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ABSTRACT

The normal impact of a flat-ended cylindrical water jet of
finite length upon a rigid plane is studied. Particular emphasis is
given the unsteady-state portion during the initial portion of the pro-
cess. The governing partial differential equations of compressible
flow, neglecting body force, viscosity and surface tension, are sol-
ved numerically by a newly developed Compressible-Cell-and-Marker
(ComCAM) solution method. Numerical results are first checked by
solving the classical one-dimensional ''water hammer' problem
(Huang, 1971).

Pressure build-up and lateral flow begin simultaneously with
the impact, but the radial expansion of the cylindrical jet near the
contact edge is not appreciable during this earliest stage of impact.
A zone of negative pressure appears in the upper region of the finite
cylindrical jet but there is no '"bursting out" of the back surface.
The maximum pressure in the finite cylindrical jet impact is found
to be less than the one dimensional maximum pressure corrected
for velocity of sound variation ( _8_5_%)% However, it is somewhat great-
er than the conventional ''water hammer pressure' (uncorrected for
density or velocity of sound variation). i The maximum lateral
velocity, however, is greater than the impact velocity. As time
elapses, the peak pressure on the impact surface shifts from the

center radially outward, while the pressure at the center attenuates

to the stagnation pressure.
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Symbol

NOMENCLATURE

Description

Exponent in Tait's equation of state
Constant in Tait's equation of state
Shock wave velocity

Sonic Velocity

Diameter

Dimensions of Computation. Domain in
z- and r- direction, respecitvely

Constant

Length

Mach number

Pressure

»/p C.V,

Radius

Location of marker m in r- coordinate
Radial coordinate |
r/R

Time

Non-dimensional time, Ct/D

Marker velocity component in z-direction
Velocity component in z-direction
Velocity component in normal direction
Marker velocity component in r-direction
Velocity component in r-direction
Velocity component in tangential direction
Impact velocity

Coordinate in normal direction

Coordinate in tangential direction

Vertical coordinate
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N

B> o 2 N

z/L

Location of marker m in z-coordinate
Stability factor

Density

Increment

Subscripts
Characteristic parameter
Marker index
Normal direction
Initial value

Tangential direction

Superscripts

Non-dimensional variable
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LIST OF FIGURE CAPTIONS

Figure Caption

1 Shape-time history of an initially cylindrical droplet with
L/D = 1, at impact Mach number of 0.2 and under free-slip
boundary condition.

2a-e Isobar distribution in an initially cylindrical droplet with
L/D = 1 at time Ct/D = 0,125, 0.25, 0.5, 1.0, 2.5 for impact
Mach number of 0.2 and under free-slip boundary condition.

3 Pressure-time history at liquid-solid interface (z=0) of an
initially cylindrical droplet with L/D = 1, for impact Mach
number of 0.2 and under free-slip boundary condition.

4 Pressure-time history along the symmetrical axis (r=0) of an
initially cylindrical droplet with L/D = 1 for impact Mach
number of 0.2 and under free-slip boundary condition.

5 Local pressure-time history at a(r=0, z=0.5 L), b(r=0, z=0) and
c(r=0.75R, z=0) in an initially cylindrical droplet with L/D =1
for impact Mach number of 0.2 and under free-slip boundary
condition.,

6 Radial velocity-time history at liquid-solid interface (r=0)
of an initially cylindrical droplet with L/D = 1, for impact
Mach number of 0.2 and under free-slip boundary condition.

7 Maximum pressure gradient-time and-location relation and contact
edge-time history of an initially cylindrical droplet with L/D=1,
for impact Mach number of 0.2 and under free-slip boundary

condition.
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I.  INTRODUCTION

When a c¢ylindrical free jet of water is directed perpendicularly against
a rigid smooth wall, the jet is deflected into lateral flow parallel to the
wall away from the point of impact. Most previous studies of this problem
deal with the steady state. Bernoulli's theorem is often used to simplify
the analysis for regions away from the stagnation point. Approximately uni-
form lateral velocity and pressure are predicted. Thickness of lateral flow
is all that remains to be determined (Batchelor, 1967). For the region near
the stagnation point, the velocity distribution conventionally is assumed,
and then pressure is calculated by potential flow theory (Schlichting, 1960).

