNOWING PRESSUR B3 sk aesioae s skl deolesie ok ek
FUMCTION FD(P)
COMMON /BLO/ DENO,DENUO,DENVO,UQ,VO,P0O,DENP,PP
COMMON /BLAR/ A.R4CT,CS
COMMON /RCRIT/ PCRIT,DECRIT,CONST
IF (P .GT, PCRIT}) GO 70 1
FD=DECRIT
GO TO 2
1 CONTINUE
FO=((P+B)Y/(PD+R)I*x%k(1,0/A)
2 CONTIMUE
RETURN
END
(C 3 e sie e e s it et e s e ste e e sl ot e sl s le i s o e st e sfe st ol sl s e e s e st s e sl ke o s st s sl oo o 3 e e s sl s s kol s st sl e e st e sl ek
Caseksese FULERIAN CALCULATION PART A siesesiesteslsi sesieoiosio ook diosesto ol s i s s op e o soiolkoiook
SURROUTINE PARTA(NGNPGKDMAX o LDMAX 4 KDMIN, LDMIN)
COMMON DEN(2,100,100)4DENU(2,100,100),DENV(2,100,100)
COMMON U(2,100,100),4,V(2,4,100,100),P(2,100,100)
COMMON 0/ OU(2,100,100),0V(2,100,100)
COMMON /BLKR/ KBM(2,200),KBP(2,200)
COMMNM /RLR/ KENDN,LENDyLRAD,RDROPKCORE,LCORE,XSOLIDyHSOLID
COMMON /RLD/ DT4DZ4DRySTAFAC,TDZ4TDR,TDP
COMMNN /REND/ KEND2,LEND2,KEND3yLEND34KLDyNKTT
COMMON /RLN/ DENOGDENUO,DENVO,UOLVO,PODENP,PP

’

sl sie sk
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COMMON
COMMON

COMMON
COMMON

/BCRIT/ PCRIT,DECRIT,CONST

/JR/ JS(100)4RS(100)
/BLP/ NPTyNMAXyNJETyNMINyLMAXyLJEToLMINyLTIPyNTIP,KTOP
{ /S/ CYCLEJNSTAGE ¢NPRINTyTIME, TIMEND,CHLEN
COMMON /HAB/ HAWHB4GAyGB4GCyFA,FByFCyDENByDMAX,DMIN
COMMON /BFL/ JA3JByJC s D JEWJF UG JH Iy JJeJKeJL odMe N
DIMENSION DENZ(20000),DENUZ(20000),DENVZ(20000)
DIMENSION UZ(20000),VZ(20000),PZ(20000)
EQUIVALENCE (DEN,DENZ),(DENU,DENUZ),(DENV,DENVZ)
EQUIVALENCE (UyUZ)Yy(V4eVZ)e(P,4PZ)
DIMENSION QUZ(20000),0VZ(20000)
EQUIVALENCE (QU,QUZ)4(QV,0VZ)
------ PRELIMINMARY CALCULATIONS
JRP=JR+1
DO 107 L=2,JBP4KLD
LM=L-1
LP=L+1
RO=L
RI=L-1
RDR=(RNO+RI)/2.
TRDR=TDR/RDR
KHI=KRP(NP,L)
KLO=KBM(NP,L)
LR=(L=1)%NKTT
KLOL=NP+(KLO=-1)%2+LR
KHIL=NP+ (KHI-1)%2+LR
—————— FIRST STEP CALCULATION
JAP=JA+1
DN 101 K=2,JAP.KLD
KM=K~-1
KP=K+1
KR=(K~-1)%2
NPKL=NP+KR+LR
NKL=N+KR+LR
NKPL=NKL+2
NKML=NKL~2
NKLP=NKL+NKTT
NKLM=NKL=NKTT
NPKPL=NPKL+2
NPKML=NPKL-2
NPKLP=NPKL+NKTT
NPKLM=NPKL=NKTT

IF (L «GT. JS(K)}) GO TO 104
IF (L JEQ, JS{K)) GO TO 101
IF(K 4LT, KLO) GO TO 105
IF(K EQ, KLOY GO TO 101
IF(K .EQs KHI) GO TO 101
IF (K oGT. KHI) GO TO 106
GN TO 102

104 CONTINUE

DENZ (NPKL)=DENR
NDENUZ (NPKL)Y=DENUZ (NKL)
DENVZ (NPKL)Y=DENVZ {NKL)
UZ{NPKL)Y=UZ (NKL)
VZ (NPKL)=VZ(NKL)
PZ (NPKL)=PD
GDh TO 101
105 CONTINUE



106

102

2

4

129

DENZ (NPKL)=DENB
DENUZ (NPKL ) =DENUZ (KLOL )

DENVZ (NPKL ) =DENVZ (KLOL)

UZ (NPKL)=UZ (KLOL)

VZ (NPKL)=VZ (KLOL)

PZ(NPKL)=PO

GO TO 101

CONTINUE

DENZ (NPKL ) =DENB

DENUZ (NPKE ) =DENUZ (KHIL)

DENVZ (NPKL ) =DENVZ (KHIL)

UZ (NPKL)=UZ (KHIL)

VZ(NPKL)=VZ (KHIL)

PZ(NPKL)=PD

G0 TO 101

CONTINUE

DAVE=GA*DENZ (NKL )
6+GR%(DENZ (NKML } +DENZ (NKPL ) +DENZ (NKLM)+DENZ (NKLP) )
E+GC¥* (DEN(N,KP,LM)+DEN(NyKMyLM)+DEN(NyKP o LP)+DEN(N,KM,LP) )
IF(ALPHA .EQ. 0.) GO TO 2

DU=UZ (NKPL )=UZ (NKML )

DV=VZ (NKLM)=VZ (NKLP)

OUZ (NPKL )=FQ(DAVE,DU)

OVZ(NPKL)=FO(DAVE,DV)

GO TO 4

OUZ (NPKL)=0.

OVZ (NPKL) =0,

CONTINUE

DENZ (NPKL ) =DAVE
&+ (DENUZ (NKPL ) =DENUZ (NKML ) ) %TDZ
&+ (DENVZ (NKLM)*RI=DENVZ (NKLP ) %R0 )*TRDR

DE=DENZ (NPKL)

IF (DE .LE. DMAX) GO TO 7

PMAX=DE

KDMAX=K

LDMAX=L

CONTINUE

IF (DE .GE. DMIN) GO TO 9

DMIN=DE

KDMIN=K

LDMIN=L

CONTINUE

DENUZ (NPKL ) =GA*DENUZ (NKL )
&+GR%* (DENUZ (NKPL ) +DENUZ (NKML ) +DENUZ (NKLM) +DENUZ (NKLP ) )
E+GCHk (DENU(NyKPy LM)+DENU(Ny KMy LM)+DENU(NyKP o LP)+DENU(Ny KMy LP) )
&+ (DENUZ (NKPL ) %UZ (NKPL ) ~DENUZ (NKML ) %UZ (NKML ) }*TDZ
£+ (DENVZ (NKLM)*UZ (NKLM)%*RI=DENVZ (NKLP)*UZ (NKLP)%R0)%*TRDR
&+FA%(PZ (NKPL)=PZ (NKML ) )%TDP
&-0UZ (NPKL ) *TDP

DENVZ (NPKL)=GA*DENVZ (NKL )
£+GB* (DENVZ (NKPL ) +DENVZ (NKML ) +DENVZ (NKLM)+DENVZ (NKLP) )
E+GC% (DENV (N yKP o LM) +DENV (NyKMyLM) +DENV (NyKP 4 LP)+DENV(N,KM,LP) )
&+ (DENUZ (NKPL )#VZ (NKPL)=DENUZ (NKML ) %VZ (NKML ) ) *TDZ

&+ (DENVZ (NKLM)*VZ (NKLM)%*RI=DENVZ (NKLP ) *VZ (NKLP)#R0)*TRDR
E+FA%(PZ(NKLM)=PZ (NKLP))*TDP

£-0VZ (NPKL)*TDP

IF (DE .LT. DECRIT) DE=DECRIT

UZ (NPKL)=DENUZ (NPKL ) /DE

VZ (NPKL)=DENVZ (NPKL ) /NE

PZ(NPKL)=FP(DENZ (NPKL))
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CONTINUE
CONTINUE
RE TURN
END

PART B EULERTIAN CALCULATION sk siole it sk sieoiesieoie s seole e 3 e o e e ok ko e ke s e e o i i sk e o i o

SUBROUTINE PARTB(NyNP,KDMAX,LDMAX,KDMIN,L.DMIN)

COMMON DEN(2,100,100),DENU(2,100,100),DENV(2,100,100)
COMMON U(2,100,100),V(2,100,100),P(2,100,100)