However, at the first instant of impact, the sudden change of boundary
velocity will establish large pressure gradients, which in turn produce a
sudden change in the velocity at every point of the fluid. The velocities
and their spatial gradients are negligible compared to the local acceleration
in this impulsive motion. Problems involving a sudden change of velocity at
a portion of the boundary, similar to the present case, arise in connection
with the impact of a liquid jet on the solid surface of a target or a pro-
jectile on the free surface of a stationary body of liquid. A severe local
pressure of the order of 5000atm. is predicted over a very short duration
of 0.25 x 107 sec. for an impact velocity of 1000 ft/sec.

The main objective of the present study was to investigate analytically
the unsteady features of liquid-solid impact by formulating the transient,
two-dimensional governing equations plusthe equation of state for water. Then,
using numerical techniques, the flow patterns and impact pressure and velocity
distribution developed in a cylindrical jet of water following its collision

with a plane rigid surface, would be found.



ITI. ANALYSIS

When a free cylindrical jet of water impinges on
a rigid surface, the water is diverted into lateral flow. Equations and
boundary conditions describing the situation are well-known, but it is a
formidable and probably impossible task to obtain a closed form solution.
However, a numerical approach wherein one treats the liquid as a distributed
system, subjected to the boundary condition at the interface with solid and
gas, is possible.

The compressibility of the liquid mustbe taken into account in any
valid and realistic analysis, since otherwise an unrealistic infinitely large
pressure will be produced at the first instant of impact. Unless the im-
pact velocity is extremely small, compressibility effects
predominate in the liquid response during the period of unsteadiness. How-
ever, it is reasonable to neglect the effect of body force and viscosity as
can be easily shown by comparing with impact pressure magnitude. Surface
tension which effects the boundary condition can also be neglected. Cylin-
drical coordinates are natural for the problem. Then the governing equa-
tions for a cylindrical liquid jet colliding with a rigid solid surface are
as follows.

Continuity and momentum for the liquid gives:
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and Tait's equation of state for water (Tait, 1888) is:

p+tB P A (4)

pO+B - 7;)

u and v are the axial and radial velocity components respectively for the cy-

lindrical coordinates z and r. Time t is another independent variable, and
and p are the fluid density and pressure. The values of A and B

in Tait's equation of state for water are chosen as (Cole, 1965):

A= 17.15 and B = 3,047 kilobars.
The above set of (1) through (4), which are in the Eulerian form, are
used to find impact pressure and velocity distribution within the liquid
The following set of equations for marker particles, which are in
Lagrangian form, are required to indicate the movement and location of the

liquid boundary.

AW g, 2 (5)
_éig’t_l_ ‘:’“-3_1;_ (6)
z_= g Udt (7)
R = det (8)

Here, U and V are the marker velocity components in the z- and r- direction,

while Z and R denote. the coordinates in these directions.
m m

The appropriate initial conditions over the domain of calculation are

= u=1u v=Yv
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where P, is the ambient pressure, and u and \A are the initial impact
velocities in the z- and r- direction respectively. In the case of a normal
impact (i.e., perpendicular), Vo = 0 of course and Vo =u, where Vo is the
impact velocity.

The appropriate boundary conditions are:

i) along the axis of symmetry (z), r = 0, and symmetry requires

ii) along the impacted rigid surface , z = 0, %"} =0, u= 0, g 7 0,

for full-slip wall condition, which, strictly speaking an assump-
]
tion of zero viscosity would necessitate; and v= 0, u= O,@I;— =0
for a non-slipwall condition.
iii) along the free surface, the incompressible continuity condition
yields
ou ov
n t

P=Py BJx  °~ 9x =0
n t

where u and v, are the moving velocity components of the liquid-
air interface in the normal X and tangential X, directions of the
surface respectively.

iv) along the sides of the finite computational domain, permeable
boundary conditions will be imposed, in such a way that the normal
space derivative of the variable vanishes at the boundary,

g, 0,8 _gaz-H

8z ' 9z 9z 1
ou Q_X _ _B_E _ _
T =0, 5T - 0, rl Dat r —H2

where H, and H, are the dimensions of the computational domain in

the z- and r- direction, respectively.



All the above equations are then nondimensionalized and expressed in
finite difference forms. A compressible-cell-and-marker numerical solution
method was developed (Huang, 1971 ), The numerical
computation starts with marker particles located along the interface to keep
track of the deformation of the liquid boundary. Then pressure and velocity
within the liquid boundary are calculated. The detailed descriptions of the
methodare givenby the firstauthor of the present paper, Huang (1971).