COMMON /0/ QU(2,100,100),0V(2,100,100)

COMMON /BLKB/ KBM(2,200),KBP(2,200)

COMMON /BLO/ DEND,DENUO,DENVO,UG,VD,P0O,DENP,PP

COMMON /BLD/ DT+DZ4DRySTAFAC,TDZ,TDR,TDP _

COMMON /BLB/ KENDyLEND,LRAD,RDROP,KCOREyLCORE,KSOLIDyHSOLID
COMMON /BREND/ KEND2,LEND2+KEND3,LEND3,KLDyNKTT

COMMON /BCRIT/ PCRIT,DECRIT,CONST

COMMON /JR/ JS(100),RS(100)

COMMON /BLP/ NPT NMAXyNJET¢NMINyLMAXyLJETyLMIN,LTIP,NTIP,KTOP
COMMON /S/ CYCLEJNSTAGE NPRINT,TIME, TIMEND,CHLEN
COMMON /HAB/ HA,HB,GA,GB,GCyFA,FB,FC,DENB,DMAX,DMIN
COMMON /BFL/ JA4JByJCyJDsJEyIF3JGeJdH T3 JJ e Ky dLydeIN
DIMENSION DENZ(20000),DENUZ(20000),DENVZ{(20000)
DIMENSTION UZ(20000),VZ(20000),PZ2(20000)

EQUIVALENCE (DEN,DENZ), (DENU,DENUZ), (DENV,DENVZ)
EQUIVALENCE (U,UZ) 4 (V4VZ)4(P4PZ)

DIMENSION QUZ(20000),0QVZ(20000)

EQUIVALENCE (QU,0UZ)4(0OV,40QVZ)

—~SECOND STEP CALCULATION

JBP=JB+1

DO 120 L=2,JBP4KLD
KLD=KBM(NP, L)
KHI=KBP(NP,L)
LR={L-1)*&NKTT
KLOL=NP+{KLO=-1)3%2+LR
KHIL=NP+ (KHI=-1)*2+[R

DO 121 K=3,JA,KLD

KP=K+1

KM=K=1

KR=(K=1)*2

NPKL=NP+KR+LR

NKL=N+KR+LR

NPKPL=NPKL+2

NPKML=NPKL=2

IF(L .GT, JS(K)) GO TO 144
IF (L «EO0, JS(K)) GO TO 121
IF (K oL.T. KLD) GO TO 145
IF. (K +EQ. KLO) GO TO 121
IF (K .ED, KHI) GO TOD 121
IF (K .GT, KHI) GO TO 146
GO TO 142

CONTINUE

DENZ (NPKL Y=DENR

DENUZ (NPKL)=DENUZ (NKL)
DENVZ (NPKL)=DENVZ (NKL)

UZ (NPKL)=UZ (NKL)
VZINPKL)=VZ (NKL)

P7Z (NPKL)=PO

GN 10 121

CONTINUE

NENZ (NPKL)=DENR
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142

121
120

154

155

131

DENUZ (NPKL)=DENUZ (KLOL)
DENVZ (NPKL )=DENVZ (KLOL)

UZ (NPKL)=UZ(KLOL)
VZ{NPKL)=VZ({KLOL)
PZ(NPKL)=PN

GO T0 121

CONTINUE

NENZ {NPKL )=DENR

DEMUZ (NPKL)=DENUZ (KHIL)
DENVZ (NPKL)=DENVZ (KHIL)

UZ (NPKL)=UZ (KHIL)
VZ(NPKL)=VZ(KHIL)
PZ(NPKL)=PN

GO 7O 121

CONTINUE

DENZ (NPKL)Y=(DENZ (NPKPL)+DENZ (NPKML)) /2.
PZ(NPKL)=FP(DENZ (NPKL))
NE=DENZ (NPKL)

DENUZ (NPKL)=(DENUZ (NPKPL)+DENUZ {NPKML)) /2.
DENVZ (NPKL)=(DENVZ (NPKPL)Y+DEMVZ (NPKML)) /2.
IF (DE LT, DECRIT) DE=DECRIT
UZ (NPKL)=DENUZ (NPKL)/DE
VZ{NPKL)=DENVZ (NPKL)/DE
CONTINUE

CONTINUE

nn 122 L=3,JR4KLD

LP=L+1

LM=L-1

KLO=KRM(NP,4L)

KHI=KRBP({NP,L)

LR=(L-1)%NKTT
KLOL=NP+(KLD=1)%2+LR
KHIL=NP+ (KHI=1)%2+LR
JAP=JA+1

DO 123 K=2,JAP.KLD
KR={K=-1}%*2

NPKL=NP+KR+LR

NKL=N+KR+LR

NPKLP=NPKL+NKTT
NPKLM=NPKL~=NKTT

IF (L «GT. JS(K)) GO TO 154
IF (L LEQ. JS(K)) GO TO 123
IF (K LT, KLO) GO TO 155
IF (K JEO, KLN) GN TO 123
IF (K JEQ., KHI) GO TO 123
IF (K +GT, KHI) GO TO 156
GO TO 152

CONTINILIF

DENZ (NPKL )=DENR

NDENUZ (NPKL Y=DENUZ ( NKL )
DENVZ (NPKL Y=DENVZ (NKL )
UZ(NPKL)=UZ (NKL)
VZINPKL)=VZ (NKL)
PZ(NPKLY=PN

GN TN 123

CONTINLIE

DENZ (NPKL)=DEMR

NENUZ (NPKL)Y=DENUZ (KLOL)
DENVZ (NPKL)Y=DENVZ (KLOL)
UZ{NPKL)=UZ (KLOW)
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VZ (NPKEY=VZ (KLOLY
PZ(NPKL )=PT()
GN TN 123

15A CONTINUE
NENZ (NPKL )} =DENR
DENUZ (NPKL)=DENUZ (KHTL)
NENVZ (NPKL)Y=DENVZ (KHIL)
UZ {NPKL)=UZ(KHIL)
VZINPKL)=VZ(KHIL)
PZINPKIL)=PD
GN TN 123

162 CNANTINUE
NENZ (NPKL)=(DFENZ (NPKLM)+DEMZ (NPKLP))/2.
PZINPKL)=FP(DENZ (NPKL))
NE=NENZ { NPKL)
NENUZ {NPKL)Y=(DENUZ (NPKLM)+DENUZ (NPKLP)Y) /2.
DENVZ (NPKLY=(DENVZ (NPKLM)+DENVZ (NPKLP)Y) /2.
IF (NDE LLT. DECRIT) DE=DECRIT
UZ (NPKL)Y=NEMIZ (MNPKI. ) /DE
VZINPKL)Y=DENVZ (NPKL)/DF

123 CONTINUE

122 CONTINIIE
RE TURN
EMD

Cacsestesiese EULERTIAN CALCULATINON PART ( stesiesioksisleok siesie siesi ool e sk o sie sle s 30 i deaje i sie ol o o3 o oo e 3 e dje 3¢ e
SURROUITINE PARTC(MgNP¢KNMAX 3 LOMAX yKDMIN, LDMIN)
COMMON NEN{24,100,100) 4DENU(2+1004,100),DENV(2,100,100)
COMMON U(24100,100),Y(2,100,100),P(2,100,100)
COMMON /07 QU(2,100,100),0V(2,100,100)
COMMON /RILKR/ KRM(24200)4KRP(2,200)
COMMON /BLD/ DT 4N7Z4DRySTAFACSTDZ4TDR,TNP
COMMON /JRLR/ KEMNDGLFNNDyKRGLRyKCORFILLCOREZKSOLIN,HSULID
COMMON /REND/ KENDND2GLENND2 3 KEND3 L, LENMD3 KLDy NKTT
COMMON /RLO/ DENOGDENUOGDENVOL,UO VO3 POyDENP PP
COMMON /CV/ CO4WCP4C1,yC2:C34COFEFyALPHALCOEG
COMMON /JRCRIT/ PCRITLWDECRITLCONST
COMMON /BLP/ NPT oNMAX g MJEToNMINGLMAXy LJETSLMINGLTIPSNTIP,,KTOP
COMMON /S/ CYCLEJNSTAGF NPRIMT,TIME,TIMENDyCHLEN
COMMON /JHAR/ HAGHR3GAWGRyGCoFAyFRyFCyDENRyDMAXy DMI N
COMMON /REL/ JAGJR JCyIN g JE s JF o dGydHyJT g JdedKedL gy My N
NIMENSTION DENZ(20000)yDENUZ{20000) 4DENVZ{20000)
DIMENSINN HZ(20000)4,VZ(20000),PZ{20000)
EOUIVALENCE (DENGDENZ ) (DENUGDENUZ )y (DENV,DENVZ)
FOUTVALFRNCE (U7 )Y e (VeVZ) 4 (P4PZ)
DIMENSTON OUZ{20000),0V7{(20000)
FOUTVALENCE (QUaM7 )Y, (OV40V7)
CNOMMON /JR/ JS{100),RS{100)
Co=—e THIRD STEP CALCIH.ATION