The numerical results represent approximate solutions to the original
differential equations, since derivatives are replaced by finite differences.
Terms of the order of the square of the time increment and spatial step size
are neglected. The convergence of the finite difference representation, i.e.,
the degree to which the approximate solution approaches the exact solution,
must then be examined.

It is known that although the explicit formulation avoids the need of
iterative or matrix inversion techniques, the Courant stability criterion
(Richtanyer & Morton, 1967), must be satisfied, i.e., the distance a wave

travels in the time increment &t must be less than the spatial step size

Az or Ar. That is:

At ¢ rnm.(ékz, Ar) (9)

where C is the shock wave velocity in the liquid phase, With the definition
of the stability factor

C At
min. (Az, Ar) (10)

o =

one can satisfy the stability criterion by selecting a value of & less than

unity.



Numerical experiments were carried out to determine the stability factor
and required numbers of cells so that convergence of the result was reason-
ably assured, in regard to magnitudes, timing, and wave shapes. For the acutal

study, a stability factor £ = 0.1 and 20 x 40 mesh were used.



II1 RESULTS AND DISCUSSION

In examining the results, one must consider the following.
Constant atmospheric pressure at the water-air free surface is imposed.
The impact plane, which is perfectly rigid and smooth, has no move-
ment The water is assumed inviscid, without surface tension, but
compressible and elastic. The fracture strength of water is taken to be
270 atm. an experimental result of Briggs (1950). Of course, ordinarily
pure water will rupture at much smaller tensions, but perhaps not for
the very short duration of tension involved here. The initial length
of the cylindrical droplet is L and its diameter, D. The impact Mach
number M is defined as VO/CO, where Co is the sonic velocity in the

undisturbed liquid.

Figure 1 shows how the shape of a droplet with I/D = 1 deforms
as a function of time. The top of the droplet retains its original flat
shape up to the non-dimensional time t° = Ct/D =1 (about equivalent to
1 psec for an impact Mach number of 0.2 with a 2 mm dia. droplet)
after which it becomes convex. The liquid flows out radially parallel

to the surface without apparently contacting it.

Figures 2a through 2e depict the isobar distribution in the droplet
at various instants, i.e., to = 0.125, 0.25, 0.5, 1.0 and 2.5, respectively.
The figures illustrate how the pressure waves propagate with time from
the impacted surface toward the air-water free surface. Due to constant
atmospheric pressure at this free surface, all the isobaric surfaces at
small times appear as an inverted cup resting upon the impacted surface
(Figure 2a). As time progresses and the droplet shrinks in height
accompanied by radial-expansion (Figure 2b) each cup-shaped isobaric

surface grows in size, both depth and width. The isobaric surfaces for



small values of po = p/PoCoVo still retain the inverted cup shape in
the outer region of the droplet, for £ = 0.5 (Figure 2c), those for
medium pressure (in the inner portion) form egg-shape surfaces,
coaxially arranged, with the smaller end pointing toward the impacted
surface. In the central region of the droplet, however, the isobaric
surfaces for large isobars appear as round-edged discs which are
arranged concentrically with the major axes parallel to the impacted
surface. The pressure patterns in the droplet result primarily from
the effect of the rarefaction waves from the air-water free surface at
the impacted edge. The pressure at the stagnation point (r = 0, z = 0)
is released from the contact edge of the solid liquid interface rather than
from the top of the droplet. The mechanism can be explained by the

following approximate arguments.

Assume that the compression wave travels along the symmetrical

axis at the approximate shock wave speed of C (Heymann, 1968).

C=C +KV 1)
o o

where K is some constant (about 2 for water). Further assume the rare-
faction wave velocity is CO. The minimum possible diameter, Dmin
of a cylindrical droplet of length L if the wavepattern near the axis of
symmetry is to remain one-dimensional until a refraction wave has

returned from the back of the drop is

_ 2 + KM
Dmin_ZL(l+KM) (12)
and
D . =4 LifM<«l (13)

min



Equation (13) indicates that rarefaction waves reach the stag-
nation point from the top of the drop before those from the periphery
of the drop only when L/D <1/4; i.e., when the droplet shape is
actually a disc.