DO 117 L=3,J3,KLD
LM=L+1
LP=L+1
ILMN=| -2
LPP=+?
RNO=L
RI=IL M
RNAN=RMN+]
RTI=R]-1
RNDR=(RN+RTY/?
TRNDR=TNR/RNR
KLA=KRM (NP4 )
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KHI=KBP(NP,L)
LR=(L-1)%NKTT
KLOL=NP+(KLO=1)*%2+LR
KHIL=NP+{KHI~-1)%2+LR
NO 111 K=3,JA4KLD
KM=K=1
KP=K+1
KMM=K -2
KPP=K+?2
KR={K=1)3%2
MPKL=NP+KR+LR
NKL=N+KR+LR
NKPL=NKL+2
NKML=NKL=-2
NKLP=NKL+NKTT
NKLM=NKL=NKTT
NPKPL=NPKL+2
NPKML =NPKL=-2
NPKLP=NPKL+NKTT
NPKLM=NPKL~NKTT
IF (L «GT. JS(K)) GO TO 114
IF (L +FQ, JS(K)) GO TO 111
IF (K JLT. KLD) GO TO 115
IF (K JEQ. KLO) GO TO 111
IF (K EQ. KHI) GO TO 111
IF (K ,GT, KHI) GO TO 116
GO TO 112

114 CONTINUE
DENZ (NPKL Y=DENR
DENUZ (NPKL)=DENUZ (NKL )
DENVZ (NPKL )=DENVZ (NKL )
UZ (NPKL)=UZ (NKL)
VZINPKL)Y=VZ{NKL)
PZ(NPKL)=PO
GO TO 111

115 CONTINUE
DENZ (NPKL )=DENR
DENUZ (NPKL)=DENUZ (KLOL)
DENVZ (NPKL)=DENVZ (KLOL)
UZ (NPKLY=UZ (KLOL)
VZ (NPKL)=VZ(KLOL)
PZ{NPKL)=PN
GN TO 111

116 CONTINUIE
NENZ (MPKL }=DENR
NDENUZ (NPKL)=DENUZ (KHIL)
DENVZ (NPKL)=DENVZ (KHIL)
UZ(NPKL)=UZ (KHIL)
VZ(INPKL)=VZ(KHIL)
PZ(NPKL)=POD
GNn TN 111

112 CONTINUE

————— ESSENTIAL CALCULATION
IF(ALPHA ,EQ, 0.) GO TN 2
DU=(UZ (NPKPL)=UZ (NPKML)Y+FC*(U{NyKPP,L)I=U(NygKMMyL)))*FR
PV=(VZI{MNPKLM)=VZ(NPKLP)I+FC#(V(NyKLMM)=V (N Kyl PP)})%FR
OUZ (NPKLIY=FO(DENZ (NKL ) DU
OVZ {NPKL)=FQ(DENZ (NKL),NV)
GO TO 4

2 OUZ(NPKL)Y=0.
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OVZ (NPKL )=0.
4 CONTINUF
EA=GA%DENZ (NKL)
E+HAXR(DENZ (NPKPL)+DENZ (NPKML ) +DENZ (NPKLM)+DENZ (NPKLP))
E+HBH(DEN(NyKPPyL)+DEN(NyKMM, L) +DEN({NyKy LMM)+DEN(NyK,LPP))
ER=GA*DENUZ { NKL)
E+HAX (DENUZ (NPKPL)+DENUZ (NPKML )+DENUZ (NPKLM)+DENUZ (NPKLP))
E+HBR(DENU(NyKPPyL)Y+DENU(NKMMg L) +DENU(NyKoLMM)+DENU(N,KoLPP))
EC=GA*DENVZ (NKL )
6 +HA%R(DENVZ (NPKPL)+DENVZ (NPKML)+DENVZ (NPKLM)+DENVZ (NPKLP))
E+HBR* (DENV (N KPPy L)+DENVINyKMMy L )+DENV(NyKy LMM)+DENV(NsK4LPP))
DENZ (NPKL)=EA+
E(FRE(DENUZ (NPKPL)=DENUZ (NPKML ))
E+FCHx(DENUINSKPP4L)=DENU(NyKMM,L)})
& )%TDZ1+
E(FB*(DENVZ (NPKLM)*RI-DENVZ (NPKLP}*RO)
& +FC*(DENV(NyKy LMM)%RIT=DENV(NyK,LPP)*R0O0)
& )XxTRDR
DE=DENZ { NPKL)
IF (DE .LE. DMAX) GO TO 7
NDMAX=DE
KDMAX =K
LDMAX=L
7 CONTINUDE
IF (DE .GE. DMIN) GO TO 9
DMIN=DE
KDMIN=K
LDMIN=L
9 CONTINUE
DENUZ (NPKL)=EB+
E(FBX%(DENUZ (NPKPL)*UZ{NPKPL)=DENUZ (NPKML)*%UZ (NPKML))
& +FCx(DENUINGKPPyLIXUINGKPP L)Y =DENU(NyKMMy L }*U(NyKMMyL) )
& VYxTDZ+
E(FB*(DENVZ (NPKLM)*=UZ (NPKLM)XRI~DENVZ (NPKLP)*UZ (NPKLP)*R0)
6 +FCKR(DENV(NyKyLMM)RU{NyKo LMM}*XRTI=DENV(NyKyLPP)*U(NyK,LPP)*R0O0O)
& )*TRDR+
E(FR¥x(PZ{NPKPL)=PZ(NPKML))
£ +FCX(P(NyKPPyL)=P(NKMM,L))
& )xTDP*FA
&~0QUZ (NPKL )*TDP
DENVZ (NPKL )=FEC+
HE(FR:(DENUZ (MPKPL)Y*VZ (NPKPL)=DENUZ (NPKML)*VZ (NPKML) )
& +FCH(DENU(NGKPPyL)I*VINJKPPoL)I=DENU(NKMMyL)*VINygKMM,L))
& YxTDZ+
E(FR®(DENVZ (NPKLM)*VZ (NPKLM)*RI-DENVZ (NPKLP)*VZ (NPKLP)*R0O)
& +FCHR(DENV(N K yLMM)RV (N Ky LMM)Y*RTTI=DENV(NyKoLPP)*V(NyK,LPP)*R0OO)
& )RTRDR+
E{FR*(PZ{NPKILM)=PZ(NPKLP))
& +FC*{P{NyKyLMM)=P(NyK,yLLPP))
& V1XTDPXFA
&=0QVZ (NPKL)*TDP
IF (DE LTe DECRIT)Y DE=DECRIT
UZ{MPKL)=DENUZ (NPKL)/DE
VZ{NPKL)=DENVZ (NPKL)/DE
PZINPKIL)=FP(DENZ (NPKL))
111 CONTINUIE
117 CNONTINUE
RETURN
END
Cxusedkde AVERAGE ON THE CELL BOWNDARY - siesleoleosiosies siesi sieoskosiodk sl siesi i sle s 5 s sl sie e sgsiesm e
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SUBROUTINE AVE(M,NP)
COMMON DEN(24,1004100)4DENU(241004100),4DENV(2,100,100)
COMMON U(2,100,100),V(2,100,100),P(2,100,100)
COMMON /BLB/ KENDWLENDZLRANDGRDRCOP4KCORELLCOREWKSOLIDZHSOLID
COMMON /BREND/ KEND2,LEND2,KEND3LEND3 KLDyNKTT
COMMON /BLP/ NPT NMAX NJETyNMINyLMAXGLJETSLMINGLTIPyNTIP,KTOP
COMMON /JR/ JS(100),4RS(100)
COMMON /BLKB/ KRBM(2,200)4KRP(2,200)
COMMON /BT/ TOUCH(200)
DIMENSION PEN(20000),PENU(20000),PENV(20000)
DIMENSTON AAU(20000),AAV(20000)AAP(20000)
EQUIVALENCE (DEN(Ll¢le1)4PEN{L))o(DENU(141y1),PENU(L1))
EQUIVALENCE (DENV(1y1s1)4PENV(1)) o (UlLelsel)eAAU(L))
EQUIVALENCE (V{14142)4AAV(1))e(P(1els1)4AAP(1))
COMMON /BFL/ JAZJBRyJCy Dy JE9JF 3 UGy JHyJI o JJypJKeJL gy dMe JN
COMMON /RFL/ JUeJdVeJdWyJdXyeJdYedZ
LTIPM=LTIP~1
DO 3 L=2,LTIPM,2
K1=KBM(NP,L)+1
IF{MON(K1,42) LEO, 0) Kl=K1l+1
IF(TOUCH(L) GT. 0.) Kl=1
K2=KBP(NP,L)~1
IF(K2 LT, K1) GO TO 3
LB=NP+{L—-1)%NKTT
DD 1 K=K1,K2,2
IF(L .GE. JS(K)) GO TO 1
M=LB+(K=1)2%2
T=M=NK1T
J=MENKTT
PEN(M)=(PEN(I)+PEN(J)}/2,
PENU(M)=(PENU(I)+PENU(J)) /2,
PENV(M)=(PENV(I)+PENV(J))/2.
AAU{MY=(AAU(TI)+AAU(J) ) /2.
AAV{M)=(AAV(I)+AAV(U)) /2,
AAP(M)=(AAP(TI)}+AAP(J)) /2.
CONTINUE
3 CONTINUE
DO 4 L=1,LTIPM
K1=KBM(NP,L)+1
IFI(MOD(K142) JEQ, 1) Kl=K1+1
IF(TOUCH(L) GT. 0.) K1=2
K2=KBP(NP,L) -1
IF(K2 LT, K1) GO TO &
LB=NP+(L~-1)%NKTT
DN 2 K=K1,K2,2
IF(L .GE., JS(K)) GO TO 2
M=LB+(K=-1)3%2
[=M=2.
J=M+2
PEN(M)=(PEN(I)+PEN(J)) /2,
PENU(M)Y=(PENU(TI)+PENU(JI)/2,
PENV(M)=(PENV(I)+PENV(J)) /2.
AAU(MY=(AAUCTY+AAU(I) ) /2,
AAV(M)=(AAV(T)Y+AAV(J))Y /2,
AAP(M)=(AAP(I)+AAP(J)) /2.
2 CONTINUE
4 CONTINUVE
RE TURN
END