Figure 2d for t°% 1.0 indicates the possibility of cavitation in
that there is a region of negative pressure enclosed by the zero
isobaric surface as a result of the rarefaction waves. However, no
"bursting out' of the top surface appears. The isobaric surface of
pO = 0.05 froms a half doughnut shape which includes the region of
high compressive pressure.

In Figure 2e (t°= 2.5) the droplet shape has become that of a
military helmet. The isobaric surfaces along the axis changes from
convex to concave as po increases. The highest po values are con-
fined to the half doughnut shape region over the solid surface near
r° (= r/R) = 1.0.

Better illustrations of the pressure distribution on the impacted
surface and along the axis of symmetry are given in Figures 3 and 4,
respectively. Figure 3 shows that the pressures build up immediately
rather uniformly over the entire impacted surface
except near the outer edge, where the boundary
condition of atmospheric pressure has been satisfied. Figure 4
depicts how the pressure waves propagate along the axis of symmetry,
starting from the impacted surface. These waves reach the top of the
droplet at about t®=0.5 and then rebound, producing large regions
of negative pressure. The pressure at the stagnation point (0, 0) is
positive (compressive) until the rarefaction waves reach that point
along the axis of symmetry (r =0) or along the impact surface (z = 0).
Its magnitude increases continuously (until the time t° of about 0. 25)
at a much greater rate than the pressures over the rest of the impacted

surface. At the same time, the rarefaction wave starts to affect the
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pressure near the outer edge (Figures 3 and 4). The pressure at

the stagnation point then decreases and actually becomes negative at
time about 1. 25 (Figure 5). It then rebounds and osc111ate§ azbout the
normalized steady-state stagnation pressure, which is /p

o o o
M. 0.1 for M=0.2. The numerical computation was termmated at

2
t®= 2.5, since the steady state has been reasonably approached, and
most of the important features of the liquid-solid impact have already
been disclosed. Figure 5 also shows the pressure-time history at
two other locations (0, 0.5) and (0.75, 0). The tension at point "a"
(0, 0.5) has exceeded the assumed rupture pressure during the time
tobetween 1 and 1.5, indicating the probability of cavitation at this
location. However, such a cavity would be short-lived, since it
will be subject to compression after t°=1.5. Since the pressure
gradient on the impacted surface is the greatest near the contact
edge as shown in Figure 3, the instantaneous radial velocity incre-
ment at the location must be correspondingly the largest (Figure 6).
Figure 6 shows the radial velocity distribution on the impacted
surface. The dotted portion of the curves indicate regions where the

jetting liquid does not remain in contact with the surface. The radial
jetting velocity exceeds the impact velocity at to= 0.2.

The positive pressure gradient in the radial direction results
in a positive time-rate of change in the radial velocity. Therefore
as pressure gradients on the impacted surface change from positive
to negative (Figure 3), the radial velocities on the impacted surface
change correspondingly from increasing to decreasing (Figure 6).
The maximum pressure gradient and its corresponding location on
the impacted surface are given in Figure 7. The radial pressure
gradient reaches its peak at t°=0.2 just inside the initial outer edge.
It then decreases to its steady-state value as the location of the

maximum pressure gradient moves outward.



IV. CONCLUSIONS

The object of this paper was to investigate the unsteady (very initial)
features of liquid-~solid impact. Effort was directed to study the effect of
two-dimensionality with axisymmetry by selecting a flat-ended cylindrical jet
of relatively small length. Pressure and velocity distributions were solved
as a function of time. The following conclusions can then be drawn.

1. The unsteady period is relatively very short, but is the most im-
portant period during the liquid-solid impact from the viewpoint of surface
damage.

2. Compressibility is the predominant effect in this period of liquid-
solid impact.

3. Since the liquid surface is free to deform, the impacting jet is
diverted into lateral (radial) flow immediately after impact. The pressure
build-up is thereby affected from the first instant of contact.

4, The smaller is the length-~diameter ratio L/D, the closer is the
impact pressure to the one-dimensional maximum pressure (water hammer pres-
sure with corrected sonic velocity) over a reasonable time interval. This
approximation is reasonably valid if the minimum diameter is at least four

times the cylinder length. The maximum pressure is then ~1.2 x the
convention water hammer pressure"‘.
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Fig. 3. Pressure-Time History at Liquid-Solid Interface
(z = 0) of an Initially Cylindrical Droplet
with L/D = 1, for Impact Mach Number of 0.2
and for Free-Slip Boundary Condition.
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