—
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SUBROUTINE DOMAIN(N,NP,DENO,NSMA,NSMB)
COMMON DEN(2,100,100),DENU(2,100,100),DENV(2,100,100)
COMMON U(2,100,100),V(2,100,100),P(2,100,4100)
COMMON /BLB/ KEND,LEND,LRAD,RDROP,KCORE,LCORE,KSOLID,HSOLID
COMMON /BT/ TOUCH(200)
COMMON /JR/ JS(100),RS(100)
COMMON /BEND/ KEND2,LEND2,KEND3,LEND3,KLDyNKTT
DIMENSION PEN(20000),PENU(20000),PENV(20000)
DIMENSION AAU(20000),AAV(20000),AAP(20000)
EQUIVALENCE (DEN(191,1),PEN(1)),(DENU{1,4141),PENU(]))
EQUIVALENCE (DENV(14141)4PENV(1)),4(U(141y1)yAAU(L1))
EQUIVALENCE (V(19141)4AAV(1))4(P(1,y1,1),AAP(1))
COMMON /BFL/ JA3JByJCyJIDyJEsJFsJGyJHyJI s JJsJKyJL s JMyJIN
COMMON /BFL/ JUyaJV4JWeJXyJY,J2Z
L1=1+JM
DO 1 L=L1,JByJM
NPO=NP+{L-1)*NKTT
NPI=NPO+JM*2
IF (L «GTe. JS(1)) GO TO 8
PEN(NPO)=PEN(NPI)
IF (PEN(NPO) (LT. DENO) PEN(NPQO)=DENO
AAP(NPO)=AAP(NPI)
PENU(NPO)=0.
AAU(NPO)=0,
GO TO 1
8 CONTINUE
PEN(NPO)=PEN(NPI)
AAP(NPO)=AAP(NPI)
PENU(NPD)=PENU(NPT)
AAUINPD)=AAU(NPI)
CONTINUE
2 CONTINUE
DO 3 K=L1lyJA,JM
NPO=NP+(K-1)#*2
NPTI=NPO+JIM%:NKTT
PEN(NPO)=PEN(NPI)
PENU(NPO)=PENU(NPI)
AAUINPOY=AAU(NPT)
AAP{NPO)=AAP(NPI)
3 CONTINUE
4 CONTINUE
DEN(NP41,1)=DEN(NP,L1,1)
P{NP4141)=P(NPyL1,1)
6 CONTINUE
RE TURN
END
$SIGNOFF
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